高中数学 第一章 解三角形章末检测(A)新人教A版必修5
高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53
45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外
高中数学必修5复习题及答案(A组)免费范文
篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
高中数学 第一章 解三角形全套教案 新人教A版必修5
高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用
3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
高中数学第一章解三角形教学设计新人教A版必修5
(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
高中数学 第一章 解三角形章末知识整合 新人教A版必修5
【金版学案】2015-2016学年高中数学第一章解三角形章末知识整合新人教A版必修5一、本章的中心内容——如何解三角形正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的——应用数学能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.8.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.9.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.10.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.11.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.12.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:①已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);②已知两边及夹角(一般先用余弦定理求第三边);③已知三边(先用余弦定理求角);④已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).例1 在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a.解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9. 例2 如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin (A -B)=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断. 例3 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:方法一 由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin (120°-C)+sin C , 展开整理,得32sin C +12cos C =1, ∴sin (C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.方法二 由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c)2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B ,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cosA)c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.例4 在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a≥b 时或B 为90°(b 为斜边)时,有一解,此时b≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用例5 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM∥AC 交BE 于N ,交CF 于M ,DF =MF 2+DM 2=302+1702=10298,DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150.在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.。
天津市塘沽区紫云中学高中数学(人教A版,必修5)第一章 解三角形 配套练习:章末检测(A)
一、选择题(本大题共12小题,每小题5分,共60分)1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56 答案 B解析 由正弦定理得a b =sin Asin B,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.2.在△ABC 中,AB=3,AC=2,BC= 10,则BA ·AC →等于( )A .-32B .-23 C.23 D.32答案 A解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴AB ·AC →=|AB →|·|AC →|·cos A =3×2×14=32.∴BA ·AC →=-AB →·AC →=-32.3.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对 答案 C解析 ∵a 2=b 2+c 2-2bc cos A , ∴5=15+c 2-215×c ×32. 化简得:c 2-35c +10=0,即(c -25)(c -5)=0,∴c =25或c = 5.4.依据下列状况,推断三角形解的状况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 A 中,因a sin A =bsin B ,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中, ∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解,故A 、B 、C 都不正确.5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.6.在△ABC 中,cos 2 A 2=b +c2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的外形为( )A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A 解析 由cos 2A 2=b +c 2c ⇒cos A =b c, 又cos A =b 2+c 2-a 22bc,∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A.7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( ) A .2 B.6- 2 C .4-2 3 D .4+2 3 答案 A解析 sin A =sin 75°=sin(30°+45°)=6+24,由a =c 知,C =75°,B =30°.sin B =12.由正弦定理:b sin B =asin A =6+26+24=4.∴b =4sin B =2.8.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B.15C.8155 D .6 3答案 A解析 由b 2-bc -2c 2=0可得(b +c )(b -2c )=0.∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即6=4c 2+c 2-4c 2·78.∴c =2,从而b =4.∴S △ABC =12bc sin A =12×2×4×1-⎝⎛⎭⎫782=152. 9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即62=42+14a 2+2×4×a2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形 答案 C解析 ∵sin A a =cos Bb ,∴a cos B =b sin A ,∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 答案 D 解析∵(a 2+c 2-b 2)tan B =3ac ,∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.12.△ABC 中,A =π3,BC =3,则△ABC 的周长为( )A .43sin ⎝⎛⎭⎫B +π3+3 B .43sin ⎝⎛⎭⎫B +π6+3 C .6sin ⎝⎛⎭⎫B +π3+3 D .6sin ⎝⎛⎭⎫B +π6+3 答案 D解析 A =π3,BC =3,设周长为x ,由正弦定理知BC sin A =AC sin B =ABsin C =2R ,由合分比定理知BCsin A =AB +BC +AC sin A +sin B +sin C, 即332=x 32+sin B +sin C. ∴23⎣⎡⎦⎤32+sin B +sin (A +B )=x ,即x =3+23⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫B +π3 =3+23⎝⎛⎭⎫sin B +sin B cos π3+cos B sin π3 =3+23⎝⎛⎭⎫sin B +12sin B +32cos B=3+23⎝⎛⎭⎫32sin B +32cos B=3+6⎝⎛⎭⎫32 sin B +12cos B=3+6sin ⎝⎛⎭⎫B +π6. 二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,2a sin A -b sin B -csin C=________.答案 014.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________.答案 π6解析 ∵a 2+c 2-b 2=3ac ,∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π6.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3, A +C =2B ,则sin C =________. 答案 1解析 在△ABC 中,A +B +C =π,A +C =2B .∴B =π3.由正弦定理知,sin A =a sin B b =12.又a <b .∴A =π6,C =π2.∴sin C =1.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.答案 32≤a <3解析 由⎩⎪⎨⎪⎧a +(a +1)>a +2a 2+(a +1)2-(a +2)2<0a 2+(a +1)2-(a +2)22a (a +1)≥-12.解得32≤a <3.三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A 处发觉一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃跑,我艇马上以14海里/小时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则 BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°, 依据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2.答 我艇追上走私船所需的时间为2小时.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2B +C 2+cos 2A =1-cos (B +C )2+cos 2A =1+cos A 2+2cos 2 A -1=5950.(2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13.19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD ,∴∠CBE =15°.∴cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2,由正弦定理得AE sin ∠ABE =ABsin ∠AEB ,即AE sin (45°-15°)=2sin (90°+15°), 故AE =2sin 30°cos 15°=2×126+24=6- 2.20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.21.(12分)(2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试推断△ABC 的外形.解 (1)由已知,依据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C ,又A =120°,∴sin 2B +sin 2C +sin B sin C =34,∵sin B +sin C =1,∴sin C =1-sin B . ∴sin 2B +(1-sin B )2+sin B (1-sin B )=34,即sin 2B -sin B +14=0.解得sin B =12.故sin C =12.∴B =C =30°.所以,△ABC 是等腰的钝角三角形. 方法二 由(1)A =120°,∴B +C =60°, 则C =60°-B ,∴sin B +sin C =sin B +sin(60°-B ) =sin B +32cos B -12sin B =12sin B +32cos B =sin(B +60°) =1,∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.(14分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ), n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b 2R ,其中R 是△ABC 外接圆半径,∴a =b . ∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.。
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5
∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
人教版高中数学必修5-1.2《解三角形》章末总结
人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr(S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,。
2019-2020人教A版数学必修5章末综合测评1 解三角形
章末综合测评(一) 解三角形满分:150分 时间:120分钟一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个A [由正弦定理得a sin A =bsin B ,所以sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形.]2.已知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°B [设最小边为5,则三角形的三边分别为5,7,8,设边长为7的边对应的角为θ,则由余弦定理可得49=25+64-80cos θ,解得cos θ=12,∴θ=60°.则最大角与最小角的和为180°-60°=120°.]3.在△ABC 中,A =π3,BC =3,AB =6,则C =( ) A .π4或3π4 B .3π4 C .π4D .π6C [由BC sin A =AB sin C ,得sin C =22. ∵BC =3,AB =6,∴A >C , 则C 为锐角,故C =π4.]4.在△ABC 中,a =15,b =20,A =30°,则cos B =( )A .±53 B .23 C .-53D .53A [因为a sin A =b sinB ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53.]5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6B [∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎨⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.]6.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于( )A .1+32B .1+ 3C .2+22D .2 3B [∵S △ABC =12ac sin B ,∴ac =6.又∵b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac ·cos 30°=4b 2-12-63, ∴b 2=4+23,∴b =1+ 3.]7.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎭⎪⎫12,+∞D [由正弦定理得:a =mk ,b =m (k +1),c =2mk ,(m >0), ∵⎩⎨⎧a +b >c ,a +c >b ,即⎩⎨⎧m (2k +1)>2mk ,3mk >m (k +1), ∴k >12.]8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b2c ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形B [由已知可得1-cos A 2=12-b 2c ,即cos A =bc ,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc , 所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A . 在△ABC 中,sin B =sin(A +C ),从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.]9.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2C . 2D .22C [∵a sin A =b sin B =c sin C=2R =8, ∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.]10.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A .154B .1534C .2134D .3534B [∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.]11.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距15海里的C 处.现甲船以35海里/小时的速度沿直线CB 去营救位于中心O 正东方向25海里的B 处的乙船,则甲船到达B 处需要的时间为( )A .12小时 B .1小时 C .32小时D .2小时B [在△OBC 中,由余弦定理,得CB 2=CO 2+OB 2-2CO ·OB cos 120°=152+252+15×25=352,因此CB =35,3535=1(小时),因此甲船到达B 处需要的时间为1小时.]12.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为()A .33B .36C .63D .66D [设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD 22AB ·AD =⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-a 22×32a ·32a =13.又∵A 为△ABC 的内角,∴sin A =223. 在△ABC 中,由正弦定理得,BC sin A =ABsin C . ∴sin C =AB BC ·sin A =32a 2a ·223=66.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC 为钝角三角形,且C 为钝角,则a 2+b 2与c 2的大小关系为________.a 2+b 2<c 2[∵cos C =a 2+b 2-c 22ab ,且C 为钝角,∴cos C <0,∴a 2+b 2-c 2<0,故a 2+b 2<c 2.]14.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.2π3 [由3sin A =5sin B ,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.]15.在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于________,AC 的取值范围为________.2 (2,3) [设A =θ⇒B =2θ. 由正弦定理得AC sin 2θ=BCsin θ, ∴AC 2cos θ=1⇒ACcos θ=2.由锐角△ABC 得0°<2θ<90°⇒0°<θ<45°. 又0°<180°-3θ<90°⇒30°<θ<60°, 故30°<θ<45°⇒22<cos θ<32, ∴AC =2cos θ∈(2,3).]16.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B =________.4 [∵b a +ab =6cos C , ∴a 2+b 2ab =6·a 2+b 2-c 22ab , ∴2a 2+2b 2-2c 2=c 2,又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos B sin B cos C =sin C (sin B cos A +cos B sin A )sin A sin B cos C =sin C sin (B +A )sin A sin B cos C =sin 2C sin A sin B cos C =c 2ab cos C =c 2ab a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=4.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[解](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.18.(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=3 5.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.[解](1)∵cos B=35>0,且0<B<π,∴sin B=1-cos2B=4 5.由正弦定理得asin A=bsin B,sin A=a sin Bb=2×454=25.(2)∵S △ABC =12ac sin B =4, ∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17. 19.(本小题满分12分)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b =2,求c 的值. [解] (1)∵cos A =2cos 2A2-1, ∴2cos 2A2=cos A +1.又2cos 2A2+cos A =0,∴2cos A +1=0, ∴cos A =-12,∴A =120°.(2)由余弦定理知a 2=b 2+c 2-2bc cos A , 又a =23,b =2,cos A =-12, ∴(23)2=22+c 2-2×2×c ×⎝ ⎛⎭⎪⎫-12,化简,得c 2+2c -8=0, 解得c =2或c =-4(舍去).20.(本小题满分12分)某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走多少千米可到达城A ?[解] 如图所示,设∠ACD =α,∠CDB =β. 在△CBD 中,由余弦定理得 cos β=BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=-17,∴sin β=437.而sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314.在△ACD 中,21sin 60°=ADsin α,∴AD =21×sin αsin 60°=15(千米).所以这人还要再走15千米可到达城A .21.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. [解] (1)∵cos 2C +22cos C +2=0, ∴2cos 2C +22cos C +1=0, 即(2cos C +1)2=0, ∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A , ∴sin A =15sin C =1010. ∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B , ∴12ab sin C =22sin A sin B ,∴absin A sin B sin C =2,由正弦定理得 ⎝ ⎛⎭⎪⎫c sin C 2sin C =2,解得c =1. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足sin A +3cos A =2.(1)求角A 的大小;(2)现给出三个条件:①a =2;②B =π4;③c =3b .试从中选出两个可以确定△ABC 的条件,写出你的方案并以此为依据求△ABC 的面积.(写出一种方案即可)[解] (1)依题意得2sin ⎝ ⎛⎭⎪⎫A +π3=2, 即sin ⎝ ⎛⎭⎪⎫A +π3=1,∵0<A <π,∴π3<A +π3<4π3,∴A +π3=π2, ∴A =π6.(2)参考方案:选择①②.由正弦定理a sin A =b sin B ,得b =a sin Bsin A =2 2. ∵A +B +C =π,∴sin C =sin(A +B )=sin A cos B +cos A sin B =2+64,∴S △ABC =12ab sin C =12×2×22×2+64=3+1.。
(完整版)新课标人教A版高中数学必修五第一章《解三角形》单元测试题
解三角形一、选择题(共12小题,每小题5分,只有一个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23AC =( ) A .3 B .22 C 332.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形3.在△ABC 中,已知a =11,b =20,A =130°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定 4. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60ο的视角,从B 岛望C 岛和A 岛成75ο视角,则B 、C 两岛的距离是( )海里 A. 65 B. 35 C. 25 D. 55.边长为3、7、8的三角形中,最大角与最小角之和为 ( )A .90°B .120°C .135°D .150°6.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为2m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 2mD. 200m 7.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则△ABC 的面积为( )A .1B .2 C. 2 D. 38.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3D .7 3 9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C的值为( ) A.85 B.58 C.53 D.3510.某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向航行,进行海面巡逻,当行驶半小时到达B 处时,发现北偏西45°方向有一艘船C ,若C 船位于A 处北偏东30°方向上,则缉私艇B 与船C 的距离是( )A .5(6+2) kmB .5(6-2) kmC .10(6+2) kmD .10(6-2) km11.△ABC 的周长为20,面积为3A =60°,则BC 的长等于( )A .5 B.6 C .7 D .812.在ABC △中,角A B C 、、所对的边分别为,,a b c ,若120,2C c a ∠=︒=,则( ) A .a b > B .a b <C .a b =D .a 与b 的大小关系不能确定二、填空题(共4小题,每小题5分):13.三角形的两边分别是5和3,它们夹角的余弦值是方程06752=--x x 的根,则此三角形的面积是 。
高中数学第一章解三角形122高度角度问题课件新人教A版必修5
3.如图,位于 A 处的海面观测站获悉,在其正东方向相距
40 海里的 B 处有一艘渔船遇险,并在原地等待营救.在 A 处南
偏西 30°且相距 20 海里的 C 处有一艘救援船,该船接到观测站
通知后立即前往 B 处救助,则 sin∠ACB=
21
7
.
解析:在△ABC 中,AB=40,AC=20,∠BAC=120°.由余
解:如图所示,设预报时台风中心为 B,开始影响基地时台 风中心为 C,基地刚好不受影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20.
由题意 AB=20( 3+1),DC=20 2,BC=( 3+1)×10 2.
在△ADC 中,∵DC2=AD2+AC2,
∴∠DAC=90°,∠ADC=45°.
2.如图,D,C,B 三点在地面同一直线上,DC=100 m, 从 C,D 两点测得 A 点仰角分别是 60°,30°,则 A 点离地面的 高度 AB 等于( A )
A.50 3 m C.50 m
B.100 3 m D.100 m
解析:因为∠DAC=∠ACB-∠D=60°-30°=30°, 所以△ADC 为等腰三角形.所以 AC=DC=100 m, 在 Rt△ABC 中,AB=ACsin60°=50 3 m.
对于顶部不能到达的建筑物高度的测量,我们可以选择另一 建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、 俯角等构成的三角形,在此三角形中利用正弦或余弦定理求解即 可.
[变式训练 2] 如图,线段 AB,CD 分别表示甲、乙两楼, AB⊥BD,CD⊥BD,从甲楼顶部 A 处测得乙楼顶部 C 的仰角 α =30°,测得乙楼底部 D 的俯角 β=60°,已知甲楼高 AB=24 米, 则乙楼高 CD= 32 米.
2014年高中数学 第一章 解三角形测试卷A 新人教A版必修5
第一章 解三角形检测题A本试卷分第Ⅰ卷和第Ⅱ卷两部分.时间:120分钟,分数:150分.第Ⅰ卷(选择题,共60分)一、选择题 (本大题共12小题,每小题5分,共60分)1.在ABC △,已知11,20,130a b A ===︒,则此三角形( ) A .无解 B .只有一解 C .有两解 D .解的个数不确定2. ABC △中,已知2()()a c a c b bc +-=+,则A =( )A. 030B. 060C.0120D.01503. ABC △中,已知5,60,ABC b A S ==︒=△a =( )A .4B .16C .21D 4.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个5. 在ABC △中,A 、B 、C 为三角形的内角,60B =︒,b ac =,则A 的值为( ) A. 045 B.030 C.090 D.0606. 已知A 、B 为锐角三角形的两内角,则点(cos sin ,sin cos )P B A B A --在第( )象限 A .一 B .二 C .三 D 四.7.已知三角形ABC 的面积4222c b a s -+=,则C ∠的大小是( )A. 045 B.030 C.090 D.01358.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b c =B =( )A. π6B. 5π6C.5π6或π6D.π39. 在ABC △中,若223coscos 222C A a c b +=,那么,,a b c 的关系是( ) A .a b c += B .2a c b += C .2b c a +=D .a b c == 10.圆内接四边形ABCD 中,3,4,5,6,AB BC CD AD ====则cos A =( )A .16 B .112 C .119 D .12111.在△ABC 中,sin b a C =,cos c a B =,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形12.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30,灯塔B 在观察站C 南偏东30处,则两灯塔A 、B 间的距离为( ) A .400米 B .500米 C .800米 D . 700米第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.在ABC ∆中,60A ∠=︒,最大边和最小边边长是方程2327320x x -+=的两实根,则BC 边长等于______。
人教a版必修5学案:第1章《解三角形》本章回顾(含答案)
本章回顾识结构点回放1.三角形中的边角关系设△ABC中,边a,b,c的对角分别为A,B,C.(1)三角形内角和定理A+B+C=π.(2)三角形中的诱导公式sin(A+B)=sin C,cos(A+B)=-cos C,tan(A+B)=-tan C,sin A+B2=cosC2,cosA+B2=sinC2,tan A+B2=cotC2.(3)三角形中的边角关系a=b⇔A=B;a>b⇔A>B;a+b>c,b+c>a,c+a>b.(4)三角形中几个常用结论①在△ABC中,a=b cos C+c cos B(其余两个略);②在△ABC中,sin A>sin B⇔A>B;③在△ABC中,tan A+tan B+tan C=tan A tan B tan C. 2.正弦定理(1)正弦定理在△ABC中,角A,B,C的对边边长分别为a,b,c,则asin A=bsin B=csin C=2R.其中R 是△ABC 外接圆半径. (2)正弦定理的变形公式正弦定理反映了三角形的边角关系.它有以下几种变形公式,解题时要灵活运用. ①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =a 2R ,sin B =b 2R ,sin C =c2R;③sin A ∶sin B ∶sin C =a ∶b ∶c ; ④sin A sin B =a b ,sin B sin C =b c ,sin C sin A =c a . 3.余弦定理 (1)余弦定理三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bc cos A ; b 2=a 2+c 2-2ac cos B ; c 2=a 2+b 2-2ab cos C . (2)余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.4.三角形的面积 三角形面积公式S △=12ah a =12bh b =12ch c ;S △=12ab sin C =12ac sin B =12bc sin A ;S △=12(a +b +c )r (r 为△ABC 内切圆半径);S △=abc4R (R 为△ABC 外接圆半径);S △=p (p -a )(p -b )(p -c ) ⎝⎛⎭⎫其中p =12(a +b +c ).5.解三角形的常见类型及解法在三角形的六个元素中,若知道三个,其中至少一个元素为边,即可求解该三角形,按6.已知两边及一边对角解三角形,解的个数的判断在△ABC 中,以已知a ,b ,A 为例想方法一、构建方程(组)解三角问题 例1如图所示,设P 是正方形ABCD 内部的一点,P 到顶点A 、B 、C 的距离分别是1,2,3,求正方形的边长.解 设边长为x ,x >0, 在△ABP 中,cos ∠ABP =x 2+22-124x =x 2+34x,在△CBP 中,cos ∠CBP =x 2+22-324x =x 2-54x,又cos 2∠ABP +cos 2∠CBP =1, ∴⎝⎛⎭⎫x 2+34x 2+⎝⎛⎭⎫x 2-54x 2=1.∴x 2=5+22或x 2=5-2 2.所以,x =5±22, 即正方形的边长为5±2 2. 例2如图所示,测量人员沿直线MNP 的方向测量,测得塔尖A 处的仰角分别是∠AMB =30°,∠ANB =45°,∠APB =60°,且MN =PN =500 m ,求塔高AB .分析 设AB =h ,则MB ,NB ,PB 都可用h 来表示,在底面△BMP 中,MN =PN =500 m ,借助△MNB 与△MPB ,利用公共角∠PMB ,结合余弦定理的推论得出方程可求解.解 设AB =h ,∵AB ⊥MB ,AB ⊥NB ,AB ⊥PB , 又∠AMB =30°,∠ANB =45°,∠APB =60°,∴MB =3h ,NB =h ,PB =33h .在△MPB 中,cos ∠PMB =MP 2+MB 2-BP 22MP ·MB=1 0002+3h 2-13h 22×1 000×3h. 在△MNB 中,cos ∠NMB =MN 2+MB 2-BN 22MN ·MB=5002+3h 2-h 22×500×3h. ∴1 0002+83h 22 0003h =5002+2h 21 0003h. 整理,得h =250 6.∴塔高AB 为250 6 m. 二、构建目标函数解三角问题例3 如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数; (2)求四边形OPDC 面积的最大值.分析 四边形OPDC 可以分成△OPC 与△PCD .S △OPC 可用12OP ·OC ·sin θ表示;而求△PCD 的面积关键在于求出边长PC ,在△POC 中利用余弦定理即可求出;至于面积最值的获得,则可通过三角函数知识解决.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ·OC ·cos θ=5-4cos θ, 所以y =S △OPC +S △PCD=12×1×2sin θ+34×(5-4cos θ)=2sin ⎝⎛⎭⎫θ-π3+534. (2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.例4 甲船在A 处、乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?分析 利用余弦定理构建甲、乙两船的距离关于时间t 的目标函数,注意到t =2时,乙到达A 处,此时,甲地、乙地、A 地三处构不成三角形,要注意分类讨论.如下图所示:解 设甲、乙两船经t 小时后相距最近,且分别到达P 、Q 两处,因乙船到达A 处需2小时.①当0≤t ≤2时,在△APQ 中,AP =8t ,AQ =20-10t , 所以PQ =AQ 2+AP 2-2AP ·AQ cos 120°= (20-10t )2+(8t )2-2(20-10t )×8t ×⎝⎛⎭⎫-12 =84t 2-240t +400=221t 2-60t +100.②当t >2时,在△APQ 中,AP =8t ,AQ =10t -20, ∴PQ =AQ 2+AP 2-2AQ ·AP cos 60°=221t 2-60t +100. 综合①②知,PQ =221t 2-60t +100 (t ≥0).当且仅当t =3021=107时,PQ 最小.答 甲、乙两船行驶107小时后,相距最近.三、利用等价转化思想解三角问题例5 在△ABC 中,已知sin 2A +sin 2B -sin 2C sin 2A -sin 2B +sin 2C =1+cos 2C1+cos 2B,求证:△ABC 是等腰三角形或直角三角形.分析 从题中的等式结构来看,情况较为复杂,且求证的是判定△ABC 为等腰三角形或直角三角形两种情况.因此,应综合应用正、余弦定理,先进行化简,再讨论.证明 应用正弦定理及二倍角公式,将已知等式变形为:a 2+b 2-c 2a 2-b 2+c 2=2cos 2C2cos 2B,再由余弦定理将其变形为:2ab cos C 2ac cos B =cos 2Ccos 2B,整理得cos C cos B ⎝⎛⎭⎫b c -cos C cos B =0.∴cos C cos B =0或b c -cos Ccos B =0,若cos C cos B =0,则C =90°; 若b c -cos C cos B =0,依据正弦定理得sin B sin C =cos C cos B , 即sin B cos B =sin C cos C .所以sin 2B =sin 2C . 所以2B =2C 或2B +2C =180°,即B =C 或B +C =90°. 综上所述,△ABC 是等腰三角形或直角三角形.例6 在△ABC 中,角A ,B ,C 所对的三边长分别为a ,b ,c ,若a 3+b 3-c 3a +b -c=c 2,a =43,B =45°,求△ABC 的面积.分析 解决本题的突破口是由a 3+b 3-c 3a +b -c=c 2联想到余弦定理,这就需要降次,自然就得进行等式的变形.变形后自然容易发现它与余弦定理的关系,进而应用余弦定理解决问题.解 因为a 3+b 3-c 3a +b -c=c 2,所以变形得(a +b )(a 2+b 2-c 2-ab )=0.因为a +b ≠0,所以a 2+b 2-c 2-ab =0,即a 2+b 2-c 2=ab .根据余弦定理的推论得cos C =a 2+b 2-c 22ab =ab 2ab =12.又因为0°<C <180°,所以C =60°. 因为B =45°,A +B +C =180°,所以A =180°-(60°+45°)=75°.根据正弦定理得a sin A =bsin B,所以b =a sin Bsin A =43×226+24=12-4 3.根据三角形的面积公式得S △ABC =12ab sin C =12×43×(12-43)×32=36-12 3.四、构建辅助圆解三角应用题例7 (能力创新题)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ ⎝⎛⎭⎫其中sin θ=2626,0°<θ<90° 且与点A 相距1013海里的位置C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.分析 第(1)问实际上就是求BC 长度,在△ABC 中,利用余弦定理求解即可;第(2)问警戒区域是以E 为中心的一个圆,半径为7(海里),问题实质上可以看作直线BC 与圆E 是否有交点,因此可以构建辅助圆E 来求解.解 (1)如图所示,AB =402, AC =1013,∠BAC =θ,sin θ=2626.由于0°<θ<90°,所以cos θ=1-⎝⎛⎭⎫26262=52626.由余弦定理得BC =AB 2+AC 2-2AB ·AC ·cos θ=10 5. 所以船的行驶速度为 1054060=10523=155(海里/小时). (2)如图所示,以A 为原点建立平面直角坐标系,设点B 、C 的坐标分别是B (x 1,y 1)、C (x 2,y 2),BC 与x 轴的交点为D .由题设有,x 1=y 1=22AB =40,x 2=AC cos ∠CAD =1013cos(45°-θ)=30, y 2=AC sin ∠CAD =1013sin(45°-θ)=20.所以过点B 、C 的直线l 的斜率k =2010=2,直线l 的方程为y =2x -40.又点E (0,-55)到直线l 的距离d =|0+55-40|1+4=35<7,所以船会进入警戒水域.五、利用正、余弦定理解平面几何问题例8 (竞赛竞技题)(斯特瓦尔特定理)在△ABC 中,D 是BC 边上一点,若BD =p ,DC=q ,求证:AD 2=b 2p +c 2q p +q-pq .证明 如图所示, 在△ABD 中, 由正弦定理:cos B =c 2+p 2-AD 22cp.在△ABC 中,由余弦定理:cos B =c 2+a 2-b 22ac.∴c 2+p 2-AD 22cp =c 2+a 2-b 22ca.∴c 2+p 2-AD 2=pa (c 2+a 2-b 2).∴AD 2=c 2+p 2-pa(c 2+a 2-b 2)把a =p +q 代入后整理得:AD 2=c 2-pp +q (c 2-b 2)-pq .即AD 2=b 2p +c 2q p +q-pq .注 当D 为BC 中点时,p =q ,此时,AD =122b 2+2c 2-a 2,即三角形中线长定理.斯特瓦尔特定理是三角形中线长定理推广,中线长定理是该定理的特例.思妙解1.构造三角形巧求代数式的值例1 设a ,b ,c 为正实数,且⎩⎪⎨⎪⎧a 2+ac +c 2=16b 2+3c 2=27a 2+ab +13b 2=25,求ab +2bc +3ac 的值.解 a 2+ac +c 2=a 2+c 2-2ac cos 120°=42; 13b 2+c 2=⎝⎛⎭⎫b 32+c 2=32; a 2+ab +13b 2=a 2+⎝⎛⎭⎫b 32-2a ·⎝⎛⎭⎫b 3cos 150°=52.三个条件式的结构都类似余弦定理,于是可以构造直角三角形ABC ,使∠C =90°.AB =5,BC =3,CA =4,在直角三角形ABC 内作一点O ,使∠AOB =150°,∠BOC =90°,则∠COA =120°,如图所示.OA =a ,OB =b3,OC =c .一方面:S △ABC =S △AOB +S △BOC +S △COA =12a ·b 3·sin 150°+12·b 3·c +12·ca sin 120° =143(ab +2bc +3ac ). 另一方面:S △ABC =12AC ·BC =12×4×3=6.∴143(ab +2bc +3ac )=6. 即ab +2bc +3ac =24 3. 2.构造四面体巧证不等式例2 设x >0,y >0,z >0,求证:x 2-xy +y 2+y 2-yz +z 2>z 2-zx +x 2. 证明如图所示,构造四面体V —ABC , 使∠AVB =∠BVC=∠CVA=60°,且VA=x,VB=y,VC=z,由余弦定理得AB=x2+y2-2xy cos 60°=x2-xy+y2同理,BC=y2-yz+z2,CA=z2-zx+x2,在△ABC中,由于AB+BC>CA,故有:x2-xy+y2+y2-yz+z2>z2-zx+x2.。
人教A版高中数学必修五第一章解三角形
高中数学学习材料金戈铁骑整理制作第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一) 课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2. 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c=sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( )A.3+1 B .23+1 C .2 6 D .2+2 3答案 C解析 由正弦定理a sin A =b sin B, 得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( )A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A .45°或135°B .60°C .45°D .135°答案 C解析 由a sin A =b sin B 得sin B =b sin A a=2sin 60°3=22. ∵a >b ,∴A >B ,B <60°∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C , 即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°.二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22. ∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________. 答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010. 由正弦定理知BC sin A =AB sin C, ∴AB =BC sin C sin A =1×sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________. 答案 1解析 由正弦定理,得3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角, ∴B 必为锐角,∴B =π6, ∴A =π6. ∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求a b的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧ B <90°,2B <90°,180°-3B <90°,∴30°<B <45°. 由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3), 故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:(1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角 a <b sin A a =b sin A b sin A <a <b a ≥b 无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角) A 为直角或钝角 a ≤b a >b 无解 一解(锐角) 1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =c sin C=2R 的常见变形: (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c 2R .2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形答案 D2.在△ABC 中,若acos A =bcos B =ccos C ,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin Acos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403答案 D解析 ∵csin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 A解析 由a =2b cos C 得,sin A =2sin B cos C ,∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于() A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴b +c4=c +a 5=a +b6.令b +c 4=c+a5=a +b6=k (k >0),则⎩⎪⎨⎪⎧ b +c =4k c +a =5ka +b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( ) A .1 B .2C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 答案 2 3解析 ∵cos C =13,∴sin C =223, ∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2 解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B, ∴sin B =12,故B =30°或150°.由a >b , 得A >B ,∴B =30°,故C =90°,由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C=2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12. ∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =a sin A=12,∴c =6. 三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin B sin A. 证明 因为在△ABC 中,a sin A =b sin B =c sin C=2R , 所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin B sin A. 12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( )A .45°B .60°C .75°D .90°答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4, cos B 2=255,求△ABC 的面积S . 解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45. 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ;(3)A +B 2+C 2=π2; (4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tan C 2. 2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标 1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab. 3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A. 3 B .3C. 5 D .5答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )A.π3B.π6C.π4D.π12答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2. 4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34. 5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( ) A .135° B .45° C .60° D .120°答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________.答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________.答案 30° 解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60°=12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12. ∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12, ∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________. 答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数;(2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧ a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 能力提升13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22, ∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac, cos C =a 2+b 2-c 22ab, 代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B . 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin (A -B )sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54.∴S △ABC =21acsinB = 21×35×54= 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一 角.在有解时只有一解.三边(a ,b ,c )余弦定理 由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理 由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45° 解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACBsin ∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意, ∠SMN =45°,∠SNM =105°,∠NSM =30°.由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎫x -5142-257+100 ∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223(km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,203 3 m 答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h , ∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB =ACsin B ,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A = 1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β,∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β). 即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m).在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45°∵AB =30, ∴BC =30,BD =30tan 30°=30 3.在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49. 6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30° B .60° C .120° D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b 2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是。
新版高中数学人教A版必修5习题:第一章解三角形 检测B
第一章检测(B )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1已知腰长为定值的等腰三角形的最大面积为2,则等腰三角形的腰长为( ).A .12B.1 C.2D.3解析:设该等腰三角形的腰长为a ,顶角为θ,则该等腰三角形的面积为12a2sin θ,易知当θ=90°时,该等腰三角形的面积取得最大值12a2=2,则a=2,故腰长为2.答案:C2在△ABC 中,b =√3,c =3,B =30°,则a 的值为( ). A .√3B.2√3 C .√3或2√3D.2 解析:∵sin C =sinBb ·c =√32,∴C=60°或C=120°.∴A=90°或A=30°.当A=30°时,a=b =√3;当A=90°时,a =√b 2+c 2=2√3. 答案:C3在△ABC 中,∠ABC =π4,AB =√2,BC =3,则sin ∠BAC=( ).A .√1010B.√105C .3√1010 D.√55解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=2+9-2×√2×3×√22=5,即得AC =√5.由正弦定理AC sin∠ABC =BC sin∠BAC ,√5√22=3sin∠BAC ,所以sin ∠BAC =3√1010. 答案:C4在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a>b>c ,a 2<b 2+c 2,则A 的取值范围是( ).A .(π2,π)B.(π4,π2)C .(π3,π2)D.(0,π2)解析:cos A =b 2+c 2-a 22bc>0,∴A <π2.又a>b>c ,∴A>B>C.∴A >π3,故选C .答案:C5在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ).A .(152,+∞)B.(10,+∞)C.(0,10)D .(0,403]解析:由正弦定理得,asinA =csinC ,c =asinA ·sin C =1034sin C =403sin C ≤403.又c>0,故0<c ≤403.答案:D6路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m,则折断点与树干底部的距离是( ).A .20√63mB.10√6 m C .10√63 mD.20√2 m解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,AOsin45°=20sin60°,∴AO =20sin45°sin60°=20√63(m).答案:A7在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c.已知b=c ,a 2=2b 2(1-sin A ),则A=( ).A .3π4B.π3 C .π4D.π6解析:由余弦定理可得a 2=b 2+c 2-2bc cos A ,又因为b=c ,所以a 2=b 2+b 2-2b×b cos A=2b 2(1-cos A ). 由已知a 2=2b 2(1-sin A ), 所以sin A=cos A , 因为A ∈(0,π),所以A =π4. 答案:C8在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan A=7tan B ,a 2-b2c=3,则c 等于( ).A.4B.3C.7D.6解析:由tan A=7tan B ,得sinAcosA =7sinBcosB ,即sin A cos B=7sin B cos A ,所以sin A cos B+sin B cos A=8sin B cos A , 即sin(A+B )=sin C=8sin B cos A.由正、余弦定理可得c=8b ·b 2+c 2-a 22bc ,即c 2=4b 2+4c 2-4a 2.又a 2-b 2c=3,所以c 2=4c ,即c=4.答案:A9在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于().A.34B.43C.−34D.−43解析:由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,即2×12absin C=a2+b2+2ab-c2,所以ab sin C-2ab=a2+b2-c2.由余弦定理可知cos C=a 2+b2-c22ab=absinC-2ab2ab=sinC2−1,所以cos C+1=sinC2,即2cos2C2=sin C2cos C2,所以ta n C2=2.所以tan C=2tan C21-tan2C2=2×21-22=−43.答案:D10甲船在B岛的正南方10 km处,且甲船以4 km/h的速度向正北方向航行,同时乙船自B岛出发以6 km/h的速度向北偏东60°的方向行驶,当甲、乙两船相距最近时它们航行的时间是().A.1507 minB.157hC.21.5 minD.2.15 h解析:如图,设经过x h 后甲船处于点P 处,乙船处于点Q 处,两船的距离为s ,则在△BPQ 中,BP=10-4x ,BQ=6x ,∠PBQ=120°,由余弦定理可知s 2=PQ 2=BP 2+BQ 2-2BP ·BQ ·cos ∠PBQ , 即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·cos120°=28x 2-20x+100.当x=−-202×28=514时s 最小, 此时x =514(h)=1507(min). 答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b+c=2a ,3sin A=5sin B ,则角C= . 解析:∵3sin A=5sin B ,∴3a=5b.① 又∵b+c=2a ,②∴由①②可得,a =53b,c =73b,∴cos C =b2+a 2-c 22ab=b 2+(53b )2-(73b )22×53b×b =−12,∴C =2π3. 答案:2π312已知△ABC 的面积为S ,且|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S,则B = .解析:设AB=c ,BC=a ,AC=b ,则∵|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S, ∴a 2=ab cos C+ab sin C ,即a=b sin C+b cos C.由正弦定理得sin A=sin B sin C+sin B cos C. 又sin A=sin(B+C )=sin B cos C+cos B sin C ,∴sin B=cos B ,即tan B=1,B =π4. 答案:π413在△ABC 中,BC=1,B =π3,当△ABC 的面积等于√3时,sin C = . 解析:设AB=c ,AC=b ,BC=a ,则△ABC 的面积S =12acsin B =√3,解得c=4, 所以b =√a 2+c 2-2accosB =√13.所以cos C =a 2+b 2-c 22ab=−√1313.所以sin C =2√3913. 答案:2√391314在△ABC 中,已知b=1,sin C =35,bcos C +ccos B =2,则AC⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ = . 解析:由余弦定理的推论知cos C =a 2+b 2-c 22ab,cos B =a 2+c 2-b22ac .∵b cos C+c cos B=2,∴a2+b2-c22a+a2+c2-b22a=2.∴a=2,即|BC⃗⃗⃗⃗⃗ |=2.又b=1,∴|AC⃗⃗⃗⃗⃗ |=1.∵sin C=35,0°<C<180°,∴cos C=45或cos C=−45.∴AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =85或AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =−85.答案:85或−8515在△ABC中,角A,B,C的对边分别为a,b,c,若1+tanAtanB =2cb,则A=.解析:由正弦定理,得2cb =2sinCsinB.又因为1+tanAtanB =tanB+tanAtanB=sinBcosA+cosBsinAsinBcosA=sin(A+B)sinBcosA=sinCsinBcosA,所以sinCsinBcosA =2sinCsinB.则cos A=12.又因为0°<A<180°,所以A=60°.答案:60°三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin 2C 的值.解(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A=4+9-2×2×3×12=7,所以BC =√7.(2)由正弦定理知,AB sinC =BCsinA ,所以sin C =ABBC ·sin A =√7=√217.因为AB<BC ,所以C 为锐角,则cos C =√1-sin 2C =√1-37=2√77. 因此sin2C=2sin C ·cos C=2×√217×2√77=4√37. 17(8分)在△ABC 中,∠A =3π4,AB =6,AC =3√2,点D 在BC 边上,AD =BD,求AD 的长. 解设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c.由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC=(3√2)2+62−2×3√2×6×cos 3π4=18+36−(−36)=90,所以a=3√10.又由正弦定理得sin B =bsin∠BACa=3√10=√1010,由题设知0<B <π4,所以cos B =√1-sin 2B =√1-110=3√1010.在△ABD 中,由正弦定理得AD =AB ·sinB sin (π-2B )=6sinB 2sinBcosB=3cosB=√10.18(9分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a>c.已知BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B =13,b =3,求: (1)a 和c 的值; (2)cos(B-C )的值.解(1)由BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2得c ·a cos B=2.又cos B =13,所以ac=6.由余弦定理,得a 2+c 2=b 2+2ac cos B. 又b=3,所以a 2+c 2=9+2×2=13.解{ac =6,a 2+c 2=13,得a=2,c=3或a=3,c=2.因为a>c ,所以a=3,c=2. (2)在△ABC 中,sin B =√1-cos 2B=√1-(13)2=2√23,由正弦定理,得sin C =cb sin B =23×2√23=4√29. 因为a=b>c ,所以C 为锐角,因此cos C =√1-sin 2C =√1-(4√29)2=79.于是cos(B-C )=cos B cos C+sin B sin C=13×79+2√23×4√29=2327.19(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a-c =√66b,sin B =√6sin C. (1)求cos A 的值;(2)求co s (2A -π6)的值.解(1)在△ABC 中,由b sinB =c sinC ,及sin B =√6sin C ,可得b =√6c.又由a-c =√66b,有a=2c.所以cos A =b 2+c 2-a 22bc =2222√6c 2=√64. (2)在△ABC 中,由cos A =√64,可得sin A =√104.于是cos2A=2cos 2A-1=−14,sin 2A=2sin A ·cos A =√154.所以co s (2A -π6)=cos 2A ·co s π6+sin 2A ·si n π6=√15-√38.20(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a=3,cos A =√63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.解(1)在△ABC 中,由题意知sin A =√1-cos 2A =√33,又因为B=A +π2,所以sin B=si n (A +π2)=cos A =√63.由正弦定理可得b=asinBsinA=3×√63√33=3√2.(2)由B=A+π2,得cos B=co s(A+π2)=−sin A=−√33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B) =sin A cos B+cos A sin B=√33×(-√33)+√63×√63=13.因此△ABC的面积S=12absin C=12×3×3√2×13=3√22.。
高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5(2021学年)
2018版高中数学第一章解三角形1.1.2 余弦定理(二)学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章解三角形1.1.2余弦定理(二)学案新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章解三角形 1.1.2 余弦定理(二)学案新人教A版必修5的全部内容。
1.1.2 余弦定理(二)[学习目标] 1。
熟练掌握余弦定理及其变形形式,能用余弦定理解三角形。
2。
能应用余弦定理判断三角形形状.3。
能利用正弦、余弦定理解决解三角形的有关问题.知识点一余弦定理及其推论1.a2=b2+c2-2bc cos__A,b2=c2+a2-2ca cos__B,c2=a2+b2-2abcos__C.2.cos A=错误!,cos B=错误!,cosC=错误!.3.在△ABC中,c2=a2+b2⇔C为直角,c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.知识点二正弦、余弦定理解决的问题思考以下问题不能用余弦定理求解的是________.(1)已知两边和其中一边的对角,解三角形;(2)已知两角和一边,解三角形;(3)已知一个三角形的两条边及其夹角,解三角形;(4)已知一个三角形的三条边,解三角形.答案 (2)题型一利用余弦定理判断三角形的形状例1 在△ABC中,cos2错误!=错误!,其中a,b,c分别是角A,B,C的对边,则△ABC的形状为( )A.直角三角形B.等腰三角形或直角三角形C.等腰直角三角形D.正三角形答案 A解析方法一在△ABC中,由已知得\f(1+cosB,2)=\f(1,2)+错误!,∴cosB=ac=错误!,化简得c2=a2+b2。
(完整word版)高中数学必修五第一章解三角形章末测试(人教A版必修5)
答案: B4.符合下列条件的三角形有且只有一个的是( )高中数学必修五 第一章 解三角形章末测试一、选择题(本大题共10小题,每小题5分,共50分•在每小题给出的四个选项中, 只有一项是符合题目要求的 ) 1 .在△ ABC 中,已知 a = 3, b = 4, c^ ^.,13,则角 C 为( ) A . 90 ° B . 60° C . 45° D . 30° 解析: 根据余弦定理: -a 2+ b 2— c 2 32 + 42_锁2 1 C0S C = —20b — = —2 X 3X 4 = 2, ••C = 60 °答案: B2.在△ ABC 中,a = 5, b = 15, A = 30°,贝U c 等于(A . 2 ,5 B. ,5C . 2 .5或,5D .以上都不对解析: 由于 sin B = bsin A =¥,故 B = 60 或 120 °a 2当 B = 60 时,C = 90 时,c = 30 ° = a 2+ b 2= 2 ,5; 当 B = 120 时,C = 30 °, c = a=^5.答案: C 3.已知三角形的两边长分别为 4,5,它们夹角的余弦是方程 三边长是( ) A. 20 C. 22 B. .21 D. .61 解析:设长为4,5的两边的夹角为 0, 1 由 2X 2 + 3X — 2= 0 得:X = 或 X = — 2(舍). ••cos 0= 2, 第三边长为 + 52 — 2 X 4X 5 X 2= 21.2X 2+ 3x — 2 = 0的根,则第A . a = 1, b = 2, c = 3B . a = 1, b =玄2, A = 30 °C . a = 1, b = 2, A = 100 °D . b = c = 1, B = 45 °解析: A : a + b = 3= c ,不能构成三角形;B : bsin A<a<b ,故有两解.C : a<b ,故A 应为锐角,而已知 A = 100 °,故不能构成三角形.D : b = c = 1,故△ABC 为等腰三角形, •°C = B = 45 °, —A = 90;故只有一解.答案: D5.在△ ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c ,若 a 2 + b 2= c 2+ ab ,贝V C =( )A . 60°B . 120°C . 45°D . 30°解析: 由余弦定理得又v C € (0 ; 180 )••C = 60 :答案: A6 .在△ ABC 中,若 a 2 + b 2- c 2<0,则△ ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能解析:由余弦定理,得cos C = " +"-* <0.2ab所以C 为钝角.于是△ ABC 为钝角三角形.答案: C7.在△ ABC 中,sin A : sin B : sin C = 3 : 2 : 4,贝U cos C 的值为( )解析:由正弦定理及 sin A : sin B : sin C = 3 : 2 : 4 知,a : b : c = 3 : 2 : 4,令 a =3xC .D.4a 2+b 2-c 2cos C =ab 12ab2ab —2则b= 2x, c= 4x(x>0),3x 2+ 2x 2— 4x 212X 3x X 2x =— 4.答案: C&在△ ABC 中,A = 60 ° AB = 2,且△ ABC 的面积 S ABC =专,则边BC 的长为( )A. . 3 B . 3 C. 7D . 71解析: 由 S = 2AB x AC x Sin A 得 AC = 1由余弦定理得 BC 2 = AB 2 + AC 2 — 2AB x AC X cos A=22 + 12— 2X 2X 1 X cos 60 =°•'BC = ,3,故选 A.答案: A取值范围是( )A . (— 2,2)B . (0,2)C . ( 2,3)D . (.2, 2)b sin B sin 2A•a =而==2cos A ,B = 2A<90 °又•△k BC 是锐角三角形,•,A + 2A>90 °” _ _••30 °A<45 ° 则 b= 2cos A € ^[2, 需). a答案: C10. 某海上缉私小分队驾驶缉私艇以 40km/h 的速度由A 处出发,沿北偏东 60方向航 行,进行海面巡逻,当行驶半小时到达 B 处时,发现北偏西45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【步步高】2014-2015学年高中数学 第一章 解三角形章末检测(A )新人教A 版必修5一、选择题(本大题共12小题,每小题5分,共60分) 1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B 等于( )A.53B.54C.55D.56 答案 B解析 由正弦定理得a b =sin Asin B,∴a =52b 可化为sin A sin B =52. 又A =2B ,∴sin 2B sin B =52,∴cos B =54.2.在△ABC 中,AB=3,AC=2,BC= 10,则·AC →等于( )A .-32B .-23 C.23 D.32答案 A解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴·AC →=|AB →|·|AC →|·cos A =3×2×14=32.∴·AC →=-AB →·AC →=-32.3.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对 答案 C解析 ∵a 2=b 2+c 2-2bc cos A ,∴5=15+c 2-215×c ×32.化简得:c 2-35c +10=0,即(c -25)(c -5)=0, ∴c =25或c = 5.4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解D .a =30,b =25,A =150°,有一解 答案 D解析 A 中,因a sin A =bsin B ,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中, ∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21, 即有解,故A 、B 、C 都不正确.5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2 答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.6.在△ABC 中,cos 2 A 2=b +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 由cos 2A 2=b +c 2c ⇒cos A =b c , 又cos A =b 2+c 2-a22bc,∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A.7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( )A .2 B.6- 2 C .4-2 3 D .4+2 3 答案 A解析 sin A =sin 75°=sin(30°+45°)=6+24,由a =c 知,C =75°,B =30°.sin B =12.由正弦定理:b sin B =a sin A =6+26+24=4.∴b =4sin B =2.8.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152 B.15 C.8155 D .6 3 答案 A解析 由b 2-bc -2c 2=0可得(b +c )(b -2c )=0.∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即6=4c 2+c 2-4c 2·78.∴c =2,从而b =4.∴S △ABC =12bc sin A =12×2×4×1-⎝ ⎛⎭⎪⎫782=152.9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos∠AMB ,即72=14a 2+42-2×a 2×4·cos∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos∠AMC即62=42+14a 2+2×4×a 2·cos∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.10.若sin A a =cos B b =cos C c,则△ABC 是( )A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形 答案 C解析 ∵sin A a=cos Bb,∴a cos B =b sin A ,∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 答案 D解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·t an B =sin B =32. ∵0<B <π,∴角B 的值为π3或2π3.12.△ABC 中,A =π3,BC =3,则△ABC 的周长为( )A .43sin ⎝ ⎛⎭⎪⎫B +π3+3 B .43sin ⎝⎛⎭⎪⎫B +π6+3C .6sin ⎝ ⎛⎭⎪⎫B +π3+3D .6sin ⎝⎛⎭⎪⎫B +π6+3答案 D解析 A =π3,BC =3,设周长为x ,由正弦定理知BC sin A =AC sin B =ABsin C=2R ,由合分比定理知BC sin A =AB +BC +ACsin A +sin B +sin C,即332=x 32+sin B +sin C .∴23⎣⎢⎡⎦⎥⎤32+sin B +sin A +B =x , 即x =3+23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫B +π3=3+23⎝⎛⎭⎪⎫sin B +sin B cos π3+cos B sin π3 =3+23⎝ ⎛⎭⎪⎫sin B +12sin B +32cos B=3+23⎝ ⎛⎭⎪⎫32sin B +32cos B=3+6⎝ ⎛⎭⎪⎫32 sin B +12cos B=3+6sin ⎝⎛⎭⎪⎫B +π6.二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,2a sin A -b sin B -csin C=________.答案 014.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________.答案 π6解析 ∵a 2+c 2-b 2=3ac ,∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π6.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sinC =________. 答案 1解析 在△ABC 中,A +B +C =π,A +C =2B .∴B =π3.由正弦定理知,sin A =a sin B b =12.又a <b .∴A =π6,C =π2.∴sin C =1.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.答案 32≤a <3解析 由⎩⎪⎨⎪⎧a + a +1 >a +2a 2+ a +1 2- a +2 2<0a 2+ a +1 2- a +2 22a a +1 ≥-12.解得32≤a <3.三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则 BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°, 根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2.答 我艇追上走私船所需的时间为2小时.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C 2+cos 2A 的值; (2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2 B +C 2+cos 2A =1-cos B +C 2+cos 2A =1+cos A 2+2cos 2A -1=5950.(2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13.19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos(45°-30°)=6+24.(2)在△ABE 中,AB =2,由正弦定理得AE sin ∠ABE =ABsin ∠AEB ,即AE sin 45°-15° =2sin 90°+15°, 故AE =2sin 30°cos 15°=2×126+24=6- 2.20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.21.(12分)(2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C ,又A =120°,∴sin 2B +sin 2C +sin B sin C =34,∵sin B +sin C =1,∴sin C =1-sin B .∴sin 2B +(1-sin B )2+sin B (1-sin B )=34,即sin 2B -sin B +14=0.解得sin B =12.故sin C =12.∴B =C =30°.所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°, 则C =60°-B ,∴sin B +sin C =sin B +sin(60°-B )=sin B +32cos B -12sin B=12sin B +32cos B =sin(B +60°) =1,∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.(14分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ), n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即a ·a 2R =b ·b2R,其中R 是△ABC 外接圆半径,∴a =b . ∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab ,即(ab )2-3ab -4=0. ∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.。