冲激响应不变法

合集下载

数字信号处理第四章 模拟滤波器频率变换、冲激响应不变法、双线性变换法

数字信号处理第四章 模拟滤波器频率变换、冲激响应不变法、双线性变换法

4.4 冲激响应不变法
一、基本原理

x(t)
y(t)
取样
取样
x(n) = x(nT)
?
y(n) = y(nT)
?

响应不变
4.4 冲激响应不变法
一、基本原理
其中
取样
其中
另,根据数字系统响应
冲激响应不变原则!
4.4 冲激响应不变法
一、基本原理
模拟滤波器:
(M<N)
部分分式分解
冲激响应不变准则:
数字滤波器:
因此,双线性变换不改变系统稳定性
4.4 双线性变换法
4、频率预畸变
0
高频进行压缩
无混叠,有畸变
频率越高,畸变越大
预畸变
预畸变公式:
根据数字滤波器设计指标,求对应模拟滤波器设计指标时,需预先进行畸变
4.4 双线性变换法
5、双线性变换法设计滤波器步骤
(1)确定数字滤波器技术指标
(Hz表示)
(弧度表示)或
1)带通:计算几何中心
0

,则
代替

,则
代替

,则令
4.2.4 模拟滤波器的频率变换
带通带阻滤波器衰减参数选择
几何对称:
若实际给出的指标不满足几何对称,如何应对?
2)带阻:计算几何中心
0

,则
代替

,则
代替

,则令
固定靠近
的两个值
以让过渡带更窄为选择标准(靠近中心,指标更严)
模拟转数字滤波器
已知一个模拟滤波器H(s),如何得到数字滤波器H(z)?
3)设计归一化低通滤波器,得到传输函数

DSP第5章3-冲激响应不变法

DSP第5章3-冲激响应不变法

1 T
H (z)
ze
sT

k

2 Has j k T
H (z)
ze
sT
ˆ H a (s)
1 T

k

2 Has j k T
2、混迭失真
H (e
j
)
1 T

k

2 k Ha j T
缺点: 频率响应混迭 只适用于限带的低通、带通滤波器

n
u(n )

n N

h( n ) z



n 0 k 1 1

Ak e
N


n
z
n


k 1
Ak e
n0

sk T
z

n

1e
k 1
Ak
sk T
z
1
H a (s)

k 1
N
Ak s sk

H (z)
1 e
k 1
sk T
N
Ak
sk T
z
1
f s
T

T

s 2

混迭
当滤波器的设计指标以数字域频率 c 给定时, 不能通过提高抽样频率来改善混迭现象
fs T

T

, T T
T
c
c
T

3、模拟滤波器的数字化方法
H a ( s ) ha ( t ) ha ( n T ) h ( n ) H ( z )

北京邮电大学数字信号处理习题库选择题附加答案重点

北京邮电大学数字信号处理习题库选择题附加答案重点

13.下列关于冲激响应不变法描述错误的是 ( C A.S 平面的每一个单极点 s=sk 变换到 Z 平面上 z= e skT 处的单极点 B.如果模拟滤波器是因果稳定的,则其数字滤波器也是因果稳定的 C.Ha(s和 H(z的部分分式的系数是相同的 D.S 平面极点与Z 平面极点都有 z= e s kT 的对应关系 14.下面关于 IIR 滤波器设计说法正确的是( C A. 双线性变换法的优点是数字频率和模拟频率成线性关系 B. 冲激响应不变法无频率混叠现象 C. 冲激响应不变法不适合设计高通滤波器 D. 双线性变换法只适合设计低通、带通滤波器 15.以下关于用双线性变换法设计 IIR 滤波器的论述中正确的是( B 。

A.数字频率与模拟频率之间呈线性关系 B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器 C.使用的变换是 s 平面到 z 平面的多值映射 D.不宜用来设计高通和带阻滤波器 16.以下对双线性变换的描述中不正确的是 ( D 。

A.双线性变换是一种非线性变换 B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把 s 平面的左半平面单值映射到 z 平面的单位圆内 D.以上说法都不对17.以下对双线性变换的描述中正确的是 ( B 。

A.双线性变换是一种线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换 C.双线性变换是一种分段线性变换 D.以上说法都不对 18.双线性变换法的最重要优点是:;主要缺点是 A 。

A. 无频率混叠现象;模拟域频率与数字域频率间为非线性关系 B. 无频率混叠现象;二次转换造成较大幅度失真 C. 无频率失真;模拟域频率与数字域频率间为非线性关系 D. 无频率失真;二次转换造成较大幅度失真 19.利用模拟滤波器设计法设计 IIR 数字滤波器的方法是先设计满足相应指标的模拟滤波器,再按某种方法将模拟滤波器转换成数字滤波器。

双线性变换法是一种二次变换方法,即它 C 。

(完整版)数字信号处理习题集(5-7章)

(完整版)数字信号处理习题集(5-7章)

第五章 数字滤波器一、数字滤波器结构填空题:1.FIR 滤波器是否一定为线性相位系统?( ).解:不一定计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。

试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。

解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e )(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj e H 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=作图题:3.有人设计了一只数字滤波器,得到其系统函数为:2112113699.00691.111455.11428.26949.02971.114466.02871.0)(------+-+-++--=z z z z z z z H 2112570.09972.016303.08557.1---+--+z z z请采用并联型结构实现该系统。

合工大数字信号处理习题答案版

合工大数字信号处理习题答案版

合工大《数字信号处理》习题答案第2章习 题2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1))()(0n n x n y -= (3))sin()()(n n x n y ω=解: (1))()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。

由于)()]([0n n x n x T -= 所以是时不变系统。

(3))()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。

)()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。

2.5 给定下述系统的差分方程,试判定系统是否是因果稳定系统,并说明理由。

(1))1()()(++=n x n x n y (3))()(n x e n y =解:(1)该系统是非因果系统,因为n 时刻的输出还和n 时刻以后()1(+n 时间)的输入有关。

如果M n x ≤|)(|,则M n x n x n y 2|)1(||)(||)(|≤++≤,因此系统是稳定系统。

(3)系统是因果系统,因为n 时刻的输出不取决于)(n x 的未来值。

如果M n x ≤|)(|,则M n x n x e e e n y ≤≤≤)|(|)(|||)(|,因此系统是稳定系统。

2.6 以下序列是系统的单位冲激响应)(n h ,试说明该系统是否是因果、稳定的。

(1))(2)(n u n h n= (3))2()(+=n n h δ解:(1)当0<n 时,0)(=n h ,所以系统是因果的。

由于所以系统不稳定。

(3)当0<n 时,0)(≠n h ,所以系统是非因果的。

由于所以系统稳定。

信号分析与处理课后习题答案

信号分析与处理课后习题答案

信号分析与处理课后习题答案第五章 快速傅里叶变换1.如果一台通用计算机的速度为平均每次复乘需要50us ,每次复加需要10us ,用来就散N=1024点的DFT ,问:(1)直接计算需要多少时间?用FFT 计算呢?(2)照这样计算,用FFT 计算快速卷积对信号进行处理是,估计可实现实时处理的信号最高频率? 解:分析:直接利用DFT 计算:复乘次数为N 2,复加次数为N(N-1);利用FFT 计算:复乘次数为20.5log N N ,复加次数为2log N N ;(1) 直接DFT 计算:复乘所需时间2215010245052.4288T N us us s =⨯=⨯=复加所需时间2(1)101024(10241)1010.47552T N N us us s =-⨯=-⨯= 所以总时间1262.90432DFT T T T s =+=FFT 计算:复乘所需时间3220.5log 500.51024log 1024500.256T N N us us s =⨯=⨯⨯⨯= 复加所需时间422log 101024log 1024100.1024T N N us us s =⨯=⨯⨯= 所以总时间为340.3584FFT T T T s =+= (2) 假设计算两个N 长序列1()x n 和2()x n 的卷积计算过程为如下:第一步:求1()X k ,2()X k ;所需时间为2FFT T ⨯第二步:计算12()()()X k X k X k =•,共需要N 次复乘运算所需时间为501024500.0512To N us us s =⨯=⨯=第三步:计算(())IFFT X k ,所需时间为FFT T所以总时间为230.35840.0512 1.1264FFT T T To s s s =⨯+=⨯+= 容许计算信号频率为N/T=911.3Hz2.设x(n)是长度为2N 的有限长实序列,()X k 为x(n)的2N 点得DFT 。

数字信号处理简答题

数字信号处理简答题

数字信号处理简答题一.数字信号处理与模拟信号处理比较1模拟通信的优点是直观且容易实现,但存在两个主要缺点:保密性差;抗干扰能力弱。

2数字通信(1)数字化传输与交换的优点:加强了通信的保密性;提高了抗干扰能力;可构建综合数字通信网(2)数字化通信的缺点:占用频带较宽;技术要求复杂;进行模数转换时会带来量化误差二.利用DFT计算模拟信号可能出现的问题1.频率响应的混叠失真及参数的选择时域抽样:频域抽样:2频谱泄漏,对时域截短,使频谱变窄拖尾,称为泄漏。

改善方法:增加x(n)长度;缓慢截短。

3栅栏效应DFT只计算离散点的频谱而不是连续函数改善方法增加频域抽样点数N(时域补零)使谱线更密4频率分辨率提高频率分辨率的方法:增加信号实际记录长度补零不能提高频率分辨率可克服栅栏效应三按时间抽选与按频率抽选的异同相同之处1DIF与DIT均为原位元算2运算量相同3是两种等价的FFT算法不同1DIF输入是自然顺序输出是倒位序DIT相反2两者根本区别在于蝶形结构不同:DIF的复数乘法出现在减法之后,DIT的复数乘法出现在减法之前四改善DFT的运算效率的基本途径利用DFT运算的系数的固有对称性和周期性,改善DFT的运算效率1分解法:将长序列DFT利用对称性和周期性,分解为短序列DFT2合并法:合并DFT运算中得某些项五.IIR和FIR数字滤波器的特点IIR数字滤波器的特点:1系统的单位抽样乡音h(n)为无限长2系统函数H(z)在有限z平面上有极点存在3存在输出到输入的反馈,递归型结构FIR数字滤波器的特点1系统的单位抽样响应h(n)有限长2系统函数H(z)在IzI>0处收敛,有限Z平面只有零点,全部极点在Z=0处3无输出到输入的反馈,一般为非递归型结构六.冲激响应不变法和双线性不变法优缺点比较1冲激响应不变法优点a. h(n)完全模仿模拟滤波器的单位抽样响应h(t)的时域逼近良好b.保持线性关系:线性相位模拟滤波器转变为线性相位数字滤波器缺点a.频率响应混叠,只适用于带限的低通带通滤波器2 双线性变换法优点a.避免了频率响应的混叠现象缺点a.线性相位模拟滤波器转变为非线性相位滤波器b.要求模拟滤波器的频率响应为分段常数型,不然会产生畸变七几种窗函数的优缺点1矩形窗矩形窗属于时间变量的零次幂窗。

matlab冲激响应不变法设计iir低通滤波器

matlab冲激响应不变法设计iir低通滤波器

一、引言Matlab是一款功能强大的工程仿真软件,多用于信号处理,通信系统,控制系统等方面的研究和应用。

在Matlab中,设计IIR(Infinite Impulse Response)滤波器是很常见的任务,其中冲激响应不变法是一种常用的设计方法,特别是针对所需的低通滤波器。

本文将介绍在Matlab中如何利用冲激响应不变法设计IIR低通滤波器。

二、IIR滤波器简介IIR滤波器是指其冲激响应具有无限长度的滤波器。

与FIR(Finite Impulse Response)滤波器相比,IIR滤波器具有更窄的过渡带和更陡峭的截止带,同时能够用更少的参数来达到相似的性能。

在数字信号处理中,IIR滤波器常常用于对信号进行滤波和增强。

三、冲激响应不变法的基本原理冲激响应不变法是一种通用的IIR滤波器设计方法,其基本原理是将所需的模拟滤波器(一般为巴特沃斯或切比雪夫滤波器)的冲激响应与仿真采样进行一一映射,从而得到对应的数字IIR滤波器的参数。

这样设计得到的数字IIR滤波器的频率响应与模拟滤波器的频率响应基本一致。

四、Matlab中的冲激响应不变法设计IIR滤波器在Matlab中,利用signal processing toolbox中的iirdesign函数可以很方便地实现冲激响应不变法设计IIR滤波器。

下面是一个使用iirdesign函数设计低通滤波器并绘制其频率响应的示例代码:```matlabFs = 1000; 采样频率Fpass = 100; 通带截止频率Fstop = 150; 阻带截止频率Apass = 1; 通带最大衰减Astop = 60; 阻带最小衰减designmethod = 'butter'; 巴特沃斯滤波器[b, a] = iirdesign(Fpass/(Fs/2), Fstop/(Fs/2), Apass, Astop, designmethod);freqz(b, a, 1024, Fs); 绘制滤波器频率响应```上述代码中,首先定义了采样频率Fs,通带和阻带的截止频率Fpass 和Fstop,以及通带最大衰减Apass和阻带最小衰减Astop。

数字信号处理教程-程佩青-课后题答案

数字信号处理教程-程佩青-课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号相等,所以是因果的。

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案6.2 精选例题例 1 设一个LTI 离散系统的初始状态不为零,当激励为)()(1n u n f =时全响应为)(121)(1n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=,当激励为)()(2n u n f -=时全响应为)(121)(2n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=。

(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,求系统的全响应)(3n y 。

(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,求系统的全响应)(4n y 。

(3)求该系统的单位序列响应)(n h 。

解:设系统的初始状态保持不变,当激励为)()(1n u n f =时系统的零输入响应和零状态响应分别为)(n y x 、)(n y f 。

依题意,有:)(121)()()(1n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+= ○1根据LTI 系统的性质,当激励为)()(2n u n f -=时全响应为)(121)(()(2n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-=) ○2联立式○1、○2,可解得:⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(12121)()(2121(1111n u n y n u n y n n f n n x )同样,根据LTI 系统的基本性质,不难得到:(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,系统的全响应为:)(4)()(3n y n y n y f x +=)(121214)(21211111n u n u n n n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(421321511n u n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,系统的全响应为:)2(4)(2)(4-+=n y n y n y f x)2(121214)(21211111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=--++n u n u n n n n(3)由于)1()()(--=n u n u n δ,所以该系统的单位序列响应为:)1()()(--=n y n y n h f f)1(12121)(1212111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++n u n u n n n n 例2 一个LTI 连续系统对激励)(sin )(t tu t f =的零状态响应)(t y f 如例2图所示,求该系统的冲激响应)(t h 。

数字信号处理第六章 习题答案

数字信号处理第六章 习题答案

( )
H ( e jω ) = Ha ( jΩ)
又由 Ω =
ω
T
,则有
5 2 π ΩT + 3, − 2 ΩT + 5 , = π 3 0 2π π − ≤Ω≤ − 3T 3T π 2π ≤ Ω≤ 3T 3T 其他Ω
Ha ( jΩ) = H ( e jω )
ω=ΩT
Ha ( jΩ) = H ( e jω )
各极点满足下式ຫໍສະໝຸດ 1 1+ ( s Ωc )
4
sk = Ωce
π 2k −1 j + π 2 4
k = 12,4 ,3 ,
则 k = 1,2时,所得的 sk 即为 Ha ( s) 的极点
s1 = Ωce s2 = Ωce
3 j π 4
3 2 3 2 =− +j 2 2 3 2 3 2 =− −j 2 2
2
=
1−1.1683z−1 + 0.4241z−2
0.064(1+ 2z−1 + z−2 )
5.试导出二阶巴特沃思低通滤波器的系统函数。 设 Ωc = 3rad s 解:由幅度平方函数: H ( jΩ) =
2
1 1+ ( Ω Ωc )
4
令 Ω2 = −s2,则有
Ha ( s) Ha ( −s) =
∴H ( z ) = Ha ( s) s=1−z−1
1+ z−1
=
1 1− z 1− z 1+ z−1 + 1+ z−1 +1
−1 2 −1
(1+ z ) =
3 + z−2
−1 2

第6章 习题解答

第6章 习题解答

第六章 习题解答(部分)[1]数字滤波器经常以图P6-1描述的方式来处理限带模拟信号,在理想情况下,通过A/D 变换把模拟信号转变为序列)()(nT x n x a =,然后经数字滤波器滤波,再由D/A 变换将)(n y 变换成限带波形)(n y a ,即有∑∞-∞=-⎥⎦⎤⎢⎣⎡-=n a nT t nT t n y t y )(Tπ)(T πsin )()( 这样整个系统可等效成一个线性时不变模拟系统。

如果系统)(n h 的截止角频率是rad 8/π,ms T 01.0=,等效模拟滤波器的截止频率是多少? 设s T μ5=,截止频率又是多少?解:对采样数字系统,数字频率ω与模拟角频率Ω之间满足线性关系T Ω=ω。

因此,当ms T 01.0=时,T T cc 8πω==Ω,Hz T f c c 6251612==Ω=π当s T μ5=时, TT c c 8πω==Ω,Hz T f c c 125001612==Ω=π[2]已知模拟滤波器的系统函数为()22)(b a s bs H a ++=,试用冲激响应不变法将)(s H a 转换为)(z H 。

其中抽样周期为T ,式中a 、b 为常数,且)(s H a 因果稳定。

解:)(s H a 的极点为:jb a s +-=1,jb a s --=1将)(s H a 部分分式展开: )(21)(21)(jb a s j jb a s j s H a +---+---= 所以有1)(1)(121121)(-+------+-=z e j zej z H T jb a Tjb a通分并化简整理得:TT T ez bT e z bTe z z H ααα2211cos 21sin )(------+-= [3]设计一个模拟带通滤波器,要求其幅度特性为单调下降(无波纹),通带带宽s rad B /2002⨯=π,中心频率s rad /10020⨯=Ωπ,通带最大衰减dB p 2=δ,s rad s /80021⨯=Ωπ,s rad s /124022⨯=Ωπ,阻带最小衰减dB s 15=δ。

冲激响应不变法原理

冲激响应不变法原理

冲激响应不变法:信号处理的利器冲激响应不变法(Impulse Response Invariance, IRI)是一种信号处理技术,用于将连续时间信号转换为离散时间信号。

该技术的核心思想是将连续时间系统的冲激响应直接用于离散时间系统,从而快速获得离散时间系统的频率响应。

以下是IRI原理的全面解析和指导。

IRI利用了连续时间系统和离散时间系统的频响本质相同这一重要特性,因此在理论分析和实际应用中取得了广泛应用。

通过将连续时间系统的冲激响应直接用于离散时间系统,IRI可以快速获得离散时间系统的频率响应,从而实现信号处理的高效准确。

IRI技术在数字滤波、频率变换和信号处理等领域广泛应用。

IRI 的特点是具有很高的准确性和实时性,同时可以大大简化数字信号处理的步骤,提高系统运行效率和可靠性。

这些优点使得IRI成为当今最为流行的信号处理技术之一。

综上所述,IRI技术具有广泛的应用前景和实用价值。

在现代信号处理和控制系统中,IRI技术已经成为不可或缺的工具和技术。

因此,进一步研究和应用IRI技术,将有助于提高数字信号处理的效率和精度,推动科技进步和社会发展。

冲激响应不变法

冲激响应不变法

冲激响应不变法
1 冲激响应不变法
冲激响应不变法是一种有效的生物学调控技术,它利用植物叶片
或细胞之间的低浓度挥发性信号物质进行反馈来调控植物抗逆性。


种技术运用了分子生态学和分子植物学的材料,将植物的反应联系起来,使植物的内部生态系统与外界的环境条件得到空间和时间上的连
贯和可控的调控,以改善和提高植物的抗旱性和抗逆性,从而达到节
水灌溉的目的。

2 冲激响应不变技术的发展
目前,冲激响应不变技术已成为生物学调控技术的重要组成部分。

研究表明,冲激响应不变技术可以有效提高植物耐旱性和耐逆性,从
而达到节水灌溉的目的。

近年来,各类影响因子的抗性调控研究、非破坏性生物敏感元件
技术的开发以及叶片采集法等技术的应用,让冲激响应不变技术获得
快速发展,形成了一个新的研究领域,极大地拓宽了农业水利研究的
新境界。

3 冲激响应不变技术的应用
冲激响应不变技术在园林景观和农业工程中有着广泛的应用前景。

已有报道表明,冲激响应不变技术可以用于植物低温耐受能力的改善,并可应用于低温环境下的水稻高抗性育种;可以用于植物耐旱性的改
善,可应用于半干旱环境的草莓早熟品种研究;还可以用于驯化植物,如绿化植物、观赏植物、森林植物等。

另外,冲激响应不变技术还可
用于土壤反应的测定,特别适用于污染土壤的土壤改良技术;也可以
用于调控植物生理和生化过程,以改变植物表型,如植物形态、穗袋
形成量、形态特征等。

总之,冲激响应不变法是一种有效的植物生物学调控技术,具有
广阔的应用前景,其发展将对农业技术有深远的影响。

冲激不变变换法原理与设计

冲激不变变换法原理与设计
4
利用冲激响应不变法或双线性变换法将 转换成 。
数字切比雪夫滤波器的设计步骤
设计实例1
设计实例1
设计实例1
设计实例2
设计实例2
设计实例2
设计实例2
Butter12.m
总结
核心内容:数字低通滤波器的设计方法:冲激不变原理展开: 1.Butterworth数字低通滤波器设计 2.Chebyshev-I数字低通滤波器设计
提问?
谢谢!
汇报人姓名
(3) 滤波器阶数N的确定切比雪夫滤波器的阶数N是由阻带允许的衰减确定的。设在阻带截止频率 s处的允许衰减为 ,即由此得到计算滤波器阶数N的公式
1
根据数字滤波器的指标确定参数 、 和N。
2
计算常量 、 和 ,并求出极点 。
3
由s平面左半平面的极点构成传递函数 。
设计低通数字滤波器利用模拟滤波器的设计理论来设计IIR数字滤波器就是首先根据实际要求设计一个模拟滤波器,然后再将模拟滤波器转换成数字滤波器。
本节内容
冲激不变变换原理
设计过程中要注意的问题
设计实例
巴特沃兹/切比雪夫低通数字滤波器设计
原理: 冲激响应不变法遵循的准则是:使数字滤波器的单位取样响应与所参照的模拟滤波器的冲激响应的取样值完全一样,即
4.4.3 数字巴特沃斯滤波器
为角频率,在 处幅度响应的平方为0.5,N为滤波器的阶数。当时幅度响应为1。
巴特沃斯滤波器的幅度响应在通带内具有最平坦的特性,且在通带和阻带内幅度特性是单调变化的。
上图可以看出,随着N的增大,幅度响应曲线在截止频率附近变得越来越陡峭,即在通带内有更大部分的幅度接近于1 ,在阻带内以更快的速度下降至零。
设计数字巴特沃斯滤波器的步骤如下:

第六章 冲激响应不变法

第六章 冲激响应不变法
* 0 1 1
其中:H1(z)为最小相位延时系统,
* 1/ z0,1/z0 , z0 1为单位圆外的一对共轭零点
* 1 1 1 z z 1 z z * 0 0 H ( z ) H1 ( z ) z 1 z0 z 1 z0 1 z* z 1 1 z z 1 0 0 1 1 * z z z z * 1 0 0 H1 ( z ) 1 z0 z 1 z0 z 1 * 1 1 z0 z 1 z0 z 1
n 0
N 1
2
hmin (n )
n 0
N 1
2
3)最小相位序列的 hmin (0) 最大:hmin (0) h(0)
4)在 H (e j ) 相同的系统中,hmin (n) 唯一
5)级联一个全通系统,可以将一最小相位系统 转变成一相同幅度响应的非最小相位延时系统
三、全通系统
对所有,满足: H ap (e ) 1 称该系统为全通系统
1/ a*
H(z)的极点:单位圆内的极点
0
a
a
*
Re[ z ]
a 1
相位响应
H (e ) H (e ) e
j
j
j ( e j )
j j Re H ( e ) j Im H ( e )
j Im[ H ( e )] j 相位响应: (e ) arctan j Re[ H (e )]
N H (e j ) M j j arg arg[ e c ] arg[ e d k ] ( N M ) m k 1 K m1
当 0 2 ,
2
j Im[ z ]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N H (e j ) M j j arg arg[ e c ] arg[ e d k ] ( N M ) m k 1 K m1
令: 单位圆内零点数为mi 单位圆外的零点数为mo
mi mo M pi po N
0
a
a
*
Re[ z ]
a 1
相位响应
H (e ) H (e ) e
j
j
j ( e j )
j j Re H ( e ) j Im H ( e )
j Im[ H ( e )] j 相位响应: (e ) arctan j Re[ H (e )]
幅度平方响应
H (e ) H (e ) H (e )
*
j
2
j
j
H (e ) H (e
j
j
) H ( z)H ( z )
1
z e j
H ( z ) H ( z 1 ) 的极点既是共轭的,又是以单位 圆成镜像对称的 j Im[ z ]
1/ a*
H(z)的极点:单位圆内的极点
n 0
N 1
2、数字滤波器的设计过程
按设计任务,确定滤波器性能要求,制定技术
指标
用一个因果稳定的离散LSI系统的系统函数H(z)
逼近此性能指标
利用有限精度算法实现此系统函数:如运算结
构、字长的选择等
实际技术实现:软件法、硬件法或DSP芯片法
3、数字滤波器的技术要求
选频滤波器的频率响应:
H * (e j ) H (e j ) e j ( e
j
)
H (e j ) 2 j ( e j ) e * j H (e )
j 1 H ( e ) 1 H ( z) j (e ) ln * j ln 1 2 j H (e ) 2 j H ( z ) z e j
j ( e cm )
M
j ( e dk )
H (e ) e
j
j arg[ H ( e j )]
模:
H (e j ) K
j e cm
M
e
k 1
m 1 N
j
dk
各零矢量模的连乘积 各极矢量模的连乘积
相角:
N H (e j ) M j j arg arg[ e c ] arg[ e d k ]本章作业练习
P319:
1 3
第六章 IIR数字滤波器的设计方法
数字滤波器: 是指输入输出均为数字信号,通过一定运算 关系改变输入信号所含频率成分的相对比例或者 滤除某些频率成分的器件。
优点: 高精度、稳定、体积小、重量轻、灵活,不要求 阻抗匹配,可实现特殊滤波功能
*一、数字滤波器的基本概念
1、数字滤波器的分类
经典滤波器: 选频滤波器 现代滤波器: 维纳滤波器 卡尔曼滤波器
自适应滤波器等
按功能分:低通、高通、带通、带阻、全通滤波器
按实现的网络结构或单位抽样响应分: IIR滤波器(N阶)
H ( z)
k b z k
M
1 ak z k
k 1
k 0 N
FIR滤波器(N-1阶)
H ( z ) h( n) z n
H (e ) H (e ) e
j
j
j ( j )
H (e j ) 为幅频特性:表示信号通过该滤波器后 各频率成分的衰减情况
( j ) 为相频特性:反映各频率成分通过滤波器
后在时间上的延时情况
理想滤波器不可实现,只能以实际滤波器逼近
通带: 阻带:
c
1 1 H (e ) 1 H (e j ) 2
N H (e j ) M j j arg arg[ e c ] arg[ e d k ] ( N M ) m k 1 K m1
当 0 2 ,
2
j Im[ z ]
0
Re[ z ]
位于单位圆内的零/极矢量角度变化为 2 位于单位圆外的零/极矢量角度变化为 0
H (e j )
群延迟响应
相位对角频率的导数的负值
j d ( e ) j (e ) d
dH ( z ) 1 Re z j dz H ( z ) z e
j ( e ) = 常数, 若滤波器通带内
则为线性相位滤波器
5、IIR数字滤波器的设计方法
k b z k M
用一因果稳定的离散LSI系统逼近给定的性能要求:
H ( z)
1 ak z k
k 1
k 0 N
即为求滤波器的各系数:ak , bk
s平面逼近:模拟滤波器 z平面逼近:数字滤波器
先设计模拟滤波器,再转换为数字滤波器 计算机辅助设计法
☆二、最小与最大相位延时系统、最 小 与最大相位超前系统
2 20lg
H (e j 0 ) H (e jst )
j0
20lg H (e jst ) 20lg 2
其中: H (e ) 1
jc H ( e ) 2 / 2 0.707 时, 1 3dB 当 称 c 为3dB通带截止频率
4、表征滤波器频率响应的特征参量
j
st
过渡带: c st
c :通带截止频率
st :阻带截止频率
1 :通带容限 2 :阻带容限
通带最大衰减:1
1 20lg
H (e j 0 ) H (e jc )
20lg H (e jc ) 20lg(1 1 )
阻带最小衰减: 2
LSI系统的系统函数:
1 (1 c z m ) 1 (1 d z k ) k 1 m 1 N M
H ( z) K
Kz ( N M )
(z c
m 1 N k 1
M
m
)
(z d )
k
频率响应:
H (e ) Ke
j
j ( N M ) m 1 N k 1
相关文档
最新文档