钢柱 轴心受力构件()解析
轴心受力构件
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
钢结构设计原理 第四章-轴心受力构件
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
钢结构轴心受力构件计算
钢结构轴心受力构件计算3.1 轴心受力构件概述在钢结构中,轴心受力构件的应用十分广泛,如桁架、塔架和网架、网壳等杆件体系。
这类结构的节点通常假设为铰接,当无节间荷载作用时,杆件只受轴向力(轴向拉力或轴向压力)的作用,称为轴心受力构件(轴心受拉构件或轴心受压构件)。
图3-1所示为轴心受力构件在工程上应用的一些实例。
图3-1 轴心受力构件在工程中的应用(a)桁架;(b)塔架;(c)网架轴心受力构件常用的截面形式可分为实腹式和格构式两大类。
(1)实腹式构件制作简单,与其他构件的连接也比较方便,常用的截面形式很多,可直接选用轧制型钢截面,如圆钢、钢管、角钢、工字钢、H 型钢、T 型钢等[图3-2(a)];也可选用由型钢或钢板组成的组合截面[图3-2(b)];在轻型结构中则可采用冷弯薄壁型钢截面[图3-2(c)]。
以上这些截面中,截面紧凑(如圆钢)或对两主轴刚度相差悬殊者(如单槽钢、工字钢),一般适用于轴心受拉构件,而受压构件通常采用较为开展、组成板件宽而薄的截面。
(2)格构式构件[图3-2(d)]容易使压杆实现两主轴方向的稳定性。
这种构件的刚度大、抗扭性好,用料较省。
格构式截面一般由两个或多个型钢肢件组成,肢件之间采用缀条或缀板连成整体,缀条和缀板统称为缀材。
图3-2 轴心受力杆件的截面形式(a)轧制型钢截面;(b)焊接实腹式组合截面;(c)冷弯薄壁型钢截面;(d)格构式截面3.2 轴心受力构件的强度及刚度轴心受拉构件的设计除根据结构用途、构件受力大小和材料供应情况选用合理的截面形式外,还要对所选截面进行强度和刚度验算。
强度要求就是使构件截面上的最大正应力不超过钢材的强度设计值,刚度要求就是使构件的长细比不超过容许长细比。
轴心受压构件在设计时,除使所选截面满足强度和刚度要求外,还应使其满足构件整体稳定性和局部稳定性的要求。
整体稳定性要求是使构件在设计荷载作用下不致发生屈曲而丧失承载能力;局部稳定性要求一般是使组成构件的板件宽厚比不超过规定限值,以保证板件不会屈曲,或者使格构式构件的分肢不发生屈曲。
钢结构第四章轴心受力构件
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:
钢结构原理-第4章轴心受力构件
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
84-第4章 轴心受力构件
根据概率极限状态设计法,取设计值(标准值乘以荷载分项系数),也去设计值(除以抗力分项系数)即,钢材设计强度见附表1.1,P313。表达式为
(4.1)
为轴心受力构件的净截面面积。在螺栓连接轴心受力构件中,需要特别注意。
(3) 必须考虑结构和构件的初始缺陷。几何缺陷(杆件的切始弯曲、初始偏心、结构形体的偏差以及板件的初始不平整度)和力学缺陷(初始应力和力学参数(如弹性模量、强度极限等)的不均匀性)。
稳定性分析方法
稳定性分析方法
平衡法、能量法、动力法
稳定性近似分析方法
能量守恒原理(Timoshenko能量法):
(d)
代入第一个边界条件(x=0时y=0),得B=0,且
(e)
将第二个边界条件(x=l时y=0)代入上式,得
(f)
4.4.2.2初始缺陷对轴心压杆稳定的影响
实际轴压杆件都是存在各种缺陷的,包括力学缺陷(残余应力、材料不均匀等)和几何缺陷(初弯曲、荷载初偏心等)。对压杆弯曲失稳影响最大的缺陷有:残余应力(纵向)、初弯曲、荷载初偏心。
(1) 残余应力的影响
> 残余应力的类型有四种:焊接、热轧、火焰切割、冷加工。
第二种为考虑大位移但转角仍在小变形范围。钢框架既考虑构件又考虑结构整体失稳的稳定分析时可采用这一方法。
第三种为考虑大位移和大转角的非线性分析。网壳结构的稳定、板件考虑屈曲后强度的稳定以及构件考虑整体与局部相关稳定时的分析应采用这一方法。
稳定分析就是二阶分析,但二阶分析并非仅限于稳定分析。在结构的变形对内力的影响不可忽视时(如大多数的悬索结构),都必须采用二阶分析。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a)中的工字钢、H型钢、槽钢、角钢、T型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b)中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c)所示的实腹式组合截面和图4-1(d) 所示的格构式组合截面。
钢结构第五章_轴心受力构件详解
得欧拉临界力和临界应力:
Ncr
NE
2 EI l2
2 EA
2
cr
E
2E 2
(4 7) (4 8)
上式中,假定材料满足虎克定律,E为常量,因此当
截面应力超过钢材的比例极限 fp 后,欧拉临界力公式不 再适用。
第五章 钢柱与钢压杆
3、初始缺陷、加工条件和截面形式对压杆稳定都有影响
初
力学缺陷:残余应力、材料不均匀等
钢结构中理想的轴心受压构件的失稳,也叫发生屈 曲。理想的轴心受压构件有三种屈曲形式,即:弯曲屈 曲,扭转屈曲,弯扭屈曲。
第五章 钢柱与钢压杆
(1)弯曲屈曲——只发生弯曲变形,截面只绕一个 主轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常 见的失稳形式。
图14
第五章 钢柱与钢压杆
图15整体弯曲屈曲实例
图1桁架
第五章 钢柱与钢压杆
图2 网架
图3 塔架
第五章 钢柱与钢压杆
图4 临时天桥
第五章 钢柱与钢压杆
图5 固定天桥
第五章 钢柱与钢压杆
图6 脚手架
第五章 钢柱与钢压杆
图7 桥
第五章 钢柱与钢压杆
5.1.2 轴心受力构件类型 轴心受力构件包括轴心受压杆和轴心受拉杆。 轴心受拉 :桁架、拉杆、网架、塔架(二力杆) 轴心受压 :桁架压杆、工作平台柱、各种结构柱
第五章 钢柱与钢压杆
5.1钢柱与钢压杆的应用和构造形式
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用。
掌握计算内容
第五章 钢柱与钢压杆
5.1.1 轴心受力构件的应用
中南大学《钢结构原理》课件第五章 轴心受力构件
y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。
前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec
2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件
钢结构设计原理4轴心受力构件
轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt
钢结构基本原理第五章轴心受力构件
y
缀板柱
x
y (实轴)
l01 =l1
柱肢
l0 l 1
格构式柱
缀条柱
实腹式截面
格构式截面
5.1.4 轴心受力构件的计算内容 轴 心 受 力 构 件 强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 轴心受压构件 稳定 刚度 (正常使用极限状态)
第5.2节 轴心受力构件的设计 本节目录
I
并列布置
II I N
An
II I
错列布置
例: 一块—400×20的钢板用两块拼接板—400×12进 行拼接.螺栓孔径为22mm,排列如图所示钢板轴心受拉, N=1350 kN(设计值)。钢材为Q235钢,解答下列问题: (1)钢板1—1截面的强度够否? (2)假定N力在13个螺栓中平均分配,2—2截面应如何验算? (3)拼接板的强度是否足够?
I N
I
截面无削弱
N —轴心力设计值; A—构件的毛截面面积; f —钢材抗拉或抗压强度设计值。
截面有削弱
计算准则:轴心受力构件以截面上的平均应
力达到钢材的屈服强度。
N
s0
sm = s0
ax
N
N
N
I N
3
fy
(a)弹性状态应力
有孔洞拉杆的截面应力分布
(b)极限状态应力
I
截面有削弱
计算准则:轴心受力构件以截面上的平均应
第5.1节
5.1.1 轴心受力构件类型
概述
概念 轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。 轴心受力构件包括: 轴心受拉构件和轴心受压构件
轴心受拉 :桁架、拉杆、网架、塔架(二力杆)
《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件
Suzhou University of Science & Technology
y
x
x
绕对称轴y轴: 一般为弯扭屈曲,其临界力低
y
于弯曲屈曲,以换算长细比λyz代替λy
1
yz
1 2
2y
2z
2y 2z 2 4 1 e02
i02
2y 2z
2
2021/8/30
19
第5章 轴心受力构件
3. 初偏心的影响
Suzhou University of Science & Technology
由于构造、杆件截面尺寸、加工、安装等原因,作用于杆端的 轴心压力实际上不可避免的会偏离截面的形心而造成初偏心。
2021/8/30
20
第5章 轴心受力构件
4. 杆端约束的影响
Suzhou University of Science & Technology
四边简支板单向均匀受压时的临界力为:
σ cr
χkπ 2 12(1
E υ2
)(
t b
)2
四边简支单向均匀受压薄板的屈曲
式中:k 屈曲系数,k mb
a
2
a mb
v 0.3 —材料的泊松比
χ — 嵌固系数或弹性约束系数,大于1.0
2021/8/30
31
第5章 轴心受力构件
箱形截面:
h0
tw
Suzhou University of Science & Technology
(c)
tw
b0 tw
(d)
D
tt
b0 /t或h0 /tw 40 235 /f y
结构力学教案中的轴心受力解析学生如何分析轴心受力构件的应力和变形
结构力学教案中的轴心受力解析学生如何分析轴心受力构件的应力和变形结构力学教案中的轴心受力解析结构力学是工程学的基础课程,其中涉及到轴心受力的分析。
轴心受力是指在结构构件上作用的沿轴心方向的力,它对于结构的应力和变形分析非常关键。
下面将介绍学生如何分析轴心受力构件的应力和变形。
一、概述轴心受力构件通常由拉力或压力引起变形,其应力和变形分析可以通过应力—应变关系和约束条件来解决。
以下将分别介绍应力—应变关系和约束条件的原理及应用。
二、应力—应变关系轴心受力构件的应力—应变关系可用胡克定律来描述,即应力等于杨氏模量与应变的乘积。
σ = Eε其中,σ为轴心受力构件的应力,E为杨氏模量,ε为应变。
根据这个方程,我们可以根据已知的应力和杨氏模量来计算应变。
三、约束条件在分析轴心受力构件的应力和变形时,需要考虑到约束条件。
约束条件通常通过位移约束、应力约束和变形约束来定义。
以下将介绍这些约束条件的原理及应用。
1. 位移约束位移约束是指轴心受力构件端点的位移被限制在某个范围内,可以是水平方向、垂直方向或轴向。
位移约束主要通过平衡方程来解决,即构件内外力的合力为零,从而确定位移约束条件。
2. 应力约束应力约束是指轴心受力构件在某些位置需要满足特定的应力条件,例如应力连续性要求。
应力约束可通过应力平衡方程来解决,即构件各截面上的应力之和为零。
3. 变形约束变形约束是指轴心受力构件在某些位置需要满足特定的变形条件,例如位移连续性要求。
变形约束可通过变形平衡方程来解决,即构件各截面上的变形之和为零。
四、应力和变形分析方法分析轴心受力构件的应力和变形通常可以采用静力平衡和材料力学的基本原理。
根据这些原理,可以采用以下两种方法进行分析。
1. 静力平衡法静力平衡法是一种通过考虑构件上的力平衡来解决应力和变形的分析方法。
通过应用平衡方程,可以得到轴心受力构件的内力分布和相应的应力和变形。
2. 受力方程法受力方程法是一种通过考虑构件上的力方程来解决应力和变形的分析方法。
钢结构基础第六章 轴心受力构件
杆长中点总挠度为:
v0 m 0 1 N NE
根据上式,可得理想无 限弹性体的压力挠度曲 线如右图所示。实际压 杆并非无限弹性体,当
具有初弯曲压杆的压力挠度曲线
N达到某值时,在N和N∙v的共同作用下,截面边缘开始屈
服,进入弹塑性阶段,其压力—挠度曲线如虚线所示。
第六章 轴心受力构件
便于和相邻的构件连接
截面开展而壁厚较薄
第六章 轴心受力构件
6.2 轴心受拉构件的受力性能和计算
承载极限: 截面平均应力达到fu ,但缺少安全储备
毛截面平均应力达fy ,结构变形过大
计算准则:
毛截面平均应力不超过fy
钢材的应力应变关系
第六章 轴心受力构件
应力集中现象
孔洞处截面应力分布
应用:主要承重结构、平台、支柱、支撑等 截面形式 热轧型钢截面
热轧型钢截面
第六章 轴心受力构件
冷弯薄壁型钢截面
冷弯薄壁型钢截面
第六章 轴心受力构件
型钢和钢板的组合截面
实腹式组合截面
格构式组合截面
第六章 轴心受力构件
对截面形式的要求 能提供强度所需要的截面积 制作比较简便
1数值积分法2有限单元法6324稳定极限承载能力第六章轴心受力构件稳定问题的相关性6325稳定问题的多样性整体性和相关性第六章轴心受力构件64理想轴心受压构件的整体稳定性不考虑构件初弯曲初偏心对轴心受压构件整体稳定性的影响不考虑焊接残余应力对轴心受压构件整体稳定性的影响第六章轴心受力构件641理想轴心受压构件的整体稳定弯曲屈曲轴心受压柱的实际承载力实际轴心受压柱不可避免地存在几何缺陷和残余应力同时柱的材料还可能不均匀
μ—计算长度系数。
第五章轴心受压钢柱
以双肢缀条柱为例,其换算长细比计算如下:
设一个节间两侧斜缀条面积之和为A1;节间长度为l1 单位剪力作用下斜缀条长度及其内力为:
V
ld
l1
cos
1
N d sin
V
a V=1 b △ b’
α γ1
γ1
c
d
V=1
因此,斜缀条的轴向变形为:
d
Nd EA1
ld
l1
EA1 sin cos
假设变形和剪切角有限微小,故水平变形为:
横向加劲肋
造选定焊脚尺寸即可。
bs
二、格构式构件的设计----稳定性
(1)对实轴(y-y轴)的整体稳定
因 1 很小,因此可以忽略剪切变形,λo=λy,
其弹性屈曲时的临界应力为:
y 实轴
x
x
虚
轴
y
则稳定cr计y 算 :π2yE2
N f
yA
y 由 y并按相应的截面分类查得。
对实轴的整体稳定性考虑,与实腹式构件完全相同
2.轴心受压杆件的弹性弯曲屈曲
N
N
A 稳 定 平F 衡 状 态
B 随 遇 平F 衡 状 态
l
N
N
Ncr Ncr C 临 界 状F 态
Ncr
下面推导临界力Ncr
设M作用下引起的变形为y1,剪力作用下引起的变形 为y2,总变形y=y1+y2。
由材料力学知:
d 2 y1 M
dx 2
EI
剪力V产生的轴线转角为:
轴心受力构件
强度 (承载能力极限状态) 稳定 刚度 (正常使用极限状态)
一、强度计算(承载能力极限状态)
N f
An
N—轴心压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
钢柱结构的稳定性分析
钢柱结构的稳定性分析在钢构件的设计中,轴心受力构件和拉弯、压弯构件是重要的两种类型。
其中,轴心受拉构件和拉弯构件只需验算其强度和刚度;而轴心受压构件和压弯构件除验算其强度和刚度外,还需验算其稳定性。
局部稳定一般利用掌握板件的宽厚比保证,而整体稳定的计算状况比较多,是重点也是难点。
笔者对整体稳定的验算状况整理如下:关于长细比关于钢柱的整体稳定验算,首要问题是计算其长细比。
对于长细比的把握,主要从以下三方面入手:容许长细比:受压可参考钢标7.4.6条、受拉可参考钢标7.4.7条。
长细比计算:实腹式双轴对称截面长细比和单轴对称截面换算长细比可参考钢标7.2.2条、格构式绕实轴的长细比和绕虚轴的换算长细比可参考钢标7.2.3条。
计算长度:桁架和塔架杆件可参考钢标7.4.1~7.4.5条、框架柱可参考钢标8.3.1~8.3.5条。
轴心受压构件轴心受压构件的设计一般使两个方向具有等稳定性,当两个方向的长细比相差较大时,可在较大长细比方向设置侧向支撑。
一般需验算两个主轴方向的稳定性。
实腹式:绕强轴和绕弱轴,计算两个方向的稳定系数,采纳较小的稳定系数。
格构式:绕实轴和绕虚轴,计算两个方向的稳定系数,采纳较小的稳定系数。
对于格构式构件,为了保证分肢的稳定性,尚应掌握分肢长细比,可参考钢标7.2.4~7.2.6条。
压弯构件压弯构件的验算状况是最多的,可从四个方面把握:分别是实腹式、格构式,单向受弯、双向受弯,绕实轴、绕虚轴(或绕强轴、绕弱轴),平面内、平面外。
无论哪种状况,均需验算平面内稳定和平面外稳定,所以依据前三个方面的排列共8种状况。
实腹式构件单向受弯,无论绕强轴或是绕弱轴,计算状况是一样的,只需替换相应方向的参数即可,可削减一种情。
实腹式构件和格构式构件双向受弯时,两个方向都有弯矩,不再区分绕哪个方向,可削减两种状况。
所以,8种状况削减为5种,分别如下:实腹式单向压弯(一般绕强轴)构件平面内、平面外稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 管 径,
t 壁 厚,
fy 屈服强度
小结:实腹式轴心受压构件
强度
N An
f
fy
R
N A f
高强度螺栓摩擦 型连接:
N ' An 1 0.5 n1 稳定性
N f
A
小结:实腹式轴心受压构件
局部稳定性
轴心受压 翼缘局稳
工字型 b t
10 0.1
15 0.2
w
235 fy
焊接T型钢:h0 tw 13 0.17
235 fy
5 实腹式轴心受压构件的截面设计
5.1 设计原则:
截面形式为双轴对称的型钢截面和实腹式组合截面。 为取得合理而经济的效果,设计时可按以下原则:
(1)等稳定性──使杆件在两个主轴方向的稳定承载 力相同,以充分发挥其承载能力。尽可能使两方向的
①净截面强度 N ' An 1 0.5n1 n N An f
n—连接一侧的高强螺栓总数; n1—计算截面处(最外列螺栓)的高强螺栓数。
②毛截面强度 N A f
2 轴心受力构件的强度和刚度
2.2轴心受拉构件和轴心受压构件的刚度 刚度计算公式:λ ≤ [λ]
λ-构件最不利方向的长细比, 为两主轴方向长细比的最大值:
1 概述
2 轴心受力构件的强度和刚度
2.1 轴心受拉构件和轴心受压构件的强度
强度计算公式:
N An
f
fy
R
式中: N-轴心拉力或轴心压力
An-构件的净截面面积 f-钢材的抗拉或抗压强度设计值
f fy R
R —抗力分项系数
2 轴心受力构件的强度和刚度
2.1 轴心受拉构件和轴心受压构件的强度 摩擦型高强螺栓连接的构件作下两项强度验算:
1)弯曲屈曲的临界应力
(1)弹性弯曲屈曲的临界应力—欧拉公式
E
Ncr A
π 2 EI l2A
π2E
2
cr
条件: cr p
y
(2)弹塑性弯曲屈曲的临界应力 Ay B
p
cr
Ncr A
π2Et I l2A
π 2 Et
2
p C
D
E
式中Et为切线模量。
条件: p cr y
AB段: 强度破坏 BCDE段:稳定破坏
2)扭转屈曲的临界应力
z
π2E
2z
3)弯扭屈曲的临界应力
yz
π2E
2 yz
3 轴心受压构件整体稳定计算
3.2 实际轴心受压构件的极限承载力
考虑因素 1、截面的残余应力影响:柱的抗弯刚度降低 2、压杆的初弯曲影响:对中长杆的影响大 3、压杆的初偏心影响:对短杆有影响
3 轴心受压构件整体稳定计算
100,取 100
b 翼缘板自由外伸宽度
t 翼缘板厚度
对 双 腹 壁 箱 形 截 面b: 0 t
40
235 fy
4 实腹式轴心受压构件的局部稳定计算
一、翼缘自由外伸宽厚比的限值
《规范》采用
T型截面
b t
10 0.1
235 fy
构件两方向长细比较大 值
30取 30,
100,取 100
l0 i
l
-相应方向的构件计算长度,
0
l
0
=μl,μ为计
算长度系数;
i-相应方向的截面回转半径,
i
I A
[λ]-受拉构件或受压构件的容许长细比。
3 轴心受压构件整体稳定计算
3.1 理想轴心受压构件的屈曲临界力
屈曲变形类型
弯曲屈曲: 双轴对称(工字形) 扭转屈曲: 双轴对称(十字形) 弯扭屈曲: 单轴对称(T字形)
12 1
2
t
2
b
f y
3)局部稳定验算方法(保证措施): 限制板件宽厚比,见下页表。
4 实腹式轴心受压构件的局部稳定计算
一、翼缘自由外伸宽厚比的限值
轴心压杆:一般在弹塑性阶段工作,按等稳准则得
《规范》采用
工字型截面受压翼缘
b t
10 0.1
235 fy
构件两方向长细比较大 值
30取 30,
235 fy
对 双 腹 壁 箱 形 截 面b: 0 t
40
235 fy
T型截面 b t
10 0.1
235 fy
小结:实腹式轴心受压构件
局部稳定性
轴心受压 腹板局稳
工字形截面h:0 t
25 0.5
w
235 fy
对 双 腹 壁 箱 形 截 面 :h0 tw 40
235 fy
对T形截面:
热轧部分 T型钢:h0 t
3.2 实际轴心受压构件的极限承载力
将轴心压杆按具有残余应力,初弯曲和初偏心等缺
陷的小偏心压杆,考虑杆端约束条件。
计算公式
N cr cr f y
A R
fy R
N f
A
f
屈曲类型:与构件截面类型、尺寸、钢材级别、长细比情况决定
3.2 实际轴心受压构件的极限承载力
1、截面的残余应力影响:柱的抗弯刚度降低
(截面类型a、b、c 、d) a类抗稳能力最强,然后依次递减
2、压杆的初弯曲影响:对中长杆的影响大
3、压杆的初偏心影响:对短杆有影响
(长细比=l0/i)
4、杆端约束的影响:采用计算长度系数μ把两端有约束
的 杆转化为等效的两端铰接的杆
(l0=ul)
确定方法:采用有限元概念,根据内外力平衡条件, 用数值分析方法模拟计算列表给出。
3.2 实际轴心受压构件的极限承载力
N f
A
:与构件截面类型、尺寸、钢材级别、长细比情况决定
取截面两主轴稳定性系 数较小者
例题分析
4 实腹式轴心受压构件的局部稳定计算
1)局部稳定临界应力表达式
cr
kπ2 E 12 1
2
t 2 b
2)局部稳定验算原则: 不先于整体稳定破坏,即
kπ2E
b 翼缘板自由外伸宽度
t 翼缘板厚度
二、腹板宽厚比的限值
对工字形截面:h0 t
25 0.5
w
235 fy
以上 取两方向较大者
30取 30, 100,取 100
对双腹壁箱形截面:h0 tw 40
235 fy
与无 关 , 定 值 偏 于 安 全 ,
b
b0
b
4 实腹式轴心受压构件的局部稳定计算
临时天桥
轴心受力构件
1 概述 2 轴心受力构件的强度和刚度 3 轴心受压构件整体稳定计算 4 实腹式轴心受压构件的局部稳定计算 5 实腹式轴心压杆的截面设计 6 格构式轴心受压构件的截面设计
截面型式
1 概述
热扎型钢
截面型式
1 概述
冷弯薄壁型钢
型钢或钢板组合截面
截面型式
格 构 式 组 合 截 面
二、腹板宽厚比的限值
对T形截面:
热轧部分 T型钢:h0 t
15 0.2
w
235 fy
焊接T型钢:h0 tw 13 0.17
235 fy
以上 取两方向较大者
b
b0
30取 30, 100,取 100
b
4 实腹式轴心受压构件的局部稳定计算
三、圆管的径厚比
D t
100(235 f y )