立体几何——求异面直线距离

合集下载

异面直线距离的求解方法

异面直线距离的求解方法






线



求 解

朱 志 洪
( 德 财 经学 校 , 常 湖南 常德
摘 要 : 数 学教 学 中 , 分 运 用数 学知 识 的 解题 功 能 . 在 充
450 ) 1 1 1

பைடு நூலகம்
解 :如 图 ,’ CD为 等 边 i ‘AA .
有利 于学 生 的全 面 发展 , 养 学 生分 析 问题 解 决 问题 的 能 力 . 培
从 而 挖掘 学 生更 深 层 次 的 学 习 潜 能 本 文 从 四 个 方 面 探 讨 了 如 何根 据 各 种 情 形 运 用 不 同 的 方 法求 异 面直 线 的 距 离 .有 助 于教 学难 点 的 突破 , 以 引导 学 生 更 新 解题 思路 , 高 学 生 的 可 提
二 、 值 法 最 如 果 两 条 异 面直 线 分 别 在 两 个 互 相 垂 直 的平 面 内 .应 用
学 生5: 我在 刚才 同学 的基 础 上 想 到 只 要 用一 个有 点 硬 的 纸 条插 到 杯 子 的底 部 , 拿 出来 对 折 一 下 , 能看 出湿 的部 分 再 就 有 没有 一 半 了 。 学 生6: 到 刚 才 同 学 的 启 发 , 觉 得 办 法 还 可 以 更 简 单 . 受 我 只要 将 杯子 斜 过 来 , 水 刚好 到杯 口 . 看 有 没 有 形 成 象 对 角 让 看 线 一 样 , 果 是那 就 刚 好 可 以证 明杯 子 里 的水 有 1 。 如 / 2 学 生 是 多 么 富 有 智 慧 ,对 于 12的 理 解 是 多 么 深 刻 。 / 而 如 何 证 明 自己 的 观 点 , 面 的 判 断 , 化 的 思 想 , 向 的 思 正 转 逆 考 , 接 已有 的 经 验 解 决 问 题 . 种 策 略 的呈 现 源 于 提 供 的 连 各 现 实 问题 , 这 个 现 实 问 题 的 解 决 有 着 开 放 的 空 间 对 于 一 而 个 目标 的 达 成 有 着 不 同 的 路 径 .但 教 师 是 数 学 实 践 活 动 的 领航人 。 三 、 究活 动 内 容 。 位 数 学 文化 探 品 数 学 实践 活 动 充 满 着 探 索 与 创 造 ,经 常 有 意识 引导 学 生 参 与探 索 创造 的过 程 中 ,让 学 生 体 验 数 学 问 题 的探 索 性 和 挑 战性 . 以激 发起 学 生 的创 新精 神 可 如 : 文 学 中 的 数 学 问 题 》就 是 让 学 生 通 过 欣 赏 在 课 前 《 收 集 到 的 有 趣 的 数 字 诗 词 、 字 对 联 、 字 成 语 . 略 文 学 数 数 领 中 蕴 藏 着 的 丰 富 的 数 学 问题 , 会 数 学 只 是 在 文 学 中 的 妙 体 用 。如 : 山 上 的 一 副 对 联 : 一 蓑 一 笠 一 叶 舟 , 只 竹 竿 ~ 崂 “ 一 条 沟 , 山 一 水 一 明 月 , 人 独 钓 一 江 秋 ” 0 “ ” 恰 到 一 一 1个 一 字 好 处 的 渲 染 了 月 夜 的 幽 静 , 托 了 无 尽 的 秋 思 ; 如 : ~ 烘 又 “ 去 二 三 里 , 村 四 五 家 : 台 六 七 座 , 几 { 枝 花 ”, 勾 勒 烟 亭 八 就 出 了一幅 令人心 醉 的山村风 景 画 ; 视剧 《 相 刘 罗锅 》 电 宰 中 的 “ 片 两 片 四 片 , 片六 片 七八 片 , 片 十 片十 一 片 . 一 五 九 飞人 草丛都 不 见” 利用数 数 , 使 得全 诗妙 趣横 生 ; 如 , , 也 再 根 据 成 语 中 的 数 字 我 们 来 设 计 算 式 : 打 碎 敲 +口 鸣 惊 口 人 = 望 无 际 , 丝 万 缕 X 全 十 美 = 古 长 青 … … 学 生 在 口 口 口 口 收 集 资 料 的 活 动 中 , 定 会 对 数 学 有 全 新 的 认 识 , 全 新 必 从 的 视 角 看 待 数 学 . 而 喜 爱 数 学 。在 交 流 收 集 资 料 、 赏 诗 从 欣 词佳句 的过 程中 , 冶情操 感受 数学 价值 、 赏 数学 美 、 陶 欣 品

暑假立体几何中的距离问题

暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。

其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。

两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。

○2等体积法。

直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。

求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。

异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。

高中数学立体几何空间距离问题

高中数学立体几何空间距离问题

立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。

高二数学用平面法向量求空间距离

高二数学用平面法向量求空间距离

PA n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
小结:
1、怎样利用向量求距离?
①点到平面的距离:连结该点与平面上任意一点的向量 在平面定向法向量上的射影(如果不知道判断方向, 可取其射影的绝对值)。
二、求点到平面的距离
如图点P为平面外一点,点A为平面内的任
一点,平面的法向量为n,过点P作平面a的垂
ห้องสมุดไป่ตู้
线PO,记PA和平面a所成的角为,则点P
到平面的距离 nP
d | PO |
| PA | sin
a
O A
| PA | | n PA | | n || PA |
| n PA| |n|
A
B x
D
y C
三、求直线与平面间距离
例4、已知正方形ABCD的边长为4,CG⊥平面ABCD,
CG=2,E、F分别是AB、AD的中点,求直线BD到平面
GEF的距离。
z
G
PA n
d
n
xD
C
F
A
E
B
y
四、求平行平面与平面间距离
例5、在边长为1的正方体ABCD-A1B1C1D1中,M、N、 E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求 平面AMN与平面EFDB的距离。 z
z S
B
Ay
xC
D
; 太阳能路灯

最后也悲伤如老汉。所谓才华、才学、才识,只有变为才能并施于生活的时候,才有用。别忘了,才和能在造词的时候是联在一起的。人们爱说一句话:行善。其实行善之小端是施舍,大端是以满腔的能耐作用社会。 书中并无黄金屋,读而有识,笃做笃行

异面直线距离的求解方法

异面直线距离的求解方法

异面直线距离的求解方法摘要:在数学教学中,充分运用数学知识的解题功能,有利于学生的全面发展,培养学生分析问题解决问题的能力,从而挖掘学生更深层次的学习潜能。

本文从四个方面探讨了如何根据各种情形运用不同的方法求异面直线的距离,有助于教学难点的突破,可以引导学生更新解题思路,提高学生的思维能力。

关键词:异面直线距离公垂线法最值法线面平行法体积法在立体几何学习中,求异面直线之间的距离是学习中的难点,因此掌握几种求异面直线距离的常用方法是非常必要的。

一、公垂线法找出或作出两异面直线的公垂线然后进行计算是求异面直线之间的距离的首要方法。

由于两条异面直线的公垂线唯一存在,因此有时找出或作出其公垂线比较困难,但是如果两异面直线中的一条在另一条所在的垂面内时,它们之间的公垂线往往比较容易作出。

例1:边长为a的正方形的两条对角线AC,BD交于O,以BD为折痕将正方形折成空间图形,这时若△ACD为等边三角形,求异面直线AC和BD之间的距离。

解:如图,∵△ACD为等边三角形∴AD=DC=AC=AB∴点A在平面BCD的射影O为△BDC的外心∵△BCD为直角三角形∴O为斜边BD的中点∵AO⊥平面BCD∴AO⊥BD又∵OC⊥BD∴BD⊥平面AOC在平面AOC内作OE⊥AC于E,则OE为异面直线BD、AC距离。

∵AO=OC=a,AC=a,又在Rt△AOC中,OA #8226;OC=AC #8226;OE∴OE==a二、最值法如果两条异面直线分别在两个互相垂直的平面内,应用最值法求两条异面直线的距离是比较方便的。

我们知道两条异面直线之间的距离是连结异面直线上两点距离中的最小者,故我们可以将异面直线的距离表示成某个变量的目标函数,通过求函数的最小值求得两条异面直线的距离。

例2:已知正方体ABCD—ABCD的棱长为a,求异面直线AB和BD的距离。

解:如图,在AB上任取一点M,在平面AB内作MP⊥AB于P,在平面AC内作PN⊥BD 于N,连MN。

求异面直线距离的几种方法

求异面直线距离的几种方法

求异面直线距离的几种方法求异面直线间的距离是高中数学的一个难点,难就难在不知怎样去找异面直线的公垂线,也不会将所求的问题进展转化.为此,下面举例向大家介绍几种求异面直线间距离的方法,相信对大家学好这局部知识会有一定的帮助.一、平移法解题思路假设能找到一条直线c,使c与异面直线a和b都垂直,但c又不是a、b的公垂线,这时我们设法将直线c平移到直线c′处,使c′与a、b均相交,那么c′夹在a和b之间的线段就是a和b的公垂线段.然后再根据平面几何和立体几何知识,求出公垂线段的长.例1正方体ABCD-A1B1C1D1,其棱长为a,求AC 和A1D间的距离.解析如图1,由立体几何知识容易知道BD1⊥A1D、BD1⊥AC.设BD与AC的交点为M,△DBD1中,将BD1平移到MN处,连结AN,可知N为DD1的中点.设AN与A1D交点为Q.在△AMN中,将MN平移到QP处,可知QP就是AC与A1D的公垂线.由平面几何知识,有AQQN=21,那么AQAN=23,而MN=12BD1=32a,PQMN=AQAN,所以PQ32a=23,PQ=33a.故AC和A1D的距离为33a.采用同样的方法可以求出BD与B1C的距离也为33a.〔请同学们完成〕二、线面垂直法解题思路a、b为异面直线,平面α过直线b,且a⊥α于O,过O在α作OP⊥b于P,那么OP的长为异面直线a、b间的距离.例2如图2,正方体ABCD-A1B1C1D1,其棱长为a,求B1D1与A1C之间的距离.解析∵B1D1⊥A1C1,B1D1⊥CC1,∴B1D1⊥平面A1CC1于O1.过O1做O1E⊥A1C于E,那么O1E是异面直线B1D1与A1C的距离.∵△A1CC1∽△A1O1E,∴A1O1O1E=A1CCC1,∴O1E=A1O1?CC1A1C=22a?a3a=66a,即B1D1与A1C 的距离为66a.三、面面平行法解题思路a、b为两条异面直线,分别过a、b作平面α、β,使α∥β,那么α、β的距离就是a、b的距离.例3棱长为a的正方体ABCD-A1B1C1D1中,E、F 分别是BB1、AD的中点,求EF、DB1的距离.解析如图3,G为AA1的中点.∵GF∥A1D,GE∥A1B1,∴平面A1B1D∥平面EFG. ∵A1D⊥AD1,A1B1⊥AD1,∴AD1⊥平面A1B1D.同理,AD1⊥平面EFG,∴AD1被平面A1B1D与平面EFG截得的线段MN的长就是异面直线EF与BD1的距离.故异面直线EF与DB1的距离为:MN=14AD1=24a.四、转化法解题思路求异面直线间的距离通常转化为直线到平面的距离,再转化为点到平面的距离,而点到平面的距离常用体积法来求.主要思路是过异面直线中的一条作一个平面,使这个平面与其中的另外一条平行,那么异面直线的距离就转化为直线到平面的距离.再转化为直线上的点到平面的距离,这是一种很重要的转化思想,是求异面直线间距离的常用方法.例4如图4,正方体ABCD-A1B1C1D1,其棱长为a.M、N分别是正方形BCC1B1、A1B1C1D1的中心,求异面直线AM和DN间的距离.解析如图4所示,把AM平移到KC1处,易得KC1与DN一定相交在一个平面,从而有AM∥平面A1DC1,于是DN、AM间的距离就是直线AM到平面A1DC1的距离,进而转化为求点A到平面A1DC1之间的距离.设所求的距离为d,运用体积法VA-A1DC1=VC1-A1AD,即13d?S△A1DC1=13a?S△A1AD,所以d=aS△A1ADS△A1DC1.容易求得S△A1DC1=32a2,S△AA1D=12a2,所以d=a?a2232a2=33a.五、公式法解题思路求异面直线之间的距离,除了上述常用方法外,我们还可以根据下面的两个公式来求.公式1如图5,三棱锥A-BCD中,假设AB和CD 所成的角为θ,三棱锥A-BCD的体积为VA-BCD,那么异面直线AB与CD之间的距离d=6VA-BCDAB?CDsin θ.图5图6公式2平面α∩β=a,二面角α-a-β的平面角为θ,如图6.直线b与平面α、β分别相交于A、B,点A、B到棱a的距离分别为m、n.那么异面直线a和b之间的距离d=mnsinθm2+n2-2mncosθ.以上两个公式均可按照方法3来求,有兴趣的同学可以自己证明一下.例5如图7,正方体ABCD-A1B1C1D1,其棱长为a.P是B1C1的中点,求AC与BP的距离.解法1运用公式1来求.设AC和BP所成的角为θ,取A1D1的中点为N,连结AN,那么∠CAN=θ.不难求出sin∠CAN=31010,AC=2a,BP=5a2,VP-ABC=13a?12a2=16a3.d=6VP-ABCAC?BPsinθ=6×a362a?5a2?31010=23a.即AC与PB之间的距离为23a.解法2运用公式2来求.如图8,容易求出点B到AC的距离为m=2a2,点P到AC的距离n=32a4.设二面角P-AC-B的平面角为θ,用面积的射影公式容易求得cosθ=13,从而sinθ=223.d=mnsinθm2+n2-2mncosθ,代入数值得d=23a,即AC与PB之间的距离为23a.练习S-ABC为正四面体,棱长为a,求不相邻的两条棱AC、SB的距离.〔提示:过B做BC′AC,连接AC′、SC′、CC′,作SO⊥面ABC.AC和SB的距离就是三棱锥C - SBC′的高h=22a〕.〔收稿日期:2021 -07-09〕。

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题21立体几何之夹角、距离问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标(1)面面夹角(2)线面夹角(3)点到线的距离(4)点到面的距离六、高考真题衔接1.空间中的角(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为二、梳理必备知识l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.2.空间中的距离求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为 n ,这时分别在,a b 上任取,A B 两点,则向量在 n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅= n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||n n ⋅⋅=⋅=⋅<>=⋅ AB AB AH AB AB AB n AB AB θ,||||⋅= AB n d n 三、解题技巧实战1.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.在△CDO 中,易得222OC CD DO =+-又23PC =,∴222OC PO PC +=,∴PO则D (0,0,0),()22,0,0A ,(0,22,0B ∴()22,2,2CP =- ,()22,0,0CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22220220x y z x ⎧-+=⎪⎨=⎪⎩,取∴1212cos ,212n n ==⨯ ,∴平面APD 和平面CEP 的夹角的余弦值为【点睛】方法点拨利用向量法求二面角的方法主要有两种:(平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的范围;两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.2.如图,已知多面体111ABC A B C -中,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠= ,14A A =,111,2C C AB BC B B ====.请用空间向量的方法解答下列问题:求直线1AC 与平面1ABB 所成的角的正弦值.由题意知()(0,3,0,1,0,0A B -设直线1AC 与平面1ABB 所成的角为可知()(10,23,1,1,AC AB == 设平面1ABB 的法向量(,n x = 则10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩ 即30,20,x y z ⎧+=⎪⎨=⎪⎩令1y =,则3,0x z =-=,可得平面111sin cos ,AC AC n AC θ⋅∴==⋅ ∴直线1AC 与平面1ABB 所成的角的正弦值是3.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.则A(0,0,0),A1(0,0,(1)直线AC1的一个单位方向向量为故点M 到直线AC1的距离(2)设平面MA1C1的法向量为则1111·0·0n A C n A M ⎧=⎪⎨=⎪⎩ ,即202y x z =⎧⎨-=⎩不妨取x =1,得z =2,故因为N(1,1,0),所以MN 故N 到平面MA1C1的距离222102102MN n d n -+-==++ 四、跟踪训练达标面面夹角1.(2023·全国·浮梁县第一中学校联考模拟预测)如图,在四棱锥P ABCD -中,E 为棱AD 上一点,,PE AD PA PC ⊥⊥,四边形BCDE 为矩形,且13,,//4BC PE BE PF PC PA ==== 平面BEF .(1)求证:PA ⊥平面PCD ;(2)求二面角F AB D --的大小.因为//PA 平面BEF ,平面PAC 又//BE CD ,所以AF AF DE BC GC ==则(1,0,0),(0,3,0),(3,0,0),A B D F -设平面ABF 的一个法向量为(m = 则7330444030AF m x y AB m x y ⎧⎧⋅=-++⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩又平面ABD 的一个法向量为(0,0,1)n = 故二面角F AB D --的大小为π4.2.(2023·辽宁大连·校联考模拟预测)已知多面体ABCDEF 中,AD BC EF ∥∥,且4AD CD DE ===,2BC EF ==,π3BCD FED ∠∠==(1)证明:AD BF ⊥;(2)若BF =C AF B --的余弦值.在BCD △中,4DC =,2BC =2222cos BD BC DC BC DC =+-⋅⋅同时AD ∥BC ,可得DB AD ⊥因为BD AD ⊥,DF AD ⊥,且所以AD ⊥平面BDF ;又因为BF ⊂平面BDF ,所以AD (2)在BDF V 中,2BD FD ==即222BD FD BF +=,所以BD ⊥以D 为原点,,,DA DB DF 的方向分别为建立空间直角坐标系如图.其中(4,0,0),(0,23,0),(0,0,23),(2,23,0)A B F C -,所以()()()4,23,0,4,0,23,6,23,0AB AF AC =-=-=- 设向量(,,)n x y z = 为平面ABF 的法向量,满足0423004230n AB x y n AF x z ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ ,不妨令3x =,则2y z ==,故(3,2,2)n = ,设向量(,,)m p q r =为平面ACF 的法向量,满足0423006230m AF p r m AC p q ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ 不妨令3p =,则2,3r q ==,故(3,3,2)m = 131311cos ,||||44114m n m n m n ⋅〈〉===⨯ 由图可知二面角为锐角,所以二面角C AF B --的余弦值为131144.3.(2023·云南昆明·统考一模)如图,直四棱柱1111ABCD A B C D -中,ABC 是等边三角形,AB AD ⊥(1)从三个条件:①AC BD ⊥;②120ADC ∠=︒;③2BD AD =中任选一个作为已知条件,证明:1BC DC ⊥;(2)在(1)的前提下,若13AB AA =,P 是棱1BB 的中点,求平面1PDC 与平面1PDD 所成角的余弦值.【答案】(1)证明见详解(2)710对②:∵180ADC ABC ∠+∠=又∵AB AD ⊥,即90BAD ∠=可得90BCD ∠=︒,即BC CD ⊥又∵1CC ⊥平面ABCD ,BC ∴1BC CC ⊥,且1CD CC =I 故BC ⊥平面11CDD C ,注意到1DC ⊂平面11CDD C ,故对③:∵AB AD ⊥,即BAD ∠在Rt BAD 中,则sin ABD ∠故30,ABD CBD AB ∠=∠=︒=故90BCD BAD ∠=∠=︒,即BC 又∵1CC ⊥平面ABCD ,BC4.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chúméng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍ABCDEF中,四边形ABCD是正方形,平面BAE和平面CDE交于EF.(1)求证://AB EF ;(2)若平面CDE ⊥平面ABCD ,4AB =,2EF =,ED FC =,AF =,求平面ADE 和平面BAE 所成角余弦值的绝对值.5.(2023·山西·校联考模拟预测)如图,直三棱柱111ABC A B C -的所有棱长均相等,D 为1AA 的中点.(1)证明:11B D BC ⊥;(2)设,M N 分别是棱,AC BC 上的点,若点1,,,B D M N 在同一平面上,且ABC 的面积是CMN 的面积的3倍,求二面角1A B M N --的正弦值.【答案】(1)证明见解析(2)217【分析】(1)方法一:延长B 11B C BC ⊥可证得1BC ⊥平面方法二:结合垂直关系可以C 得结论;AB 设2AB = ,则()3,1,1D ,(0,2,0B ()13,1,1DB ∴=- ,(10,2,2BC =- 方法三:1AA ⊥ 平面ABC ,AB 10AA AB ∴⋅= ,10AA AC ⋅= ;则()3,1,0A ,232,,033M ⎛⎫ ⎪ ⎪⎝⎭,31,,033MA ⎛⎫∴= ⎪ ⎪⎝⎭ ,12MB ⎛=- ⎝ 设平面1AMB 的法向量(1,m x y = 则11111131033234233MA m x y MB m x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++⎪⎩设平面1B MN 的法向量(2,x n y =,线面夹角6.(2023·北京·校考模拟预测)如图,在三棱柱111ABC A B C-中,D,E,G分别为11,,AA AC BB的中点,11A C 与平面1EBB交于点F,AB BC==,12AC AA==,1C C BE⊥.(1)求证:F为11A C的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.条件①:平面ABC⊥平面1EBB;条件②:13BC=.注:如果选择条件①和条件②分别解答,按第一个解答计分.由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩ ,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为选条件②,因为5AB BC ==,AC由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为7.(2023·全国·模拟预测)如图,在几何体ABCDEF 中,四边形CDEF 是边长为2的正方形,AD DE ⊥,AB CD ∥,6AE =,1AB BD ==.(2)求直线BC与平面BEF所成角的正弦值.则()0,0,0D ,()1,0,0B ,E所以()0,2,0= EF ,(1,0,BE =- 设平面BEF 的法向量为n = 取1z =,得2x =,所以可取设直线BC 与平面BEF 所成的角为则sin cos ,BC BC n BC θ⋅== 所以直线BC 与平面BEF 所成角的正弦值为8.(2023春·甘肃张掖·高三高台县第一中学校考阶段练习)如图,在四棱锥P ABCD -中,PAD 为等边三角形,四边形ABCD 为平行四边形,PAB PDC ∠=∠.(1)证明:四边形ABCD 为矩形;(2)若2PA AB ==,当四棱锥P ABCD -的体积最大时,求直线PB 与平面PDC 所成角的正弦值.【答案】(1)证明见解析(2)64【分析】(1)取AD 的中点线面垂直,再证得线线垂直即可建立空间直角坐标系,利用空间向量法求(2)由题意知,当平面PAD ⊥平面(1)知AB AD ⊥,所以以O 为原点,空间直角坐标系,因为2PA AB ==,则()0,0,0O ,B 设平面PDC 的法向量为(,,n x y z = 令3x =,则()3,0,1n =- .又()1,2,3PB =- ,设直线PB 与平面则sin cos ,23n PB n PB n PBθ⋅=== 所以直线PB 与平面PDC 所成角的正弦值为9.(2023·四川凉山·二模)如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11A C 中点,平面11ABB A平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.∵E ,G 分别是BC ,AB 又∵1A F AC ∥且112A F AC =∴四边形1EGA F 为平行四边形,∴又EF ⊄平面11ABB A ,1AG ∵EF ⊂平面AEF ,平面(2)由三棱柱为直棱柱,∴平面设1AA a =,则1(0,22,0)B ,F 所以1(0,22,)AB a =- ,(0,EF = 又1AB EF ⊥,则10AB EF ⋅= ,解得所以(2,2,2)E ,(0,0,2)A ,则设平面11A B E 法向量为(,,n x y = 所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222x ⎧⎪⎨+⎪⎩由(1)知直线EF l ∥,则l 方向向量为设直线l 与平面11BCC B 所成角为则sin cos ,n EF n EF n EF α⋅===⋅ 所以直线l 与平面11BCC B 所成角的余弦值为10.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B⊥平面1AB C;(2)点P在线段1A E上(异于点1A,E),AP与平面1A BE所成角为π4,求1EPEA的值.点到线的距离11.(2022·全国·高三专题练习)如图,在四棱锥P −ABCD 中,AD BC ,190 1.2ADC PAB BC CD AD ∠=∠==== ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内是否存在一点M ,使得直线CM 平面PBE ,如果存在,请确定点M 的位置,如果不存在,请说明理由;(2)若二面角P −CD −A 的大小为45︒,求P 到直线CE 的距离.点E 为AD 的中点,AE ED ∴=1,2BC CD AD ED BC ==∴= ,AD BC ∥ ,即ED BC ∥,∴四边形BCDE 为平行四边形,即,,AB CD M M CD CM ⋂=∴∈∴ BE ⊂ 平面,PBE CM ⊂平面PBE CM ∴ 平面PBE ,,M AB AB ∈⊂ 平面PAB ,M ∴∈平面PAB ,故在平面PAB 内可以找到一点M (2)如图所示,ADC PAB ∠∠= 且异面直线PA 与CD 所成的角为又,,AB CD M AB CD ⋂=⊂平面AD ⊂ 平面,ABCD PA AD ∴⊥,又,,AD CD PA CD AD PA ⊥⊥⋂=CD \^平面PAD ,PD ⊂ 平面,PAD CD PD ∴⊥.因此PDA ∠是二面角P CD A --PA AD ∴=.因为112BC CD AD ===.以A 为坐标原点,平行于CD 的直线为⎫⎪⎭12.(2023·全国·高三专题练习)如图,已知三棱柱111ABC A B C -的棱长均为2,160A AC ∠=︒,1A B =(1)证明:平面11A ACC ⊥平面ABC ;(2)设M 为侧棱1CC 上的点,若平面1A BM 与平面ABCM 到直线11A B 距离.轴,建立空间直角坐标系,-中,底面四边形ABCD 13.(2022秋·天津河东·高三天津市第七中学校考阶段练习)如图,在四棱锥P ABCD为菱形,E为棱PD的中点,O为边AB的中点.(1)求证:AE //平面POC ;(2)若侧面PAB ⊥底面ABCD ,且3ABC PAB π∠∠==,24AB PA ==;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为21,若存在,求DF DP 的值;若不存在,说明理由.(2)①在平面PAB 内过点O 作Oz 菱形ABCD 中3ABC π∠=,则OC ⊥以O 为原点,分别以,,OB OC Oz 所在直线为()()(1,0,3,0,23,0,4,23,0P C D --(1,0,3)OP =- ,(0,23,0)OC = ,设平面POC 的一个法向量为(,n x y = 则30230n OP x z n OC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取=3x ,得设直线PD 与平面POC 所成的平面角为n PD ⋅ 4②设[],0,1DF DP λλ=∈14.(2022秋·山东青岛·高三统考期中)如图,已知长方体1111ABCD A B C D -的体积为4,点A 到平面1BC D 的.(1)求1BC D 的面积;(2)若2AB BC ==,动点E 在线段1DD 上移动,求1AEC 面积的取值范围.则(2,0,0)A ,1(0,2,1)C 设(0,0,)(01)E t t ≤≤,则(2,0,EA = 则直线1AC 的单位方向向量为u =r 则点E 到直线1AC 的距离为d EA = 所以1AEC 的面积1112AEC S AC =⋅△所以1AEC 面积的取值范围为32⎡⎢⎣15.(2022·全国·高三专题练习)在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1AC 与平面1A ED 所成角的正弦值;(2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.则1(2A ,0,2),(0C ,4,0),(2E ,1,所以11(2,4,2),(2,0,2),(2,1,0)A C DA DE =--==设平面1A ED 的法向量为(,,)n x y z = ,则有100n DA n DE ⎧⋅=⎨⋅=⎩,即22020x z x y +=⎧⎨+=⎩,令1x =,则=2y -,1z =-,故(1,n =- 所以111||2|cos ,|3||||A C n A C n A C n ⋅<>== ,故1AC 与平面1A ED 所成角的正弦值为23点到面的距离16.(2022秋·四川·高三四川省岳池中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥平面,120,3,ABC AB BC ABC PA D ∠==== 为线段PC 上一点,且BC BD ⊥.(1)在线段AC 上求一点M ,使得平面BPC ⊥平面BDM ,并证明;(2)求点C 到平面ABD 的距离.则33(0,,0),(,0,0),(0,22A B C -设PD PC λ= ,其中01λ≤≤,则BD BP PD BP PC λ=+=+ 因为BC BD ⊥,所以BC BD ⋅ 设平面BPC 的法向量为m = 则33022330m BC x y m PC y z ⎧⋅=-+=⎪⎨⎪⋅=-=⎩ 设33(0,,0),22M b b -≤≤,MB17.(2023春·广东揭阳·高三校联考阶段练习)如图所示的四棱锥P ABCD -中,底面ABCD 为直角梯形,AB CD ,AD AB ⊥,22DC AD a ===,PA PD =,二面角P AD B --的大小为135︒,点P 到底面ABCD 的距离为2a .(1)过点P 是否存在直线l ,使直线l ∥平面ABCD ,若存在,作出该直线,并写出作法与理由;若不存在,请说明理由;(2)若2PM MC = ,求点M 到平面PAD 的距离.平面,建立空间直角坐标系,由条件(2)取线段AD 的中点为O ,线段连接,OE OP ,因为ABCD 为直角梯形,AB CD 所以//OE AB ,又AD AB ⊥,所以AD OE ⊥,因为PA PD =,所以PO AD ⊥,又PO OE O = ,,PO OE ⊂平面POE 所以AD ⊥平面POE ,过点O 在平面POE 内作直线ON ⊥则直线,,OA OE ON 两两垂直,以O 为原点,,,OA OE ON 为,,x y z 过点P 作//PF NO ,交直线OE 于点因为,ON OA ON OE ⊥⊥,,OA OE 所以ON ⊥平面ABCD ,故PF ⊥平面又点P 到底面ABCD 的距离为2a ,所以因为OE AD ⊥,OP AD ⊥,18.(2023·云南红河·统考二模)如图,在几何体ABCDEF中,菱形ABCD所在的平面与矩形BDEF所在的平面互相垂直.(1)若M 为线段BF 上的一个动点,证明:CM ∥平面ADE(2)若60BAD ∠=︒,2AB =,直线CF 与平面BCE F 到平面BCE 的距离.()3,1,0B ,()0,2,0C ,(0,0,E a19.(2023·北京·北京市八一中学校考模拟预测)如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD E --为60°,DE CF ∥,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证:CD AE ⊥;(2)求直线DE 与平面AEF 所成角的正弦值.(3)直接写出λ的值,使得CG CF λ=,且三棱锥B ACG -【答案】(1)证明见解析CD AD ⊥ ,CD DE ⊥,ADE ∴∠即为二面角A CD F --的平面角,即∴(0,1,3)A ,(0,0,0),(0,3,0),(3,6,0)D E F ∴(0,2,3),(3,5,3),AE AF DE =-=-设平面AEF 的法向量为(,,)n x y z =,230,3530.n AE y z n AF x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令2z =,则所以(3,3,2)n =-,∴3330cos ,10310DE n DE n DE n ⋅===20.(2023·江西九江·统考二模)如图,在三棱柱111ABC A B C -中,AC ⊥平面11AA B B ,13ABB ∠=,1AB =,12AC AA ==,D 为棱1BB 的中点.(1)求证:AD ⊥平面11AC D ;(2)若E 为棱BC 的中点,求三棱锥1E AC D -的体积.则()0,0,0A ,1,1,02E ⎛⎫⎪⎝⎭,1,0,2D ⎛ ⎝所以1,1,02AE ⎛⎫= ⎪⎝⎭ ,1,0,2AD ⎛= ⎝ 设(),,n x y z =r为平面1AC D 的一个法向量,则10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1302223x z x y ⎧+=⎪⎨⎪-++⎩所以点E 到平面1AC D 的距离d =则三棱锥1E AC D -的体积13S V =1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 五、高考真题衔接的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.则()2,0,0A 、()2,2,0B 、(2,0,2C 则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为EF ⊄ 平面ABC ,故//EF 平面2.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩ 可取()1,0,1m =-,3.(2021·天津·统考高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A A C E --的正弦值.4.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.。

高二数学用平面法向量求空间距离

高二数学用平面法向量求空间距离
④平行平面间的距离:转化为直线到平面的距离、点到 平面的距离。
⑤异面直线间的距离:转化为直线到平面的距离、点 到平面的距离。也可运用闭合曲线求公垂线向量的模 或共线向量定理和公垂线段定义求出公垂线段向量的 模。
结论1
点 P 到平面a的距离可以通过,
在平面a内任取一点 A,求向量PA在
平面a的法向量n上的投影来解决.
例3、已知正方形ABCD的边长为4,
CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
G
xD F
A
E
C B y
练习: SA 平面ABCD,DAB ABC 90,
SA AB BC a,AD 2a, z 求A到平面SCD的距离。 S
PA n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
小结:
1、怎样利用向量求距离?
①点到平面的距离:连结该点与平面上任意一点的向量 在平面定向法向量上的射影(如果不知道判断方向, 可取其射影的绝对值)。
②点到直线的距离:求出垂线段的向量的模。
③直线到平面的距离:可以转化为点到平面的距离。
d AB cos AB, n
n
例2:已知正方体ABCD-A1B1C1D1的棱长为1,
求异面直线DA1与AC的距离。z
D1
C1
A1
B1
D A x
C y
B
练习:如图,
ABCD是正方形,SB 面ABCD,且SA与 面ABCD所成的角为45,点S到面ABCD的 距离为1,求AC与SD的距离。
A
B x

异面直线距离求解方法

异面直线距离求解方法

浅议异面直线距离求解方法638404 四川省武胜中心中学校 段 方 建求异面直线的距离问题,是立体几何中的一个重、难点。

在现行教材中占有十分重要的地位,但学生在学习中遇到此类问题时,常感到困难,无所适从。

本文就人教版高中数学第二册(下B )的习题9.8第4题求解方法的分析、探讨。

归纳了几种求异面直线的距离问题的常用方法,仅供参考。

题目:已知正方体''''D C B A ABCD -的棱长为1,求直线'DA 与AC 的距离。

一、利用定义求异面直线的距离利用定义求异面直线的距离,首先应作出异面直线的公垂线段,或转化为线面、面面距离求解,则要求作出线面、面面距,并证明。

然后再将其放置于平面几何图形中利用相关策略求解,解答的关键是要找到所求的“线段”,按“作”、“证”、“求”的步骤求解。

解:如图,连结C A '',则AC ∥面D C A '',连结D B BD '',分别与C A AC '',交于O O ',连O D C D D A ''',,,过O 作OE ⊥D O '于E∵C A ''⊥,面D D B B '' ∴C A ''⊥OE又OE ⊥,D O ' ∴OE ⊥面D C A ''因此OE 即为直线'DA 与AC 的距离.在Rt △D O O '中,,O O OD D O OE '•='•可求得.33=OE 二、利用向量方法求异面直线的距离利用向量方法求异面直线的距离,首先要针对题目要求建立恰当的空间直角坐标系,然后求出两条异面直线的公共法向量,再计算两条异面直线上各取一点连结的线段在公共法向量上的射影长,即应用d =解:如右图所示,建立空间直角坐标系.可知:)0,1,1(-=)1,1,0(--='A D设),,1(μλ=n 且0,0='•=•A D n n即.001=--=+-μλλ且∴),1,1,1(=n 又)0,0,1(=,∴33==d ,故异面直线'DA 与AC 的距离是33. 三、利用等体积法求异面直线的距离利用等体积法求异面直线的距离,就是说将距离看成几何体体积表示的一个要素,一般是指可以将其看成高线的时候,可以把几何体的体积通过换底换高,用不同的方式表示,进而建立方程的办法求解,其基本思想就是利用体积不变性。

求异面直线之间距离的四个技巧

求异面直线之间距离的四个技巧

异面直线是既不平行也不相交的两条直线.这组直线的空间位置关系较为特殊,我们往往很难直接求得异面直线之间的距离,需采用一些方法和技巧,如平移法、向量法、等体积法、构造函数法等,才能使问题获解.下面结合实例,谈一谈求异面直线之间距离的四个技巧.一、平移法求异面直线之间的距离,要首先把握异面直线之间距离的定义和两直线之间的位置关系.异面直线之间的距离是指这两直线之间的公垂线的长,而公垂线必须同时垂直于两条异面直线.可采用平移法,通过平移其中的一条直线a ,使其与另一条直线b 相交,这样便构造出一个平面,过直线a 上的一点作这个平面的垂线,该线即为两条异面直线的公垂线,求得公垂线的长即可求得两条异面直线之间的距离.例1.如图1所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,求异面直线A 1D 和AC 之间的距离.解:连接BD 1、BD 、AD 1,设BD 与AC 的交点为M ,AN 与A 1D 的交点为F ,根据三垂线定理可知:BD 1⊥A 1D ,BD 1⊥AC ,因为N 为DD 1的中点,由三角形中位线的性质可知BD 1∥MN ,MN ∥EF ,即BD 1∥EF ,可知EF 即为异面直线A 1D 和AC 的公垂线,因为BD 1=3a ,所以MN.又因为N 为DD 1的中点,且AA 1∥DN ,则△AA 1F ∽△NDF ,所以AF NF =AA 1ND=2,AF NF =23.因为EF ∥MN ,则EF MN =AF AN =23,可知EF =23MN=,因此异面直线A 1D 和AC之间的距离为.采用平移法解题,需仔细观察立体几何图形中的点、线、面之间的位置关系,尤其要关注线和面之间的垂直、平行关系,通过平移直线将原本看起来毫无联系的两条异面直线关联起来,再利用平面几何知识,如勾股定理、正余弦定理、两点间的距离公式、三角形中位线的性质等来求公垂线的长.图1图2二、向量法对于易于建立空间直角坐标系的立体几何问题,可采用向量法来求解.在求异面直线之间的距离时,可分别求得两条直线的方向向量a 、b ,并设出两条异面的公垂线,然后根据向量之间的垂直关系建立方程组,通过解方程求得公垂线的方向向量,最后求其模长,即可求得异面直线之间的距离.例2.如图2所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,其对角线为AC ′,点M 、N 分别为棱BB ′和B ′C ′的中点,MN 的中点为P ,求异面直线DP 与AC ′之间的距离.解:如图2所示,以D ′为原点,D ′C ′为x 轴、D ′A ′为y 轴、D ′D 为z 轴建立空间直角坐标系,设DP 与AC ′的公垂线为QR ,分别与DP 、AC ′相交于点Q 、R ,根据定比分点公式可得 OR =sOA +(1-s ) OC ′, OQ =t OP +(1-s ) OD ,0<s <1,0<t <1,则A (0,1,1),C ′(1,0,0),P (1,34,14),D (0,0,1),则R (1-s ,s ,s ),Q (t ,34t ,1-34t ).因为 RQ ⊥AC ′且 RQ ⊥ DP ,所以ìíîïï3s +t -2=0,178t +s -74=0,解得ìíîïïs =4086,s =5286,可得R (4686,4086,4086),Q (5286,3986,4786),则RQ 的模长为,即异面直线DP 与AC ′之间的距离为.相较于常规方法,向量法更加简单.在运用向量法解题时,同学们需熟记一些向量的运算法则,如向量的加法、减法,向量的数量积公式、模的公式.探索探索与与研研究究49三、等体积法等体积法一般适用于求解三棱锥问题,是指转换三棱锥的底面和高,根据同一个三棱锥或两个三棱锥的体积相等建立关系式,求得问题的答案.在求异面直线之间的距离时,可将异面直线置于三棱锥中,采用等体积法求三棱锥的高,进而求得两条异面的公垂线的长.在解题时,同学们要善于寻找体积相等的三棱锥,或易于计算体积的三棱锥的底面和高,建立等价关系式.例3.如图3所示,正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为BC 的中点,求直线ED 1与直线CC1之间的距离.图3图4解:如图4所示,过点E 作EE 1∥CC 1,连接D 1E 1.已知点E 为BC 的中点,则点E 1为B 1C 1的中点,所以B 1E 1=E 1C 1.因为EE 1⊂平面D 1EE 1,EE 1∥CC 1,则CC 1∥平面D 1EE 1,则异面直线ED 1与CC 1之间的距离即为直线CC 1到平面D 1EE 1的距离,也就是点C 1到平面D 1EE 1的距离.设点C 1到平面D 1EE 1的距离为a ,由V C 1-D 1EE 1=V E -C 1D 1E 1可得:13S △D 1EE 1·a =13S △C 1D 1E1·EE 1.因为CC 1⊥A 1B 1C 1D 1,EE 1⊥A 1B 1C 1D 1,且D 1E 1⊂平面A 1B 1C 1D 1,则EE 1⊥D 1E 1,S △D 1EE 1=12×EE 1×D 1E 1=5.因为正方体的棱长为2,则S △C 1D 1E 1=1,EE 1=2,故C 1到平面D 1EE 1的距离a =S △C 1D 1E 1·EE 1S △D 1EE1=1×25=则直线ED 1与直线CC1之间的距离为.运用该等体积法求异面直线之间的距离,可省去找公垂线的麻烦,且简化了运算的过程.四、函数构造法我们知道,公垂线是两条异面直线之间的最小距离.若很容易找到异面之间的公垂线,但无法快速求得公垂线的长,或无法找到公垂线,可根据勾股定理、正余弦定理、两点间的距离公式等求得公垂线的表达式,或两异面直线上任意两点之间的距离的表达式,然后将其构造成函数模型,通过研究函数的单调性,求得函数的最小值,即可求得异面直线之间的距离.例4.如图5所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,A 1B 和D 1B 1为正方形ABA 1B 1和正方形A 1B 1C 1D 1的对角线,求异面直线A 1B 和D 1B 1之间的距离.解:在A 1B 上任取一点M ,作MP ⊥A 1B 1于点P ,作NP ⊥A 1B 1于点P ,与D 1B 1交于点N .根据三垂线定理可知MN ⊥D 1B 1.设A 1M =x ,在等腰△A 1PM 中,MP =A 1P ,因为A 1B 1=a ,PB 1=a -,PN =(a )sin 45°=12(2a -x ),由于平面ABA 1B 1⊥平面A 1B 1C 1D 1,所以PN ⊥PM ,在Rt△PMN 中,MN =PM 2+PN 2=函数y =为复合函数,与二次函数y =3(x -)2+43a 2的单调性一致,由二次函数的性质可知当x 时,函数的最小值为,所以异面直线A 1B 和D 1B 1之间的距离为.通过添加辅助线,构造出垂直于D 1B 1的平面PNM ,只要在平面PNM 中找到一条直线垂直于A 1B ,那么该直线即是异面直线A 1B 和D 1B 1的公垂线.在Rt△PMN 中,根据勾股定理建立关于x 的关系式,求得公垂线的表达式,然后将其看作关于x 的函数式,通过分析函数的单调性求得函数的最小值,即可解题.可见,求异面直线之间的距离,关键是根据几何图形的特点和性质,以及点、线、面的位置关系找到异面直线的公垂线,并求得其长度.同学们可根据题目的条件,灵活选用上述四种方法.(作者单位:江苏省昆山文峰高级中学)图5探索探索与与研研究究50。

高中数学立体几何专题:空间距离的各种计算(含答案)

高中数学立体几何专题:空间距离的各种计算(含答案)

高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos 33||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

异面直线距离的八种求法

异面直线距离的八种求法
・ . .
D H D0:D: :, H:拿 , 1 B: B l2 G H:
B / '. H: X 3- D :、 丁 .G / .

・ .

A C 与 B 的距 离 为 —/ - C x 3
. .
G 是 △ 曰曰1 的 重 心 , C1

・ . .
E : . 理, : G 同 明 单 .
面 曰 C, B , UB jAl , 连 Dl贝 D1_ C1BD1_ D. jA1 BDl 平 面 Al D , 理 , Dl_ 面 曰 C 上 Cl 同 B j平 .



如 图 6 ‘A C / 平面 ABC ,‘ l . / ,



维普资讯
‘ ‘ . ‘



图 3
图 4
图 5
Байду номын сангаас





BD 1 A 1 l Al l Bl = D + B + B = 1 + 1 + 1 。 = 3, 曰D = .・ G日 . ・


・ .



。 G日 :


故 A c 与 曰l 的距 离 为 c

. .
R 上 Q / : 兰 . Q AC,R:、 上 c
2 、 /2 +RQ :
在 △PQ 中 , Q = 尺 P

图 1 图 2
= F再 .

解 法 2 “ 面平 行法 ” 线
当 }时 有 小 /一 = , 最  ̄x . g -
解法 5 “ 式法” 公 如 图 5, 在 A C , 上 分 别 取 点 E, 曰 C F, 作 El j E _ 曰。 于 E C。 , j曰C _ 于 ,则 异 面 直 线 EE。 啊 的 与

(完整版)异面直线间的距离(全部方法详细例题)

(完整版)异面直线间的距离(全部方法详细例题)

异面直线间的距离求异面直线之间的距离是立体几何重、难点之一。

常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。

常用方法有: 1、 定义法2、 垂直平面法(转化为线面距)3、 转化为面面距4、 代数求极值法5、 公式法6、 射影法7、 向量法8、 等积法1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。

例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。

思路分析:由四边形ABCD 和CDEF 是正方形,得CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。

在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2a 。

即异面直线CD 与AE 间的距离为2a 。

2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。

从而,异面直线a 、b 间的距离等于线面a 、α间的距离。

例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。

思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。

选修2*1-空间向量与立体几何(空间向量法求异面直线的距离)(2)课件

选修2*1-空间向量与立体几何(空间向量法求异面直线的距离)(2)课件
2
2.异面直线的距离的向量计算公式
异面直r 线a、rb之间的距离:
D1 b
C1
n ra, n b 我们 称 n为公垂向量。
uuuur
uuuur r

d AC1 cos AC1, n
A1 n
B1
uuuur r
uuuur r
uuuur r
D
C

AC1 n cos AC1, n r
空间向量法求异面直线的距离
继点到平面距离的求法进一步拓展到异面直线的求法
1
1.异面直线的距离的定义
(1)公垂线:和两条异面 直线都垂直相交的直线, 我们称之为异面直线的公 垂线。
(2)公垂线段:在这两条 异面直线间的线段叫做公 垂线段。
D1 b
A1
D
Aa
C1 B1
C B
(3)公垂线段的长度,叫做两条异面直线的 距离。

AC1 n r
n
uuuur r AC1 n
n
Aa
B
r n
为异面直线的公垂向量
d AA1
r n
uuuur AC1 为异面直线的连接向量
3
3.异面直线距离的向量计算示例
例1 已知正方体AC1的棱长为a,求B1C与BD间的距离。
解:如图建立空间直角坐标系,则 z D1
C1
D(0u,u0ur,
5:代入公式:uuur r AD n
d r n
x
z
b C
nr
aA
D
y
B
即可求得异面直线的距离。
5
微诊断
棱长为a的正方体AC1,求异面直线A1C与DB的距离。

浅谈立体几何异面直线的距离

浅谈立体几何异面直线的距离

作者: 王文祥
作者机构: 呼市十四中
出版物刊名: 内蒙古师范大学学报:教育科学版
页码: 82-84页
主题词: 异面直线;数学教学大纲;空间想象力;垂线段;空间理论;距离公式;公垂;棱长;瓦宁;证知
摘要: 数学教学大纲只要求会计算已给出公垂线段的二异面直线的距离。

这是基本要求。

由于在空间图形中无处不在,学生自然会钻研,求教这样一类习题。

作为数学教师就必须掌握异面直线距离的求法。

异面直线的一般画法和异面直线距离的求法是教学中的难点,学生在处理这类题目时,深感困难,无从下手。

笔者在数学教学实践中从以下三个方面给出论述。

既综合应用了空间理论知识,培养了学生空间想象力和逻辑思维能力,又进而激发了学生学习立体几何的积极性。

求异面直线的方法

求异面直线的方法

七种求异面直线距离的方法陶双喜 湖南省长沙县一中数学组异面直线的距离是空间距离的一种重要类型,也是高考经久不衰的热点问题。

求这种 距离的方法多种多样,本文通过一个例题的多种解法来谈其求解方略,以供大家参考 例:正方体ABCD - AB^I C J U 的棱长为a ,求异面直线AC 和BG 的距离. 解法1 (直接法): 如图1,取BC 的中点E ,连接DE 、BE ,分别交AC 、 BG 于M 、N 两点,连接MN 、B 1D ,则可证空 ENMD NB 1.MN // B 1D ,由三垂线定理可得 B 1D _ AC , RD —BG , . MN_AC,MN_BG 。

故 MN 的长即为异 面直线AC 和BC 1的距离。

显然,MN =1 3D 3a . 3 3 MB C图1D 1B 1即异面直线 AC 和BG 的距离为 a . 3 评注:此法叫定义法,即根据定义作出异面直线的公垂线段,但难度较大 解法2 (线线距=线面距): V AC // AC 1 -AC 与BC 1的距离等于AC 与 平面ABG 的距离。

如图2,过AC 的中点0作0E -BO 1于E ,易证平面BDD 1B 1 -平面ABG , OE —平面A 1BC 1 o OE 的长即为AC 与BG 的距离。

图272 46 在 Rt BOO 中,BO aQO^i =a,BO 1 a ,2 2 B !■ OE 二B0 0013a .即异面直线AC 和BC 1的距离为3BO 1、3a .3评注:此法是将线线距离转化为线面距离来求,这是求线线距离的一种常用方法解法3 (线线距=•线面距=•点面距)T AC // A1C1. AC与BG的距离等于AC与平面ABG 的距离,即点C到平面ABG的距离,记为h,则由V C^B C I二V~CC1二V A」B I C I得1•氾C、.2a)2.h ,h -a。

即AC 和BC1的距离为—a.3 4 3 2 3 3评注:此法是将线线距离转化为线面距离,然后转化为点面距离来求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异面直线距离
一. 直接法
直接法就是根据定义,直接找出公垂线段,再求其长,这是解题时首先要考虑的方法。

例1. 如图1所示,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC//D 1B ,且平面EAC 与底面ABCD 所成的角为45°,AB=a ,求异面直线A B 11与AC 之间的距离。

解:连结DB ,设DB 交AC 于点O 由题设知ABCD A B C D -1111是正四棱柱 则A A ABCD A A AC A A A B 11111⊥⊥⊥底面,即,而 所以A A 1是异面直线A B 11与AC 的公垂线段
由题意分析知∠为平面与底面DOE EAC ABCD 所成的角 则∠DOE=45°
又∵截面EAC//D 1B ,且平面D 1BD 与平面EAC 的交线为EO ∴D 1B//EO ,∠DBD 1=∠DOE=45° ∴D 1D=DB=2a ∵AA 1=D 1D
∴异面直线A 1B 1与AC 之间的距离为2a
二. 间接法
间接法就是当采用直接法不便于求解或证明时,可利用已知条件进行间接求解或证明的方法。

(1)线面距离法
线面距离法就是选择异面直线中的一条,过它作另一条直线的平行平面,则此直线与平行平面的距离即为异面直线间的距离。

例2. 在长方体ABCD—A
1B
1
C
1
D
1
中,AB=2,AD=3,AA
1
=4,求异面直线AB与A
1
C
间的距离。

解:如图2所示,连结A
1
D
由AB//DC,得AB//平面A
1
DC
故AB到平面A
1DC的距离即为AB与A
1
C间的距离
又平面A
1D⊥平面A
1
DC及平面A
1
D⊥AB
故可在平面A
1D内过A作AE⊥A
1
D于点E
则AE为AB到平面A
1DC的距离即为异面直线AB与A
1
C间的距离。

由AD AA A D AE ··
11
=
可得AE=12
5
图2
(2)面面距离法
面面距离法就是把所求异面直线间的距离转化为分别过两条异面直线的两个平行平面间的距离。

例3. 如图3所示,正方体ABCD A B C D
-
1111的棱长为1,求异面直线A
1
D与
AC 间的距离。

图3
解:连结A C C D AB B C A D AC 11111、、、,与分别在两个相互平行的平面A DC 11和B CA 1内,则A 1D 与AC 间的距离就是两个相互平行的平面A 1DC 1和B 1CA 之间的距离。

连结BD ,且交AC 于点O ,作OO 1⊥平面AC 交平面A 1C 1于O 1 连结DO 1,作OE ⊥DO 1于E
可知OE 为两平行平面A 1DC 1和B 1CA 之间的距离 在Rt △DOO 1中,OO DO DO 111226
2
==
=
,,。

∴·
OE OO DO DO ==
113
3
∴异面直线A 1D 与AC 间的距离为3
3
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档