高中数学-综合测试题-新人教A版必修5

合集下载

人教版高二数学必修5期末综合测试题及答案

人教版高二数学必修5期末综合测试题及答案

必修5综合测试题(2010.11)班级 姓名一、选择题1. 数列1,3,6,10,…的一个通项公式是( )A. a n =n 2-(n-1) B . a n =n 2-1 C. a n =2)1(+n n D. a n =2)1(-n n 2. 2b ac =是a,b,c 成等比数列的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既不充分也非必要条件 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( )A .B .C .D .4. 等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( )A.3B.5C.7D.9 5.△ABC 中,cos cos A aB b=,则△ABC 一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°7. 在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC( )(A )无解 (B )有解 (C )有两解 (D )不能确定 8.若110a b<<,则下列不等式中,正确的不等式有 ( ) ①a b ab +< ②a b > ③a b < ④2b aa b+>A .1个B .2个C .3个D .4个 9.下列不等式中,对任意x ∈R 都成立的是 ( )A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244xx +≤110. 下列不等式的解集是空集的是( )A.x 2-x+1>0B.-2x 2+x+1>0C.2x -x 2>5D.x 2+x>211.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )A 。

2020-2021学年高中数学 第三章 不等式 3.1.2 不等式的性质同步作业新人教A版必修5

2020-2021学年高中数学 第三章 不等式 3.1.2 不等式的性质同步作业新人教A版必修5

2020-2021学年高中数学第三章不等式3.1.2 不等式的性质同步作业新人教A版必修5年级:姓名:不等式的性质(30分钟60分)一、选择题(每小题5分,共30分)1.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3.其中正确的命题是( )A.①②B.②③C.③④D.②④【解析】选D.①a>b⇒ac2>bc2,当c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=1,b=-2时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确.2.已知a,b,c,d均为实数,下列不等关系推导成立的是( )A.若a>b,c<d⇒a+c>b+dB.若a>b,c>d⇒ac>bdC.若bc-ad>0,->0⇒ab<0D.若a>b>0,c>d>0⇒>【解析】选D.对于A,当a=-2,b=-3,c=1,d=2时,a+c=b+d,故A错误,对于B,当a=-2,b=-3,c=2,d=1时,ac<bd,故B错误,对于C,当a=-2,b=-3,c=1,d=2时,ab>0,故C错误,对于D,若a>b>0,c>d>0,则>,故D正确.3.如果a>b,那么下列不等式中正确的是( )A.ac>bcB.-a>-bC.c-a<c-bD.>【解析】选C.对于A,c≤0时,不成立,对于B,-a<-b,对于C,根据不等式的性质,成立,对于D,a,b是负数时,不成立.4.若<<0,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,不正确的不等式的个数是( )A.0B.1C.2D.3【解析】选C.由<<0,可得0>a>b,所以|a|<|b|,故①②不成立;所以a+b<0<ab,a3>b3都成立,故③④一定正确.5.已知实数a,b满足1≤a+b≤3,-1≤a-b≤1,则4a+2b的取值范围是( )A.[0,10]B.[2,10]C.[0,12]D.[2,12]【解析】选B.因为4a+2b=3(a+b)+(a-b),所以3×1-1≤4a+2b≤3×3+1,即2≤4a+2b≤10.6.设a>1>b>-1,则下列不等式中恒成立的是( )A.<B.>C.a>b2D.a2>2b【解析】选C.对于A,例如a=2,b=-,此时满足a>1>b>-1,但>,故A错;对于B,例如a=2,b=,此时满足a>1>b>-1,但<,故B错;对于C,因为-1<b<1,所以0≤b2<1,因为a>1,所以a>b2,故C正确;对于D,例如a=,b=,此时满足a>1>b>-1,a2<2b,故D错.二、填空题(每小题5分,共10分)7.若x,y满足则的取值范围是________. 【解析】由2<y<8,可得<<,又1<x<6.所以<<3.所以的取值范围是.答案:8.已知x,y,z满足z<y<x,且xz<0.给出下列各式:①xy>xz;②z(y-x)>0;③zy2<xy2;④xz(x-z)<0.其中正确式子的序号是________.【解析】①因为⇒⇒xy>xz,所以①正确.②因为⇒⇒z(y-x)>0,所以②正确.③因为z<y<x且xz<0,所以x>0且z<0.当y=0时,zy2=xy2;当y≠0时,zy2<xy2.所以③不正确.④因为x>z,所以x-z>0.因为xz<0,所以(x-z)xz<0.所以④正确.综上,①②④正确.答案:①②④三、解答题(每小题10分,共20分)9.设24<a≤25,5<b≤12.求a+b,a-b,ab,的取值范围.【解析】因为24<a≤25,5<b≤12,所以-12≤-b<-5,≤<,29<a+b≤37,12<a-b<20,120<ab≤300,2<<5.10.设f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.【解析】方法一:设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b)=(m+n)a+(n-m)b,于是得解得所以f(-2)=3f(-1)+f(1).又因为1≤f(-1)≤2,2≤f(1)≤4,所以5≤3f(-1)+f(1)≤10.即f(-2)的取值范围是[5,10].方法二:由得所以f(-2)=4a-2b=3f(-1)+f(1).又因为1≤f(-1)≤2,2≤f(1)≤4,所以5≤3f(-1)+f(1)≤10.即f(-2)的取值范围是[5,10].。

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

高中数学 课时作业9 等差数列的性质及简单应用 新人教A版必修5-新人教A版高二必修5数学试题

高中数学 课时作业9 等差数列的性质及简单应用 新人教A版必修5-新人教A版高二必修5数学试题

课时作业9 等差数列的性质及简单应用[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.在等差数列{a n }中,a 10=30,a 20=50,则a 40等于( )A .40B .70C .80D .90解析:方法一:因为a 20=a 10+10d ,所以50=30+10d ,所以d =2,a 40=a 20+20d =50+20×2=90.方法二:因为2a 20=a 10+a 30,所以2×50=30+a 30,所以a 30=70,又因为2a 30=a 20+a 40,所以2×70=50+a 40,所以a 40=90.答案:D2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则a 4+a 10等于( )A .3B .4C .5D .12解析:a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴由题设知6(a 4+a 10)=24,∴a 4+a 10=4.答案:B3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( ) A .-1 B .0C.14D.12解析:a 2+a 4=2a 3=2,又a 2a 4=34,且a 4>a 2, 解得a 2=12,a 4=32,∴d =12,∴a 1=0. 答案:B4.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )A .12B .18C .24D .30解析:由已知得:a 5+a 10=2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(a 5+a 10)=24.答案:C5.下面是关于公差d >0的等差数列{a n }的四个说法.p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎪⎫a n n 是递增数列; p 4:数列{a n +3nd }是递增数列.其中正确的是( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:因为a n =a 1+(n -1)d ,d >0,所以a n -a n -1=d >0,命题p 1正确.na n =na 1+n (n -1)d ,所以na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关.故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d , 所以a n n -a n -1n -1=-a 1+d n (n -1), 当d -a 1>0,即d >a 1时,数列⎩⎨⎧⎭⎬⎫a n n 递增, 但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.所以数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.答案:D二、填空题(每小题5分,共15分)6.设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:∵数列{a n },{b n }都是等差数列,∴数列{a n +b n }也构成等差数列,∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),∴2×21=7+a 5+b 5,∴a 5+b 5=35.答案:357.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________.解析:本题考查等差数列的性质及通项公式.∵a 1+a 3+a 5=3a 3=105,∴a 3=35.∵a 2+a 4+a 6=3a 4=99,∴a 4=33,∴公差d =a 4-a 3=-2.∴a 20=a 4+16d =33+16×(-2)=1.答案:18.已知{a n }为等差数列,a 5+a 7=4,a 6+a 8=-2,则该数列的正数项共有________项. 解析:∵a 5+a 7=2a 6=4,a 6+a 8=2a 7=-2,∴a 6=2,a 7=-1,∴d =a 7-a 6=-3,∴a n =a 6+(n -6)d =2+(n -6)×(-3)=-3n +20.令a n ≥0,解得n ≤203,即n =1,2,3,…,6,故该数列的正数项共有6项. 答案:6三、解答题(每小题10分,共20分)9.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数. 解析:设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题意得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,即⎩⎪⎨⎪⎧ 4a =26,a 2-d 2=40,解得⎩⎪⎨⎪⎧ a =132,d =32或⎩⎪⎨⎪⎧ a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.10.首项为a 1,公差d 为正整数的等差数列{a n }满足下列两个条件:(1)a 3+a 5+a 7=93;(2)满足a n >100的n 的最小值是15.试求公差d 和首项a 1的值.解析:因为a 3+a 5+a 7=93,所以3a 5=93,所以a 5=31,所以a n =a 5+(n -5)d >100,所以n >69d+5. 因为n 的最小值是15,所以14≤69d+5<15, 所以6910<d ≤723, 又d 为正整数,所以d =7,a 1=a 5-4d =3.[能力提升](20分钟,40分)11.已知{a n }是公差为正数的等差数列,a 1+a 2+a 3=15,a 1·a 2·a 3=80,则a 11+a 12+a 13的值为( )A .105B .120C .90D .75解析:由等差数列的性质得a 1+a 2+a 3=3a 2=15,所以a 2=5,又因为a 1·a 2·a 3=80,所以a 1·a 3=16,所以(a 2-d )(a 2+d )=16,即(5-d )(5+d )=16,所以d 2=9,又因为d >0,所以d =3.所以a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+10×3)=105.答案:A12.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:由已知a 2n +1-a 2n =4,所以{a 2n }是等差数列,且首项a 21=1,公差d =4,所以a 2n =1+(n -1)·4=4n -3.又a n >0,所以a n =4n -3. 答案:4n -313.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R 且m ≠n )的四个根组成首项为14的等差数列,求m +n 的值.解析:设x 2-x +m =0的两根为x 1,x 2, x 2-x +n =0的两根为x 3,x 4,则x 1+x 2=x 3+x 4=1.不妨设数列的首项为x 1,则数列的第4项为x 2,所以x 1=14,x 2=34,公差d =34-143=16. 所以中间两项分别是512,712. 所以x 1x 2=316,x 3x 4=512×712. 所以m +n =316+512×712=3172.14.一个等差数列的首项是8,公差是3;另一个等差数列的首项是12,公差是4,这两个数列有公共项吗?如果有,求出最小的公共项,并指出它分别是两个数列的第几项.解析:首项是8,公差是3的等差数列的通项公式为a n =3n +5;首项是12,公差是4的等差数列的通项公式为b m =4m +8.根据公共项的意义,就是两项相等,令a n =b m ,即n =4m 3+1,该方程有正整数解时,m =3k ,k 为正整数,令k =1,得m =3,则n =5. 因此这两个数列有最小的公共项为20,分别是第一个数列的第5项,第二个数列的第3项.。

2014年高中数学 第一章 解三角形测试卷A 新人教A版必修5

2014年高中数学 第一章 解三角形测试卷A 新人教A版必修5

第一章 解三角形检测题A本试卷分第Ⅰ卷和第Ⅱ卷两部分.时间:120分钟,分数:150分.第Ⅰ卷(选择题,共60分)一、选择题 (本大题共12小题,每小题5分,共60分)1.在ABC △,已知11,20,130a b A ===︒,则此三角形( ) A .无解 B .只有一解 C .有两解 D .解的个数不确定2. ABC △中,已知2()()a c a c b bc +-=+,则A =( )A. 030B. 060C.0120D.01503. ABC △中,已知5,60,ABC b A S ==︒=△a =( )A .4B .16C .21D 4.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个5. 在ABC △中,A 、B 、C 为三角形的内角,60B =︒,b ac =,则A 的值为( ) A. 045 B.030 C.090 D.0606. 已知A 、B 为锐角三角形的两内角,则点(cos sin ,sin cos )P B A B A --在第( )象限 A .一 B .二 C .三 D 四.7.已知三角形ABC 的面积4222c b a s -+=,则C ∠的大小是( )A. 045 B.030 C.090 D.01358.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b c =B =( )A. π6B. 5π6C.5π6或π6D.π39. 在ABC △中,若223coscos 222C A a c b +=,那么,,a b c 的关系是( ) A .a b c += B .2a c b += C .2b c a +=D .a b c == 10.圆内接四边形ABCD 中,3,4,5,6,AB BC CD AD ====则cos A =( )A .16 B .112 C .119 D .12111.在△ABC 中,sin b a C =,cos c a B =,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形12.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30,灯塔B 在观察站C 南偏东30处,则两灯塔A 、B 间的距离为( ) A .400米 B .500米 C .800米 D . 700米第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.在ABC ∆中,60A ∠=︒,最大边和最小边边长是方程2327320x x -+=的两实根,则BC 边长等于______。

新版高中数学人教A版必修5习题:第二章数列 习题课1(1)

新版高中数学人教A版必修5习题:第二章数列 习题课1(1)

习题课(一)求数列的通项公式课时过关·能力提升基础巩固1在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为().A.2B.6C.7D.8解析:1+2+3+4+…+n=n(n+1)2,当n=6时,共21项,故第25项为7.答案:C2在数列{a n}中,a1=2,a n+1=3a n+2,则a2 016的值为().A.32 015B.32 015-1C.32 016D.32 016-1答案:D3数列17,29,311,413,…的一个通项公式是().A.a n=n2n+3B.an=n2n-3C.a n=n2n+5D.an=n2n-5答案:C4已知数列{a n}满足a n+2=a n+1+a n,若a1=1,a5=8,则a3等于().A.1B.2C.3D.72解析:由a n+2=a n+1+a n ,a 1=1,a 5=8,得a 3=a 2+1,a 4=a 3+a 2,消去a 2得a 4=2a 3-1.又a 5=a 4+a 3=8,即8=3a 3-1,所以a 3=3.故选C . 答案:C5已知数列前n 项和S n =2n 2-3n+1,n ∈N *,则它的通项公式为 . 解析:当n=1时,a 1=S 1=0;当n ≥2时,a n =S n -S n-1=2n 2-3n+1-[2(n-1)2-3(n-1)+1]=4n-5, 故a n ={0,n =1,4n -5,n ≥2.答案:a n ={0,n =1,4n -5,n ≥26在数列{a n }中,a 1=1,a 2=5,a n+2=a n+1-a n (n ∈N *),则a 2 016= . 解析:∵a 1=1,a 2=5,a n+2=a n+1-a n ,∴a 1=1,a 2=5,a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,a 8=5. ∴数列{a n }是周期数列,周期为6. ∴a 2016=a 6×336=a 6=-4.答案:-47在数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n = . 解析:∵a n+1=a n +n+1,∴a n+1-a n =n+1.∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,各式相加得a n -a 1=2+3+4+…+n =(n+2)(n -1)2. 又a 1=2,∴a n =(n+2)(n -1)2+2=n 2+n+22.答案:n 2+n+228已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n+1,则a n = . 解析:∵log 2(S n +1)=n+1,∴S n =2n+1-1.当n=1时,a 1=S 1=3;当n ≥2时,a n =S n -S n-1=2n+1-2n =2n .∵当n=1时,上式不满足, ∴a n ={3,n =1,2n ,n ≥2.答案:{3,n =1,2n ,n ≥29根据下列条件,求数列的通项公式a n . (1)在数列{a n }中,a 1=1,a n+1=a n +2n ;(2)在数列{a n }中,a n+1=n+2n·a n ,a 1=4. 解(1)∵a n+1=a n +2n ,∴a n+1-a n =2n .∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n-1=2n-1,以上各式两边分别相加得a n -a 1=2+22+23+…+2n-1=2(1-2n -1)1-2=2n −2.又a 1=1,∴a n =2n -2+1=2n -1.(2)∵a n+1=n+2n ·a n ,∴a n+1a n=n+2n .∴a2a1=31,a3a2=42,a4a3=53,a5a4=64,…,a na n-1=n+1n-1.以上各式两边分别相乘得a n a1=n(n+1)1×2=n(n+1)2.又a1=4,∴a n=2n(n+1).10已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求{a n}的通项公式;(2)求{b n}的前n项和.解(1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n得b n+1=b n3,因此{b n}是首项为1,公比为13的等比数列.记{b n}的前n项和为S n,则S n=1-(13)n1-13=32−12×3n-1.能力提升1在数列{a n}中,a n+1=a n1+3a n,a1=2,则a4等于().A.165B.219C.85D.87答案:B2已知数列{a n}的前n项和S n=n2-2n,则a2+a18等于().A.36B.35C.34D.33解析:a2+a18=S2-S1+S18-S17=(22-2×2)-(12-2×1)+(182-2×18)-(172-2×17)=34.答案:C3已知n∈N*,给出4个表达式:①a n={0,n为奇数,1,n为偶数,②an=1+(-1)n2,③an=1+cosnπ2,④an=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是().A.①②③B.①②④C.②③④D.①③④解析:经检验知①②③都是所给数列的通项公式,故选A.答案:A4已知在数列{a n}中,a1=1,(2n+1)a n=(2n-3)a n-1(n≥2),则数列{a n}的通项公式为. 解析:由(2n+1)a n=(2n-3)a n-1,可得a na n-1=2n-32n+1(n≥2),所以a2a1=15,a3a2=37,a4a3=59,a5a4=711,…,a na n-1=2n-32n+1(n≥2).上述各式左右两边分别相乘得a na1=1×3(2n-1)(2n+1)(n≥2),故a n=3(2n-1)(2n+1)(n≥2).又a1=1满足上式,所以数列{a n}的通项公式为a n=3(2n-1)(2n+1)(n∈N*).答案:a n=3(2n-1)(2n+1)★5若数列{a n}满足a1=23,a2=2,3(an+1−2an+an−1)=2,则数列{an}的通项公式为.解析:由3(a n+1-2a n+a n-1)=2可得a n+1-2a n+a n-1=23,即(a n+1-a n)-(a n-a n-1)=23,所以数列{a n+1-a n}是以a2-a1=43为首项,23为公差的等差数列,所以a n+1-a n=43+23(n−1)=23(n+1).故a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+23(2+3+⋯+n)=13n(n+1).答案:a n=13n(n+1)6已知在数列{a n}中,a n+1=2a n+3·2n+1,且a1=2,则数列{a n}的通项公式为. 解析:∵a n+1=2a n+3·2n+1,∴a n+12n+1=a n2n+3,即a n+12n+1−a n2n=3.∴数列{a n2n}是公差为3的等差数列.又a12=1,∴a n2n=1+3(n−1),∴a n=(3n-2)·2n.答案:a n=(3n-2)·2n7已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+⋯+1a n<32.(1)解由a n+1=3a n+1,得a n+1+12=3(a n+12).又a1+12=32,所以{a n+12}是首项为32,公比为3的等比数列.a n+12=3n2,因此{a n}的通项公式为a n=3n-12.(2)证明由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1.于是1a1+1a2+⋯+1a n≤1+13+⋯+13n-1=32(1-13n)<32.所以1a1+1a2+⋯+1a n<32.★8设数列{a n}的前n项和为S n,且S n=4a n-3(n=1,2,…).(1)证明:数列{a n}是等比数列;(2)若数列{b n}满足b n+1=a n+b n(n=1,2,…),b1=2,求数列{b n}的通项公式.(1)证明因为S n=4a n-3(n=1,2,…),所以S n-1=4a n-1-3(n=2,3,…),当n≥2时,a n=S n-S n-1=4a n-4a n-1,整理,得a na n-1=43.由S n=4a n-3,令n=1,得a1=4a1-3,解得a1=1.所以数列{a n }是首项为1,公比为43的等比数列.(2)解由(1)得a n =(43)n -1,由b n+1=a n +b n (n=1,2,…),得b n+1-b n =(43)n -1.则b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=2+1-(43)n -11-43=3×(43)n -1−1.。

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

不等式的性质(20分钟35分)1.如果-1<a<b<0,则有( )A.<<b2<a2B.<<a2<b2C.<<b2<a2D.<<a2<b2【解析】选A.取a=-,b=-,分别计算出=-3,=-2,b2=,a2=,由此能够判断出,,b2,a2的大小.2.若<<0,则下列结论正确的是( )A.a2>b2B.1>>C.+<2D.ae b>be a(e≈2.718 28…)【解析】选D.因为<<0,所以b<a<0,所以-b>-a>0,所以(-b)2>(-a)2,所以a2<b2,故A错误;又y=在R上是减函数,所以>>1,故B错误;又+-2==>0,所以+>2,故C错误;又0<<1,0<<1,所以·<1,又b·e a<0,所以ae b>be a,故D正确.3.已知-<α<β<,则不属于的区间是( )A.(-π,π)B.C.(-π,0)D.(0,π)【解析】选D.因为-<α<β<,所以<0且-π<α-β<π,所以-<<0,所以不属于区间(0,π).4.若a>b>c,则下列不等式成立的是( )A.>B.<C.ac>bcD.ac<bc【解析】选B.因为a>b>c,所以a-c>b-c>0.所以<.【补偿训练】若a>b,x>y,下列不等式不正确的是( ) A.a+x>b+y B.y-a<x-bC.|a|x>|a|yD.(a-b)x>(a-b)y【解析】选C.当a≠0时,|a|>0,|a|x>|a|y,当a=0时,|a|x=|a|y,故|a|x≥|a|y.5.若8<x<10,2<y<4,则的取值范围是.【解析】因为2<y<4,所以<<.因为8<x<10,所以2<<5.答案:(2,5)【补偿训练】设α∈,β∈,则2α-的范围是( ) A. B.C.(0,π)D.【解析】选D.0<2α<π,0≤≤,所以-≤-≤0,得到-<2α-<π.6.已知a>b>c,求证:++>0.【证明】原不等式变形为:+>.又因为a>b>c,所以a-c>a-b>0,所以>,又>0,所以+>,即++>0.(30分钟60分)一、选择题(每小题5分,共25分)1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>ax【解析】选B.因为x<a<0,所以ax>a2,x2>ax,所以x2>ax>a2.2.已知x>y>z,且x+y+z=1,则下列不等式中成立的是( )A.xy>yzB.xy>xzC.xz>yxD.x|y|>z|y|【解析】选B.因为x>y>z,且x+y+z=1,所以x>0,所以xy>xz.3.已知a>b>0,c>0且c≠1,则下列不等式一定成立的是( )A.log c a>log c bB.c a>c bC.ac>bcD.>【解析】选C.因为a>b>0,所以当0<c<1时,log c a<log c b,c a<c b,当c>1时log c a>log c b,c a>c b,所以ac>bc,<.4.已知a,b,c为实数,则下列结论正确的是( )A.若ac>bc>0,则a>bB.若a>b>0,则ac>bcC.若a>b,c>0,则ac>bcD.若a>b,则ac2>bc2【解析】选C.对于A,当c<0时,不等式不成立,故A不正确;对于B,当c<0时,不等式不成立,故B不正确;对于C,因为a>b,c>0,所以ac>bc,故C正确;对于D,当c=0时,不等式不成立,故D不正确.5.若x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则( )A.a<b<cB.c<a<bC.b<a<cD.b<c<a【解析】选C.因为<x<1,所以-1<ln x<0.令t=ln x,则-1<t<0.所以a-b=t-2t=-t>0,所以a>b.c-a=t3-t=t(t2-1)=t(t+1)(t-1),又因为-1<t<0,所以0<t+1<1,-2<t-1<-1,所以c-a>0,所以c>a,所以c>a>b.【补偿训练】设0<a<b,c∈R,则下列不等式中不成立的是( ) A.< B.-c>-cC.>D.ac2<bc2【解析】选D.因为y=在(0,+∞)上是增函数,所以<,因为y=-c在(0,+∞)上是减函数,所以-c>-c,因为-=>0,所以>,当c=0时,ac2=bc2,所以D不成立.二、填空题(每小题5分,共15分)6.若-1<x<y<0,则,,x2,y2的大小关系为.【解析】因为-1<x<y<0,所以1>-x>-y>0,xy>0,所以x2>y2,>.因为y2>0,<0,所以x2>y2>>.答案:x2>y2>>【补偿训练】若a>b>c>0,则,,,c从小到大的顺序是. 【解析】=,=,=,因为a>b>c>0,所以>>,因为<<<,所以c<<<.答案:c<<<7.已知-1<2x-1<1,则-1的取值范围是.【解析】-1<2x-1<1⇒0<x<1⇒>1⇒>2⇒-1>1.答案:(1,+∞)【补偿训练】已知2b<a<-b,则的取值范围为.【解析】因为2b<a<-b,所以2b<-b,所以b<0.所以<<,即-1<<2.答案:-1<<28.已知-1<a+b<3且2<a-b<4,则2a+3b的取值范围是. 【解析】设2a+3b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以所以m=,n=-.所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1,所以-<(a+b)-(a-b)<,即-<2a+3b<.答案:-<2a+3b<三、解答题(每小题10分,共20分)9.已知a>b,<,求证:ab>0.【证明】因为<,所以-<0,即<0,而a>b,所以b-a<0,所以ab>0.10.已知函数f(x)=ax2-c,-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围. 【解析】因为f(x)=ax2-c,所以即解得所以f(3)=9a-c=f(2)-f(1).又因为-4≤f(1)≤-1,-1≤f(2)≤5,所以≤-f(1)≤,-≤f(2)≤,所以-1≤f(2)-f(1)≤20,即-1≤f(3)≤20.【补偿训练】已知x,y为正实数,且1≤lg(xy)≤2,3≤lg ≤4,求lg(x4y2)的取值范围. 【解析】由题意,设a=lg x,b=lg y,所以lg(xy)=a+b,lg=a-b,lg(x4y2)=4a+2b.设4a+2b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以解得又因为3≤3(a+b)≤6,3≤a-b≤4,所以6≤4a+2b≤10,所以lg(x4y2)的取值范围为[6,10].1.已知三个不等式①ab>0;②>;③bc>ad.若以其中的两个作为条件,余下的一个作为结论,则可以组成个正确命题.【解析】①②⇒③,③①⇒②.(证明略).②③⇒①:由②得>0,又由③得bc-ad>0.所以ab>0⇒①.所以可以组成3个正确命题.答案:32.设a≥b≥c,且1是一元二次方程ax2+bx+c=0的一个实根,求的取值范围.【解析】因为1是一元二次方程ax2+bx+c=0的一个实根,所以a+b+c=0,因为a≥b≥c,所以a>0得b=-a-c,因为a≥b≥c,即a≥-a-c≥c,即得,因为a>0,则不等式等价为, 即,得-2≤≤-,综上,的取值范围为-2≤≤-.。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

新版高中数学人教A版必修5习题:第一章解三角形 检测B

新版高中数学人教A版必修5习题:第一章解三角形 检测B

第一章检测(B )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1已知腰长为定值的等腰三角形的最大面积为2,则等腰三角形的腰长为( ).A .12B.1 C.2D.3解析:设该等腰三角形的腰长为a ,顶角为θ,则该等腰三角形的面积为12a2sin θ,易知当θ=90°时,该等腰三角形的面积取得最大值12a2=2,则a=2,故腰长为2.答案:C2在△ABC 中,b =√3,c =3,B =30°,则a 的值为( ). A .√3B.2√3 C .√3或2√3D.2 解析:∵sin C =sinBb ·c =√32,∴C=60°或C=120°.∴A=90°或A=30°.当A=30°时,a=b =√3;当A=90°时,a =√b 2+c 2=2√3. 答案:C3在△ABC 中,∠ABC =π4,AB =√2,BC =3,则sin ∠BAC=( ).A .√1010B.√105C .3√1010 D.√55解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=2+9-2×√2×3×√22=5,即得AC =√5.由正弦定理AC sin∠ABC =BC sin∠BAC ,√5√22=3sin∠BAC ,所以sin ∠BAC =3√1010. 答案:C4在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a>b>c ,a 2<b 2+c 2,则A 的取值范围是( ).A .(π2,π)B.(π4,π2)C .(π3,π2)D.(0,π2)解析:cos A =b 2+c 2-a 22bc>0,∴A <π2.又a>b>c ,∴A>B>C.∴A >π3,故选C .答案:C5在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( ).A .(152,+∞)B.(10,+∞)C.(0,10)D .(0,403]解析:由正弦定理得,asinA =csinC ,c =asinA ·sin C =1034sin C =403sin C ≤403.又c>0,故0<c ≤403.答案:D6路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m,则折断点与树干底部的距离是( ).A .20√63mB.10√6 m C .10√63 mD.20√2 m解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,AOsin45°=20sin60°,∴AO =20sin45°sin60°=20√63(m).答案:A7在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c.已知b=c ,a 2=2b 2(1-sin A ),则A=( ).A .3π4B.π3 C .π4D.π6解析:由余弦定理可得a 2=b 2+c 2-2bc cos A ,又因为b=c ,所以a 2=b 2+b 2-2b×b cos A=2b 2(1-cos A ). 由已知a 2=2b 2(1-sin A ), 所以sin A=cos A , 因为A ∈(0,π),所以A =π4. 答案:C8在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan A=7tan B ,a 2-b2c=3,则c 等于( ).A.4B.3C.7D.6解析:由tan A=7tan B ,得sinAcosA =7sinBcosB ,即sin A cos B=7sin B cos A ,所以sin A cos B+sin B cos A=8sin B cos A , 即sin(A+B )=sin C=8sin B cos A.由正、余弦定理可得c=8b ·b 2+c 2-a 22bc ,即c 2=4b 2+4c 2-4a 2.又a 2-b 2c=3,所以c 2=4c ,即c=4.答案:A9在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,则tan C等于().A.34B.43C.−34D.−43解析:由2S=(a+b)2-c2,得2S=a2+b2+2ab-c2,即2×12absin C=a2+b2+2ab-c2,所以ab sin C-2ab=a2+b2-c2.由余弦定理可知cos C=a 2+b2-c22ab=absinC-2ab2ab=sinC2−1,所以cos C+1=sinC2,即2cos2C2=sin C2cos C2,所以ta n C2=2.所以tan C=2tan C21-tan2C2=2×21-22=−43.答案:D10甲船在B岛的正南方10 km处,且甲船以4 km/h的速度向正北方向航行,同时乙船自B岛出发以6 km/h的速度向北偏东60°的方向行驶,当甲、乙两船相距最近时它们航行的时间是().A.1507 minB.157hC.21.5 minD.2.15 h解析:如图,设经过x h 后甲船处于点P 处,乙船处于点Q 处,两船的距离为s ,则在△BPQ 中,BP=10-4x ,BQ=6x ,∠PBQ=120°,由余弦定理可知s 2=PQ 2=BP 2+BQ 2-2BP ·BQ ·cos ∠PBQ , 即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·cos120°=28x 2-20x+100.当x=−-202×28=514时s 最小, 此时x =514(h)=1507(min). 答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b+c=2a ,3sin A=5sin B ,则角C= . 解析:∵3sin A=5sin B ,∴3a=5b.① 又∵b+c=2a ,②∴由①②可得,a =53b,c =73b,∴cos C =b2+a 2-c 22ab=b 2+(53b )2-(73b )22×53b×b =−12,∴C =2π3. 答案:2π312已知△ABC 的面积为S ,且|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S,则B = .解析:设AB=c ,BC=a ,AC=b ,则∵|BC⃗⃗⃗⃗⃗ |2=CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ +2S, ∴a 2=ab cos C+ab sin C ,即a=b sin C+b cos C.由正弦定理得sin A=sin B sin C+sin B cos C. 又sin A=sin(B+C )=sin B cos C+cos B sin C ,∴sin B=cos B ,即tan B=1,B =π4. 答案:π413在△ABC 中,BC=1,B =π3,当△ABC 的面积等于√3时,sin C = . 解析:设AB=c ,AC=b ,BC=a ,则△ABC 的面积S =12acsin B =√3,解得c=4, 所以b =√a 2+c 2-2accosB =√13.所以cos C =a 2+b 2-c 22ab=−√1313.所以sin C =2√3913. 答案:2√391314在△ABC 中,已知b=1,sin C =35,bcos C +ccos B =2,则AC⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ = . 解析:由余弦定理的推论知cos C =a 2+b 2-c 22ab,cos B =a 2+c 2-b22ac .∵b cos C+c cos B=2,∴a2+b2-c22a+a2+c2-b22a=2.∴a=2,即|BC⃗⃗⃗⃗⃗ |=2.又b=1,∴|AC⃗⃗⃗⃗⃗ |=1.∵sin C=35,0°<C<180°,∴cos C=45或cos C=−45.∴AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =85或AC⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =−85.答案:85或−8515在△ABC中,角A,B,C的对边分别为a,b,c,若1+tanAtanB =2cb,则A=.解析:由正弦定理,得2cb =2sinCsinB.又因为1+tanAtanB =tanB+tanAtanB=sinBcosA+cosBsinAsinBcosA=sin(A+B)sinBcosA=sinCsinBcosA,所以sinCsinBcosA =2sinCsinB.则cos A=12.又因为0°<A<180°,所以A=60°.答案:60°三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin 2C 的值.解(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A=4+9-2×2×3×12=7,所以BC =√7.(2)由正弦定理知,AB sinC =BCsinA ,所以sin C =ABBC ·sin A =√7=√217.因为AB<BC ,所以C 为锐角,则cos C =√1-sin 2C =√1-37=2√77. 因此sin2C=2sin C ·cos C=2×√217×2√77=4√37. 17(8分)在△ABC 中,∠A =3π4,AB =6,AC =3√2,点D 在BC 边上,AD =BD,求AD 的长. 解设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c.由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC=(3√2)2+62−2×3√2×6×cos 3π4=18+36−(−36)=90,所以a=3√10.又由正弦定理得sin B =bsin∠BACa=3√10=√1010,由题设知0<B <π4,所以cos B =√1-sin 2B =√1-110=3√1010.在△ABD 中,由正弦定理得AD =AB ·sinB sin (π-2B )=6sinB 2sinBcosB=3cosB=√10.18(9分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a>c.已知BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2,cos B =13,b =3,求: (1)a 和c 的值; (2)cos(B-C )的值.解(1)由BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =2得c ·a cos B=2.又cos B =13,所以ac=6.由余弦定理,得a 2+c 2=b 2+2ac cos B. 又b=3,所以a 2+c 2=9+2×2=13.解{ac =6,a 2+c 2=13,得a=2,c=3或a=3,c=2.因为a>c ,所以a=3,c=2. (2)在△ABC 中,sin B =√1-cos 2B=√1-(13)2=2√23,由正弦定理,得sin C =cb sin B =23×2√23=4√29. 因为a=b>c ,所以C 为锐角,因此cos C =√1-sin 2C =√1-(4√29)2=79.于是cos(B-C )=cos B cos C+sin B sin C=13×79+2√23×4√29=2327.19(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a-c =√66b,sin B =√6sin C. (1)求cos A 的值;(2)求co s (2A -π6)的值.解(1)在△ABC 中,由b sinB =c sinC ,及sin B =√6sin C ,可得b =√6c.又由a-c =√66b,有a=2c.所以cos A =b 2+c 2-a 22bc =2222√6c 2=√64. (2)在△ABC 中,由cos A =√64,可得sin A =√104.于是cos2A=2cos 2A-1=−14,sin 2A=2sin A ·cos A =√154.所以co s (2A -π6)=cos 2A ·co s π6+sin 2A ·si n π6=√15-√38.20(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a=3,cos A =√63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.解(1)在△ABC 中,由题意知sin A =√1-cos 2A =√33,又因为B=A +π2,所以sin B=si n (A +π2)=cos A =√63.由正弦定理可得b=asinBsinA=3×√63√33=3√2.(2)由B=A+π2,得cos B=co s(A+π2)=−sin A=−√33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B) =sin A cos B+cos A sin B=√33×(-√33)+√63×√63=13.因此△ABC的面积S=12absin C=12×3×3√2×13=3√22.。

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

第二章 数列能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年山西太原期末)数列1,3,6,10,…的一个通项公式是( ) A .a n =n n +12B .a n =n n -12C .a n =n 2-(n -1) D .a n =n 2-1【答案】A【解析】观察数列1,3,6,10,…,可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.故选A .2.已知等差数列{a n }的前n 项和为S n 且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .-2B .-1C .1D .2【答案】D【解析】由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,∴d =2.3.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( ) A .4或-2 B .-4或2 C .4 D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a +2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧ a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0,与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.故选C .4.已知等差数列{a n }的公差d <0,若a 4·a 6=24,a 2+a 8=10,则该数列的前n 项和S n的最大值为( )A .50B .40C .45D .35【答案】C【解析】∵a 4+a 6=a 2+a 8=10,a 4·a 6=24,d <0,∴⎩⎪⎨⎪⎧a 4=6,a 6=4.∴d =a 6-a 46-4=-1,∴a n =a 4+(n -4)d =10-n .∴当n =9或10时S n 取到最大值,S 9=S 10=45.5.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0.∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.故选C .6.已知各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则a 7a 9a 11=( ) A .16 B .16 2 C .32 D .32 2【答案】B【解析】∵各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,∴a 4a 14=(22)2=8.∴a 7a 11=a 29=8.∴a 7a 9a 11=16 2.故选B .7.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .129B .1210 C .110 D .15【答案】D 【解析】∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.8.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( ) A .54 B .45 C .36 D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6.∴S 9=9a 5=54.9.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2.∴a 1+a 2=12.∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+qq2=6.∵q >0,∴q =12.∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n .∴不等式a n a n +1a n +2>19化为29-3n>19,当n=4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 10.(2019年内蒙古包头模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2019=( )A .12 019 B .12 020 C .2 0182 019 D .2 0192 020【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又S n>0,∴n (n +1)S n -1=0,∴S n =1nn +1=1n -1n +1.∴S 1+S 2+…+S 2 019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2 0192 020.11.已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) A .4 B .5 C .6 D .7【答案】B【解析】由题意可知数列3,7,11,…,139的通项公式为a n =4n -1,139是数列第35项.数列2,9,16,…,142的通项公式为b m =7m -5,142是数列第21项.设数列3,7,11,…,139的第n 项与数列2,9,16,…,142的第m 项相同,则4n -1=7m -5,n =7m -44=7m 4-1,∴m为4的倍数且m 不大于21,n 不大于35.由此可知,m 只能为4,8,12,16,20.此时n 的对应值为6,13,20,27,34.∴公共项的个数为5.故选B .12.(2019年福建厦门模拟)已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,则k n =( )A .2×3n -1-1 B .2×3n -1+1C .2×3n-1 D .2×3n+1【答案】A【解析】设等比数列ak 1,ak 2,…,ak n 的公比为q .因为k 1=1,k 2=5,k 3=17,所以a 1·a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4da 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d ;另一方面,ak n 作为等比数列的第n 项,又有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017年新课标Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-8【解析】设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1+a 2=a 11+q =-1,a 1-a 3=a 11-q2=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,∴a 4=a 1q 3=-8.14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 【答案】13【解析】∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3.a n =a 1qn -1,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得q =13.15.已知数列{a n }满足a n +1=12+a n -a 2n 且a 1=12,则该数列的前 2 017项的和等于________.【答案】3 0252【解析】∵a 1=12,a n +1=12+a n -a 2n ,∴a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N +,1,n =2k k ∈N +,故数列的前2 017项的和S 2 017=1 008×1+1 009×12=3 0252.16.(2018年江苏)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.【答案】27【解析】B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑.1个:n =1+1=2,S 2=3,12a 3=36;2个:n =2+2=4,S 4=10,12a 5=60;3个:n =4+3=7,S 7=30,12a 8=108;4个:n =8+4=12,S 12=94,12a 13=204;5个:n =16+5=21,S 21=318,12a 22=396;6个:n =32+6=38,S 38=1 150,12a 39=780.发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516.因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n+1成立的n 的最小值为27.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(2017年北京)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 【解析】(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,∴2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 21q 4=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…b 2n -1=1+3+32+…+3n -1=3n-12.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n ,S 5=S 6且a 3=-6. (1)求数列{a n }的通项公式;(2)若等比数列{b n }满足b 2=6,6b 1+b 3=-5a 3,求{b n }的前n 项和T n .【解析】(1)由已知可得a 6=0,设等差数列的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得d =2,a 1=-10,∴数列{a n }的通项公式为a n =2n -12. (2)设{b n }的公比为q ,由题设得⎩⎪⎨⎪⎧b 1q =6,6b 1+b 1q 2=30,解得⎩⎪⎨⎪⎧b 1=3,q =2或⎩⎪⎨⎪⎧b 1=2,q =3.1-2当b 1=2,q =3时,T n =21-3n1-3=3n-1.19.(本小题满分12分)等差数列{a n }满足:a 2+a 4=6,a 6=S 3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若k ∈N *且a k ,a 3k ,S 2k 成等比数列,求k 值. 【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由a 2+a 4=6,a 6=S 3,得⎩⎪⎨⎪⎧2a 1+4d =6,a 1+5d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =1+1×(n -1)=n . (2)S 2k =2k +2k2k -12=2k 2+k , 由a k ,a 3k ,S 2k 成等比数列,得 9k 2=k (2k 2+k ),解得k =4.20.(本小题满分12分)已知数列{a n }是公差不为零的等差数列,a 1=2且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)若{b n -(-1)na n }是等比数列且b 2=7,b 5=71,求数列{b n }的前n 项和T n . 【解析】(1)设数列{a n }的公差为d (d ≠0), ∵a 1=2且a 2,a 4,a 8成等比数列, ∴a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 解得d =2或d =0(舍去).∴a n =a 1+(n -1)d =2+2(n -1)=2n .(2)令c n =b n -(-1)na n ,设数列{c n }的公比为q , ∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=7-2×2=3,c 5=b 5+a 5=71+2×5=81.∴q 3=c 5c 2=813=27,故q =3.∴c n =c 2·q n -2=3×3n -2=3n -1,即b n -(-1)n a n =3n -1,∴b n =3n -1+(-1)n·2n .则T n =b 1+b 2+b 3+…+b n =(30+31+…+3n -1)+[-2+4-6+…+(-1)n·2n ],1-322当n 为奇数时,T n =1-3n1-3+2×n -12-2n =3n-2n -32.∴T n=⎩⎪⎨⎪⎧3n+2n -12,n 为偶数,3n-2n -32,n 为奇数.21.(本小题满分12分)(2019年山东莱芜模拟)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和为S n . 【解析】(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18.∴q =a 3+a 2a 2+a 1=189=2. 又2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1.① ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n.② ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1.∴S n =3(n -1)2n+3.22.(本小题满分12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.【解析】(1)由题意得,(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n.∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ8+d ,16+d =2λ8+2d .∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1). ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14. ∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n,∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12. ∴C n <12S n .。

(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

(完整)新课标人教A版高中数学必修五第一章《解三角形》单元测试题

(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。

高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5

高中数学第二章数列2.4.1等比数列的概念及通项公式练习(含解析)新人教A版必修5

第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。

【高中】高中数学第二章数列章末检测A新人教A版必修5

【高中】高中数学第二章数列章末检测A新人教A版必修5

【关键字】高中第二章数列章末检测(A)一、选择题(本大题共12小题,每小题5分,共60分)1.{an}是首项为1,公差为3的等差数列,如果an=2 011,则序号n等于( ) A.667 B..669 D.671答案 D解析由2 011=1+3(n-1)解得n=671.2.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )A.15 B..31 D.64答案 A解析在等差数列{an}中,a7+a9=a4+a12,∴a12=16-1=15.3.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为( )A.81 B..168 D.192答案 B解析由a5=a2q3得q=3.∴a1==3,S4===120.4.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( )A.160 B..200 D.220答案 B解析∵(a1+a2+a3)+(a18+a19+a20)=(a1+a20)+(a2+a19)+(a3+a18)=3(a1+a20)=-24+78=54,∴a1+a20=18.∴S20==180.5.数列{an}中,an=3n-7 (n∈N+),数列{bn}满足b1=,bn-1=27bn(n≥2且n∈N +),若an+logkbn为常数,则满足条件的k值( )A.唯一存在,且为 B.唯一存在,且为3C.存在且不唯一 D.不一定存在答案 B解析依题意,bn=b1·n-1=·3n-3=3n-2,∴an+logkbn=3n-7+logk3n-2=3n-7+(3n-2)logk=n-7-2logk,∵an+logkbn是常数,∴3+3logk=0,即logk3=1,∴k=3.6.等比数列{an}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( )A.8 B.-.±8 D.以上都不对答案 A解析∵a2+a6=34,a2·a6=64,∴a=64,∵a2>0,a6>0,∴a4=a2q2>0,∴a4=8.7.若{an}是等比数列,其公比是q,且-a5,a4,a6成等差数列,则q等于( ) A.1或2 B.1或-.-1或2 D.-1或-2答案 C解析依题意有4=a6-a5,即4=a4q2-a4q,而a4≠0,∴q2-q-2=0,(q-2)(q+1)=0.∴q =-1或q =2.8.设等比数列{an}的前n 项和为Sn ,若S10∶S5=1∶2,则S15∶S5等于( )A .3∶4B .2∶.1∶2 D .1∶3答案 A解析 显然等比数列{an}的公比q ≠1,则由==1+q5=⇒q5=-, 故S 15S 5=1-q 151-q 5=1-q 531-q 5=1-⎝ ⎛⎭⎪⎫-1231-⎝ ⎛⎭⎪⎫-12=34. 9.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( ) A.1514 B.1213 C.1316 D.1516答案 C解析 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316. 10.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18答案 B解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d ,∴99-105=3d .∴d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39. ∴S n =na 1+n n -12d =-n 2+40n =-(n -20)2+400. ∴当n =20时,S n 有最大值.11.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )答案 D解析 由题意知S n =X ,S 2n =Y ,S 3n =Z .又∵{a n }是等比数列,∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列,即X ,Y -X ,Z -Y 为等比数列,∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY ,∴Y 2-XY =ZX -X 2,即Y (Y -X )=X (Z -X ).12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项C .第50项D .第51项答案 C解析 将数列分为第1组一个,第2组二个,…,第n 组n 个,即⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1, 则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50. 二、填空题(本大题共4小题,每小题4分,共16分) 13.2-1与2+1的等比中项是________.答案 ±114.已知在等差数列{a n }中,首项为23,公差是整数,从第七项开始为负项,则公差为______.答案 -4解析 由⎩⎪⎨⎪⎧ a 6=23+5d ≥0a 7=23+6d <0,解得-235≤d <-236, ∵d ∈Z ,∴d =-4.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是________秒.答案 15解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n n -1d 2=240,即2n +n (n -1)=240,解得n =15.16.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)答案 ①②④解析 ①中,⎩⎪⎨⎪⎧ a 99-1a 100-1<0a 99a 100>1a 1>1⇒⎩⎪⎨⎪⎧ a 99>10<a 100<1 ⇒q =a 100a 99∈(0,1),∴①正确. ②中,⎩⎪⎨⎪⎧ a 99a 101=a 21000<a 100<1⇒a 99a 101<1,∴②正确. ③中,⎩⎪⎨⎪⎧ T 100=T 99a 1000<a 100<1⇒T 100<T 99,∴③错误.④中,T 198=a 1a 2…a 198=(a 1a 198)(a 2a 197)…(a 99a 100)=(a 99a 100)99>1,T 199=a 1a 2…a 198a 199=(a 1a 199)…(a 99a 101)·a 100=a 199100<1,∴④正确.三、解答题(本大题共6小题,共74分)17.(12分)已知{a n }为等差数列,且a 3=-6,a 6=0.(1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.解 (1)设等差数列{a n }的公差为d .因为a 3=-6,a 6=0,所以⎩⎪⎨⎪⎧ a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a =-10+(n -1)×2=2n -12.(2)设等比数列{b n }的公比为q .因为b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,q =3.所以数列{b n }的前n 项和公式为S n =b 11-q n1-q=4(1-3n ). 18.(12分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2,或⎩⎪⎨⎪⎧ a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).19.(12分)已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12-12n ×121-12=1-12n <1. 20.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和.(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n .∴a n =n ·2n -1. ∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n -1-n ·2n =(1-n )2n -1,∴S =(n -1)·2n +1.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n 1+n. (1)解 由已知⎩⎪⎨⎪⎧ a n +1=12S n ,a n =12S n -1(n ≥2), 得a n +1=32a n (n ≥2). ∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12, ∴a n =a 2×(32)n -2(n ≥2). ∴a n =⎩⎪⎨⎪⎧ 1, n =1,12×32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n . ∴1b n b n +1=1n 1+n =1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n) =1-11+n =n 1+n. 22.(14分)已知数列{a n }的各项均为正数,对任意n ∈N *,它的前n 项和S n 满足S n =16(a n +1)(a n +2),并且a 2,a 4,a 9成等比数列.(1)求数列{a n }的通项公式;(2)设b n =(-1)n +1a n a n +1,T n 为数列{b n }的前n 项和,求T 2n .解 (1)∵对任意n ∈N *,有S n =16(a n +1)(a n +2), ① ∴当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或2.当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2). ② ①-②并整理得(a n +a n -1)(a n -a n -1-3)=0.而数列{a n }的各项均为正数,∴a n -a n -1=3.当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立;当a 1=2时,a n =2+3(n -1)=3n -1,此时a 2=a a 不成立,舍去.∴a n =3n -2,n ∈N *.(2)T 2n =b 1+b 2+…+b 2n=a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-6a 2-6a 4-…-6a 2n=-6(a 2+a 4+…+a 2n )=-6×n 4+6n -22=-18n 2-6n .此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)

【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)

专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30B .45C .60D .902.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0B .3πC .2π D .π3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( )A .4πB .34π C .54π D .2π 4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6B .-7C .-8D .-95.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3)B .(0,1)C .(3,3)D .(3,2)7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1B .-2C .2D .18.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( )A .0B .2π C .56π D .π10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.⎡⎢⎣⎦D.,⎛-∞ ⎝⎦⎫+∞⎪⎪⎣⎭二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率.13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________.17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒. 19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos2α的值.21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围;23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30 B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90. 故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0 B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6 B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-.故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k =即直线的倾斜角α满足tan α=, 又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==,则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( )A .-1B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsinα+y +2=0的斜率为k =﹣sinα, ∵﹣1≤sinα≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π) 故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.,33⎡-⎢⎣⎦D.,3⎛-∞-⎝⎦3⎫+∞⎪⎢⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角;D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误;D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确. 故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y ,又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°) 故答案为[0°,45°)∪(135°,180°) 17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ 【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围. 【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53; 当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α.(1)求tan α;(2)求sin α,cos2α的值.【答案】(1)13-;(2)10;45 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=- (2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin 10cos αα⎧=⎪⎪⎨⎪=⎪⎩sin 10cos αα⎧=-⎪⎪⎨⎪=⎪⎩, 因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α.(1)写出α关于m 的函数解析式;(2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围. 【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m .【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα=当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩; (2)当,32ππα时,33,,0,3k m m ,当2πα=时,0m =, 当3,24ππα时,3,1,3,0k m m , 综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围;(2)直线l 倾斜角α的范围;【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或 【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=, ∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-综合测试题-新人教A5版必修必修5综合测试(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)ab<0.设,则下列不等式一定成立的是<1 ( )2222aabbbaba B<<.A.<<2222abababab <<..C<<DB答案,…,以下结21873,92.关于数列,…,) ( 论正确的是A.此数列不是等差数列,也不是等比数列.此数列可能是等差数列,也可能是等比B 数列.此数列可能是等差数列,但不是等比数C 列 2.此数列不是等差数列,但可能是等比数D 列aaa 1879,…,,…=解析记,=32 =n21d 6,=9-3若该数列为等差数列,则公差=nan365.,∴-1)×6=2 187==3+(n a∴{可为等差数列.}n9qa=为等比数列,则公比=3. 若{}n3n-17na=3=3·37.,∴=2 187=na}也可能为等比数列.∴{ n答案B222CBABCA,=sin3.在△2sin中,若sin+C)为( 则角.钝角 B.直角A C.锐角D.60°22222bAaBC+解析由sin+,得2sinsin =2c.=22222Cccba>0.,>0-即+=cos 3C答案baa,≤?ba例*4.定义新运算=?bab, >?)如1](1) -∞,.(A.(-∞,+∞) B,(1.,+∞) (-∞,1)∪DC.(1 +∞)22xxxx,≤2>2-1,1-??或解析??2xx1<1.2,<1-??x<1.解得B答案的函数是.在下列函数中,最小值等于25)(1xy=.A+xπ1??xxy<0<+=cosB .?x2cos??2x3+.=C2x2+ 4xx-y2+4eD.-=e yx取不解析A中当中<0时不成立,B、C xx-y4ee均错,D正确.+=A到2,因此、B、C xx-,=2-2≥2·4ee-24xx x时,当且仅当e=,即当e=ln2=2,x e取等号.答案 Dyxb所表示的区域恰好使点≤36.不等式+(3,4)不在此区域内,而点(4,4)在此区域内,则b的范围是( )bbb>-5 ≤-8A.-8≤或≤-5 B.bbb≥-58或<-5D.C.-8≤≤-bb,∴-4解析∵4>3×3+≤3×4+,且b<-8≤5.答案 Cmn满足不等实已7.知数,式组 5nm≤4,+2??nm≤2,-?2mxx+则关于-的方程(3nm≤3,+??m≥0,nxmn=0)的两根之和的最大值和最小值分+26别是( )A.7,-4 B.8,-8D..4,-76,-6C zmn,画出可行域,32解析两根之和+=mnzmn=-2时,当=0=1,时,=2,=7当;max z=-4.min答案Aabcaxb成.已知,,,,成等比数列,8acbyc 成等差数列,则+,的值等,等差数列,xy于( )11B. A.24DC..216cba. ==解析用特殊值法,令C答案2,形状为直角三角9.制作一个面积为1 m较形的铁架框,有下列四种长度的铁管供选择,)( 够用、又耗材最少)是经济的(4.8m ..4.6 m BA5.2 mDC.5 m.ba,则m,解析设三角形两直角边长为m22abbCabababa===≥2++,周长2++22+2≈4.828(m).2C答案ba是正数等}是正数等差数列,{10.设{}nn bbaa)则,( =比数列,且=nn1, ++21211baab. A ≥.>B nnnn11++1++1baba C.D.=< nnnn1+11++1+aa+n+112baaab=解析==≥nnn1+112+121+2b.n1+ 7答案 B11.下表给出一个“直角三角形数阵”:1 411,24333,,4816……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第ijaijija,则行第∈列的数为,(≥N*),ij83等于( )11B. A. 481D. 1C.21123解析第1列为,=,,…,所以第84244 88,又每一行都成等比数列且公比1个数为行第411181a=××=为,所以. 8324222答案C xy满足约,束条12.已知变量件xy-1≤0,+???xy-1≤0,-3zxy的最大值为2+则=??xy+1≥0,-)(B.4 .2 ADC.-1.4解析先作出约束条件满足的平面区域,如图所示.9yx=0,经过点由图可知,当直线(1,0)+2zz =2×1+0=时,2.有最大值,此时答案 B二、填空题(本大题共4小题,每小题5分.共20分.把答案填在题中横线上)ABCBCc=1.在△=60°,中,=45°,,13则最短边的边长等于________.BCA=180°-∴=45°,=60°,解析∵BC=75°. -cB sin bb=由正弦定理,得.=∴最短边为C sin 1061×sin45°.=3sin60°6 答案3bABABC的取值范14.锐角△2中,若,则=a__________.围是ABC为锐角三角形,解析∵△π?AB,<0<=2?2?∴∴π?BA,-<0<π-?2π?A,<0<?4?ππ?A.<<?63bBb sinππAA∈.∴=,∴∈().∴=2cos aAa sin64 3)2,.(2,(答案3)11aaaa,数=3,-2015.数列{满足}=nnn11+n nbab(1)=列{(}的通项公式满足关系式·-nnn*b________.,则=∈N)n aaa==,2解析∵,3nn1+1aaq ∴=∴数列{}为等比数列,且公比2.nnn1-.=3·21nn bab=1)·=(-又·∴=(-1).nnn a nn1-. n1-3·2n1-答案n1-3·22mxxx恒4<0时,不等式++16.当∈(1,2)m________成立,则实数.的取值范围是2xxxmxff的图象+(+4,则解析令())=xxf)<0∈(1,2)(要当是开口向上的抛物线,时,mf+4≤0,+11=?解得恒成立,只要?mf+4≤0,22+=4?m≤-5.12m5≤-答案解70分.6个小题,共三、解答题(本大题共答应写出必要的文字说明、证明过程或演算步)骤AU==R已分)知全集,17.(103??2xxx2xBxx1>0++|-,求1>0}|3+-,4={??4??BA.?()∩U2??xx2xAxx<2|-< ,4<0}4-解=={-|3??3??1??xxxB>1|,或<.=??3??12??xxxBA<2,或|-<1<< ∩,=?? 33??12xxxAB或≤,|≤1≤-,(?或∩)={U33x≥2}.CBAABC的对,)18.(12分在△,中,内角aBbbacA.边分别为,,,且sin3=cos 13B (1)求角的大小;cbCAa,,求(2)若=3,sin的值.=2sin BbAa及正弦定理cos解(1)由=sin3baBBB,,=所以,得sintan==3cos3BA sinsinπB.=所以3accAC==(2)由sin=2sin,得及CA sinsin a.2222Bbaaccb,-=及余弦定理32+由cos=22acac.+-得9=ca3.==23所以,2bxfxax1. .19(12分)()=已知函数+-xabf的,使不等式)>0(是否存在实数(1)bxxa的值,解集是{|3<,若存在,求实数<4},若不存在,请说明理由;xbaaf -(2)在且函数,2()(+为整数,若=a2上恰有一个零点,求1),-的值. 142bxax的解集是-1>0+解(1)∵不等式xx|3<,{<4}2bxax和4,1=0的两根是∴方程3-+1?,12=3×4=?a1?ab=,∴=解得12b?7.=+4=3?a7.1212aaxbx+1>0>0时,不等式的而当-=12xxab使,<4},解集不可能是{|3<故不存在实数fxxx<4}.|3<不等式 ({)>0的解集是2xafxaxba1. 2)-∵(2)(=++2,∴(+)=22aaΔa4>0(=,+2)+-4∵=2bxfxax1)=必有两个零点.-+∴函数(xf上恰有一个零点,-2,-又函数1)()在(affa+5)(2(6,--∴(2)·(1)<0∴+ 3)<0, 1553aaa1.,∴∵<-.=-∈解得-Z<62配制两种药剂,需要甲、乙两(12分)20.A53种原料.已知配毫克,乙料种药需要甲料B今4配毫克.种药需要甲料5毫克、乙料毫克;BA两种药,毫克,乙料25毫克,若有甲料20BA、问两种药最多能各配几剂?至少各配一剂,yBxyxA,两种药分别能配,设、剂,解x≥1,??y≥1,?*作出可行域,图∈N,则yx≤20,+53??yx≤25,5+4,(1,3),中阴影部分的整点有(1,1)(1,2),,,,,(2,1)(2,2)(3,1)(3,2)(4,1).16BA两种药至少各配一剂的所以,在保证,BA 剂.条件下,种药最多配种药最多配4剂,3ba+ABC=知.21(12分)在△,中已aB sin CACB.=,且cos(1-cos2)+cos-AB sin-sin ABC 的形状; (1)试确定△ac+(2)求的范围.babB sin+解(1)由=,aBA sin-sinabb+22baab,①-==得,即aba- 17CBCA 1-又cos(,-)+coscos2=2CABBA . +=cos()所以cos(2sin -)-22cabCAB =·sin =sin ②,则sin.222222cababc 所以△+,即.由①②知-==ABC 为直角三角形.ca +bABCac >1.在△(2)>中,+,即b 2222caccacaa ++2+2+≤ 又=22bbb 2abc +22,故的取值范围为(1=,2]. =2bba }是公差不为零的等差数设{.22(12分)n 2222aaanSaS ,列,为其前=项和,满足++n 75234=7.anS ; 项和(1)求数列{}的通项公式及前nn aa mm +1m ,使得为数列试求所有的正整数(2)a m +2a }中的项. {n a }的通项公{(1)解 由题意,设等差数列n18dndaa-,(+(≠0).1)式为=n12222daaaaa=+2,知0.+5由+①=52431dSa1.又因为=7,所以+3②=17da2.,=由①②可得=-51Saan=7,所以数列{}的通项公式=2-nnn ana+n12nn.-6=2aaaa2--4mmmm22+++1a==(2)因为m aa mm a为整数,又}中的项,-6+为数列{故+2+288n2+aa mm22++aam-3=±1,为奇数,所以即=由(1)知2mm22++m=1,2.aa-5×-3mm1+m=1时,==-当a-1m2+15.a}中的项.显然它不是数列{n aa-3×-1·mm1+m=2时,当==a3m3+ 191.a}中的项.{它是数列n m=2.因此,符合题意的正整数只有20。

相关文档
最新文档