高一下学期复习测试数学试卷答案

合集下载

高一数学(下学期)期末复习试卷及参考答案

高一数学(下学期)期末复习试卷及参考答案

xy O32π- 2 34π-4高一数学期末复习试卷第I 卷(选择题)一、选择题1.已知|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150°2.已知︱OA ︱=1,︱OB ︱=3,OB OA ∙=0,点C 在∠AOB 内,且∠AOC =30°,设OC =m OA +n OB (m 、n ∈R ),则nm等于( ) A .31B .3C .33D .33.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin()26y x =-π B.1sin()23y x =-πC.1sin 2y x = D.sin(2)6y x =-π4.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 5.在等差数列{}n a 中,若4612a a +=,n S 是数列{}n a 的前n 项和,则9S =( ) A .48B .54C .60D .108 6.设函数的最小正周期为,且,则( )A 、在单调递减B 、在单调递减C 、在单调递增D 、在单调递增3,44ππ⎛⎫⎪⎝⎭()f x 0,2π⎛⎫⎪⎝⎭()f x 3,44ππ⎛⎫⎪⎝⎭()f x 0,2π⎛⎫⎪⎝⎭()f x ()()f x f x -=π()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><7.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12C .-1D .18.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列, ∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+39.设实数满足,则的取值范围是( )A .B .C .D .10.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a = ( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++第II 卷(非选择题)二、填空题11. 若,,且与的夹角为,则 .12.已知向量a =(cos α,sin α),b =(cos β,sin β),且a ±≠b ,那么b a +与b a -的夹角的大小是 。

高一数学下期试题及答案

高一数学下期试题及答案

高一数学下期试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2-4x+3,下列哪个值是函数的最小值?A. 0B. 1C. 3D. 42. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 已知等差数列的前三项依次为3,5,7,则该数列的第五项为:A. 9B. 11C. 13D. 154. 函数y=x^3-3x^2+3x+1的导数为:A. 3x^2-6x+3B. x^2-6x+3C. 3x^2-3x+1D. x^2-3x+15. 直线y=2x+1与x轴的交点坐标是:A. (0,1)B. (-1,0)C. (1,0)D. (0,-1)6. 已知复数z满足|z|=1,且z^2=i,则z的值为:A. 1B. -1C. iD. -i7. 函数y=x/(x^2+1)的值域是:A. (-1,1)B. (-∞,-1]∪[1,+∞)C. (-∞,0]∪[0,+∞)D. (-1,0)∪(0,1)8. 圆x^2+y^2=25的圆心坐标是:A. (0,0)B. (5,0)C. (-5,0)D. (0,5)9. 已知函数f(x)=x^3-3x^2+2,若f(a)=0,则a的值为:A. 0B. 1C. 2D. 310. 函数y=|x-2|+|x+3|的最小值是:A. 1B. 2C. 5D. 6二、填空题(每题4分,共20分)11. 函数f(x)=x^2-6x+8的顶点坐标为______。

12. 已知等比数列的前三项依次为2,4,8,则该数列的公比为______。

13. 圆的方程为x^2+y^2-6x+8y-24=0,其半径为______。

14. 函数y=|x-1|+|x+2|的最小值为______。

15. 已知向量a=(3,-4),向量b=(2,k),若a⊥b,则k的值为______。

三、解答题(每题10分,共50分)16. 解方程:2x^2-5x+2=0。

广东省佛山南海一中高一数学下学期期末复习试卷(含解析)-人教版高一全册数学试题

广东省佛山南海一中高一数学下学期期末复习试卷(含解析)-人教版高一全册数学试题

2014-2015学年某某省佛山南海一中高一(下)期末数学复习试卷一、选择题(共12小题,每小题3分,满分36分)1.等差数列{a n}中,a5+a8+a11+a14=20,则a2+a17的值为()A. 21 B. 19 C. 10 D. 202.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()A. 80 B. 30 C. 26 D. 163.设2a=3,2b=6,2c=12,则数列a,b,c是()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.非等差数列,又非等比数列4.已知等比数列a2=2,a3=4,则a7=()A. 64 B. 81 C. 243 D. 1285.由a1=1,a n+1=给出的数列{a n}的第34项()A.B. 100 C.D.6.设S n为等差数列{a n}的前n项和,已知在S n中有 S12<0,S13>0,那么S n中最小的是()A. S4B. S5C. S6D. S77.设等差数列{a n}的前n项和为S n,若a1>0,3a8=5a13,则S n中最大的是()A. S10B. S11C. S20D. S218.数列{a n}中,a1=3且a n+1=a n+2,则数列{}前n项和是()A. n(n+1)B.C.D.9.若数列{a n}满足a1=1,,则此数列是()A.等差数列B.等比数列C.既是等差数列又是等比数列D.既非等差数列又非等比数列10.对于每个自然数.抛物线y=(n2+n)x2﹣(2n+1)x+1与x轴交于A n,B n两点,|A n B n|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值()A.B.C.D.11.等比数列x,2x+2,3x+3,…的第四项为()A.B.C.﹣27 D. 2712.等差数列{a n}中,a1=8,a100=107,则a107=()A. 117 B. 110 C. 97 D. 114二、填空题(共4小题,每小题3分,满分12分)13.数列S n=1++++…+,则S100=.14.等差数列{a n}中,前4项的和为40,后4项的和为80,所有项的和为210,则项数n=.15.设S n是等差数列{a n}的前n项和,若S7=35,则a4=.16.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2=.三、解答题(共6小题,满分0分)17.求等差数列8,5,2的第10项;(2)﹣401是不是等差数列﹣5,﹣9,﹣13,…的项?如果是,是第几项?1012春•某某市校级期末)有四个数,前三个数成等差数列,后三个数成等比数列,且这四个数的首末两项之和为37,中间两项和为36,求这四个数.1012春•某某市校级期末)数列{a n}中,已知a1=2,a n﹣1与a n满足lga n=lga n﹣1+lgt关系式(其中t为大于零的常数)求:(1)数列{a n}的通项公式(2)数列{a n}的前n项和S n.2012春•某某市校级期末)设{a n}是等差数列,其前n项和是S n,a3=6,S3=12.(1)求数列{a n}的通项公式;(2)求++…+的值.2012春•某某市校级期末)观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?2012春•某某市校级期末)小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?一、附加题:23.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B. 1 C. 2 D. 324.已知数列{a n}满足a1=2,a n+1=(n∈N*),则连乘积a1a2a3…a2009a2010的值为()A.﹣6 B. 3 C. 2 D. 125.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为整数的个数是.26.已知数列{a n}满足a1==2n,当n=时,取得最小值.27.在数列{a n}中,已知a1=,a n+1=(n∈N*),则数列{a n}的前2012项的和为.28.已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.2014-2015学年某某省某某南海一中高一(下)期末数学复习试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.等差数列{a n}中,a5+a8+a11+a14=20,则a2+a17的值为()A. 21 B. 19 C. 10 D. 20考点:等差数列的性质;等差数列的通项公式.专题:等差数列与等比数列.分析:根据等差数列的性质,进行转化即可.解答:解:在等差数列中,a2+a17=a5+a14=a8+a11,∵a5+a8+a11+a14=20,∴2(a5+a14)=20,则a5+a14=10,即a2+a17=a5+a14=10,故选:C.点评:本题主要考查等差数列的性质的考查,比较基础.2.各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于()A. 80 B. 30 C. 26 D. 16考点:等比数列的前n项和;等比数列的性质.专题:计算题;等差数列与等比数列.分析:利用等比数列的求和公式,整体思维,即可求得结论.解答:解:设各项均为正数的等比数列{a n}的公比等于q,∵S n=2,S3n=14,∴q≠1∴=2,=14,解得 q n=2,=﹣2.∴S4n =(1﹣q4n)=﹣2(1﹣16)=30,故选B.点评:本题考查等比数列的求和公式,考查学生的计算能力,属于基础题.3.设2a=3,2b=6,2c=12,则数列a,b,c是()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.非等差数列,又非等比数列考点:等差关系的确定;对数的运算性质.专题:函数的性质及应用;等差数列与等比数列.分析:根据对数的定义求出a=log23,b=log26,c=log212;b﹣a=c﹣b,得到a、b、c是等差数列.而≠,所以a、b、c不是等比数列.解答:解:因为2a=3,2b=6,2c=12,根据对数定义得:a=log23,b=log26,c=log212;而b﹣a=log26﹣log23=log2=log22=1;c﹣b=log212﹣log26=log22=1,所以b﹣a=c﹣b,数列a、b、c为等差数列.而≠,所以数列a、b、c不为等比数列.故选:A.点评:考查学生会确定等差、等比数列的关系,以及会根据对数定义化简求值.4.已知等比数列a2=2,a3=4,则a7=()A. 64 B. 81 C. 243 D. 128考点:等比数列的通项公式.专题:等差数列与等比数列.分析:根据等比数列的通项公式,先求出公比,建立方程关系即可得到结论.解答:解:在等比数列中a3=a2q,即2q=4,解得q=2,则a7=a3q4=4×24=64,故选:A点评:本题主要考查等比数列通项公式的应用,根据等比数列的通项公式求出公比是解决本题的关键.5.由a1=1,a n+1=给出的数列{a n}的第34项()A.B. 100 C.D.考点:数列递推式.专题:计算题;等差数列与等比数列.分析:对数列递推式,取倒数,可得数列{}是以1为首项,3为公差的等差数列,求出数列{a n}通项,即可得到结论.解答:解:∵a n+1=,∴=∴∵a1=1,∴数列{}是以1为首项,3为公差的等差数列∴=1+3(n﹣1)=3n﹣2∴∴数列{a n}的第34项为=故选C.点评:本题考查数列递推式,考查等差数列的判断,考查学生的计算能力,属于基础题.6.设S n为等差数列{a n}的前n项和,已知在S n中有 S12<0,S13>0,那么S n中最小的是()A. S4B. S5C. S6D. S7考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的求和公式和等差数列的性质可得等差数列{a n}的前6项为负数,从第7项开始为正数,可得结论.解答:解:由题意可得S12==6(a1+a12)=6(a6+a7)<0,S13===13a7>0,∴a6+a7<0,a7>0,∴a6<0,a7>0,∴等差数列{a n}的前6项为负数,从第7项开始为正数,∴S n中最小的是S6故选:C点评:本题考查等差数列的通项公式和等差数列的性质,得出数列项的正负规律是解决问题的关键,属基础题.7.设等差数列{a n}的前n项和为S n,若a1>0,3a8=5a13,则S n中最大的是()A. S10B. S11C. S20D. S21考点:等差数列的性质.专题:等差数列与等比数列.分析:由题意可得:等差数列的公差d<0,结合题意可得a1=﹣19.5d,可得S n=0.5dn2﹣20dn,进而结合二次不等式的性质求出答案.解答:解:由题意可得:等差数列的S n为二次函数,依题意是开口向下的抛物线故有最大值,所以等差数列的公差d<0.因为a13=a8+5d,所以a1=﹣19.5d由S n=n×a1+d可得S n=0.5dn2﹣20dn,当n=20时.S n取得最大值.故选C.点评:本题是一个最大值的问题,主要是利用等差数列的性质与等差数列的前n项和的公式以及结合二次函数的性质来解题.8.数列{a n}中,a1=3且a n+1=a n+2,则数列{}前n项和是()A. n(n+1)B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵数列{a n}中,a1=3且a n+1=a n+2,即a n+1﹣a n=2.∴数列{a n}是等差数列,首项为3,公差为2.∴a n=3+2(n﹣1)=2n+1.∴数列{a n}的前n项和==n(n+2),则数列==n+2.∴数列{}是等差数列,首项为3,公差为1.∴数列{}前n项和==.故选:C.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.9.若数列{a n}满足a1=1,,则此数列是()A.等差数列B.等比数列C.既是等差数列又是等比数列D.既非等差数列又非等比数列考点:等差关系的确定.专题:转化思想.分析:根据题意可得:a n==n,再利用等差数列的定义进行证明即可.解答:解:因为,所以,,…,所以a n==n,所以a n=n,a n﹣1=n﹣1,所以a n﹣a n﹣1=1,所以数列{a n}是等差数列.故选A.点评:本题主要考查了数列的递推式.解题的关键是从递推式中找到规律,进而求得数列的通项公式.10.对于每个自然数.抛物线y=(n2+n)x2﹣(2n+1)x+1与x轴交于A n,B n两点,|A n B n|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值()A.B.C.D.考点:数列的应用;二次函数的性质.专题:函数的性质及应用;点列、递归数列与数学归纳法.分析:通过整理可知方程y=0的两根分别为:、,进而并项相加即得结论.解答:解:y=(n2+n)x2﹣(2n+1)x+1=n(n+1)x2﹣x+1=(nx﹣1),∴方程y=0的两根分别为:、,∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2008B2008|=1﹣+﹣+…+﹣=1﹣=,故选:B.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.11.等比数列x,2x+2,3x+3,…的第四项为()A.B.C.﹣27 D. 27考点:等比数列的通项公式.专题:计算题.分析:按照等比数列定义,列出关于x的方程.求出x的值,确定出公比,再利用等比数列定义求第四项解答:解:等比数列定义,(2x+2)2=x(3x+3),化简整理得x2+5x+4=0,解得x=﹣1,(此时2x+2=0,舍去)或x=﹣4,此时数列为﹣4,﹣6,﹣9,…,公比为,∴第四项为﹣9×=故选A.点评:本题考查等比数列定义,以及应用,注意等比数列中不会有数0,遇到项中含有字母时,要注意字母取值X围.12.等差数列{a n}中,a1=8,a100=107,则a107=()A. 117 B. 110 C. 97 D. 114考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由已知数据可得等差数列的公差,进而又通项公式可得答案.解答:解:设等差数列{a n}的公差为d,则d===1,∴a107=a1+106d=8+106=114故选:D.点评:本题考查等差数列的通项公式,求出数列的公差是解决问题的关键,属基础题.二、填空题(共4小题,每小题3分,满分12分)13.数列S n=1++++…+,则S100= 2﹣()99.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:根据等比数列的前n项和公式进行求解即可.解答:解:S n=1++++…+==2﹣()n﹣1,则S100=2﹣()99,故答案为:2﹣()99点评:本题主要考查等比数列的前n项和公式的应用,比较基础.14.等差数列{a n}中,前4项的和为40,后4项的和为80,所有项的和为210,则项数n= 14 .考点:等差数列的性质;等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a1+a2+a3+a4=40.a n+a n﹣1+a n﹣2+a n﹣3=80.两式相加可得a1+a n=30,而S n===210,代入求解.解答:解:由题意可得a1+a2+a3+a4=40.a n+a n﹣1+a n﹣2+a n﹣3=80.两式相加可得a1+a n+a2+a n﹣1+a3+a n﹣1+a4+a n﹣3=120由等差数列的性质可得4(a1+a n)=120,∴a1+a n=30.则S n===210,解得n=14.故答案为:14.点评:本题考查等差数列的求和公式和等差数列的性质,属基础题.15.设S n是等差数列{a n}的前n项和,若S7=35,则a4= 5 .考点:等差数列的性质;等比数列的前n项和.专题:计算题.分析:先根据S7=35求得a1+a7的值,进而根据等差中项的性质可求得a4.解答:解:S7==35,∴a1+a7=10∴2a4=a1+a7=10,a4=5故答案为5.点评:本题主要考查了等差数列的性质.特别是等差中项的性质.属基础题.16.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2= ﹣9 .考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由题意得(a1+6)2=a1(a1+9),即a1=﹣12,即可得出结论.解答:解:∵等差数列{a n}的公差为3,a1、a3、a4成等比数列,∴(a1+6)2=a1(a1+9).∴a1=﹣12,∴a2=﹣9,故答案为:﹣9.点评:本题考查等差数列的通项,涉及等比中项的应用,属中档题.三、解答题(共6小题,满分0分)17.求等差数列8,5,2的第10项;(2)﹣401是不是等差数列﹣5,﹣9,﹣13,…的项?如果是,是第几项?考点:等差数列的通项公式.专题:等差数列与等比数列.分析:利用等差数列的通项公式求解.解答:解:(1)等差数列8,5,2的首项a1=8,公差d=﹣3,∴a10=8+9×(﹣3)=﹣19.(2)等差数列﹣5,﹣9,﹣13,…中,a1=﹣5,d=﹣4,∴a n=﹣5+(n﹣1)×(﹣4)=﹣4n﹣1,令﹣4n﹣1=﹣401,得n=100.∴﹣401是等差数列﹣5,﹣9,﹣13,…的第100项.点评:本题考查等差数列的通项公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.1012春•某某市校级期末)有四个数,前三个数成等差数列,后三个数成等比数列,且这四个数的首末两项之和为37,中间两项和为36,求这四个数.考点:等比数列的通项公式;等差数列的通项公式.专题:等差数列与等比数列.分析:由题知,首末两数之和为37,中间两数之和为36,设四个数为﹣a,18﹣b,18+b,,由此能求出四个数.解答:解:由题知,首末两数之和为37,中间两数之和为36,所以设四个数为﹣a,18﹣b,18+b,,前三个数成等差数列得到2(18﹣b)=(18+b)+(﹣a)即a=3b+,后三个数成等比数列得到(18+b)2=(18﹣b)(+a),将a=3b+代入得(18+b)2=(18﹣b)(19+3b)即182+36b+b2=18*19+35b﹣3b2即4b2+b﹣18=0解得b=2,或b=﹣对应的a=6.5,或a=﹣所以,四个数为12,16,20,25,或,,,.点评:本题考查四个数的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.1012春•某某市校级期末)数列{a n}中,已知a1=2,a n﹣1与a n满足lga n=lga n﹣1+lgt关系式(其中t为大于零的常数)求:(1)数列{a n}的通项公式(2)数列{a n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用对数的性质可知数列{a n}为等比数列,进而可得结论;(2)利用等比数列的求和公式计算即得结论.解答:解:(1)∵lga n=lga n﹣1+lgt=lg(t•a n﹣1),∴a n=t•a n﹣1,又∵a1=2,∴数列{a n}的通项a n=2•t n﹣1;(2)由(1)可知数列{a n}是以2为首项、t为公比的等比数列,∴数列{a n}的前n项和S n=.点评:本题考查数列的通项及前n项和,涉及对数的性质等基础知识,注意解题方法的积累,属于基础题.2012春•某某市校级期末)设{a n}是等差数列,其前n项和是S n,a3=6,S3=12.(1)求数列{a n}的通项公式;(2)求++…+的值.考点:数列的求和;等差数列的前n项和.专题:等差数列与等比数列.分析:(1)由已知条件得,由此能求出a n=2n.(2)由(1)求出S n=n2+n,从而得到==,由此利用裂项求和法能求出++…+的值.解答:解:(1)∵{a n}是等差数列,其前n项和是S n,a3=6,S3=12,∴,解得a1=2,d=2,∴a n=2+(n﹣1)×2=2n.(2)∵a1=2,d=2,∴=n2+n,∴==,∴++…+=1﹣=1﹣=.点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.2012春•某某市校级期末)观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?考点:归纳推理.专题:推理和证明.分析:由已知可得第20行最左边的数比第19行最右边的数大1,分别求出前19行和前20行所有数的和,相减可得答案.解答:解:∵第n行最右边的数是n2,∴第19行最右边的数是192=361,故第20行最左边的数是362;第20行最右边的数是202=400,故第20行共有39个数,故第20行所有数的和是(362+400)×39÷2=14859.点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).2012春•某某市校级期末)小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:通过从小华每次还款后还欠商场的金额这个角度出发,利用最后一次还款为0,计算即得结论.解答:解:设小华每期还款x元、第k个月末还款后的本利欠款数为A k元,则:A2=5000•(1+0.008)2﹣x,A4=A2•(1+0.008)2﹣x=5000•(1+0.008)4﹣(1+0.008)2x﹣x,…A12=A10•(1+0.008)12﹣x=5000•(1+0.008)12﹣(1+0.008)10x﹣…﹣(1+0.008)4x﹣(1+0.008)2x﹣x,由题意年底还清,即A12=0,解得:x=≈880.8(元),答:小华每期还款的金额为880.8元.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.注:本题还可以从“各期所付的款额连同最后一次付款时所生的利息之和等于商品售价及从购买到最后一次付款时的利息之和”这个角度来解题.一、附加题:23.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B. 1 C. 2 D. 3考点:等差数列的性质.专题:计算题.分析:先用等差数列的求和公式表示出S3和S2,进而根据﹣=,求得d.解答:解:S3=a1+a2+a3=3a1+3d,S2=a1+a2=2a1+d,∴﹣==1∴d=2故选C点评:本题主要考查了等差数列的性质.属基础题.24.已知数列{a n}满足a1=2,a n+1=(n∈N*),则连乘积a1a2a3…a2009a2010的值为()A.﹣6 B. 3 C. 2 D. 1考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过计算出前几项可知该数列周期为4,进而计算可得结论.解答:解:∵a1=2,a n+1=,∴a2=﹣3,a3=﹣,a4=,a5=2,∴数列{a n}的周期为4,且a1a2a3a4=1,∴a1a2a3a4…a2009a2010=a1a2=2×(﹣3)=﹣6,答案:A.点评:本题考查数列的递推式,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.25.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为整数的个数是7 .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列的前n项和公式进行化简即可.解答:解:∵===,∴=====5+.∴要使∈Z,只要∈Z即可,∴n+1为24的正约数,即2,3,4,6,8,12,24,共有7个.故答案为:7.点评:本题主要考查等差数列通项公式以及前n项和公式的应用,利用等差数列的性质进行转化是解决本题的关键.26.已知数列{a n}满足a1==2n,当n= 3 时,取得最小值.考点:数列递推式.专题:计算题.分析:先由数列的递推关系式求得a n=+n2﹣n,再代入利用基本不等式求得其最小值即可.(注意n为正整数).解答:解:因为,所以a n=a n﹣1+2(n﹣1)=a n﹣2+2(n﹣2)+2(n﹣1)=a n﹣3+2(n﹣3)+2(n﹣2)+2(n﹣1)=…=a1+2×1+2×2+…+2(n﹣1)=+2×=+n2﹣n.∴=+n﹣1≥2﹣1,当=n时取最小值,此时⇒n2=,又因为n∈N,故取n=3.故答案为:3.点评:解决本题的关键在于由数列的递推关系式求得a n=+n2﹣n,对与本题求数列的通项公式也可以用叠加法.27.在数列{a n}中,已知a1=,a n+1=(n∈N*),则数列{a n}的前2012项的和为.考点:数列递推式;数列的求和.专题:计算题.分析:由已知可得,=即,,可得数列{}是以2为首项,以1为公差的等差数列,利用等差数列的通项公式可求,进而可求a n,然后利用裂项求和即可求解解答:解:∵∴=∴∵∴∴数列{}是以2为首项,以1为公差的等差数列∴=n+1∴=∴=1﹣=故答案为:点评:本题主要考查了利用数列的递推公式求解数列的和,解题的关键是构造等差数列求出数列的通项公式,及裂项求和方法的应用.28.已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.考点:等比数列的通项公式;数列的求和.专题:计算题.分析:(1)由题意利用等比数列的通项公式建立首项a1与公比q的方程,然后求解即可(2)由b n的定义求出通项公式,在由通项公式,利用分组求和法即可求解解答:解:(1)设正等比数列{a n}首项为a1,公比为q,由题意得:∴a n=2n﹣1(6分)(2)∴b n的前n项和T n=(12分)点评:(1)此问重基础及学生的基本运算技能(2)此处重点考查了高考常考的数列求和方法之一的分组求和,及指数的基本运算性质。

(完整版)高一数学试题及答案解析

(完整版)高一数学试题及答案解析

高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上.)1.9090αβ<<<,则2β-A.第二象限角C.第三象限角2.α终边上的一点,且满足A.3.设()g x1 (30)2=,则A1sin2x.2sin4.α的一个取值区间为()A.5.A.6.设A.C.7.ABC∆中,若cot cot1A B>,则ABC∆一定是()A.钝角三角形B.直角三角形C.锐角三角形D.以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:2sin sin()sin()3A B C I I t I I t I I t πωωωϕ==+=+且0,02A B C I I I ϕπ++=≤<,则ϕ=() A .3πB .23πC .43πD .2π9.当(0,)x π∈时,函数21cos 23sin ()sin x x f x x++=的最小值为()A ..3C ..410.()f x =的A .1112131415的映射:(,)()cos3sin3f a b f x a x b x→=+.关于点(的象()f x 有下列命题:①3()2sin(3)4f x x π=-; ②其图象可由2sin3y x =向左平移4π个单位得到; ③点3(,0)4π是其图象的一个对称中心④其最小正周期是23π⑤在53[,124x ππ∈上为减函数 其中正确的有三.解答题(本大题共5个小题,共计75分,解答应写出文字说明,证明过程或演算步骤.)24)t ≤≤经长期观察,()y f t =的曲线可近似的看成函数cos (0)y A t b ωω=+>.(1)根据表中数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1m 时才对冲浪者开放,请根据(1)中的结论,判断一天中的上午8:00到晚上20:00之间,有多少时间可供冲浪者运动?20.(本题满分13分)关于函数()f x 的性质叙述如下:①(2)()f x f x π+=;②()f x 没有最大值;③()f x 在区间(0,2π上单调递增;④()f x 的图象关于原点对称.问:(1)函数()sin f x x x =⋅符合上述那几条性质?请对照以上四条性质逐一说明理由.(221.0)(0,)+∞上的奇函数)x 满足(1)f =cos 2m θ-(1(2的最大值和最小值;(3N . 的两个不等实根,函数22()1x tf x x -+的(1(2(3123。

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。

高一数学考试试题及答案

高一数学考试试题及答案

高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。

答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。

13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。

答案:直角14. 函数y=1/x的图像在第二象限内是______的。

答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。

高一数学第二学期期末考试试题(带参考答案)

高一数学第二学期期末考试试题(带参考答案)

高一数学第二学期期末考试试题(带参考答案)选择题1. 以下属于集合 {1, 2, 3, 4} 的真子集的个数是:A. 3B. 7C. 15D. 16正确答案:A2. 已知集合 A = {x | -2 ≤ x ≤ 3},则集合 A 中的元素个数是:A. 4B. 5C. 6D. 7正确答案:C3. 设集合 A = {a, b, c},集合 B = {1, 2, 3},则集合 A × B 的元素个数是:A. 3B. 6C. 9D. 12正确答案:D4. 已知集合 A = {x | -5 ≤ x ≤ 5},则集合 A 的幂集的元素个数是:A. 10B. 20C. 32D. 64正确答案:C解答题1. 已知函数 f(x) = 2x + 3,求 f(-4) 的值。

解答:将 x = -4 代入函数 f(x) = 2x + 3 中,得到 f(-4) = 2(-4) + 3 = -5。

2. 计算下列算式的值:(-3)^4 - 2 × 5^2解答:首先计算指数,得到(-3)^4 = 81,5^2 = 25。

然后代入算式,得到值为 81 - 2 × 25 = 31。

3. 已知一组数据为 {2, 4, 6, 8, 10},求这组数据的中位数。

解答:将数据从小到大排序为 {2, 4, 6, 8, 10},可以看出中间的数为 6,所以这组数据的中位数为 6。

4. 某商品标价为 800 元,商场打折后的售价为 720 元,求打折幅度。

解答:打折幅度为原价与打折后价之间的差值除以原价,所以打折幅度为 (800 - 720) ÷ 800 = 0.1,即打折幅度为 10%。

以上为高一数学第二学期期末考试试题及参考答案。

数学题高一试题及答案

数学题高一试题及答案

数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。

A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。

答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。

答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。

证明:首先求导数f'(x) = 3x^2 - 6x。

令f'(x) = 0,解得x = 0 或x = 2。

验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。

7. 解不等式:x^2 - 4x + 4 > 0。

解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。

因此,解集为{x|x ≠ 2}。

四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。

解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。

计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。

答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。

解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

高一下期数学试题及答案

高一下期数学试题及答案

高一下期数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. -πC. 1/3D. i2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 无穷多3. 已知等差数列{an}的首项a1=3,公差d=2,该数列的第5项a5等于:A. 13B. 15C. 17D. 194. 以下哪个不等式是正确的?A. |-3| > 3B. -2 < √4C. 1/2 ≤ √1/4D. -1 ≥ -25. 圆的方程为(x-2)^2 + (y-3)^2 = 25,圆心到直线x + y - 5 = 0的距离是:A. 2B. 3C. 4D. 56. 已知集合A={1, 2, 3},B={2, 3, 4},A∪B等于:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}7. 若sinθ + cosθ = √2/2,那么sin2θ的值是:A. 1/2B. -1/2C. 1D. -18. 函数y = ln(x-1)的定义域是:A. (1, +∞)B. (0, +∞)C. (-∞, 1)D. (-∞, 0)9. 根据题目信息,第9题缺失。

10. 已知点A(-1, 2)和点B(2, -1),直线AB的斜率k是:A. 1/3B. -1/3C. -3D. 3二、填空题(每题2分,共10分)11. 已知等比数列{bn}的首项b1=2,公比q=3,该数列的第3项b3等于______。

12. 函数f(x) = x^3 - 3x^2 + 2的极小值点是______。

13. 已知向量a = (3, 2),b = (-1, 2),向量a与b的点积是______。

14. 根据题目信息,第14题缺失。

15. 抛物线y^2 = 4x的准线方程是______。

三、解答题(共60分)16. 解不等式:|x+2| - |x-3| ≤ 5。

高一数学试题精选及答案

高一数学试题精选及答案

高一数学试题精选及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则m的取值范围是()。

A. m > 4B. m < 4C. m ≥ 4D. m ≤ 42. 已知向量a=(3,-1),b=(2,2),则向量a+2b的坐标为()。

A. (7, 3)B. (7, 0)C. (1, 0)D. (1, 3)3. 函数y=x^3-3x^2+2在区间(0,1)上是()。

A. 增函数B. 减函数C. 先增后减D. 先减后增4. 已知等差数列{an}的前三项分别为1,2,3,则该数列的通项公式为()。

A. an = nB. an = n + 1C. an = n - 1D. an = 2n - 15. 已知圆C的方程为(x-1)^2+(y-2)^2=9,圆心C到直线3x+4y-5=0的距离为()。

A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)6. 若复数z满足|z|=2,则z的平方的模长为_________。

7. 函数y=cos(2x)的最小正周期为_________。

8. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,则a和b的关系为_________。

9. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的类型为_________。

10. 已知函数f(x)=x^3-3x+1,求导数f'(x)=_________。

三、解答题(每题10分,共20分)11. 解方程:x^2-5x+6=0。

12. 证明:对于任意实数x,不等式x^2+x+1≥3/4恒成立。

答案:一、选择题1. D2. A3. D4. A5. B二、填空题6. 47. π8. b^2=3a^29. 直角三角形10. 3x^2-3三、解答题11. 解:将方程x^2-5x+6=0进行因式分解,得到(x-2)(x-3)=0,所以解为x=2或x=3。

高一数学复习试题(含答案)

高一数学复习试题(含答案)

高一数学复习试题(含答案)一、数与式一、判断题 (每题2分,共10分)( )1.设a ﹐b ∈R 且|a | + |b | = |a - b |﹐则ab ≤0﹒ ( )2.若r < s 且r ﹐s ∈Q ﹐则r <3r ss +<必成立﹒ ( )3.若a ﹐b ∈Q ﹐c ﹐d ∉Q 且a + c = b + d ﹐则a = b 且c = d ﹒ ( )4.已知a ﹐b ∈R ﹐若a + b 和a - b ∈Q ﹐则a ﹐b ∈Q ﹒ ( )5.若a ﹐b 为有理数﹐则a + b ﹐ab 皆为有理数﹒二、单选题 (每题5分,共15分)( )1.(1) 3 (2) 4 (3)5 (4) 6 (5) 7( )2.请比较下列大小关系:a b =3c =﹒(1) a > b > c (2) a > c > b (3) b > c > a (4) c > b > a (5) c > a > b( )3.设a ﹐b ﹐c ﹐d ∈ R ﹐若a < b ﹐c < d ﹐则下列叙述何者正确﹖(1) a - c < b - d (2) ac < bd (3) bd < ac (4) ad < bc (5) a + c < b + d三、多选题 (每题6分,只错一个答案得3分,共18分)( )1.a ﹐b ∈R ﹐下列何者为真﹖(1)若|a | + |b | = |a + b |﹐则ab > 0 (2)若ab > 0﹐则|a | + |b | = |a + b | (3) |a | + |b | > |a - b | (4) |a + b |≤|a | + |b | (5) - |a |≤a ≤|a |( )2.下列何者不正确﹖(2)两个有理数之间必有一整数 (3)若p 理数(4) a ﹐b 为实数﹐若a + 0﹐则a = b = 0 (5)循环小数为无理数( )3.下列哪些数是无理数﹖(1) 3四、填充题 (每格5分,共35分)1.设x ∈R ﹐则y = | x - 1 | + | x - 2 | + | x - 3 | 之最小值为____________﹒2.用一条长度60公尺的绳子在河边围成一矩形菜圃﹐且河边不围绳﹐则其可围成的面积之最大值为____________平方公尺﹒3.设x ﹐y ∈Q 且(x , y ) = ____________﹒4.a﹐小数部分为b(01b≤<)﹐求11b a b-=+____________﹒5.把循环小数8.15374化为最简分数得____________﹒6.x﹐y∈N且x>y﹐则(x﹐y) = ____________﹒7.设x﹐y∈R且(2x+ 3y)2+ (4x-y- 1)2= 0﹐则x+y= ____________﹒五、计算证明题(第1题8分,第2题14分,共22分)1.a﹐b是有理数﹐且a b<﹐试比较a﹐45a b+﹐325a b+﹐235a b+﹐45a b+﹐b之大小﹒2.(1)设n是正整数﹐试证:若2n是3的倍数﹐则n是3的倍数﹒(7分)(2)(7分)一、判断题(每题2分,共10分)1.○2.╳3.╳4.○5.○二、单选题(每题5分,共15分)1.22.43.5三、多选题(每题6分,只错一个答案得3分,共18分)1.2452.12453.1345四、填充题(每格5分,共35分)1.22.4503.(1, - 1)4.15.814559999006.(2﹐1)7.114五、计算证明题(第1题8分,第2题14分,共22分)1.45a ba+<325a b+<235a b+<45a bb+<<2.(1)见解析;(2)见解析二、多项式函数一、判断题 (每题2分,共10分)( )1.201x x -≤+之解与(x - 2)(x + 1) ≤ 0之解相同﹒ ( )2.奇数次方实系数多项方程式至少有一实根﹒ ( )3.若a ﹐b 为复数且a 2 + b 2 = 0﹐则a = 0且b = 0﹒( )4.设f (x )﹐g (x )为二多项式且g (x ) ≠ 0﹐若有二多项式q (x )﹐r (x )使得f (x ) = g (x ) ⨯ q (x ) + r (x )﹐则r (x )称为f (x )除以g (x )的余式﹒( )5.f (x ) = (x - 1)2 + (x - 2)2 + (x - 3)2﹐则在x = 2时﹐f (x )有最小值﹒二、单选题 (每题5分,共15分)( )1.下列何者的解为无解﹖(1) x 2 - x + 1 ≥ 0 (2) x 2 + x + 3 ≤ 0 (3) x 2 + 4x + 4 ≤ 0 (4) x 2 + x - 1 > 0 (5) x 2 - x - 3 ≤ 0( )2.设α﹐β为x 2 + 6x + 4 = 0之二根﹐则(α+β)2 =﹖(1) - 2 (2) - 4 (3) - 6 (4) - 8 (5) - 10( )3.设f (x ) = x 3 - 2x 2 - x + 5﹐则f (f (x ))除以(x - 2)的余式为(1) 7 (2) 9 (3) - 8 (4) - 15 (5) 11三、多选题 (每题6分,只错一个答案得3分,共18分)( )1.下列叙述何者正确﹖(1)设f (x ) = a n x n + a n - 1x n - 1 +…+ a 1x + a 0为整系数n 次多项式﹐a ﹐b 为整数且(a , b ) = 1﹐若a | a n ﹐b |a 0﹐则ax - b 是f (x )的因式 (2)设a ﹐b 为相异实数﹐若实系数多项式方程式f (x ) = 0在a ﹐b 之间至少有一实根﹐则f (a ) f (b ) < 0 (3)一个奇数次的实系数多项式方程式f (x ) = 0至少会有一实根 (4)整系数多项式方程式f (x ) = 0有一根一根3(5)实系数多项式方程式f (x ) = 0i i( )2.设a ﹐b ∈ R ﹐b ≠ 0﹐则下列叙述何者正确﹖(1)2a = | a | (2) (a )2 = a (3)a -=a i (4)ab =ab (5)ba =ba( )3.xy 平面上﹐有关图形的叙述﹐何者正确﹖(1) y = x 2图形对称于x 轴 (2) y = x 2对于x 轴的对称图形为y = - x 2 (3) y = x 2 + 2图形系由y = x 2向上平移2单位而得 (4) y = (x + 1)2 + 2图形系由y = x 2向右平移1单位﹐再向上平移2单位而得(5) y = (2x + 1)2 - 2图形的对称轴为2x + 1 = 0四、填充题 (每格5分,共35分)1.设a ﹐b 为定数﹐且ax 2 + bx + 10 > 0的解为 - 2 < x < 5﹐则不等式2ax 2 - bx + 5 < 0的解为__________﹒2.设a ﹐b 为实数﹐且多项方程式x 3 + ax 2 + bx + 10 = 0有一根为1 + 2i ﹐求此方程式的实数根为__________﹒3.若f (x ) ∈ R [x ]且deg f (x ) ≥ 3﹐已知f (x )除以(x + 1)2余3x + 2﹐f (x )除以(x - 1)2余2x + 1﹐则f (x )除以(x - 1)(x + 1)2之余式为____________﹒4.设f (x ) = (x 2 - x + 1) q (x ) + 2x - 5﹐且f (x )之各项系数和为2﹐则q (x )除以x - 1之余式为____________﹒5.设x 4 = (x + k )(x - 1)(x + 2)(x - 2) + a (x - 1)(x + 2) + b (x - 1) + c ﹐则a + b + c + k =____________﹒6.设f (x )以x -ab除之商为q (x )﹐余式为r ﹐则x f (x ) + 2被(ax - b )除之商式为____________﹒ 7.某电影院每张票价为120元﹐每场观众平均500人﹐若票价每减5元﹐每场观众就增加50人﹐则每张票价订为____________元时﹐每场电影票价收入为最多﹒五、计算题 (第1题10分,第2题12分,共22分)1.试找出f (x ) = 2x 5 + x 4 - 5x 3 + 2x 2 - 7x + 1 = 0之各实根﹐分别介于哪些相邻整数之间﹒2.设f (x ) = 16x 3 + 12x 2 + 8x + 8 = a (2x + 1)3 + b (2x + 1)2 + c (2x + 1) + d ﹐ (1)求a ﹐b ﹐c ﹐d 的值﹒(6分)(2)求f (- 0.4995)的近似值到小数第三位(以下四舍五入)﹒ (6分)一、判断题 (每题2分,共10分)1.╳2.○3.╳4.╳5.○二、单选题 (每题5分,共15分)1.22.53.5三、多选题 (每题6分,只错一个答案得3分,共18分)1.3452.123.235四、填充题 (每格5分,共35分)1.x <25-或x >1 2.- 2 3.221x -+ 2x +23 4.5 5.2 6.a x q (x ) +ar 7.85 五、计算题 (第1题10分,第2题12分,共22分)1.(- 3﹐- 2)﹐(0﹐1)﹐(1﹐2)2.(1) a = 2﹐b = - 3﹐c = 4﹐d = 5;(2) 5.004三、指数函数与对数函数一、单选题 (每题4分,共20分)( )1.若a > 0﹐且113532()x a aa a -⨯⨯=﹐则x = (1) 1 (2)215 (3)415 (4)25 (5)35﹒ ( )2.设x ﹐y 都是不为0的实数﹐则下列何式两端均有意义且相等? (1) log x 2y 2 = 2log xy (2) log x 2y 2 = log x 2 + log y 2 (3) log x 2y 2 = log x 2log y 2 (4) log yx= log x - log y (5) log(x 2 + y 2) = log x 2log y 2﹒( )3.若log 23 = a ﹐log 37 = b ﹐则log 4228 =(1)21ab a ab +++ (2)21abb ab+++ (3)21a b a b +++ (4)21a b a b +++ (5)21ab a b ab ++++﹒( )4.下图为函数y = a - log b x 之部分图形﹐其中a ﹐b 皆为常数﹐则下列何者为真?(1) a < 0﹐b > 1 (2) a > 0﹐b > 1 (3) a = 0﹐b > 1 (4) a > 0﹐0 < b < 1 (5) a < 0﹐0 < b < 1﹒( )5.假设世界人口自1980年起﹐50年内每年增长率均固定﹒已知1987年世界人口达50亿﹐1999年第60亿人诞生在赛拉耶佛﹒根据这些资料推测2023年世界人口最接近下列哪一个数?(1) 75亿 (2) 80亿 (3) 86亿 (4) 92亿 (5) 100亿﹒二、多选题 (每题5分,只错一个答案得3分,共15分)( )1.设y = 2x 的图形为S ﹐y = 3x 的图形为T ﹐则: (1) S ﹐T 两图形恰交于一点 (2) S 恒在T的下方 (3) S ﹐T 的渐近线相同 (4) S ﹐T 均为凹口向上 (5) S ﹐T 与任一条水平线均相交﹒( )2.下列等式﹐何者正确? (1) log 312 = log 312 (2) log 3112= log 32 (3) log 4342 log 32(4) log 32.log 23 = 1 (5) log 32.log 3112= 1﹒ ( )3.下列叙述﹐何者正确? (1) y = 3x 与y = 3- x 的图形对称于y 轴 (2) y = log 3 x 与y = log 31x的图形对称于x 轴 (3) y = 3x 与y = log 3 x 的图形对称于y 轴 (4) y = 3-x 与y = log 31x 的图形对称于x - y = 0(5) y = 3x 与y = log 3x 的图形相交于一点﹒三、填充题 (每格5分,共45分)1.100)035.0()5.3(==y x ﹐则=-yx 11__________﹒ 2.设a > 0﹐若a 2x + a -2x = 7﹐则a 3x + a -3x 之值为____________﹒ 3.2⋅4x - 9.2x + 4 ≤ 0之解为____________﹒4.不等式21+2x + 21 - 2x - 7(2x + 2-x ) + 9 < 0﹐则2x + 2-x 的范围为____________﹒5.求log 2116+ log 5125 + log 31 + 23log 2之值= ____________﹒ 6.方程式(8x )x2log = 4x 2之解为____________﹒7.设实数x 满足0 < x < 1﹐且log x 4 - log 2x = 1﹐则x =____________﹒(化成最简分数) 8.满足-1 ≤ 13log (log 3x ) < 0之整数有____________个﹒9.某公司为了响应节能减碳政策﹐决定在五年后将公司该年二氧化碳排放量降为目前排放量的75%﹒公司希望每年依固定的比率(当年和前一年排放量的比)逐年减少二氧化碳的排放量﹒若要达到这项目标﹐则该公司每年至少要比前一年约减少____________%的二氧化碳的排放量﹒(计算到小数点后第一位﹐以下四舍五入)四、计算题 (第1题6分,第2题8分,第3题6分,共20分)1.方程式 |log 2 x | - 2-|x | = 0的实数解有多少个?(6分)2.设(67)50于小数点后第p 位开始出现不为0的数字q ﹐求p ﹐q 之值﹒(8分)3.某银行月利率2%﹐每月复利一次计算利息﹐今小峰每月月初存入10000元﹐则一年后本利和约为多少元?(注:121.02≈ 1.27)(6分)一、单选题 (每题4分,共20分)1.42.23.14.15.3二、多选题 (每题6分,只错一个答案得3分,共15分)1.1342.12343.124三、填充题 (每格5分,共45分)1.12.183.-1 ≤ x ≤ 24.2≤ 2x + 2-x <25 5.2 6.2或147.14 8.24 9.5.6 四、计算题 (第1题6分,第2题8分,第3题6分,共20分)1.2个2.p =4﹐q =43.137700。

2020年高一数学第二学期期末试卷及答案(共七套)

2020年高一数学第二学期期末试卷及答案(共七套)

2020年高一数学第二学期期末试卷及答案(共七套)2020年高一数学第二学期期末试卷及答案(一)一.选择题1.两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A. 4B.C.D.2.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A. 1B.C.D.3.下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4.在空间中,给出下面四个命题,则其中正确命题的个数为()①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的无数条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条平行线.A. 0B. 1C. 2D. 35.已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A. 0或1B. 1或C. 0或D.6.如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为的点,则实数a的取值范围是()A. (﹣3,﹣1)∪(1,3)B. (﹣3,3)C. [﹣1,1]D. [﹣3,﹣1]∪[1,3]7.若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为()A. 4B. 16C. 4或16 D. 2或48.已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A. B. C.D.9.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O于C点,那么图中与∠DCF相等的角的个数是()A. 4B. 5C. 6D. 710.点P是双曲线﹣=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N 的坐标为(5,0),则|PM|﹣|PN|的最大值为()A. 5B. 6C. 7D. 811.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是()A. m⊥l,n⊥l,则m∥nB. α⊥γ,β⊥γ,则α⊥βC. m∥α,n∥α,则m∥nD. α∥γ,β∥γ,则α∥β12.曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()A. B. C. D.二.填空题13.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为________.14.若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是________.15.若点P在圆上,点Q在圆上,则|PQ|的最小值是________.16.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为________.三.解答题17.已知△ABC三边所在直线方程:l AB:3x﹣2y+6=0,l AC:2x+3y﹣22=0,l BC:3x+4y﹣m=0(m∈R,m≠30).(1)判断△ABC的形状;(2)当BC边上的高为1时,求m的值.18.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.答案解析部分一.<b >选择题</b>1.【答案】D【考点】两条平行直线间的距离【解析】【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d= = = .故答案为:D【分析】根据两条直线平行的一般式的系数关系可求出m=2,进而得到两条直线的方程,再利用两条平行线间的距离公式可得结果。

高一数学测试试题及答案

高一数学测试试题及答案

高一数学测试试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}3. 函数f(x) = x^2 - 4x + 4的对称轴是()A. x = -2B. x = 2C. x = 0D. x = 44. 计算(2x - 1)^5的展开式中,x^3的系数是()A. 10B. -10C. 20D. -205. 已知等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()B. 11C. 9D. 76. 函数y = 2x + 3的图象与x轴的交点坐标是()A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)7. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值()A. 6B. 4C. 2D. 08. 圆x^2 + y^2 = 4的圆心坐标是()A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)9. 已知向量a = (3, 1),向量b = (-1, 2),则向量a与向量b的点积为()A. -1B. 1C. 5D. -510. 计算sin(π/6)的值是()B. √3/2C. 1/√2D. √2/2二、填空题(每题4分,共20分)1. 函数y = x^2 - 6x + 9的最小值是______。

2. 已知等比数列{a_n}的首项a_1=2,公比q=3,则a_4等于______。

3. 函数f(x) = 3x - 5的反函数是______。

4. 已知向量a = (2, -3),向量b = (4, -6),则向量a与向量b平行,向量a与向量b的夹角是______。

5. 计算cos(π/3)的值是______。

高一数学试题及解析答案

高一数学试题及解析答案

高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。

由于题目要求零点,所以正确选项是B。

2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。

3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。

4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。

二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。

答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。

2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。

答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。

3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。

答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。

2021年高一(下)期末数学复习试卷含解析

2021年高一(下)期末数学复习试卷含解析

2021年高一(下)期末数学复习试卷含解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.已知A={1,2},B={2,3,4}则A∪B=.2.函数f(x)=sinxcosx的最小正周期是.3.计算的值为.4.已知向量=(2,1),=(1,x),且(+)⊥,则实数x的值为.5.已知直线l:x+my+6=0,若点A(﹣5,1)到直线l的距离为,则实数m的值为.6.若A(1,2),B(﹣3,4),C(2,t)三点共线,则实数t的值为.7.已知圆锥的侧面展开图是一个半径为4cm的半圆,则此圆锥的体积是.8.在△ABC中,a,b,c分别是角A,B,C所对的边,已知C=120°,c=2,acosB=bcosA,则△ABC的面积为.9.对于不重合直线a,b,不重合平面α,β,γ,下列四个条件中,能推出α∥β的有.(填写所有正确的序号).①γ⊥α,γ⊥β;②α∥γ,β∥γ;③a∥α,a∥β;④a∥b,a⊥α,b⊥β.10.(文科)已知函数f(x)=a+是奇函数,则实数a的值为.11.在平面直角坐标系xOy中,线段AB长为4,且其两个端点A,B分别在x轴,y轴上滑动,则△AOB面积的最大值为.12.已知公差不为零的等差数列{a n}的前8项的和为8,且a12+a72=a32+a92,则{a n}的通项公式为a n=.13.某地一天6时至20时的温度y(°C)随时间x(小时)的变化近似满足函数y=10sin(x+)+20,x∈[6,20].在上述时间范围内,温度不低于20°C的时间约有小时.14.已知函数,将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,矩形ABCD的两条对角线相交于点M(3,5),AB边所在直线的方程为x﹣3y+8=0,点N(0,6)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求对角线AC所在直线的方程.16.在△ABC中,已知cosA=,tan(B﹣A)=,AC=5.求:(1)角B;(2)AB边的长.17.如图,在直三棱柱ABC﹣A1B1C1中,已知点D为棱BC中点.(1)如果AB=AC,求证:平面ADC1⊥平面BB1C1C;(2)求证:A1B∥平面AC1D.18.设等差数列{a n}的公差为d(d≠0),已知它的前10项和为110,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.19.如图,某小区进行绿化改造.计划围出一块三角形绿地ABC.其中一边利用现成的围墙BC.长度为1(百米).另外两边AB,AC使用某种新型材料.∠BAC=120°设AB=x(百米),AC=y(百米)(1)求x,y满足的关系式(指出x的取值范围)(2)若无论如何设计另两边的长,都能确保围成三角形绿地,则至少需要准备长度为多少(百米)的此种新型材料.20.已知函数f(x)=ax2﹣|x﹣a|(1)当a=3时,求不等式f(x)>7的解集(2)当a>0时,求函数f(x)在区间[3,+∞)上的值域.xx学年江苏省南京市高一(下)期末数学复习试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.已知A={1,2},B={2,3,4}则A∪B={1,2,3,4}.考点:并集及其运算.分析:直接根据并集的定义求出结果即可.解答:解:∵A={1,2},B={2,3,4}A∪B就是把A和B中所有的元素放在一起,然后把重复的去掉.∴A∪B={1,2,3,4}故答案为:{1,2,3,4}点评:此题考查了并集的定义,属于基础题.2.函数f(x)=sinxcosx的最小正周期是π.考点:二倍角的正弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.分析:根据二倍角的正弦公式,化简可得f(x)=sin2x,再由三角函数的周期公式即可算出函数f(x)的最小正周期.解答:解:∵sin2x=2sinxcosx∴f(x)=sinxcosx=sin2x,因此,函数f(x)的最小正周期T==π故答案为:π点评:本题给出三角函数式,求函数的周期,着重考查了二倍角的三角函数公式、三角函数的图象与性质和三角函数周期的求法等知识,属于基础题.3.计算的值为﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:所求式子中的角变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.解答:解:cos=cos(π+)=﹣cos=﹣.故答案为:﹣点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.4.已知向量=(2,1),=(1,x),且(+)⊥,则实数x的值为﹣7.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量的坐标加法运算求得+,然后由向量垂直的坐标表示列式求得x的值.解答:解:∵=(2,1),=(1,x),∴+=(3,1+x),由(+)⊥,得2×3+1×(1+x)=0.解得:x=﹣7.故答案为:﹣7.点评:本题考查平面向量的数量积运算,考查向量垂直的坐标表示,是基础题.5.已知直线l:x+my+6=0,若点A(﹣5,1)到直线l的距离为,则实数m的值为1.考点:点到直线的距离公式.专题:直线与圆.分析:根据点到直线的距离公式,代入计算即可.解答:解:根据点到直线的距离公式,d==,解得m=1,故答案为:1.点评:本题考查了点到直线的距离公式,属于基础题.6.若A(1,2),B(﹣3,4),C(2,t)三点共线,则实数t的值为.考点:直线的斜率.专题:平面向量及应用;直线与圆.分析:方法一:利用向量坐标的求法求出两个向量的坐标;利用向量共线的坐标形式的充要条件列出方程,求出t;方法二:利用斜率公式,三点共线,则斜率相等,即可求出t.解答:解:方法一(向量法)∵A(1,2),B(﹣3,4),C(2,t).∴=(﹣4,2),=(1,t﹣2),∵A(1,2),B(﹣3,4),C(2,t)三点共线,∴﹣4(t﹣2))=2,∴t=,方法二(斜率法),∵A(1,2),B(﹣3,4),C(2,t)三点共线,∴k AB=k AC,∴=,解得t=,故答案为:.点评:本题考查三点共线的应用,斜率法和向量坐标的求法,属于基础题.7.已知圆锥的侧面展开图是一个半径为4cm的半圆,则此圆锥的体积是π.考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:利用圆锥的侧面展开图,求出圆锥的底面周长,然后求出底面半径,求出圆锥的高,即可求出圆锥的体积.解答:解:圆锥的侧面展开恰为一个半径为4的半圆,所以圆锥的底面周长为:4π,底面半径为:2,圆锥的高为:2;圆锥的体积为:π•22×2=π.故答案为:π.点评:本题是基础题,考查圆锥的侧面展开图,利用扇形求出底面周长,然后求出体积,考查计算能力,常规题型.8.在△ABC中,a,b,c分别是角A,B,C所对的边,已知C=120°,c=2,acosB=bcosA,则△ABC的面积为.考点:正弦定理.专题:解三角形.分析:利用正弦定理把题设中关于边的等式转换成角的正弦,进而利用两角差公式化简整理求得A=B,进而求得a=b.根据余弦定理求得a,b,进而利用三角形面积公式即可得解.解答:解:∵acosB=bcosA,且C=120°,c=2,∴由题意及正弦定理可得:sinAcosB=sinBcosA,即sin(A﹣B)=0,故A=B,由正弦定理可得:a=b,∴由余弦定理c2=a2+b2﹣2abcosC可得:12=a2+a2﹣2×a×a×cos120°,解得a=b=2.∴△ABC的面积S=absinC==.故答案为:.点评:本题主要考查了余弦定理的应用,正弦定理的应用,两角和公式的化简求值,属于基本知识的考查.9.对于不重合直线a,b,不重合平面α,β,γ,下列四个条件中,能推出α∥β的有②④.(填写所有正确的序号).①γ⊥α,γ⊥β;②α∥γ,β∥γ;③a∥α,a∥β;④a∥b,a⊥α,b⊥β.考点:平面与平面平行的判定.专题:空间位置关系与距离.分析:①γ⊥α,γ⊥β时,α与β不一定平行;②α∥γ,β∥γ时,α∥β;③a∥α,a∥β时,α∥β不一定成立;④a∥b,且a⊥α,b⊥β,能得出α∥β.解答:解:对于①,当γ⊥α,γ⊥β时,α与β相交,或α与β平行;对于②,当α∥γ,β∥γ时,根据平行平面的公理得α∥β;对于③,当a∥α,a∥β时,α与β相交,或α与β平行;对于④,当a∥b时,若a⊥α,则b⊥α,又b⊥β,∴α∥β;综上,能推出α∥β的是②④.故答案为:②④.点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了符号语言的应用问题,是基础题目.10.(文科)已知函数f(x)=a+是奇函数,则实数a的值为.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由题意可得f(﹣x)=﹣f(x),即a+=﹣a﹣,即2a=﹣=1,由此求得a的值.解答:解:函数f(x)=a+是奇函数,可得f(﹣x)=﹣f(x),即a+=﹣a﹣,即2a=﹣=1,解得a=,故答案为.点评:本题主要考查奇函数的定义和性质,属于基础题.11.在平面直角坐标系xOy中,线段AB长为4,且其两个端点A,B分别在x轴,y轴上滑动,则△AOB面积的最大值为4.考点:正弦定理.专题:解三角形;不等式的解法及应用.分析:设A(x,0),B(0,y),由两点间的距离公式可得:x2+y2=16,由基本不等式可得xy≤,(当且仅当x=y=2时),由三角形面积公式即可得解.解答:解:设A(x,0),B(0,y),由两点间的距离公式可得:x2+y2=16,故△AOB面积S=xy≤==4.(当且仅当x=y=2时)故答案为:4.点评:本题主要考查了两点间的距离公式,基本不等式的应用,属于基础题.12.已知公差不为零的等差数列{a n}的前8项的和为8,且a12+a72=a32+a92,则{a n}的通项公式为a n=﹣2n+10.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列的通项公式与前n项和公式,求出公差d与首项a1即可.解答:解:等差数列{a n}中,s8=8a1+28d=8,即2a1+7d=2①;又a12+a72=a32+a92,∴+=+,化简,得a1d+4d2=0,又d≠0,∴a1=﹣4d;代入①得,﹣8d+7d=2,解得d=﹣2;∴a1=﹣4×(﹣2)=8,∴{a n}的通项公式为a n=8+(n﹣1)•(﹣2)=﹣2n+10.故答案为:﹣2n+10.点评:本题考查了等差数列的通项公式与前n项和公式的应用问题,是基础题目.13.某地一天6时至20时的温度y(°C)随时间x(小时)的变化近似满足函数y=10sin(x+)+20,x∈[6,20].在上述时间范围内,温度不低于20°C的时间约有8小时.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:利用温度不低于20,则10sin()+20≥20,结合x的范围,即可得到此人在6时至20时中,可以进行室外活动的时间.解答:解:由题意,10sin()+20≥20∴sin()≥0∴2kπ≤≤2kπ+π∴16k﹣6≤x≤16k+2,∵x∈[6,20],∴10≤x≤18∴此人在6时至20时中,可以进行室外活动的时间约为18﹣10=8小时故答案为:8.点评:本题考查三角函数模型的运用,考查解不等式,考查学生的计算能力,属于中档题.14.已知函数,将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和为52.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:通过分类讨论①当1≤x≤2时,f(x)=x﹣1,由x﹣1=t,解得x=1+t;②当2<x≤3时,f(x)=3﹣x,由3﹣x=t,解得x=3﹣t;③当3<x≤6时,1<,则f(x)=3()=x﹣3,由x﹣3=t,解得x=3+t;④当6<x≤9时,,f(x)==9﹣x,由9﹣x=t,解得x=9﹣t;⑤当9<x≤18时,,则f(x)=3=x﹣9,由x﹣9=t,解得x=9+t;⑥当18<x≤27时,,则f (x)==27﹣x,由27﹣x=t,解得x=27﹣t.即可得到答案.解答:解:①当1≤x≤2时,f(x)=x﹣1,由x﹣1=t,解得x=1+t;②当2<x≤3时,f(x)=3﹣x,由3﹣x=t,解得x=3﹣t;③当3<x≤6时,1<,则f(x)=3()=x﹣3,由x﹣3=t,解得x=3+t;④当6<x≤9时,,f(x)==9﹣x,由9﹣x=t,解得x=9﹣t;⑤当9<x≤18时,,则f(x)=3=x﹣9,由x﹣9=t,解得x=9+t;⑥当18<x≤27时,,则f(x)==27﹣x,由27﹣x=t,解得x=27﹣t.因此将集合A={x|f(x)=t,0<t<1}(t为常数)中的元素由小到大排列,则前六个元素的和=(1+t)+(3﹣t)+(3+t)+(9﹣t)+(9+t)+(27﹣t)=52.故答案为52.点评:熟练掌握含绝对值符号的函数如何去掉绝对值符号、分类讨论的思想方法、函数的交点等是解题的关键.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,矩形ABCD的两条对角线相交于点M(3,5),AB边所在直线的方程为x﹣3y+8=0,点N(0,6)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求对角线AC所在直线的方程.考点:待定系数法求直线方程.专题:直线与圆.分析:(1)根据直线垂直的关系求出直线斜率即可求AD边所在直线的方程;(2)求出交点M的坐标即可求对角线AC所在直线的方程.解答:解:(1)解法一:因为AB边所在直线的方程为x﹣3y+8=0,所以k AB=.…(2分)又因为矩形ABCD中,AD⊥AB,所以k AD=﹣=﹣3.…(4分)所以由点斜式可得AD边所在直线的方程为:y﹣6=﹣3(x﹣0),即3x+y﹣6=0.…(6分)解法二:因为矩形ABCD中,AD⊥AB,所以设AD边所在直线的方程为:3x+y+m=0.…(4分)又因为直线AD过点N(0,6),所以将点N(0,6)代入上式得3×0+6+m=0,解得m=﹣6.所以AD边所在直线的方程为:3x+y﹣6=0.…(6分)(2)由,解得即A(1,3),…(10分)所以对角线AC所在直线的方程:=,即x﹣y+2=0.…(14分)点评:本题主要考查直线方程的求解,要求熟练掌握求直线方程的各种方法.16.在△ABC中,已知cosA=,tan(B﹣A)=,AC=5.求:(1)角B;(2)AB边的长.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)解法一:由cosA=,可求tanA,利用两角和的正切函数公式可求tanB=tan[(B ﹣A)+A]的值,结合范围B∈(0,π),即可求B.解法二:由cosA=,可求tanA,利用tan(B﹣A)==,解得tanB,结合范围B∈(0,π),即可求B.(2)解法一:可求sinA=,sinB=cosB=,从而利用两角和的正弦函数公式可求sinC=sin(A+B)的值,由正弦定理=,可求AB.解法二:作CD⊥AB,垂足为D,由AC,cosA,可求CD,AD,又B=,即可记得AB的值.解答:解(1)解法一:在△ABC中,因为cosA=,所以tanA==,…(2分)所以tanB=tan[(B﹣A)+A]===1.…(4分)因为B∈(0,π),所以B=.…(6分)解法二:在△ABC中,因为cosA=,所以tanA=,…(2分)所以tan(B﹣A)===,解得tanB=1.…(4分)因为B∈(0,π),所以B=.…(6分)(2)解法一:在△ABC中,由cosA=,B=,可得sinA=,sinB=cosB=,…(9分)从而sinC=sin(A+B)=sinAcosB+cosAsinB=.…(11分)由正弦定理=,代入得=,从而AB=7.…(14分)解法二:作CD⊥AB,垂足为D,由AC=5,cosA=,所以CD=3,AD=4,…(9分)又B=,所以BD=CD=3,…(12分)所以AB=3+4=7.…(14分)点评:本题考查了正弦定理,两角和的正切函数公式,正弦函数公式,同角三角函数关系式,勾股定理的应用,属于基本知识的考查.17.如图,在直三棱柱ABC﹣A1B1C1中,已知点D为棱BC中点.(1)如果AB=AC,求证:平面ADC1⊥平面BB1C1C;(2)求证:A1B∥平面AC1D.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(1)由CC1⊥平面ABC.可证CC1⊥AD,由AB=AC,D为BC中点,可证AD⊥BC,即可证明AD⊥平面BB1C1C从而可证平面AC1D⊥平面BB1C1C.(2)连结A1C,设A1C∩AC1=E,连结DE.可得E为A1C中点,由D为BC中点,可证DE∥A1B,即可证明A1B∥平面AC1D.解答:证明:(1)在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC.因为AD⊂平面ABC,所以CC1⊥AD.…(2分)因为AB=AC,D为BC中点,所以AD⊥BC.…(4分)因为BC⊂平面BB1C1C,CC1⊂平面BB1C1C,BC∩CC1=C,所以AD⊥平面BB1C1C.…(6分)因为AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C.…(8分)(2)连结A1C,设A1C∩AC1=E,连结DE.因为在直三棱柱ABC﹣A1B1C1中,四边形AA1C1C为平行四边形,所以E为A1C中点.…(10分)因为D为BC中点,所以DE∥A1B.…(12分)因为DE⊂平面AC1D,A1B⊄平面AC1D,所以A1B∥平面AC1D.…(14分)点评:本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.18.设等差数列{a n}的公差为d(d≠0),已知它的前10项和为110,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)通过2a1+9d=22与a22=a1a4,进而计算即得结论;(2)通过(1)、裂项可知=(﹣),进而并项相加即得结论.解答:解:(1)设{a n}的前n项和为S n,∵S10=110,∴2a1+9d=22.…①∵a1,a2,a4成等比数列,∴a22=a1a4.…②由①、②,解得:a1=d=2,∴a n=2n;(2)由(1)可知:==(﹣),∴T n=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)=.点评:本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.19.如图,某小区进行绿化改造.计划围出一块三角形绿地ABC.其中一边利用现成的围墙BC.长度为1(百米).另外两边AB,AC使用某种新型材料.∠BAC=120°设AB=x(百米),AC=y(百米)(1)求x,y满足的关系式(指出x的取值范围)(2)若无论如何设计另两边的长,都能确保围成三角形绿地,则至少需要准备长度为多少(百米)的此种新型材料.考点:解三角形的实际应用.专题:解三角形.分析:(1)利用余弦定理,可求x,y满足的关系式,及x的取值范围;(2)利用(1)的结论及基本不等式,即可求得结论.解答:解:(1)由余弦定理可得,1=x2+y2﹣2xycos120°,∴x2+y2+xy=1,其中0<x<1;(2)∵(x+y)2=x2+y2+2xy=1+xy≤1+∴(x+y)2≤∴x+y≤,当且仅当x=y=时,取等号∴至少需要准备长度为百米的此种新型材料.点评:本题考查余弦定理的运用,考查基本不等式,考查学生的计算能力,属于中档题.20.已知函数f(x)=ax2﹣|x﹣a|(1)当a=3时,求不等式f(x)>7的解集(2)当a>0时,求函数f(x)在区间[3,+∞)上的值域.考点:绝对值不等式的解法;带绝对值的函数.专题:不等式的解法及应用.分析:(1)当a=3时,求不等式即3x2﹣|x﹣3|>7,故有①,或②.分别求得解①和②的解集,再取并集,即得所求.(2)根据函数f(x)=ax2﹣|x﹣a|=.分①a≤3 和②a>3,两种情况,分别根据函数f(x)的单调性求得函数的最小值,综合可得结论.解答:解:(1)当a=3时,求不等式f(x)>7,即3x2﹣|x﹣3|>7,∴①,或②.解①求得x≥3,解②求得x<﹣2,或<x<3.综上,不等式的解集为{x|x<﹣2,或x>}.(2)∵a>0时,函数f(x)=ax2﹣|x﹣a|=.①若0<a≤3,则f(x)=ax2﹣x+a,当对称轴x=≤3,即≤a≤3 时,函数f(x)在[3,+∞)上是增函数,故最小值为f(3)=10a﹣3,函数没有最大值.当对称轴x=>3,即0<a<时,函数f(x)在(3,)上是减函数,在(,+∞)上是增函数,故函数的最小值为f()=a﹣,函数没有最大值.②若a>3,当3≤x<a时,则f(x)=ax2+x﹣a,由于对称轴x=﹣<0,故函数f(x)在[3,a)上是增函数,函数的最小值为f(3)=8a+3,最大值趋于f(a)=a3.当x≥a时,f(x)=ax2﹣x+a,由于对称轴x=<3,故函数f(x)在[a,+∞)上是增函数,函数的最小值为f(a)=8a+3,函数没有最大值.综上可得,当0<a<时,f(x)的值域为[a﹣,+∞);当≤a≤3 时,f(x)的值域为[10a﹣3,+∞);当3<a时,f(x)的值域为[8a+3,+∞).点评:本题主要考查带有绝对值的函数,绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.- 32938 80AA 肪j38127 94EF 铯29282 7262 牢23477 5BB5 宵e34109 853D 蔽{19990 4E16 世34555 86FB 蛻Uy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档