干式变压器热时间常数的计算和试验方法
变压器温升计算公式

干式变压器损耗产生的热量是通过热传导,对流和辐射等散发到周围冷却介质中。
由于绕组、铁心结构型式的不同,绕组、铁心的温升计算也不尽相同,而且在很大程度上依赖于试验和经验。
一般温升计算的经验公式为:n kq τ= (1)式中:τ—绕组或铁心对周围环境的温升k 、n —经验系数q —绕组或铁心有效表面热负荷由于干式变压器的结构型式的不同,铁心、绕组的相对位置的不同,经验公式的取值也不同。
干式变压器温升的一般原理是:干式变压器的损耗转换为热量,这些热量一部分由表面向周围冷却介质散发出去,另一部分则提高了变压器本身的温度;当在一定时间内,干式变压器本身温度不再升高时,变压器进入稳定状态,其最后温升为τ时,则:P aS τ= 或变形为:/P aS τ= (2)式中:P —干式变压器的总损耗,WS —冷却面积,2ma —散热系数,即干式变压器的温升为1℃时,每秒从单位面积上所发散的热量 另外,假设干式变压器的损耗全部用来提高变压器本身的温度,整个过程中没有任何热量损失或发散于周围的冷却介质中,该过程为绝热过程,则有:PT CG τ= 或变形为/PT CG τ= (3)式中:T —时间常数C —比热G —质量,kg假设干式变压器处于理想的稳定状态,此时干式变压器的温度升高将为最大,即温升最大,称其为稳态温升。
由式(2)与式(3)可知,干式变压器的稳态温升可以等效为一条直线。
实际上,由式(1)可知干式变压器的温升是一条指数曲线,在计算干式变压器的暂态温升时,将其等效为直线是不准确的。
将式(2)代入式(3),可得:/T CG aS = (4)由式(4)可知,干式变压器的T 为一固定数值,即时间常数。
在此时间内,当无散热时,a 为常数,当0t =时,0t ττ=,则: //0(1)t T t T t e e τττ--=-+ (5)式(5)表明,当0t ττ>时,表示t 时刻温升大于初始温升,故式(5)代表干式变压器的发热过程;反之,当0t ττ<时,表示t 时刻温升小于初始温升,式(5)代表干式变压器的冷却过程。
变压器试验基本计算公式

变压器试验基本计算公式一、电阻温度换算:不同温度下的电阻可按下式进行换算:R=Rt(T+θ)/(T+t)θ:要换算到的温度;t:测量时的温度;R t:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。
二、电阻率计算:ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃三、感应耐压时间计算:试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算:t=120×fn/f,公式中:t为试验时间,s;fn为额定频率,Hz;f为试验频率, Hz。
如果试验频率超过400 Hz,持续时间应不低于15 s。
四、负载试验计算公式:通常用下面的公式计算:Pk =(Pkt+∑In2R×(Kt2-1))/Kt式中:Pk为参考温度下的负载损耗;Pkt为绕组试验温度下的负载损耗;Kt为温度系数;∑In2R为被测一对绕组的电阻损耗。
三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y”或“Yn ”联结的绕组:Pr=1.5In2Rxn=3 In2Rxg;“D”联结的绕组:Pr=1.5In2Rxn=In2Rxg。
式中:Pr为电阻损耗;In为绕组的额定电流;Rxn为线电阻;Rxg为相电阻。
五、阻抗计算公式:阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。
阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。
ekt=(Ukt ×In)/(Un×Ik)×100%, ek=1)-(K)/10S(Pe22Nkt2kt %式中:ekt为绕组温度为t℃时的阻抗电压,%;U kt 为绕组温度为t℃时流过试验电流Ik的电压降,V;Un为施加电压侧的额定电压,V;In为施加电压侧的额定电流,A;ek为参考温度时的阻抗电压,%;P kt 为t℃的负载损耗,W;Sn为额定容量,kVA;Kt为温度系数。
干式变压器试验方案

干式变压器试验方案1.试验目的检查变压器到货的质量情况。
2.试验项目(1)测量绕组的直流电阻;(2)检查所有分接头的电压比;(3)检查变压器的三相接线组别和极性;(4)测量与铁心绝缘的各紧固件及铁心的绝缘电阻;(5)测量绕组的绝缘电阻;(6)绕组的交流耐压试验。
3.试验仪器(1)BC2000/2500V兆欧表(2)500V/2500V 摇表(3)20A变压器直流电阻测试仪(4)全自动变比组别测试仪(5)50kV,100mA试验变及操作台4.试验依据(1)电气设备交接试验标准GB50150-2006;(2)出厂试验报告。
5.试验前准备工作(1)对变压器进行全面清扫,保证变压器被擦拭干净;(2)编制试验方案并经监理工程师审批;(3)试验前通知监理并取得监理的同意;(4)试验设备准备齐全,试验出厂报告齐全;(5)试验人员能熟练操作试验设备;(6)试验电源到位且满足容量要求。
6.试验方法(1)用变压器直流电阻测试仪测量绕组的直流电阻,应符合下列规定:① 测量应在各分接头的所有位置上进行;② 1600kV A 及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV A 以上三相变压器,各相测得值的相互差值应小于平均值的2%,线间测得值的相互差值应小于平均值的1%;③ 变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;不同温度下按以下公式换算2211T t R R T t +=+ 式中R1,R2—分别为温度在t1,t2时的电阻值;T —计算用常数,铜导线取235,铝导线取225。
④ 由于变压器结构等原因,差值超过本条第2款时,可只按本条第3款进行比较,但应说明原因。
(2) 用变比自动测试仪检查所有分接头的电压比,与制造厂铭牌数据相比应无明显差别,且应符合电压比的规律。
注:“无明显差别”可按如下考虑:① 电压等级在35kV 以下,电压比小于3的变压器电压比允许偏差不超过±1%;② 其他所有变压器额定分接头下电压比允许偏差不超过±0.5%; ③ 其他分接的电压比应在变压器阻抗电阻值(%)的1/10以内,但不得超过±1%。
干式变压器温升试验方法

干式变压器温升试验方法一、引言干式变压器是一种常见的变压器类型,其主要特点是内部没有绝缘油,所以被广泛应用于室内环境。
为了确保干式变压器的安全运行,需要对其进行温升试验,以验证其绝缘系统的可靠性和散热系统的有效性。
本文将介绍干式变压器温升试验的方法和步骤。
二、试验目的干式变压器温升试验的目的是评估变压器在额定负载条件下的温升情况,以确认其绝缘系统是否正常工作,并且散热系统是否能有效降低变压器的温度。
通过试验结果,可以评估变压器的负载能力和散热性能,为变压器的正常运行提供依据。
三、试验设备和仪器1. 温度计:用于测量变压器的温度变化。
2. 负载箱:用于提供变压器的额定负载。
3. 电流表和电压表:用于测量变压器的负载电流和电压。
4. 试验台和支架:用于固定和支撑变压器。
四、试验步骤1. 准备工作将变压器放置在试验台上,并确保其稳固。
清理变压器表面的灰尘和杂物,保证散热通道畅通。
2. 接线将负载箱与变压器连接,根据变压器的额定电流和电压设定合适的负载。
确保接线牢固可靠,避免接触不良或短路。
3. 测量初始温度在试验开始前,用温度计测量变压器的各个部位的初始温度。
包括变压器的绕组、铁心和外壳的温度。
4. 施加负载按照变压器的额定负载要求,调节负载箱的负载电流和电压。
在负载稳定后,开始计时。
5. 温度测量在试验过程中,定时测量变压器各部位的温度变化。
根据试验要求,可以选择在固定时间间隔内测量,或在负载达到稳定后进行测量。
6. 试验结束试验时间结束后,停止负载,并记录变压器各部位的最终温度。
根据试验数据,计算变压器的温升值。
五、试验注意事项1. 在试验过程中,需要注意安全,避免触电和烫伤等意外事故的发生。
2. 温度计的选择要准确可靠,能够测量变压器表面和内部的温度。
3. 负载箱的负载要符合变压器的额定要求,过高或过低的负载都会对试验结果产生影响。
4. 温度测量要准确,避免测量误差对试验结果的影响。
可以进行多次测量取平均值,提高测量精度。
【word】 干式变压器温升计算方法

干式变压器温升计算方法nsformerLIUZai-ben.LUOJin-hai (SanbianScienceandTechnologyCo.,Ltd.,Sanmen317100,China) Abstract.Themethodtocalculatetemperaturerisesofcoreandwindingindry—-typetransformerisintroduced.Thecalculatingexampleispresented. Keywords:Dry-typeransformer;Temperaturerise;Calculation1引言干式变压器温升计算比油浸式变压器复杂,主要因为空气冷却方式的散热不仅靠对流,而且靠辐射.各部位温升的计算值与实测值之间不能出现较大误差,过高则影响绝缘寿命,过低则造成体积增大和成本增加.温度是空间和时间的函数,,Y,z,t).对于稳定的非时变场,,Y,z).可见温升分布复杂,一般情况下认为铁心,绕组形状为圆柱体.圆筒体.在实际设计计算时通常分别假设一个平均温升,这就是常用的工厂计算方法.该计算方法适用于环氧浇注式,一般温升计算的经验公式为:丁=后q(1)式中绕组或铁心对周围环境的温升k,n——经验系数q——绕组或铁心有效表面热负荷由于干式变压器的结构型式的不同,铁心,绕组的相对位置不同,经验系数的取值也不同.实际进行工程计算时应根据产品结构进行选择计算.2理论基础干式变压器的损耗转换为热量,一部分提高了本身的温升,一部分由表面向周围冷却介质散发出去.在一定时间内本身温度不升高,而进入稳定状态,其最后温升为1-时,则P=-~T(2)或仁,K(3)式中干式变压器的总损耗,WS——冷却面积,m散热系数,即干式变压器的温升为lcI二时,每秒从单位表面积上散出的热量另外,当假设全部热量用来提高变压器的本身温度,该过程为绝热过程,则PT=CG7(4)或仁品(5)式中时间常数D一比热,J/(kg?K)G——质量,kg由式(3)和式(5),可得(6)0’在此时间内,当无散热时,口为常数,当t=O,=丁n,则丁=(1-e)+丁0e(7)式(7)表明,当>丁0时,表示稳定温升大于初始温升,为发热过程;当<丁0时,表示稳定温升小于初始温升,为冷却过程.第5期柳再本,骆金海:干式变压器温升计算方法15 式(7)在工程上常用来计算于式变压器的短时温升.此时可以先按理想条件下的绝热过程计算稳态温升,再计算t时间的干式变压器的短时温升.3温升的工厂计算方法3.1铁心温升计算铁心对空气的温升有一种工程计算方法为:7=-0.36q瞄=0.36(P/S)明(8)式中铁心损耗,W.s——铁心的有效散热面积,m需注意的是,0.36与0.8为经验系数,因铁心的结构,材料不同而变化.其中S=SI+.s2+.s34,Sl为上铁轭顶表面积;.s2为上下铁轭旁表面积;.s,为铁心柱裸露表面积;为铁心柱被遮盖表面积;后:0.56(.6/日)幡为散热系数.本文讨论另一种简便和合理的方法,即0.36x(鲁)(9)Aa.-)0式中一单柱铁心损耗,W,对应于低压绕组导线高度日..由于不同设计方案下磁通密度B不同则不同,所以取参考磁密B=I.5T.s广铁心柱被低压遮盖表面积,m,So=‘rrdo?Hl——散热系数,=0.56(Co.)变压器的分层简图如图l所示.图1变压器的分层简图Fig.1Layerdiagramoftransformer如——铁心柱直径C一铁心柱与低压绕组阃的距离H.——低压绕组导线高度需要说明的是,对于容量小于2500kV A的干式配电变压器,一般铁心较矮,不需精细地计算,但对较大的干式变压器或某些较特殊的干式变压器, 进行铁心的温升计算还是必要的.3_2低压绕组各主层温升计算如图1所示,该干式变压器按气道分隔有5个主层.低压绕组中间有一个气道,高压绕组中间有一个气道,高压与低压绕组之间有一个绝缘筒.假设此变压器为F级的树脂浇注产品,如SCB10—1000/ l0/0.4.干式变压器绕组温升计算方法同铁心一样采用式(1).经验系数k因内外绕组及绕组是否包封而有差异,一般取值为0.3~0.66.经验系数n一般取值为0.75—0.95.在进行工厂计算时,可以通过模拟温升试验绘出温升曲线,推算出系数.设,P2为折算到指定温度的低压绕组损耗,高压绕组损耗.低压绕组主层l,2的负载损耗为Pll,Pl2,温升为1-I,.nTl=kl()明(10)Oln后2()明(11).)2.sI=后ll’rrdIl?HII2’rrd12”HI其中dlI=do+Co,后ll=0.56(Co1)啮dI2=2dI—do—Co,klz=0.56(CI/日1)S2=k2I’rrdzI?Hl+后丌?HI其中d2l=dl2+CI,kzl=0.56(Cl.6/日I)晒d22=2d2一dI2一CI,后22=0.56(/I)25低压平均温升为:一1-l£Il+1l2卜]一££.为低压主层l,2的导线长.3.3高压绕组各主层温升计算高压主层4,5的损耗为.,,温升为,,nT4=k4()们(12)nTs=k5(孚)(13).)5S4=k4I1Td4I?H2+k42a’rd42?日2,其中J=d笠++G,Ji}4J=O.56(G.6/日2)d42=2d4-d22一C2._C3,后42:0.56(C4.6/日2) S=后5l7rdsl?H2+,rs2?2,其中d5l=d42+C4,后5I=0.56(c42)=2以一如一高压平均温升:一TaG+22£.,£筮为高压主层4,5的导线长.3.4绝缘筒主层温升计算当干式变压器温升达到稳定状态后,对流和辐射起主要作用.对于裸露散热面则空气与散热面直接接触,具有对流和辐射作用;对于内散热面只有对流,而无辐射作用.16委珏嚣第44卷对于自然对流,单位面积靠对流形式散出热量,其公式为:qk=ak?△丁,W/m(14)式中△发热体与冷却空气之间的温差一对流系数,与冷却介质的性质,表面的温度,形状和位置等有关,:?a/H,:o.56(Ⅱ6/),其中,Ⅱ为气道宽度,为气道高度对于强迫对流,对流系数为:-厂(,Ⅱ,).如图l,主层3为绝缘筒.主层2,3,4之间,由q23=%(丁2一丁3),q43=0”43(丁4一丁3), 假设q23=q43,则%(丁2一丁3)=‰(丁3), :—ao.3%-—a4y’r4(15)a一●33.5主层温升校正(1)两个主层间的温升修正比如主层l与主层2之间的温升,几何散热面分别为5,,5:,热交换表面积为5设Tl>丁2, 则温差△仁丁广丁2,温差对应单位热负荷Aq(),对应的交换热量AP=-0.5?Aq?S.:,则主层l的温升降低,A,rl=0.36()ns(16)主层2的温升升高量,△o.36()ns(17),丁】=丁厂A’rl,丁2=丁2+△丁2(18)对于主层4与主层5之间的温升校正,并设丁4< ,同理可得到‘r4=丁4+△丁4,丁5=一△丁5(19)(2)热负荷在树脂上的温度下降量高压绕组的主层4与主层5的温升分别为丁4,,表面树脂厚度分别为t,t,.温度下降量为:△x10-3(20)AA05=旦冬xl0(21)A式中口——通过树脂表面的热负荷人——树脂的热导率,取A=0.2然后计算修正后的主层温升,高压主层4,5的内部温升,表面温升,由式(19),(2O),(21)得:{Z4n=z4+Az4+A04(22)l7~=74+A74{一△A(23)【F—TI广△类似的,低压绕组升由式(24),(25)得:f丁l=丁l一△丁l+A0【丁lf=丁广△丁lf7=丁2+△丁2+△02【7=丁2+△丁2A0l=旦xl0~,主层1,2的内部温升,表面温A02=×10(24)(25)4程序计算实例采用上述温升计算方法,可以用BASIC(或FORTURN)科学计算语言编制程序进行计算.输入文件采用对话式输入,输出文件采用文本式输出. 输入变量包括:主层数,铁心截面直径及单柱损耗值,高压绕组高度,低压绕组高度.各主层间的空气距离,各主层的层间绝缘厚度,内外表层绝缘厚, 主层的平均直径及单相负载损耗等.输出变量包括:铁心温升,高低压各主层的内部和外表面温升,中间绝缘筒的温升,高压低压平均温升.需要说明的是,本文讨论树脂浇注型干式变压器温升的绕组为层式.【例】一台SCB10—1000/10,10~2x2.5%/0.4kV, Dyn1l的树脂浇注产品.其铁心直径250mm,内部为箔式低压绕组,铜箔为1.3x670mm,两主层间为10ram宽的气道,使用撑条.高压绕组采用非织布包铜扁线的分段多层圆筒式,中间气道12ram.20oC 时,低压绕组主层l,主层2负载损耗分别为244.7W,423.3W;高压绕组主层4,主层5负载损耗分别为438.6W,814.8W.低压绕组,绝缘筒,高压绕组由内外到的绝缘半径分别为l44.75,166.75, 190.5,215,245.5ram.结构简图如图l所示.主要的输入变量值及输出结果如表l所示.由式(9)算出铁心温升为84K,符合要求.下面简单验算一下绕组主层温升计算结果.因为是F级树脂浇注产品,由2O℃转换到120~C的系数为(234.5+20)/(234.5+120)=0.7179.上述算例,主层2适用公式(11),k:约为0.60,表面温度为:o?6()眦≈87K假设主层l撑条遮盖面积系数为0.65,k.约为0.60,用公式(10)计算,主层l的表面温度为:丁--0.6(丽】9lKk约为O.63,用公式(12)计算,主层4表面温度第5期柳再本,骆金海:干式变压器温升计算方法17表’主要输入的变量值及输出结果5结束语Table1Maininputparametersandoutputresults内部温升外部温升气道平均直径负载损耗冷却面积位热负项目导线层数{/K/KC/mm/mm/W/m情/w?111——主层l929ll529024561.Ol824O主层289871033442391.17336l绝缘简6565l638l主层47977l643043931.5l2290主层58377l249l8l561.727472注:输入的低压绕组长度560ram,高压绕组长度670mm.为:为:删.63(~77Kk约为0.43,用公式(13)计算,主层5表面温度删.43(77K采用不同方法计算的温升值如表2所示.表2温升值Table2Valuesoftemperaturerise温升/K绕组相对误差相对误差试验值计算值老的温升计算值低压绕组868997.53.5%l2%高压绕组798l92.52.5%14.6%注:①计算值相对试验值误差;②老计算值相对试验值误差. 由表2可知,本文计算值比较接近试验值,并有一定裕度.而用老的温升计算方法所得温升值明显高于试验值,误差较大,该方法过于保守,不利于节材设计.本文讨论了干式变压器铁心,绕组各主层温升计算方法及温升校正方法.首先,干变的损耗产生的热量是通过热传导,对流和辐射等散发于周围介质中.由于绕组,铁心结构型式不同,温升计算方法也不尽相同,计算时式(1)的k值是变化的.本文提供了树脂浇注干变的一种程序计算结果,并经适当改动可以推广到SGB系列空气干式绕组的温升计算.该方法较方便解决了铁心的温升计算问题.一般规定铁心温升不超过80~100K.实际经验表明,铁心的最热点一般在铁心柱高度80%左右处,所以用单柱铁心损耗的方法计算铁心温升是可行的.再次,本文对低压绕组,高压绕组各主层及绝缘筒进行了表面温升,内部温升计算,计算值稍大于试验实测值.而老的温升计算只计算低压绕组平均温升,高压绕组平均温升,并且结果明显过高于试验值,所以本文的温升计算更为合理可行.由于干式变压器运行时内部温升呈抛物线分布,最热点温升约为平均温升的1.1~1.6倍,所以本文计算的温升值保留一定的正偏差是合理的.参考文献:【1】路长柏,郭振岩,刘文里,等.干式电力变压器理论与计算【M】.沈阳:辽宁科学技术出版社,2003.收稿日期:2006—07—17作者简介:柳再本(1969~),男,浙江三门人,三变科技股份有限公司工程师,从事变压器设计与开发工作;骆金海(1974一),男,湖北蕲春人,三变科技股份有限公司工程师,从事变压器设计与开发工作.?—-卜一+一—-卜一—-卜一+一—-卜一—-卜”+一—-卜一+一—-卜—-卜一+一—-卜—-卜一+一+一—-卜一+—-卜一++一—-卜--4--+一+”+一++一+一+一+一+一+”+一+一+一+一+一++一+-+一+一+一+?天威保变特大型变压器进入加拿大市场继美国西北能源公司350MV A/230kV移相变压器的订单之后,近日,保定天威保变电气股份有限公司北美市场再传捷报,经过几个月的不懈努力,天威保变成功获得加拿大BC省水电公司的一笔价值约6000万人民币的重要订单.该项目系北美地区2003年电网大瘫痪以来,加拿大政府电网改造的一个重点工程,计划于2008年完成对位于加拿大BC 省邓肯市以北约4公里处温哥华岛电站(VIT电站)的改建. 而天威保变此次中标的650MV A/230kV的移相变压器正是为该工程配套的重点设备.同时参与此项目竞标的是ABB和西门子等知名的跨国集团公司,天威保变再次凭借其移相变压器产品领先的技术优势和北美市场丰富的供货经验,一举击败所有竞争对手,最终赢得了这笔订单.结构复杂,技术难度高是行业内对大型移相变压器产品的共识.目前,全世界只有少数发达国家能够生产,而在国内,保变是唯一拥有移相变设计技术和供货经验的变压器制造厂家.此次天威保变凭借移相变成功叩开加拿大市场的大门,为公司在国际市场上赢得了更高的声誉,为进一步的开拓国际市场奠定了坚实的基础.该变压器将于2008年中旬交货。
干式变压器试验指导.

[键入公司名称]变压器实验指导丛书[键入文档副标题]目录1、编制说明------------------------------------------32、变压器试验项目的性质和程序------------------------3 2.1、变压器测量和联结组别标号检定--------------------4 2.2、绕组电阻测定规程--------------------------------4 2.3、绝缘例行试验------------------------------------6 2.4、外施耐压试验------------------------------------7 2.5、短路阻抗和负载损耗测量规程----------------------8 2.6、空载试验和空载损耗测量规程----------------------10 2.7、感应耐压试验------------------------------------12 2.8、局部放电测量规程--------------------------------13 2.9、声级测量规程------------------------------------13 2.10、变压器零序阻抗测定规程-------------------------14 2.11、雷电冲击试验-----------------------------------162.12、温升试验---------------------------------------193、附录----------------------------------------------201、编制说明《试验工作指导书》是根据GB1094.11-2007、GB1094.1,2—1996、GB1094.3,5-2003、GB/T10228-1996、JB/T501-2006等标准的要求,按照公司现有的试验设备的具体情况及试验经验编制的,是我公司干式变压器试验操作方法的依据。
干式变压器出厂试验项目及标准

干式变压器出厂试验工程及标准一、绝缘电阻测量二、绕组电阻测量对于2500KVA及以下的配电变压器,其不平衡率相为4%,线为2%:630KVA及以上的电力变压器,其不平衡率相〔有中性点引出时〕为2%,线〔无中性点引出时〕为2%.三、变压比试验和电压矢量关系的效定.四、阻抗电压、〔主分接〕、短路阻抗和负载损耗测量五、空载损耗及空载电流测量六、外施耐压试验七、感应耐压试验当试验电压的频率等于或小于2倍额定频率时,其全电压下的施加时间为60S.当试验频率超过2倍的额定频率时,试验持续时间为:120X〔额定频率〕〔S 〕但不少于15S 试验频率试验电压:在不带分接的线圈两端加两倍的额定电压.如果绕组有中性点端子,试验时应接地.八、局部放电测量三相变压器a〕当绕组接到直接地系统:应先加1.5Um/J3的线对地的预加电压,其感应耐压时间为30S 〔Um为设备最高电压〕,然后不切断电源再施加1.1Um/V3的线对地电压3min,测量局部放电量.b〕当绕组接到不接地系统:应先加1.5Um相对相的预加电压,其感应耐压时间为30S 〔Um为设备最高电压〕此时,有一个线路端子接地,然后不切断电源再施加1.1Um相对相的电压3min,测量局部放电量.然后,将另一个线路端子接地,重复进行本试验.c〕局部放电的允许值:根据GB 1094.3附录A规定:局部放电量不大于10PC.干式变压器感应耐压局部放电试验计算一、10KV干式变压器(1)变压器参数1、额定容量:2500KVA2、额定电压:10.5/0.4KV3、额定电流:144/3608A4、空载电流%:1.4%(2)计算施加电压:1、空载电流:I=3608 X 1.4%=50.5A2、对Y, yno接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=12KV局放试验预加电压:U1=1.5Um=1.5X12=18KV局放试验电压:U2=1.1Um=1.1X12=13.2KV变压器变比:K=10.5/ V 3/0.4/ V 3=26.251.5Um 电压下的二次电压:U=1.5Um X2/3 + 26.25=457V1.1Um 电压下的二次电压:U=1.1Um X2/3 + 26.25=335V变压器感应耐压试验:试验电压取两倍的额定电压:Us==21KV在二次侧ao施加电压,变比为K=10.5/V 3/0.4/V 3=26.25二次电压:U==21000X2/3・26.25==533.3V3、对D, yn11接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=12KV 局放试验预加电压:U1=1.5Um=1.5X12=18KV局放试验电压:U2=1.1Um=1.1 X 12=13.2KV变压器变比:K=10.5/0.231=45.5在二次侧ao施加电压1.5Um 电压下的二次电压:U=1.5Um+45.5=395V1.1Um 电压下的二次电压:U=1.1Um+45.5=290V变压器感应耐压试验:试验电压取两倍的额定电压:Us==21KV在二次侧ao施加电压,变比为K=10.5/0.4/J 3=45.5二次电压:U==21000・45.5==461.5V4、励磁变容量:S=U X I=533.3 X 50.5=26.91KVA二、35KV (35/0.4KV)干式变压器(1)变压器参数1、额定容量:2500KVA2、额定电压:35/0.4KV3、额定电流:41.2/3608A4、空载电流%:1.4%(2)计算施加电压:1、空载电流:I=3608 X 1.4%=50.5A2、对Y, yno接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=40.5KV局放试验预加电压:U1=1.5Um=1.5X40.5=61KV局放试验电压:U2=1.1Um=1.1 X 40.5=45KV变压器变比:K=35/ V 3/0.4/ V 3=87.5在二次侧ao施加电压1.5Um 电压下的二次电压:U=1.5Um X2/3 + 87.5=464V1.1Um 电压下的二次电压:U=1.1Um X2/3 + 87.5=342V 变压器感应耐压试验:试验电压取两倍的额定电压:Us==70KV X0.8=56KV 二次电压:U==56 X 2/3 + 87.5==427V3、对D, yn11接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=40.5KV局放试验预加电压:U1=1.5Um=1.5X40.5=61KV局放试验电压:U2=1.1Um=1.1 X 40.5=45KV变压器变比:K=35/0.231=1521.5Um 电压下的二次电压:U=1.5Um+152=400V1.1Um 电压下的二次电压:U=1.1Um+152=290V变压器感应耐压试验:试验电压取两倍的额定电压:Us==70KV X0.8=56KV 二次电压:U==56 + 152==368.4V4、励磁变容量:S=U X I=464 X 50.5=23.4KVA三、35KV (35/11KV)干式变压器(1)变压器参数1、额定容量:10000KVA2、额定电压:35/11KV3、额定电流:165/525A4、空载电流%:1.0%(2)计算施加电压:1、空载电流:I=525 X 1.0%=5.25A2、对Y, yno接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=40.5KV局放试验预加电压:U1=1.5Um=1.5X40.5=61KV局放试验电压:U2=1.1Um=1.1 X 40.5=45KV变压器变比:K=35/11=3.181.5Um 电压下的二次电压:U=1.5Um X2/3 + 3.18=12.7KV1.1Um 电压下的二次电压:U=1.1Um X2/3 + 3.18=9.4KV 变压器感应耐压试验:试验电压取两倍的额定电压:Us==70KV X0.8=56KV二次电压:U==56000 X 2/3 + 3.18==11.7KV3、对Y, d11接线变压器局放试验按绕组接到不接地系统:系统最高电压:Um=40.5KV局放试验预加电压:U1=1.5Um=1.5X40.5=61KV局放试验电压:U2=1.1Um=1.1 X 40.5=45KV变压器变比:K=35/73^11=1.81.5Um 电压下的二次电压:U=1.5Um X2/3 + 1.8=22.5KV1.1Um 电压下的二次电压:U=1.1Um X2/3 + 1.8=16.7KV 变压器感应耐压试验:试验电压取两倍的额定电压:Us==70KV X0.8=56KV二次电压:U==56 X 2/3 + 1.8==20.7KV4、励磁变容量:S=U X I=22.5 X 5.25=118.12KVA取120 KVA四、电感、电容的计算:1、数据:电压:22.5KV 电流:5.25A 频率:100----200HZ2、电感计算:频率:100Hz——200HZL=U/6.28 Xf X I==22500/6.28 X 100 X 5.25=6.82H3、最小电容:频率:200HzCmin==1/(2n X/) 2XL==1/(6.28X200)2 X 6.82=0.0929P f4、最大电容:频率:100HzCmax==1/(2n X/)2 XL==1/(6.28X 100)2 X6.82=0.372p fQ值取20励磁变容量:S=120/20=6KVA励磁变输出电压:U=22.5/20=1.13KV励磁变输出电流:I=5.25 A选:600V X2 / 5A谐振电抗器:25KV 5A 100HZ7.96H谐振电容器选择:C=0.0929+0.372/2=0.232〃 f补偿电抗器〔试验二次侧为400V变压器〕600V10A95.5mH100-150HZ4 台干式变压器电压、电流一览表。
干式变压器试验步骤

干式变压器试验步骤1.外观检查:检查变压器的外观是否完好无损,无任何机械损坏或外部渗漏。
2.基本参数测试:这一步骤主要是测试变压器的额定功率、额定电压、额定电流、抽头开关位置等基本参数。
3.绝缘电阻测试:使用绝缘电阻表测量变压器的绝缘电阻。
这可以确定绝缘是否正常,并检测出可能存在的损坏或绝缘弱点。
4.绝缘介质电容测试:用高精度电容桥或介质损耗仪对变压器绕组和绝缘材料中的电容进行测试。
5.静态耐压试验:将特定的试验电压施加到变压器绕组上,并测量其绝缘电压和功耗。
这是检测绝缘强度的重要指标。
6.高压试验:以超过额定电压的电压施加到变压器上,测量其绕组之间的绝缘电阻和介质强度。
这是确保变压器可以在额定电压下正常运行的重要测试。
7.继电器保护装置测试:检查和测试继电器保护装置的功能,确保它们可以及时对变压器的故障进行检测和保护。
8.载荷损耗和空载损耗测试:在额定电压和额定频率下,测量变压器的载荷损耗和空载损耗。
这是评估变压器效率和能耗的重要测试。
9.温升试验:在负载条件下,测量变压器的温升,并验证其是否在额定负荷下仍然能够正常工作。
10.对称短路试验:通过将变压器两个绕组短接在一起,并施加额定电流,来测试变压器的故障电流能力。
11.过载试验:在一定时间内将变压器超负荷运行,以测试其过负荷能力和热稳定性。
12.噪音测试:测试变压器的噪音水平,确保其在正常运行时不会产生过高的噪音。
13.阻尼振荡试验:测试变压器的阻尼振荡能力和稳定性。
14.终值检查:根据试验结果,评估变压器的绝缘性能、导热性能、负荷能力、热稳定性和噪音水平等。
总结:干式变压器试验步骤分为外观检查、基本参数测试、绝缘电阻测试、绝缘介质电容测试、静态耐压试验、高压试验、继电器保护装置测试、载荷损耗和空载损耗测试、温升试验、对称短路试验、过载试验、噪音测试、阻尼振荡试验和终值检查等。
这些试验可以帮助确定干式变压器的性能和可靠性,确保其满足设计和制造标准,以及运行需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干式变压器热时间常数的计算和试验方法
0概述
变压器短时过负荷(以下简称过载)运行是一种发热的过渡过程。
过载某一时刻的绕组温升可按下式计算:
θ=θ■+(θ■-θ■)(1-e■)(1)
式中t——过载时间,min;
θ——过载时间为t所对应的绕组平均温升,K;
θ■——t=0时绕组平均温升,即正常运行时绕组初始温升,K;
θ■——过载稳定后绕组的平均温升,K,与变压器过载倍数有关;
τ——在过载状态下的热时间常数,min。
干式变压器和油浸变压器不同的是没有油,因此在讨论干式变压器短时过负荷能力时仅需考虑干式变压器高、低压绕组的短时过负荷能力。
由(1)可知,绕组短时过负荷能力的大小取决于绕组的热时间常数,而热时间常数和绕组的热容量、损耗水平以及额定温升等因素密切相关。
1热时间常数的计算
干式变压器的热时间常数(理想值)是指干式变压器在恒定负债条件下,温升达到变化值的63.2%所需经历的时间,也等于变压器从稳定温升状态下断开负载,在自然冷却状况下,温升下降63.2%所需的时间,对于干式变压器,其高低压相互独立,故计算时需分别处理。
根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中A.8.3提供的公式:
τ■=■(2)
式中:τ■——额定负载下的热时间常数,min;
C——比热容,W·min/K;
Δθ■——额定负载下的稳定温升,K;
θ■——铁心引起的温升对线圈的影响,对于内线圈,取20K,外线圈,取0K;
P■——线圈的负载损耗,W。
对于比热容C的计算,通常采用以下公式:
C=C■*m■+C■*m■(3)
式中:C■——导体的比热值,Cu取6.42(W·min)/(kg·K),Al取14.65(W·min)/(kg·K);
m■——导体质量,单位kg;
C■——绝缘材料的比热,对于树脂取24.5(W·min)/(kg·K);
m■——绝缘材料质量,单位kg。
需要注意的是,在式(3)中的树脂比热值取24.5(W·min)/(kg·K)与IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中选用的6.35(W·min)/(kg·K)是有很大区别的,这是因为,在美国,应用最广泛的干式变压器主要还是敞开式的,而不是环氧浇注式的,其绝缘材料和组成也不一样。
根据相关参考资料,环氧树脂的比热约2000J/kg·K=33.3(W·min)/(kg·K),环氧浇注干式变压器绕组中的主要填充材料为玻璃纤维的比热约为800J/kg·K=13.3(W·min)/(kg·K),绕组中树脂质量与玻璃纤维质量的
比值大于1。
因此,树脂及其它绕组绝缘的比热应不小于23.3(W·min)/(kg·K),根据实际测量约为24.5(W·min)/(kg·K),IEEE C57.96-1999(R2005)中给出的6.35(W·min)/(kg·K)是切实际的。
此外,对于不同的负载条件,变压器的初始温升和稳定温升也各不相同,因此,其热时间常数取值也不相同,根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer 采用公式(4)进行计算:τ=τ■*■(4)
式中:m为经验系数,通常取0.8。
2变压器时间常数测量试验
变压器热时间常数测量试验,即测量变压器的平均温升变化到63.2%所需经历的时间,其实质是测量变压器温度上升过程中的电阻变化情况,其试验可与变压器温升试验同时进行,其关键在于带电测温。
以相互负载法进行温升试验为例,试验电路图如图一所示,具体事项如下:
2.1按图1可进行高压、低压带电测温。
2.2测低压热电阻时:Ty低压中点引线可作电流回路,T1低压中点引线可作电压回路。
Tx低压侧中点应引出两跟线:一为电压回路,一为电流回路。
2.3测高压热电阻时:Ty高压中点引线可作电流回路,T2高压中点引线可作电压回路。
(同理)
2.4测低压电阻时:因为电阻很小,应选四端式电桥(即双臂电桥),可测10-6~102Ω,最好是反接法。
2.5测高压电阻时,根据三相并联电阻的预值的大小来选择电桥接法。
若小于100Ω,可采用双臂电桥,大于100Ω以上用单臂电桥。
此图是双臂电桥,按正接法。
2.6送电时,要测(低压侧/高压侧)电压回路的零序电压,应小于1V 以下,否则检流计受电流干扰,测不出数。
如果有较大电压,应设法滤波,并在检流计回路上串联电感—电容低频滤波器。
3计算值与试验值得比较
表1为我公司800~1600kV A常规干式变压器额定电流和半额定电流下的时间常数计算值与试验值的比较。
4结论
干式变压器的负载能力取决于绕组热时间常数。
绕组热时间常数不是固定不变的,它不但取决于绕组本身的热容、额定损耗和额定温升,而且还随初始负载系数和过载系数的大小而变化。
本文所提供的热时间常数计算公式及方法能较准确的计算环氧树脂浇注式干式变压器的热时间常数,并经过试验验证时切实可行的。