解一元一次方程1)

合集下载

解一元一次方程(去括号)

解一元一次方程(去括号)

知识回顾
1、 解方程 9-3x=-5x+5
解:移项,得
移项要变号
3x 5 x 5 9 合并同类项,得 2 x 4
系数化为1,得
x 2
2、去括号 ① 32 y 5 ② 3x 2 y
3x 2 y ③ (3x 5) 3x 5 ④ 21 3ab 2 6ab
解:去括号,得3 0.4x 2 0.2x 去括号,得3-0.4x-2=0.2x 移项,得 0.4x 0.2x 3 2
移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1
合并同类项,得
系数化为1,得
0.2 x 5
x 25
5 系数化为1,得x 3
解一元一次方程的一般步骤
变形名称 注 意 事 项
去 括 号 移项 合并同类项 系数化为1
注意符号,防止漏乘;
移项要变号,防止漏项; 计算要准确,防止合并出错; 分子、分母不要颠倒了;
思考:下列变形对吗?若不对,请说明理由,并改正:
1 解方程: 3 2(0.2 x 1) x 5
去括号变形错,有一项 没变号,改正如下:
练习:解下列方程 (练习95页)
(1)2(x+3)=5x (2) 4x + 3(2X-3) = 12- (x+4) (4)2-3(x+1)=1-2(1+0.5x)
X=2
17 x 11
X=0
1 1 (3)6( x 4) 2 x 7 ( x 1) X=6 2 3
本节课学习了什么?
2x-x-5x-2x=-2+10
解对了吗?
合并同类项,得: -6x = 8 系数化为1,得:

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一元一次方程是代数学中最基本的方程形式,它包含一个未知数和一次项,如下所示:ax + b = 0。

解一元一次方程的目标是找到满足方程的未知数的值。

在本文中,我们将介绍两种解一元一次方程的常用方法:平衡法和代入法。

1. 平衡法平衡法是一种基于等式性质的解题方法。

具体步骤如下:(1)将方程化简为标准形式ax + b = 0,确保等号左边只有一个未知数,右边只有一个常数项。

(2)通过逆运算,将b移至等号右边,得到等式ax = -b。

(3)通过除以系数a,消去未知数的系数,得到未知数的解x。

举个例子,假设我们要解方程3x + 2 = 5。

按照平衡法的步骤,首先将方程化简为标准形式,得到3x = 3。

然后将常数项2移至等号右边,得到3x = -2。

最后,除以系数3,得到未知数的解x = -2/3。

2. 代入法代入法是一种基于代入等式的性质的解题方法。

它的思路是将已知的等式代入方程中,从而得到未知数的值。

具体步骤如下:(1)将已知的等式解为一个变量的表达式。

(2)将该表达式代入方程中,使方程只包含一个未知数。

(3)通过整理方程,得到未知数的解。

举个例子,假设我们要解方程2x + 1 = x + 4。

按照代入法的步骤,首先解等式x = 3。

然后将该表达式代入方程中,得到2(3) + 1 = 3 + 4。

通过计算,我们得到等式7 = 7。

由此可见,方程成立。

因此,未知数的解为x = 3。

总结:解一元一次方程的方法有很多种,平衡法和代入法只是其中的两种常用方法。

通过这两种方法,我们可以准确地计算出方程的解。

然而,需要注意的是,有些方程可能没有解或者有无限多个解。

在解题过程中,我们需要仔细观察方程的特点,并选择适合的解题方法来求解。

通过不断练习和熟悉解题方法,我们可以更加熟练地解决一元一次方程的问题。

解一元一次方程的方法与步骤

解一元一次方程的方法与步骤

解一元一次方程的方法与步骤一元一次方程是数学中最基本的代数方程,它的形式为ax + b = 0,其中a和b为已知数,x为未知数。

解一元一次方程的方法与步骤相对简单,本文将详细介绍解一元一次方程的常用方法。

一、整理方程式解一元一次方程的第一步是整理方程式,使得未知数x的系数为1,即将方程式化为x + c = 0的形式。

为了实现这一目标,我们需要通过两种操作来进行整理。

1. 去除方程中的常数项如果方程式中有常数项b(b≠0),我们需要通过减去b来消除常数项,使方程式变为ax = -b。

这样做可以将方程式的常数项转化为0,方便后续计算。

2. 化简方程中的系数如果方程中的未知数x的系数a(a≠0)不为1,我们需要通过除以a来化简方程,使得x的系数变为1。

这意味着我们需要将方程式变为x = -b/a,从而使得求解过程更为简洁。

二、求解未知数一旦方程式整理完毕,我们可以根据已知数的取值求解未知数x。

1. 唯一解如果方程式中的系数a(a≠0)不为0,则方程一定有唯一解。

此时,我们只需将方程式中的已知数代入等式中,求解未知数即可。

例如,对于方程2x + 3 = 0,我们可以通过求解得到x的值为x = -3/2。

2. 无解如果方程式中的系数a(a≠0)不为0,但常数项b为0,则方程无解。

这是因为在这种情况下,我们无法找到一个x的值,使得该值乘以非零系数a后能够得到0。

一个示例是方程2x = 0,它没有解。

3. 无限解如果方程式中的系数a和常数项b均为0,则方程有无限解。

因为这种情况下方程成为了0 = 0,它成立于任何实数x。

因此,我们无法通过求解来得到一个确定的x的值。

例如,方程0x = 0就是一个具有无限解的一元一次方程。

三、检验解的正确性在求解一元一次方程后,为了确保所得的解是正确的,我们需要对求解出的未知数进行检验。

1. 将解代入方程式将求得的未知数x代入原方程式,检验等式左右两边是否相等。

如果相等,那么所得的解是正确的;如果不相等,则说明解有误。

(学生自学)第四课解一元一次方程(1)去括号课后作业解答

(学生自学)第四课解一元一次方程(1)去括号课后作业解答
合并同类项,得14x=28 系数化为1,得x=2
课后作业:
解下列一元一次方程:
(3) 1-4(0.25-t)=2
解:去括号,得1-Leabharlann +4t=2 合并,得4t=2
系数化为1,得t= 1
2
课后作业:
解下列一元一次方程:
(4) 8x-2(1-x)=7x-3(x-1)
解:去括号,得8x-2+2x=7x-3x+3 移项,得8x+2x-7x+3x=3+2
课后作业:
解下列一元一次方程:
(1) 4(x-1)=2(1-x)
解:去括号,得4x-4=2-2x 移项,得4x+2x=2+4
合并同类项,得6x=6 系数化为1,得x=1
课后作业:
解下列一元一次方程:
(2) 5(3-2x)-12(5-2x)=-17
解:去括号,得15-10x-60+24x=-17 移项,得-10x+24x=-17-15+60
合并同类项,得6x=5 系数化为1,得x= 5
6
课后作业:
解下列一元一次方程:
(5) 2(1-3x)-(x+4)-3(2x-5)+9=0
解:去括号,得21-6x-x-4-6x+15+9=0 合并同类项,得-13x+20=0 移项,得-13x=-20 系数化为1,得x= 20
13
挑战自我
足球的表面是由若干黑色五边形和白色 六边形皮块围成的。黑白皮块的数目比 为3:5,一个足球表面一共有32个皮块, 黑色皮块与白色皮块各多少块? (列出方程并求解)
足球的表面是由若干黑色五边形和白色六边形皮块围 成的。黑白皮块的数目比为3:5,一个足球表面一共 有32个皮块,黑色皮块与白色皮块各多少块?

解一元一次方程40题(一)含答案

解一元一次方程40题(一)含答案

解一元一次方程40题(一)一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程2191136x x ++-=7.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-8.解方程: (1)132x x --= (2)0.6310.20.4x x--=9.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-10.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷12.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+13.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-14.若代数式33x +比344x -的值大4,求x 的值.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.16.解方程(1)412(3)x x +=- (2)3157146y y ---=17.解方程.(1)8(35)20x x -+= (2)1:225%:0.753x = (3)2940%316x ÷=18.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x xx +----=-19.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=20.解下列方程:(1)3520x x x --=(2)3(56)320x x -=-(3)23[2(1)4]8x x x +--+=(4)2123134x x ---=21.解方程:851217x =22.m 为何值时,0.2m 的值比280.3m -的值大1?23.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.24.311(54)1535x -+= 22531277714x +-=25.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=26.解方程:11(26)(8)134x x -=++.27.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.28.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=29.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-30.(1)将方程123126x x +--=去分母,得到33236x x +--=,错在 A .最简公分母找错 B .去分母时,漏掉乘数项C .去分母时,分子部分没有加括号D .去分母时,各项所乘的数不同(2)解方程:123126x x +--=31.0.1210.30.15x x-=+32.已知方程(21)32a x ax +=-有正整数解,求整数a 的值.33.解方程: (1)2121163x x +--= (2)2(1)35x x -=-34.解方程(1)2(21)(34)2x x +--= (2)1213323x x x --+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-38.解方程:(1)432(1)1x x +=-+; (2)23(37)272x x +=-;(3)32[(21)2]223x x ---=; (4)218269x xx --=+.39.解下列方程:(1)369x --= (2)5467x x -=-+ (3)2(1)246x x -+=- (4)223123x x---=.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.解一元一次方程40题(一)参考答案与试题解析一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.【分析】把3x =代入方程,即可得出一个关于m 的方程,求出方程的解即可. 【解答】解:3x =是方程(1)3[(1)]234x m x -++=的解,∴代入得:3(31)3[(1)]234m -++=, 解得:83m =-.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m ---20202019113(2)()222=-⨯--1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义. 3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:(1)去括号得:2833x x x -+=-, 移项合并得:25x =-, 解得: 2.5x =-;(2)去分母得:43162x x -+=+, 移项合并得:51x -=, 解得:0.2x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-. 解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-. 解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键. 5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x+=-,32327x x+=-,525x=,5x=;(2)43(20)40x x--+=,460340x x-++=,43604x x+=-,756x=,8x=;(3)去分母得:3(35)2(21)x x+=-,91542x x+=-,94215x x-=--,517x=-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.7.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解下列方程:(1)5379x x+=-+(2)43(20)40x x--+=(3)3157146 y y---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知12x=是方程21423x m x m---=的解,求式子211(428)(1)42m m m-+-+-的值.【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m ---=得:1112423m m ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+- 2122m =-- 21522=-- 1272=-. 【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; 【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)2557x x +=-(2)3(2)25(2)x x -=-+(3)14223x x +-+= (4)12311463x x x -++-=+ 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x--=+++,525x-=,5x=-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.解下列方程或方程组(1)219x x-=+(2)52(1)x x+=-(3)431 35x x--=-(4)3717 245x x-+ -=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:10x=;(2)去括号得:522x x+=-,移项合并得:7x-=-,解得:7x=;(3)去分母得:2053915x x-=--,移项合并得:844x-=-,解得: 5.5x=;(4)去分母得:401535468x x-+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.若代数式33x+比344x-的值大4,求x的值.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3344 34x x+--=,去分母得:41291248x x+-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.16.解方程(1)412(3)x x +=-(2)3157146y y ---= 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:4162x x +=-,移项合并得:65x =,解得:56x=;(2)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解方程.(1)8(35)20x x-+=(2)1:225%:0.75 3x=(3)29 40%316x÷=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)利用比例的性质化简,计算即可求出x的值;(3)方程整理后,把x系数化为1,即可求出解.【解答】解:(1)去括号得:83520x x--=,移项合并得:525x=,解得:5x=;(2)整理得:1132434x⨯=⨯,整理得:21x=,解得:12x=;(3)方程整理得:9240%163x=⨯,即340%8x=,解得:1516x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)3520x x x--=(2)3(56)320x x-=-(3)23[2(1)4]8x x x+--+=(4)21231 34x x---=【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解即可.【解答】解:(1)3520x x x--=合并同类项,可得:40x-=,系数互为1,可得:0x=;(2)3(56)320x x -=-去括号,可得:1518320x x -=-,移项,可得:1520318x x +=+,合并同类项,可得:3521x =,系数互为1,可得:0.6x =;(3)23[2(1)4]8x x x +--+=,去括号,可得:2366128x x x +-++=移项,可得:2366128x x x +-=--+,合并同类项,可得:10x -=-,系数互为1,可得:10x =;(4)2123134x x ---=, 去分母,可得,4(21)3(23)12x x ---=,去括号,可得:846912x x --+=,移项,可得:864912x x -=-+,合并同类项,可得:27x =,系数互为1,可得:72x =. 【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.解方程:851217x = 【分析】方程x 系数化为1,即可求出解.【解答】解:方程x 系数化为1得:122178x =⨯, 解得:92x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.m 为何值时,0.2m 的值比280.3m -的值大1? 【分析】根据题意列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:281 0.20.3m m--=,整理得:2080513mm--=,去分母得:1520803m m-+=,移项合并得:577m-=-,解得:775m=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程:(1)34(25)4x x x-+=+;(2)12226x xx-+-=-.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x--=+,移项合并得:624x-=,解得:4x=-;(2)去分母得:633122x x x-+=--,移项合并得:47x=,解得:74x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x-=-,去括号得:661x x-=-,移项合并得:55x=,解得:1x=;(3)去括号得:8552x x+-=,移项合并得:33x=-,解得:1x=-;(4)方程整理得:520262x x+-+=,移项合并得:324x=-,解得:8x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程:11(26)(8)1 34x x-=++.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:4(26)3(8)12x x-=++,82432412x x -=++,83241224x x -=++,560x =,12x =.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.27.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-, 解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.解方程(1)321x x -=-+(2)18(1)32(21)x x x -+=--(3)31571104y y ---= 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x =, 解得:43x =; (2)去括号得:1818342x x x -+=-+,移项合并得:2520x =, 解得:45x =;(3)去分母得:62202535y y--=-,移项合并得:1913y-=-,解得:1319y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:(1)2(100.5)(1.52)x x-=-+;(2)5415523412 y y y+--+=-【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x-=--,移项合并得:0.522x=-,解得:44x=-;(2)去分母得:2016332455y y y++-=-+,移项合并得:2816y=,解得:47y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)将方程123126x x+--=去分母,得到33236x x+--=,错在CA.最简公分母找错B.去分母时,漏掉乘数项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同(2)解方程:1231 26x x+--=【分析】(1)方程左右两边乘以6得到结果,即可作出判断;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去分母得:3(1)(23)6x x+--=,去括号得:33236x x+-+=,故答案为:C;(2)去分母得:33(23)6x x+--=,去括号得:33236x x+-+=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.0.1210.30.15x x-=+【分析】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程整理得:12020133x x-=+,去分母得:120320x x-=+,移项合并得:402x=-,解得:120x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.已知方程(21)32a x ax+=-有正整数解,求整数a的值.【分析】将原方程整理移项,合并同类项,根据该方程有解,得到关于a得方程的解,结合方程的解为正整数,a为整数,得到两个关于a的一元一次方程,解之即可.【解答】解:(21)32a x ax+=-,移项,合并同类项得:(1)2a x-+=-,因为方程有解,所以(1)0a-+≠,即21xa=-,因为方程有正整数解,且a取整数,所以11a-=或12a-=,解得:2a=或3a=,答:整数a的值为2或3.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.33.解方程:(1)21211 63x x+--=(2)2(1)35x x-=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:21426x x+-+=,移项合并得:23x-=,解得:32x =-; (2)去括号得:2235x x -=-,移项合并得:3x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程(1)2(21)(34)2x x +--=(2)1213323x x x --+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:42342x x +-+=,移项合并得:4x =-;(2)去分母得:18331842x x x +-=-+,移项合并得:2523x =, 解得:2325x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-.(2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x--+=-,移项得:2129943x x x-+=+-,合并同类项得:10x-=,系数化为1得:10x=-,(2)去分母得:2(21)(52)3(12)12x x x--+=--,去括号得:42523612x x x---=--,移项得:45631222x x x-+=-++,合并同类项得:55x=-,系数化为1得:1x=-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:(1)432(1)1x x+=-+;(2)23 (37)272x x+=-;(3)32[(21)2]2 23x x---=;(4)218269x xx--=+.【分析】(1)先去括号,移项并合并同类项,再把系数化为1即可(2)可以先左右两边乘以14,去分母再去括号,移项并合并同类项,将系数化为1即可(3)先去括号,合并同类项,将系数化为1即可(4)可左右两边同时乘以18,去分母后,移项并合并同类项,将系数化为1即可【解答】解:(1)原式去括号得:4321x x+=-移项并合并同类项得,24x=-系数化为1得,2x=-(2)原式去分母得,4(37)2821x x+=-去括号得,12282821x x+=-移项合并同类项得,330x=系数化为1得,0x=(3)原式去括号得,42x-=移项得,6x=(4)原式去分母得,183(218)236x x x--=+去括号得,18654236x x x-+=+移项合并同类项得,7042x=系数化为1得,35 x=【点评】此题考查的是解一元一次方程,掌握解一元一次方程的步骤是解答此题的关键.解一元一次方程的步骤是:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(注意移项要改变运算的符号);4.合并同类项:把方程化成(0)ax b a=≠的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解.39.解下列方程:(1)369x--=(2)5467x x-=-+(3)2(1)246x x-+=-(4)2231 23x x---=.【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次移项,合并同类项,系数化为1,即可得到答案,(3)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(4)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:396x-=+,合并同类项得:315x-=,系数化为1得:5x=-,(2)移项得:4675x x-+=-,合并同类项得:22x=,系数化为1得:1x=,(3)去括号得:22246x x-+=-,移项得:24622x x-=--+,合并同类项得:26x-=-,系数化为1得:3x=,(4)去分母得:3(2)2(23)6x x---=,去括号得:36466x x--+=,移项得:36664x x+=++,合并同类项得:916x=,系数化为1得:169x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.。

解一元一次方程的基本方法

解一元一次方程的基本方法

解一元一次方程的基本方法解一元一次方程是初中数学中的基础内容,它是解决实际问题和推导数学关系的重要工具。

本文将介绍解一元一次方程的基本方法,以及通过实例演示这些方法的具体应用。

一、一元一次方程的定义与形式一元一次方程是一个未知数和系数确定的代数等式,其一般形式为ax+b=0,其中a和b是已知数,x是未知数。

在解一元一次方程时,我们的目标是找到使等式成立的x值。

二、解一元一次方程的基本方法主要有两种,即代入法和消元法。

1. 代入法代入法是通过将一个已知数值代入方程中来求解未知数的方法。

具体步骤如下:(1)将未知数代入方程中,得到等式;(2)通过化简等式,求解出未知数的值;(3)检验所得解是否满足原方程。

例如,对于方程2x-3=7,我们可以使用代入法进行求解。

将x=5代入方程中,得到2(5)-3=7,化简得到10-3=7,即7=7。

因此,x=5是方程的解。

2. 消元法消元法是通过变换方程中的项,使得方程转化为较为简单的形式,从而求解未知数的方法。

具体步骤如下:(1)观察方程中的项,选择合适的变换方式;(2)对方程采取相应的变换操作,将方程转化为更简单的形式;(3)重复以上步骤,直到方程化简为ax=b的形式;(4)计算未知数的值;(5)检验所得解是否满足原方程。

例如,对于方程3x+5=2x+10,我们可以使用消元法进行求解。

通过将方程两边减去2x,得到x+5=10。

再将方程两边减去5,得到x=5。

因此,x=5是方程的解。

三、解一元一次方程的实际应用解一元一次方程不仅仅是数学中的一部分知识,它还具有广泛的实际应用。

下面将通过实例来展示解一元一次方程在实际问题中的具体应用。

例1:某商店举行打折促销活动,原价为x的商品打8折,最终售价为72元。

求原价x。

解:设原价为x,则打8折后的价格为0.8x。

根据题意可得方程0.8x=72。

通过解方程可得x=90。

因此,原价为90元。

例2:一架直升机以每小时192公里的速度直飞,从起飞地出发2.5小时后,到达了90公里外的目的地。

解一元一次方程(一)

解一元一次方程(一)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程01 教学目标经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程. 02 预习反馈阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45.(2)-4x +6x -0.5x =-0.3.解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15.03 例题讲解例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140;(2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m ;③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.04 巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78.4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67;(3)14x -12x =-7-6; (4)-32y -3y =52-2.解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19.05 课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时利用合并同类项解一元一次方程的实际问题01教学目标经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x台,则去年购置计算机13x台.根据题意,得x+13x__=100,解得x=75.答:今年购置计算机75台.03例题讲解例(教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x万美元,则第二年的酬金为2x万美元,第三年的酬金为4x万美元,由题意,得x+2x+4x=1 400,即7x=1 400.等式两边都除以7,得x=200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x台,则第一个季度销售量为2x台,第三个季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二个季度销售冰箱400台.04巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x+2x=30.解得x=6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x座.根据题意,得4x+2x+x=700.解得x=100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有2x只,根据题意,得8x+6×2x=120.解得x=6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.05课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程01 教学目标1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.02 预习反馈阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34.(2)3x +7=32-2x.解:移项,得3x +2x =32-7. 合并同类项,得5x =25.系数化为1,得x =5.03 例题讲解例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ;(4)x -3x -1.2=4.8-5x. 解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2.【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23.(4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.04 巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4C .由3x +5=0,得3x =-5D.由-3x+3=0,得3-3x=02.对方程2x-3+x=6进行移项,下列正确的是(C)A.2x-x=6+3 B.2x-x=6-3C.2x+x=6+3 D.2x+x=6-33.方程3x+1=2x的解是(A)A.x=-1 B.x=1 C.x=-2 D.x=2 4.解下列方程:(1)5x=3x-12;(2)8x-5=7x+2;(3)12x-7=8x-3;(4)7y+8=2y-5-3y.解:(1)x=-6.(2)x=7.(3)x=1.(4)y=-13 8.05课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时利用移项解一元一次方程的实际问题01教学目标经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积.解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x .解得x =160__000.答:这个果园的面积是160__000__m 2.03 例题讲解例 (教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友? 解:设这个班共有x 名小朋友.根据题意,得2x +8=3x -12,解得x =20.答:这个班共有20名小朋友.【点拨】 用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x ;(2)用含x 的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】 清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.04巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x亩.根据题意,得30-x=1.5x.解得x=12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x人参加比赛.依题意,得2x+16=3x-24.解得x=40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x+1=x+4.解得x=1.5.所以x+4=5.5.答:梅花鹿现在高1.5 m,长颈鹿现在高5.5 m.05课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?。

解一元一次方程的一般步骤及根据

解一元一次方程的一般步骤及根据

解一元一次方程的一般步骤及根据:
1.去分母——等式的性质2
2.去括号——分配律
3.移项——等式的性质1
4.合并——分配律
5.系数化为1——等式的性质2
6.验根——把根分别代入方程的左右边看求得的值是否相等
注意事项:
(1)分母是小数时,根据分数的基本性质,把分母转化为整数;
(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
(3)去括号时,不要漏乘括号内的项,不要弄错符号;
(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
(6)不要生搬硬套解方程的步骤,具体问题具体分析,,找到最佳解法。

(7)分、小数运算时不能嫌麻烦。

(8)不要跳步,一步步仔细算。

[。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1有一列数,按一定规律排列成1,—3, 9,—27, 81,—243,…,其中某三个相邻数的和是-1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗后面两数分别是-3x , 9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243 , 729, -218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200X 0.3=90元;通话350分钟需要交费:30+350X 0.3=135元.按方式二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200X 0.4=80元;通话350分钟需要交费:350X 0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程30+0.3t=0.4t解之,得t =300 所以,当一个月内通话300分钟时, 两种计费方式的收费一样多.引申: 你知道怎样选择计费方式更省钱吗?当t=400 时,30+0.3t=30+0.3 X 400=150元;0.4t=0.4 X 400=160 元.当时间大于300 分钟时, 方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

一元一次方程(1)练习题

一元一次方程(1)练习题

一元一次方程(1)练习题【知识要点】1.一元一次方程: 。

2.解一元一次方程(1)方程的解: 。

(2)解方程: 。

(3)解一元一次方程的步骤:【巩固提高】A 组一、选择题1. 已知下列方程:①22x x-=; ②0.31x =; ③512x x =+; ④243x x -=;⑤6x =;⑥20x y +=.其中一元一次方程的个数是( ). A .2 B .3 C .4D .52.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ). A .-5B .-6C .-7D .83.方程3521x x +=-移项后,正确的是( ).A .3251x x +=-B . 3215x x -=-+C .3215x x -=-D . 3215x x -=-- 4.方程2412332x x -+-=-,去分母得( ). A .22(24)33(1)x x --=-+ B .)1(318422-12+-=-x x )(C .12(24)18(1)x x --=-+D .62(24)9(1)x x --=-+ 5.的值应为时,则设x q p x q x p 765,34,12=--=-=( ) A . -97 B .97 C .-79 D .79 二、填空题6.使(1)60a x --=为关于x 的一元一次方程的a =______(写出一个你喜欢的数即可).7.若3122m x y -与224n x y 在某运算中可以合并,则_____m =,_____n =. 8.根据“x 的2倍与5的和比x 的12小10”,可列方程为_______. 9.若423x =与3()5x a a x +=-有相同的解,那么1a -=_______. 10.已知x=2是关于x 的方程x 21+3k-2=0的解,则k 的值是_________。

11.已知代数式52x -的值与110互为倒数,则_____x =. 12.已知三个连续奇数的和是51,则中间的那个数是_______. 三、解答题13.解方程:(1)3(1)2(2)23x x x +-+=+ (2)4132131--=-+x x(3) x x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- (4) 131(1)(2)24234x x ---=14.小明解方程112(1)3()123x x x ---=-的步骤如下: (1)去括号,得2311x x x ---=-; (2)移项,得213x x -+=+; (3)合并同类项,得4x -=; (4)最后得4x =-.但是经过检验知道,4x =-不是原方程的根.请你检查一下,上述解题过程哪里错了?并予以改正.B 组1.解下列方程:(1)6.12.045.03=+--x x (2)2503.002.003.05.09.04.0-=+-+x x x(3)41312=-x (4)234551413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+x2.已知关于x 的方程2m x -=x+3m 与21+x =3x -2的解互为倒数,求m 的值。

一元一次方程(一)

一元一次方程(一)

一元一次方程(一)教学内容:一元一次方程(一)教学目标:初步认识一元一次方程,运用等式的性质解一元一次方程.教学重点难点:一元一次方程的解法教学过程:第1课时导入复习式导入知识点知识点一:一元一次方程(1)方程的定义:含有未知数的等式叫方程.方程定义的两个要点:①等式;②含有未知数.(2)一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.通常ax+b=0(a,b为常数,且a≠0),叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.典型例题1.下列四个式子中,是方程的是()A.π+1=1+π B.|1﹣2|=1 C.2x﹣3 D.x=02.下列各式中,不是方程的是( )A .a+a=2aB .2x+3C .2x+1=5D .2(x+1)=2x+2 3.下列各式中是方程的是( )A .B .C .8y ﹣4D .5﹣2=34.已知下列方程:①x ﹣2=;②0.2x=1;③=x ﹣3;④x 2﹣4﹣3x ;⑤x=0;⑥x ﹣y=6.其中一元一次方程有( )A .2个B .3个C .4个D .5个 5.下列选项中,是一元一次方程的是( )A .x 2+2x=5B .2x=3xC .x+5D .x ﹣3=y ﹣4 6.若3﹣6y 2m+1=0是一元一次方程,则m 为( )A .﹣2B .﹣1C .0D .17.已知方程()x 0mm 13++=是关于x 的一元一次方程,则m 的值是________.8.若﹣()(﹣) ﹣2c 1a 5xb 2x 61++=是关于x 的一元一次方程,则a=________,b ≠________,c=________.9.已知关于x 的方程(﹣)0m 4m 3x 18++=是一元一次方程.试求:(1)m 的值及方程的解;(2)2(3m+2)﹣3(4m ﹣1)的值.知识点知识点二:一元一次方程的解(1)等式的性质性质1:等式两边加上(或减去)同一个代数式,结果仍得等式;性质2:等式两边乘同一个数(或除以一个不为零的数),结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.(3)一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.典型例题1.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么D.等式两边同时除以a,可得b=c 2.下列说法正确的是()A.若a=b,则a﹣c=c﹣b B.若a2=b2,则a=bC.若a=b,则D.若=,则a=b3.下列变形正确的是()A.若x2=y2,则x=y B.若,则x=yC.若x(x﹣2)=5(2﹣x),则x=﹣5 D.若(m+n)x=(m+n)y,则x=y4.运用等式性质进行的变形,不正确的是()A.如果a=b,那么 B.如果a=b,那么a+c=b+cC.如果a=b,那么a﹣c=b﹣c D.如果a=b,那么ac=bc5.下列变形正确的个数有()(1)由﹣3+2x=5,得2x=5﹣3 (2)由3y=﹣4,得(3)由x﹣3=y﹣3,得x﹣y=0 (4)由3=x+2,得x=3﹣2.A.1个 B.2个 C.3个 D.4个6.下列变形中不正确的是()A.若x﹣1=3,则x=4 B.若3x﹣1=x+3,则2x﹣1=3C.若2=x,则x=2 D.若5x+8=4x,则5x﹣4x=87.下列式子的变形中,正确的是()A.由5+x=12得x=12+5 B.由5x+8=4x得5x﹣4x=8C.由10x=4﹣2x得10x+2x=4 D.由2(x﹣1)=3x﹣5得3x﹣2x=58.给出下面四个方程及其变形:①4x+8=0变形为x+2=0;②x+7=5﹣3x变形为4x=﹣2;③x=3变形为2x=15;④4x=﹣2变形为x=﹣2;其中变形正确的是()A.①③④ B.①②④ C.②③④ D.①②③9.已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣910.已知3是关于x的方程2x﹣a=1的解,则a的值是()A.﹣5 B.5 C.7 D.211.若关于x的一元一次方程的解是x=﹣1,则k的值是()A. B.1 C. D.012.利用等式性质解方程:(1)(2)5+x=﹣2 (3)3x+6=31﹣2x (4)﹣x﹣5=4 (5)4x﹣2=2.第2课时导入复习式导入知识点知识点三:解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.典型例题(1)2x-13=x+22+1 (2) 12131=--x(3) 3(1)2(2)23x x x+-+=+ (4) 3(2)1(21)x x x-+=--(5)3(x-2)=2-5(x-2) (6) 2(x+3)-5(1-x)=3(x -1) (7)x x -=+38(8) 12542.13-=-x x(9)31257243y y +-=- (10)576132x x -=-+(11)143321=---m m (12) 52221+-=--y y y(13)12136x x x -+-=- (14) 38123x x ---=(15) 112[(1)](1)223x x x --=- (16)27(3y+7)=2 - 32y(17)4(x ﹣1)﹣3(20﹣x )=5(x ﹣2) (18)x ﹣=2﹣.(19)8(x ﹣5)=2x+2 (20).。

人教版-数学-七年级上册-【单科状元】数学人教版七年级上册 第三章 一元一次方程(1)含答案解析

人教版-数学-七年级上册-【单科状元】数学人教版七年级上册 第三章  一元一次方程(1)含答案解析

一元一次方程1一.选择题(共9小题)1.若代数式x+4的值是2,则x等于()A.2 B.﹣2 C.6 D.﹣62.(某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=873.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.414某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元5.一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.下列关于x的方程一定是一元一次方程的是()A.﹣x=1 B.(a2+1)x=b C.ax=b D.=38.已知关于x的方程2x﹣m+5=0的解是x=﹣2,则m的值为()A.1 B.﹣1 C.9 D.﹣99.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()二.填空题(共8小题)10.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为_________.11.方程x+5=(x+3)的解是_________.12.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为_________.13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_________.14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多_________元.15.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为_________元.16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是_________元.17.已知x=1是方程x2﹣4x+=0的一个根,则m的值是_________.三.解答题(共9小题)18.为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.19.解方程:10+4(x﹣3)=2x﹣1.20.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?21.列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.22.列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.23.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?25.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要_________天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?26.解方程:.一元一次方程1参考答案与试题解析一.选择题(共9小题)1.若代数式x+4的值是2,则x等于()A. 2 B.﹣2 C.6 D.﹣6考点:解一元一次方程;代数式求值.专题:计算题.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87 B. 1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D. 2×0.9x+1.2×0.8(60﹣x)=87考点:由实际问题抽象出一元一次方程.分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程即可.解答:解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.故选:B.点评:考查了由实际问题抽象出一元一次方程,根据根据描述语找到等量关系是解题的关键.3.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.41考点:一元一次方程的应用.分析:设小明买了x个面包.则依据“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”列方程.解答:解:小明买了x个面包.则15x﹣15(x+1)×90%=45解得x=39故选:B.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后A.350元B.400元C.450元D.500元考点:一元一次方程的应用.专题:销售问题.分析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元考点:一元一次方程的应用.分析:根据题意,找出相等关系为:进价×(1+20%)=120,设未知数列方程求解.解答:解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选A.点评:此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=120.6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A. 5.5公里B.6.9公里C.7.5公里D.8.1公里考点:一元一次方程的应用.专题:行程问题.分析:设人坐车可行驶的路程最远是xkm,根据起步价5元,到达目的地后共支付车费11元得出等式求出即可.解答:解:设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x﹣3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选:B.点评:此题主要考查了一元一次方程的应用,根据总费用得出等式是解题关键.7.下列关于x的方程一定是一元一次方程的是()A.﹣x=1 B.(a2+1)x=b C.ax=b D.=3考点:一元一次方程的定义.分析:根据一元一次方程的定义判断即可.解答:解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、当a=0时,不是一元一次方程,故本选项错误;故选B.点评:本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.8.已知关于x的方程2x﹣m+5=0的解是x=﹣2,则m的值为()A. 1 B.﹣1 C.9 D.﹣9考点:一元一次方程的解.分析:把x=﹣2代入方程,即可得到一个关于m的方程,解方程求得m的值.解答:解:把x=﹣2代入方程,得:﹣4﹣m+5=0,解得:m=1.故选A.点评:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.9.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.不存在考点:解一元一次方程.专题:图表型.分析:分别把y=1代入左右两边的算式求出x的值,哪边的x的值满足取值范围,则哪边求出的x的值就是输入的x的值.解答:解:∵输出数值y为1,∴x+5=1时,解得x=﹣8,﹣x+5=1时,解得x=8,∵﹣8<1,8>1,都不符合题意,故不存在.故选D.点评:本题考查了解一元一次方程,题目比较新颖,有创意,需要先求出x的值再根据条件判断是否符合.二.填空题(共8小题)10.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.考点:一元一次方程的解.分析:把x=2代入方程即可得到一个关于a的方程,解方程即可求解解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.11.方程x+5=(x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.12.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为﹣10.考点:解一元一次方程.专题:新定义.分析:根据题中的新定义化简已知方程,求出方程的解即可得到x的值.解答:解:根据题中的新定义得:﹣=1,去分母得:3x﹣4x﹣4=6,移项合并得:﹣x=10,解得:x=﹣10,故答案为:﹣10.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.考点:由实际问题抽象出一元一次方程.专题:应用题.分析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程即可.解答:解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x.故答案为:2x+56=589﹣x.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程.14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多120元.考点:一元一次方程的应用.专题:销售问题.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得解得:x=180.∴标价比进价多300﹣180=120元.故答案为:120.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.15.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160元.考点:一元一次方程的应用.专题:销售问题.分析:设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利20%,列方程求解.解答:解:设这种商品每件的进价为x元,由题意得,240×0.8﹣x=20%x,解得:x=160,即每件商品的进价为160元.故答案为:160.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.考点:一元一次方程的应用.专题:销售问题.分析:设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.解答:解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=20%x,解得:x=200.故答案是:200.点评:本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.17.已知x=1是方程x2﹣4x+=0的一个根,则m的值是6.考点:一元一次方程的解.专题:计算题.分析:把x=1代入原方程,即可得出m的值.解答:解:把x=1代入原方程得,1﹣4+=0,解得,m=6.故答案为6.点评:此题考查了一元一次不等式的解法和一元一次方程的解,将x的值代入,即可求得m的值.三.解答题(共9小题)18.为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.考点:一元一次方程的应用.专题:应用题.分析:设女生x人,则男生为(x+3)人.再利用总人数为45人,即可得出等式求出即可.解答:解:设女生x人,则男生为(x+3)人.依题意得x+x+3=45,解得,x=21,男生为:x+3=24.答:该班男生、女生分别是24人、21人.点评:此题主要考查了一元一次方程的应用,根据已知得出表示出男女生人数是解题关键.19.解方程:10+4(x﹣3)=2x﹣1.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:去括号得:10+4x﹣12=2x﹣1,移项合并得:2x=1,解得:x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?考点:一元一次方程的应用.专题:工程问题.分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.解答:解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.点评:解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.21.列方程解应用题:王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.考点:一元一次方程的应用.分析:设爸爸追上妈妈时所走的路程为x千米,爸爸追上妈妈所走的路程相等,时间的差是10分钟,即妈妈所用时间﹣爸爸所用时间=10分钟,据此相等关系即可列方程求解.解答:解:设爸爸追上妈妈时所走的路程为x千米.根据题意,得:.解得:x=2.答:爸爸追上妈妈时所走的路程为2千米.点评:本题考查了列方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.列方程或方程组解应用题:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装60台空调,两个安装队同时开工恰好同时安装完成,甲队比乙队平均每天多安装2台空调.求甲、乙两个安装队平均每天各安装多少台空调.考点:一元一次方程的应用.分析:设乙安装队每天安装x台空调,则甲安装队每天安装(x+2)台空调,根据两个安装队同时开工恰好同时安装完成,即所用的时间相等,即可列方程求解.解答:解:设乙安装队每天安装x台空调,则甲安装队每天安装(x+2)台空调,根据题意得:=,解方程得:x=20,经检验x=20是方程的解,并且符合实际.∴x+2=22.答:甲安装队每天安装22台空调,乙安装队每天安装20台空调.点评:本题考查了列方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.某房地产公司在全国一、二、三线城市都有房屋开发项目,在去年的房屋销售中,一线城市的销售金额占总销售金额的40%.由于两会召开国家对房价实施分类调控,今年二线、三线城市的销售金额都将比去年减少15%,因而房地产商决定加大一线城市的销售力度.若要使今年的总销售金额比去年增长5%,求今年一线城市销售金额比去年增加的百分率.考点:一元一次方程的应用.分析:本题中的相等关系是:今年一线城市的销售金额增长的百分数﹣今年二线、三线城市的销售金额减少的百分数=今年的总销售金额比去年增长的5%,设今年一线城市销售金额应比去年增加x,根据上面的相等关系列方程求解.解答:解:设今年一线城市销售金额比去年增加x,根据题意得40%x﹣(1﹣40%)×15%=5%,解得:x=35%.答:今年一线城市销售金额比去年增加35%.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?分析:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.根据“总共行驶了198km”列方程;(2)AB段的路程为3×36=108(km),BC段的路程为.则往返时间=两段时间之和.解答:解:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.据题意可得,.解得x=2.∴水流的速度为2km/h.(2)由(1)可知,顺流航行速度为40km/h,逆流航行的速度为36km/h.∴AB段的路程为3×36=108(km),BC段的路程为.故原路返回时间为:.答:游艇用同样的速度原路返回共需要5小时12分.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要 2.4天完成;(2)现由徒弟先做1天,再两个合作,问:还需几天可以完成这项工作?考点:一元一次方程的应用.分析:(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解.(2)设徒弟先做1天,再两人合作还需x天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.解答:解:(1)1÷(+)=1÷=2.4(天).答:两个人合作需要2.4天完成;(2)设还需x天可以完成这项工作,由题意可得:+=1,解得:x=2.答:还需2天可以完成这项工作.故答案为:2.4.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.解方程:.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:方程去括号得:3x+2=8+x,移项合并得:2x=6,解得:x=3.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.。

【13】第13讲 解一元一次方程01

【13】第13讲 解一元一次方程01

【知识衔接】【新课导学】知识点一 等式的基本性质【知识梳理】 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等. 如果a =b ,那么a ±c =b ±c . 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb. 【例题精讲】典例1 利用等式的性质解下列方程:(1) x +7=26; (2) -5x =20; (3) -31x -5=4.典例2 根据等式性质,下列结论正确的是( ) A .如果﹣2a =2b ,那么a =﹣b B .如果a ﹣2=2﹣b ,那么a =﹣bC .如果2a =b ﹣2,那么a =bD .如果2a =12b ,那么a =b变式1.在对方程2x−13+1=2的下列变形中,应用了等式的性质2变形的是( )A .13(2x −1)+1=2 B .(2x ﹣1)+3=6 C .2x−13=1 D .2x−13−1=0变式2.下列变形符合等式性质的是( ) A .如果2x ﹣3=7,那么2x =7﹣3 B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2解一元一次方程01第十三讲专题13ZHUAN TI SHISAN小学阶段:利用等式的性质1解方程:x-8=9 解,方程两边同时加8得 x-8+8=9+8x=17初中阶段:利用等式的性质1还可以在方程的两边同时加上(或减去)同一个式子。

例如:2x+3=x-5解:等式两边同时减(x+3),得 2x+3-(x+3)=x-5-(x+3)x=8知识点二 利用合并同类型解方程【知识梳理】合并含有未知数的同类项时,运用乘法分配律把未知数的系数相加,未知数及其指数不变,合并同类项在解一元一次方程中起到化简的作用合并同类项是一种恒等变形,它使方程变得简单,更接近x=a (a 为常数)的形式 【例题精讲】 典例3 解下列方程: (1) 2x -25x =6-8 (2) 7x -2.5x +3x -1.5x =-15×4-6×3典例4有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…. 其中某三个相邻数的和是-1701,这三个数各是多少?变式3. 解下列方程: (1) 5x -2x =9; (2)7232=+xx ; (3) -3x +0.5x =10; (4) 7x -4.5x =2.5×3-5.知识点三 用移项解方程【知识梳理】像上面那样把等式一边的某项变号后移到另一边,叫做移项. 45145202543254203=→-=-→-=-→-=+x x x x x x 系数化为合并同类项移项【例题精讲】 典例5 解下列方程:(1) 3x +7=32-2x (2) x -3=23x +1 (3) 6x -7=4x -5; (4) 21x -6=43x .【课后练习】一.精心选一选(共9小题,每小题3分,共27分)1.方程﹣3x﹣4=0解是()A.x=−43B.x=34C.x=43D.x=−342.已知x=2是关于x的方程7x﹣a=5的解,则a的值等于()A.﹣19 B.﹣9 C.9 D.19 3.方程18=5﹣x的解为()A.﹣13 B.13 C.23 D.﹣23 4.关于x的方程kx﹣3=2x的解是整数,则整数k的可能值有()A.1个B.2个C.3个D.4个5.由2x﹣7=3x+2,得2x﹣3x=2+7,在此变形中方程的两边同时加上()A.3x+7 B.﹣3x+7 C.3x﹣7 D.﹣3x﹣7 6.若x=﹣3是一元一次方程2(x+k)=5(k为实数)的解,则k的值是()A.−12B.12C.−112D.1127.若﹣5x2y m﹣3与x n﹣1y是同类项,则方程nx﹣m=5的解是()A.x=4 B.x=3 C.x=2 D.x=18.某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3 B.﹣3 C.4 D.﹣49.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5 B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+2二.细心填一填(共6小题,每销题4分,共24分)10.解方程中有一步变形叫“移项”,移项的依据是.11.已知x=﹣3是方程(k+2)x﹣k﹣x=5的解,则k的值是.12.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.13.若方程3x+a=b的解是x=1,则关于未知数y的方程6y﹣2b+18+2a=0的解是y=.14.已知5a+2b=3b+10,利用等式性质可求得10a﹣2b的值是.15.若m是方程3x﹣2=2x+1的解.则30m+10的值为.三.解答题(共49分)16.(30分)解方程(1)7x﹣4=2(x+3)(2)2+24﹣x=3x (3)y﹣320﹣2y=10;(4)10x+9=12x﹣1;(5)2﹣3x=5﹣2x (6)5x﹣4=7x+6;17.(6分)代数式﹣x+4比5x多2,求x.18.(6分)已知:关于x的方程m﹣mx-3=2x的解与方程3y+7=﹣2y+2的解相等,求m的值.19.(7分)【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.。

数学人教版七年级上册一元一次方程的解法1

数学人教版七年级上册一元一次方程的解法1
解x+8x+16x+32x+64x=381, 解得 x=3,则塔的顶层有 3 盏灯.
15.解下列方程: (1)2x+3x+5x=100;
解:x=10
(2)6x-3=4x+5;
解:x=4
1 2 (3)3x-4=5x;
解:x=-60
1 (4)2x+8=0.3x-7.
解:x=-75
16.有一列数,按一定规律排列成 1、-4、16、-64、256、„,其中某三 个相邻的数的和是 3328,求这三个数各是多少?
解:x=3
(3)8x-3=6x+2;
5 解:x=2
1 1 (4)2x-0.2x=4x+4.
解:x=80
列方程解决简单的实际问题 6.学校机房今年和去年共购置了 100 台计算机,已知今年购置计算机数量 是去年购置计算机数量的 3 倍,今年购置计算机的数量是( C ) A.25 台 C.75 台 B.50 台 D.100 台
解:设这两个正方形边长分别为 3xcm,4xcm,则 4×3x+4×4x=140,∴x =5,所以 3x=15cm,4x=20cm,即这两个正方形边长分别为 15cm、20cm.
9.关于 x 的方程 x+2a=3 与方程 x+3x=28 的解相同,则 a 的值为( B ) A.2 C.5 B.-2 D.-5 b =ad-bc.已知 d
C )
1 3.如果 x=m 是方程2x-m=1 的解,那么 m 的值是( C ) A.0 C.-2 B.2 1 4 ;3x+3x=5 的解是 x=3 . D.-6 3 x=2 4.方程 10x-6x-2x=3 的解是
5.解下列方程: (1)6x+5x=44;
解:x=4
(2)-x-2x+7x=12;
七年级数学(上册)•人教版

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一元一次方程是数学中最基础也是最常见的一类方程。

它的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。

解一元一次方程的目的是找出使等式成立的x的值。

在本文中,我将介绍几种常用的解一元一次方程的方法。

方法一:移项法移项法是解一元一次方程最常用的方法之一。

首先,将方程的项重新排列,使得未知数x的系数为1。

例如,对于方程2x + 3 = 7,我们可以将方程转化为2x = 7 - 3。

接下来,将常数项移到等号的另一边,得到2x = 4。

最后,继续化简方程,得到x = 4/2,也就是x = 2。

所以,方程2x + 3 = 7的解为x = 2。

方法二:因式分解法当一元一次方程的系数a和b都是整数,并且方程可以因式分解时,我们可以使用因式分解法来解方程。

例如,对于方程2x - 6 = 0,我们可以因式分解为2(x - 3) = 0。

根据零乘法,可以得到等式的解为x - 3 = 0,即x = 3。

所以,方程2x - 6 = 0的解为x = 3。

方法三:代入法代入法是一种直接将x的值代入方程中验证是否成立的方法。

例如,对于方程3x + 5 = 14,我们可以先猜测一个x的值,例如x = 3。

把x = 3代入方程中,得到3(3) + 5 = 14。

将方程简化后,可以发现等式两边相等。

所以,方程3x + 5 = 14的解为x = 3。

方法四:图像法图像法是通过绘制方程的函数图像来寻找方程的解。

对于一元一次方程ax + b = 0,可以将方程表示为y = ax + b的形式。

通过画出y = ax + b的图像,我们可以观察到方程与x轴的交点,这些交点即为方程的解。

例如,对于方程2x - 3 = 0,我们可以绘制y = 2x - 3的直线,然后观察直线与x轴交点的横坐标,即为方程的解。

方法五:消元法消元法是通过变换方程,使其中一个未知数的系数为零,从而降低方程的次数。

例如,对于方程3x + 2y = 7,我们可以通过消元法将方程转化为x = (7 - 2y)/3。

解一元一次方程(1和2)

解一元一次方程(1和2)

4.2 解一元一次方程(1)班级 姓名 学号主备人:吴江 审核人:初一数学备课组 日期【学习目标】(1)了解方程的解和解方程的概念。

(2)了解方程的基本变形在解方程中的应用,并会解简单的一元一次方程。

【教学重点】运用等式的基本性质解一元一次方程。

【教学难点】理解方程的解及解方程的区别以及方程的基本变形。

【预习内容】预习教科书P99-100页的内容,并回答下列问题1、下列方程中,是一元一次方程的是 ( )A 、2x -1=3x 2B 、x x=+63 C 、3x +2y =5 D 、6+x =1 2、做一做:填表由上表知:当x = = 是方程=5的解3、概念方程的解: 叫做方程的解.解方程: 叫做解方程等式的性质1:等式两边都加上或减去 ,所得结果仍为等式 等式的性质2:等式两边都乘以或除以 ,所得结果仍为等式. 议一议:上面两个等式的划线部分有什么不同?为什么?4、用适当的数或整式填空,使所得结果仍是等式,并说明依据是什么.(1)如果6+x =2,那么x =___________ ,根据是____________ ;(2) 如果1523=x ,那么x =___________,根据是________ __ . 【例题选析】例1、检验下列各数是不是方程4x -3=2x +3的解.(1)x =3 (2)x =8 (3)x =5分别把1、2、3代入下列方程,哪一个值能使方程两边相等?(1)2x -1=5 (2)3x -2=4x -3例2、解下列方程:(1)x +5=2 (2)3x -2=4x -3练习:下列变形错误的是( )A .由x + 7= 5得x +7-7 = 5-7 ;B .由3x -2 =2x + 1得x = 3C .由4-3x = 4x -3得4+3 = 4x +3xD .由-2x = 3得x =-239、想一想:(1)每一步的变形依据是什么?(2)怎样检验求得的值为方程的解?(3)解方程目标是什么?10、课堂练习:教科书100页练一练11、师生小结:通过本节课的学习,你有哪些收获?【课堂反馈】1、方程312-x =x -2的解是( ) A .5 B .-5 C .2 D .-22、某数的4倍减去3比这个数的一半大4,则这个数为 __________.3、当m = __________时,方程2x +m =x +1的解为x =-4.4、求作一个方程,使它的解为-5,这个方程为5、解下列方程(1)531=x (2)6x =3x -12(3)35=-x (4)54-=+t(5) -2x =-3x +8 (6) x x 564-=-(7) 2y ―21=21y ―3 (8) -2x +56=3x +32【拓展与提高】若关于x 的方程2ax +27=0与2x +3=0有相同的解,求a 的值和这个相同的解。

五招助你巧解一元一次方程

五招助你巧解一元一次方程

五招助你巧解一元一次方程解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

在每一个步骤中,倘若我们能根据方程的特点巧妙变形,则可以使得解题过程更简便。

下面本文结合例题介绍五招巧解一元一次方程的重要策略,供同学们借鉴:第一招:紧扣等式的基本性质,在方程的两边同时乘以x 项原系数的倒数,使其系数巧妙化为1。

例1解方程:3125.0=-x解:原方程的两边同时乘以8-得24-=x评注:在系数化为1时,有些同学往往因为漏掉“负数的倒数的符号”而出错,应引起我们高度的警惕。

对应练习1解方程:5.425.0=-x第二招:当原方程的各分母是小数时,可以利用分数的基本性质把它们化成整数“1”,从而巧妙去分母。

例2解方程:1.02.12.08.055.05.14x x x -=--- 解:依题意,对第一项分子和分母同时乘以2,第二项分子和分母同时乘以5,第三项分子和分母同时乘以10,则原方程可以化为x x x 101242538-=+--,移项合并同类项得117=-x 解得711-=x 评注:分数的基本性质是巧解分母是小数的一元一次方程的重要依据,而其求解的关键是使原方程的各个分母化为“1”,从而简便运算。

但是,在求解的过程中,要注意原方程在去分母时,其分子是否需要变号的问题。

对应练习2解方程:25.0225.012=--+x x 第三招:根据各类括号内外系数的特点,改变去括号的一般顺序,从而简便运算。

例3解方程:1}8]6)432(51[71{91=++++x 解:原方程两边同时乘以9得98]6)432(51[71=++++x 整理得1]6)432(51[71=+++x 对此方程两边同时乘以7得76)432(51=+++x 整理得1)432(51=++x 再对此方程两边同时乘以5得5432=++x 整理得132=+x 最后对此方程两边同时乘以3得32=+x 解得1=x 评注:去括号的一般顺序是从内到外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小组内交 流,用语言 叙述出来。
(2)
合并同类项得: x 的系数化为 1,得
x
完 成 后 , 【我探究、我敢试、我成功】 小 组 交 流 [练习一] 解下列方程: 讨 论 结 (1)6x —x = 4 ; (2)-4x + 6x-0.5x =-0.3; 论;
(3) 3x 1.3x 5x 2.7 x 12 3 6 4 .
总 结 反 思
(4)
x 3x 7; 2 2
[思考]方程 3x 20 4 x 25 的两边都含有 x 的项( 3x与4 x )和常数项( 20与 25 ) , 怎样才能把它化成 x a ( a 为常数)的形式呢? 解:利用等式的性质 1,得 , ∴ ∴x 。 。
**像上面那样把等式一边的某项改变符号后移到另一边,叫做移项。 [问题]移项起到什么作用? [例 2] 解下列方程: (1) 5x 8 3x 2 ; (2) 3x 7 32 2x 。
学习过程
一、 【我预习、我会学、我快乐】 南村侨联中学三年来共购买计算机 210 台,去年购买数量是前年的 2 倍,今年购买数量是
自学课本
去年的 4 倍,前年学校购买了多少台计算机? 解:设前年购买计算机 x 台,则去年购买 今年购买 台,依题意得 台,
要解这个方程,可以先把方程左边合并同类项,再用等式的性质解出 x 的值,解法如下:
【我自测、我提高、我收获】解下列方程: (1) x 5 1 ;
(2)
3 2 x 2 3
(3)
7 x 3 2 x ; (4) 2x x 3 1.5 2x ;
(6) 5 x 5 3x ; (7) x 3x 1.2
二、 【合作交流、互动合作、提升能力】 [例 1] 解下列方程: (1) 9x—5 x =8 ;(2) 4x-6x-x =-15;3) x 2.5x 3x 1.5x 15 4 6 3 ( 7 解: (1)合并同类项得: 两边 ∴x ,得 , ; = ; =
承德三中七年级数学学科导学案
主备人高树金候筠利 审核人 姜瑞凤 审批领导 授课时间 编号 0303
课题 学习目标 重点 难点 环节预设
学法建议 课堂设计
3.2.1 解一元一次方程(一)
课型
自学互学展示课
1、让学生正确、熟练的掌握和应用解一元一次方程的三个基本步骤: “移项”与“合 并同类项”“将未知数的系数化为 1” 、 ;2、自主探索、归纳解一元一次方程的一般步骤。 。 一元一次方程的解法 探索、归纳解一元一次方程的一般步骤
[练习二] 解下列方程: (1)x 2 3 x ; (2) x 1 2 x ; (3)5 5 3x ; (4)x 2 x
1
2 x; 3
(5) x 3x 1.2 4.8 5x ;
(6) x 1 2 x ;
开动脑 筋,相信 自己一定 能行。不 会的可以 向组长请 教
相关文档
最新文档