微电子工艺基础污染控制和芯片制造基本工艺
芯片制造工艺流程
芯片制造工艺流程芯片制造工艺流程是指将芯片设计图纸转化为实际可用的芯片产品的一系列工艺步骤。
芯片制造工艺流程包括晶圆制备、光刻、薄膜沉积、离子注入、蚀刻、清洗和封装等环节。
下面将详细介绍芯片制造的工艺流程。
1. 晶圆制备芯片制造的第一步是晶圆制备。
晶圆是以硅为基材制成的圆形片,是芯片制造的基础材料。
晶圆的制备包括原料准备、熔炼、拉晶、切割和抛光等工艺步骤。
晶圆的质量和表面平整度对后续工艺步骤有着重要影响。
2. 光刻光刻是芯片制造中的关键工艺步骤,用于将设计图案转移到晶圆表面。
光刻工艺包括涂覆光刻胶、曝光、显影和清洗等步骤。
在曝光过程中,使用光刻机将设计图案投射到光刻胶上,然后经过显影和清洗,将图案转移到晶圆表面。
3. 薄膜沉积薄膜沉积是将各种材料的薄膜沉积到晶圆表面,用于制备导电层、绝缘层和其他功能层。
常用的薄膜沉积工艺包括化学气相沉积(CVD)、物理气相沉积(PVD)和溅射等。
这些工艺可以制备出不同性质的薄膜,满足芯片设计的要求。
4. 离子注入离子注入是将掺杂剂注入晶圆表面,改变晶体的导电性能。
离子注入工艺可以制备出n型和p型晶体区域,用于制备晶体管和其他器件。
离子注入工艺需要精确控制注入剂的种类、能量和剂量,以确保晶体的性能满足设计要求。
5. 蚀刻蚀刻是将不需要的材料从晶圆表面去除,形成所需的结构和器件。
蚀刻工艺包括干法蚀刻和湿法蚀刻两种。
干法蚀刻利用化学气相反应去除材料,湿法蚀刻则利用腐蚀液去除材料。
蚀刻工艺需要精确控制蚀刻速率和选择性,以确保所需的结构和器件形成。
6. 清洗清洗是将制造过程中产生的杂质和残留物从晶圆表面去除,保证晶圆表面的洁净度。
清洗工艺包括化学清洗、超声清洗和离子清洗等。
清洗工艺需要严格控制清洗液的成分和温度,以确保晶圆表面的洁净度满足要求。
7. 封装封装是将晶圆切割成单个芯片,并将芯片封装在塑料封装或陶瓷封装中,形成最终的芯片产品。
封装工艺包括切割、焊接、封装和测试等步骤。
集成电路制造中的半导体器件工艺
集成电路制造中的半导体器件工艺绪论随着信息技术的飞速发展,集成电路制造技术已成为现代电子工业的核心领域。
集成电路是现代电子产品的基础,在计算机、通讯、军事和工业等领域都有着广泛的应用。
而半导体器件工艺是集成电路制造技术的基石,其质量和效率直接决定了集成电路的性能和成本。
本文将从半导体制造的基本流程、光刻工艺、薄膜工艺、化学机械抛光、多晶硅工艺和后台工艺六个方面详细介绍集成电路制造中的半导体器件工艺。
一、半导体制造的基本流程半导体芯片制造的基本流程包括晶圆制备、芯片制造和包装封装。
具体流程如下:晶圆制备:晶圆是半导体器件制造的基础,它是由高纯度单晶硅材料制成的圆片。
晶圆制备的主要过程包括矽晶体生长、切片、抛光和清洗等。
芯片制造:芯片制造主要包括传输电子装置和逻辑控制逻辑电路结构的摆放和电路组成等操作。
包装封装:芯片制造完成后,晶体管芯片需要被封装起来的保护电路,使其不会受到外界环境的影响。
光刻工艺是半导体工艺中的核心部分之一。
光刻工艺的主要作用是将图形预设于硅晶圆表面,并通过光刻胶定位的方式将图形转移到晶圆表面中,从而得到所需的电子器件结构。
光刻工艺的主要流程包括图形生成、光刻胶涂布、曝光、显影和清洗等步骤。
三、薄膜工艺薄膜工艺是半导体制造中的另一个重要工艺。
它主要通过化学气相沉积、物理气相沉积和溅射等方式将不同性质的材料覆盖在晶圆表面,形成多层结构,从而获得所需的电子器件。
四、化学机械抛光化学机械抛光是半导体工艺中的核心工艺之一。
其主要作用是尽可能平坦和光滑化硅晶圆表面,并去除由前工艺所形成的残余物和不均匀的层。
化学机械抛光的基本原理是使用旋转的硅晶圆,在氧化硅或氮化硅磨料的帮助下,进行机械和化学反应,从而达到平坦化的效果。
五、多晶硅工艺多晶硅工艺是半导体工艺中的一个重要工艺,主要是通过化学气相沉积厚度约8至12个纳米的多晶硅层。
该工艺可以用于形成电极、连接线、栅极和像素等不同的应用。
多晶硅工艺的优点是不需要特殊的工艺装备,因此较为简单。
微机电系统制造工艺综述
微机电系统制造工艺综述微机电系统(Microelectromechanical Systems,MEMS)是一种集成了微小机械、电子、光学和磁性等元件的微型系统。
它的制造工艺是一个复杂且多样化的过程,涉及到多个步骤和技术。
本文将综述微机电系统的制造工艺。
一、工艺流程微机电系统的制造工艺流程通常包括以下几个主要步骤:基片准备、薄膜沉积、光刻、腐蚀、封装和测试。
1. 基片准备:基片是微机电系统的主要载体,常用的材料包括硅、玻璃和塑料等。
在基片制备过程中,需要进行清洗、平整化和涂覆等处理,以保证后续工艺步骤的顺利进行。
2. 薄膜沉积:薄膜沉积是微机电系统制造中的关键步骤之一。
常用的薄膜沉积方法有化学气相沉积(CVD)、物理气相沉积(PVD)和溅射等。
通过这些方法可以在基片上沉积出具有特定功能的薄膜层,如金属、氧化物和聚合物等。
3. 光刻:光刻是微机电系统制造中的关键技术之一。
它通过光敏胶的光化学反应将图案转移到基片上,形成所需的结构和形状。
常用的光刻技术包括接触式光刻和投影光刻。
4. 腐蚀:腐蚀是微机电系统制造中的重要步骤之一。
通过化学腐蚀或物理腐蚀的方式,可以去除不需要的材料,形成所需的结构和形状。
常用的腐蚀方法有湿腐蚀、干腐蚀和等离子体腐蚀等。
5. 封装:封装是将微机电系统芯片封装在外部保护壳中的过程。
封装可以提供保护、连接和传感等功能。
常用的封装方法包括焊接、粘接和翻转芯片封装等。
6. 测试:测试是微机电系统制造中的最后一步,用于验证芯片的性能和可靠性。
常用的测试方法包括电学测试、力学测试和光学测试等。
二、工艺技术微机电系统制造中常用的工艺技术包括:纳米制造技术、表面微结构技术、微流控技术和微传感技术等。
1. 纳米制造技术:纳米制造技术是微机电系统制造中的前沿技术之一。
它利用纳米尺度的工具和材料进行加工和制造,实现微米和纳米级别的结构和器件。
常用的纳米制造技术包括扫描探针显微镜(SPM)、电子束曝光和离子束刻蚀等。
微电子制造工艺流程解析
微电子制造工艺流程解析微电子制造工艺流程是指通过一系列的加工步骤,将原材料转化为微小电子器件的过程。
在这个过程中,需要经过晶圆制备、薄膜沉积、光刻、蚀刻、离子注入等关键步骤,以及其他一些辅助性的工艺步骤。
本文将对微电子制造工艺流程进行详细解析。
一、晶圆制备晶圆制备是微电子制造中的第一步,主要是通过硅材料生长来制备晶圆。
晶圆一般使用单晶硅材料,它具有良好的电性能和机械性能,适合作为微电子器件的基底。
在这一步骤中,需要对硅材料进行去杂、融化、再结晶、拉晶等加工过程,最终得到高质量的单晶硅晶圆。
二、薄膜沉积薄膜沉积是微电子制造中的重要步骤,通过在晶圆表面沉积薄膜来控制电子器件的性能和功能。
常用的薄膜沉积技术包括化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)等。
这些技术可以在晶圆表面沉积各种功能性薄膜,如硅氧化物、金属、半导体等。
三、光刻光刻是一种重要的微电子制造工艺,通过光照和显影的方式,在薄膜表面形成微细的图案。
这个图案将作为后续工艺步骤中蚀刻、离子注入等的参考依据。
光刻通常使用光刻胶来实现,根据需要选择合适的光源和掩膜,通过光刻曝光机进行精确的图案转移。
四、蚀刻蚀刻是一种去除不需要的材料的工艺步骤,通常将薄膜表面的某些区域通过化学或物理方式进行选择性地去除。
常见的蚀刻方式有湿蚀刻和干蚀刻两种。
湿蚀刻使用化学液体进行腐蚀,而干蚀刻则是利用等离子体来实现。
通过蚀刻,可以形成微细的结构,如通道、线路等。
五、离子注入离子注入是一种将外部离子引入器件材料中的工艺步骤。
通过加速器将离子加速到高速,并射入目标材料中,从而改变其电学或物理特性。
离子注入可以用于掺杂、形成pn结、获得特定的电子特性等。
具体的离子注入方式包括浸没注入、离子束注入等。
以上所述的晶圆制备、薄膜沉积、光刻、蚀刻和离子注入等工艺步骤只是微电子制造流程中的一部分,整个流程还包括清洗、测试、封装、探针测试等其他步骤。
每个步骤都需要精细的设备和技术支持,以确保最终制造出的微电子器件具有稳定的性能和可靠的品质。
芯片制造工艺流程9个步骤
芯片制造工艺流程9个步骤芯片制造是现代科技进步的基石之一,通过精密的工艺流程,能够将微小而复杂的电路集成在一个小小的芯片上。
下面将介绍芯片制造的9个关键步骤。
1. 掩膜设计掩膜设计是芯片制造的第一步,也是最关键的一步。
在这个步骤中,设计师将根据芯片功能要求,使用专业软件进行电路设计。
通过设计软件,设计师可以确定各个元件的位置和布局,以及电路的连接方式。
2. 掩膜制作一旦芯片的掩膜设计完成,就需要将设计图制作成实际的掩膜。
这个过程需要使用高精度的光刻机,将设计图案转移到掩膜上。
掩膜制作的质量将直接影响到后续步骤的精度和质量。
3. 晶圆制备晶圆是芯片制造的基础材料,通常使用硅作为晶圆材料。
在这一步骤中,需要将晶圆进行多次的研磨和清洗,以确保晶圆表面的平整度和无尘净度,为后续的工艺步骤做好准备。
4. 掩膜对准和曝光一旦晶圆准备好,就需要将掩膜和晶圆进行对准,并利用光刻机进行曝光。
光刻机会通过控制光源的强度和半导体材料的曝光时间,将掩膜上的图案转移到晶圆表面上。
5. 电路刻蚀刻蚀是芯片制造中的一项关键工艺,它能够去除晶圆表面不需要的材料,留下所需的电路结构。
刻蚀可以使用化学蚀刻或物理蚀刻的方法,根据不同的需求选择不同的刻蚀方式。
6. 沉积和腐蚀在芯片制造过程中,需要对电路进行沉积和腐蚀。
沉积是将所需的材料沉积到晶圆表面,以形成电路结构;腐蚀则是通过化学反应去除多余的材料。
7. 电路形成电路形成是芯片制造的重要步骤之一,通过化学或物理方法,将电路结构形成在晶圆表面。
这一步骤需要高精度的设备和工艺控制,确保电路结构的准确性和可靠性。
8. 封装和测试一旦电路结构形成,就需要对芯片进行封装和测试。
封装是将芯片封装在塑料封装或陶瓷封装中,以保护芯片并方便安装和连接。
测试是对芯片进行功能和可靠性测试,确保芯片的质量和性能。
9. 包装和验证最后,芯片需要进行包装和验证。
包装是将封装好的芯片放入适当的包装盒中,以便运输和存储。
微电子制造的基本原理与工艺流程
微电子制造的基本原理与工艺流程一、微电子制造的定义微电子制造是指设计、加工和制造微电子器件和微电子系统的过程。
它是现代信息技术和通信技术的基础,也是现代工业制造的重要组成部分。
二、微电子制造的基本原理1. 半导体材料的特性半导体材料是微电子器件的基础材料,具有良好的导电性和隔离性。
在半导体中掺杂少量杂质或者改变其温度、光照等物理性质可以改变其导电性。
半导体器件就是利用这种变化制作的。
2. 器件结构的设计微电子器件的结构设计是制造的重要一环。
器件结构包括电极、栅、控制信号输入端等。
这些结构的设计要考虑各方面的因素,如器件应用场合、功率、尺寸等因素。
3. 制造工艺的选择制造工艺是微电子制造的基础,是将器件结构设计转化为实际产品的过程。
制造工艺包括硅片切割、形成电极和栅、掺杂和扩散、制造成品等多个环节。
三、微电子制造的工艺流程1. 半导体材料制备半导体材料是微电子制造的基础,其制备是微电子制造的第一步。
半导体材料制备的过程主要包括单晶生长、多晶生长、分子束外延、金属有机化学气相沉积等多种方法。
2. 硅片制备硅片是微电子制造的中间产品,它是各种微电子器件的基础。
硅片制备的过程包括硅棒制备、硅棒切割、圆片抛光等环节。
3. 电极和栅制造电极和栅是微电子器件的重要组成部分,制造电极和栅主要通过光刻和蚀刻技术实现。
光刻是一种通过光照形成光阻图形的技术,蚀刻是一种将光刻后形成的光阻图形转化为实际器件的技术。
4. 掺杂和扩散掺杂和扩散是将杂质引入半导体材料中,从而改变其电学性质的过程。
其中,掺杂是将杂质引入半导体中,扩散是将杂质在半导体中扩散开的过程。
这些过程可以通过化学气相沉积、物理气相沉积等方式实现。
5. 制造成品制造成品是微电子制造的最后一步。
成品制造包括器件组装和测试等环节。
器件组装是将各个器件按照要求组装在一起的过程,测试则是对器件进行性能测试的过程。
总之,微电子制造是一项复杂而精密的工艺,它采用了多种制造工艺和技术,涉及到多个环节。
微电子工艺的流程
微电子工艺的流程一、工艺步骤1. 材料准备:微电子工艺的第一步是准备好需要的材料,这些材料包括硅片、硼化硅、氧化铝、金属等。
其中,硅片是制造半导体芯片的基本材料,它具有优良的导电性和导热性能,而硼化硅和氧化铝则用于作为绝缘层和保护层。
金属材料则用于连接不同的电路元件。
2. 清洗:在进行下一步的工艺之前,需要对硅片进行清洗,以去除表面的杂质和污垢。
常用的清洗方法包括浸泡在溶剂中、超声波清洗等。
清洗后的硅片表面应平整光滑,以便后续的工艺步骤能够顺利进行。
3. 刻蚀:刻蚀是微电子工艺中的重要步骤,它用于在硅片表面上形成需要的电路图案。
刻蚀一般采用化学法或物理法,化学法包括湿法刻蚀和干法刻蚀,物理法包括离子束刻蚀、反应离子刻蚀等。
刻蚀后,硅片表面将形成不同深度和形状的电路结构。
4. 清洗:刻蚀后的硅片需要再次进行清洗,以去除刻蚀产生的残留物,并保证表面的平整度和清洁度。
清洗一般采用流动水冲洗、超声波清洗等方法。
5. 沉积:沉积是在硅片表面上沉积一层薄膜来形成电路元件或连接线的工艺步骤。
常用的沉积方法包括化学气相沉积、物理气相沉积、离子束沉积等。
沉积后,硅片表面将形成具有特定性能和功能的导电膜或绝缘膜。
6. 光刻:光刻是将需要的电路图案投射在硅片表面上的工艺步骤。
光刻过程中,先在硅片表面涂上感光胶,然后利用光刻机将光阴影形成在感光胶上,最后用化学溶液溶解感光胶,形成需要的电路结构。
光刻过程需要高精度的设备和技术支持。
7. 离子注入:离子注入是将控制的离子注入硅片表面形成电子器件的重要工艺步骤。
通过控制注入的离子种类、注入能量和注入剂量,可以形成不同性能和功能的电子器件。
离子注入是微电子工艺中的关键技术之一。
8. 清洗和检测:在工艺步骤完成后,硅片需要再次进行清洗和检测,以确保电路结构和性能符合要求。
清洗和检测一般采用高精度的设备和技术支持,包括扫描电子显微镜、原子力显微镜等。
二、工艺参数和设备微电子工艺需要严格控制各种工艺参数,包括温度、压力、流量、时间等。
微电子10-si片制造中的污染控制
护清洁。
净化间布局 由早期的舞厅式布局到了现在的间格和夹 层布局。
早期净化间的舞厅式布局来自净化间间格和夹层的概念
气流原理 为了实现净化间的超净环境,气流种类是关键的。 层状气流意味着气流是平滑的,无湍流气流模式(见图)。
空气过滤 图是空气过滤系统的简化图。
金属杂质导致了半导体杂质中器件成品率的减少, 包括氧化物-多晶硅栅结构中的结构性缺陷。 额外的问题包括pn结上泄露电流的增加以及少数载 流子寿命的减少。 可动离子沾污(MIC)能迁移到栅结构的氧化硅界 面,改变开启晶体管所需的阈值电压(见图)。 由于它们的性质活泼,金属离子可以在电学测试和 运输很久以后沿着器件移动,引起器件在使用期间 失效。 半导体制造的一个主要目标是减少与金属杂质和 MIC的接触。
温度和湿度 对硅片加工设备温度和湿度的设定 有特别的规定。一个1级0.3um净化间温度控制 的例子是68%±0.5°F。相对湿度(RH)很重要, 因为它对侵蚀有贡献。典型的RH设定为40% ±10%。
静电释放 多数静电释放(ESD)可以通过合理 运用设备和规程得到控制。主要的ESD控制方法 有:
•静电消耗性的净化间材料 •ESD接地 •空气电离
水
为了制造半导体,需要大量的高质量、超纯去离子(DI)水 (UPW)。据估计在1条现代的200nm工艺线中,制造每个 硅片的去离子水消耗量达到2000加仑。
超纯去离子水中不允许的沾污有: •溶解离子 •有机材料 •颗粒 •细菌 •硅土 •溶解氧
图展示了水中的各种颗粒及其尺寸
自然氧化层引起的另一个问题在于金属导体的接触区。接触 使得互连与半导体器件的源区及漏区保持电学连接。如果有 自然氧化层存在,将增加接触电阻,减少甚至可能阻止电流 流过(见图)。
集成电路四大基本工艺
集成电路是一种微型化的电子器件,其制造过程需要经过多个复杂的工艺流程。
其中,氧化、光刻、掺杂和沉积是集成电路制造中的四大基本工艺。
首先,氧化工艺是在半导体片上形成一层绝缘层,以保护芯片内部的电路。
这一步骤通常使用氧气或水蒸气等氧化物来进行。
通过控制氧化层的厚度和质量,可以确保芯片的可靠性和稳定性。
其次,光刻工艺是将掩膜版上的图形转移到半导体晶片上的过程。
该工艺主要包括曝光、显影和刻蚀等步骤。
在曝光过程中,光线通过掩膜版照射到晶片表面,使光敏材料发生化学反应。
然后,显影剂将未曝光的部分溶解掉,留下所需的图案。
最后,刻蚀剂将多余的部分去除,得到所需的形状和尺寸。
第三,掺杂工艺是根据设计需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触电极等元件。
该工艺通常使用离子注入或扩散等方法来实现。
通过精确控制掺杂的深度和浓度,可以调整材料的电学性质,从而实现不同的功能。
最后,沉积工艺是在半导体片上形成一层薄膜的过程。
该工艺通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等方法来实现。
通过控制沉积的条件和参数,可以得到具有不同结构和性质的薄膜材料。
这些薄膜材料可以用于连接电路、形成绝缘层等功能。
综上所述,氧化、光刻、掺杂和沉积是集成电路制造中的四大基本工艺。
这些工艺相互配合,共同构成了集成电路复杂的制造流程。
随着技术的不断进步和发展,这些工艺也在不断地改进和完善,为集成电路的发展提供了坚实的基础。
集成电路ic--芯片制造工艺的八大步骤
集成电路ic--芯片制造工艺的八大步骤集成电路(Integrated Circuit,IC)是现代电子技术的核心组成部分,广泛应用于计算机、通信、消费电子等领域。
IC的制造工艺涉及多个步骤,以下将详细介绍其八大步骤。
第一步,晶圆制备。
晶圆是IC制造的基础,它通常由高纯度的硅材料制成。
首先,将硅材料熔化,然后在石英坩埚中拉制出大型硅棒。
接着,将硅棒锯成薄片,形成晶圆。
第二步,沉积。
沉积是指在晶圆表面上沉积一层薄膜,用于制作电路的不同部分。
常用的沉积方法包括化学气相沉积和物理气相沉积。
通过这一步骤,可以形成绝缘层、导体层等。
第三步,光刻。
光刻是一种利用光敏物质的特性进行图案转移的技术。
首先,在晶圆表面涂覆光刻胶,然后使用掩膜板将光刻胶进行曝光,形成所需的图案。
接着,用化学液体将未曝光的部分去除,留下所需的图案。
第四步,蚀刻。
蚀刻是指将多余的材料从晶圆表面去除,以形成所需的结构。
蚀刻方法主要有湿法蚀刻和干法蚀刻两种。
通过这一步骤,可以制作出电路的导线、晶体管等元件。
第五步,离子注入。
离子注入是将特定的杂质离子注入晶圆表面,以改变材料的导电性能。
通过控制离子注入的能量和剂量,可以形成导电性能不同的区域,用于制作场效应晶体管等元件。
第六步,金属化。
金属化是将金属材料沉积在晶圆表面,形成电路的导线和连接器。
常用的金属化方法包括物理气相沉积和电镀。
通过这一步骤,可以形成电路的互连结构。
第七步,封装测试。
封装是将晶圆切割成独立的芯片,并封装到塑料或陶瓷封装中,以保护芯片并便于安装和使用。
测试是对封装好的芯片进行功能和可靠性测试,以确保芯片的质量。
第八步,成品测试。
成品测试是对封装好的芯片进行全面测试,以验证其功能和性能是否符合设计要求。
测试包括逻辑测试、温度测试、可靠性测试等。
通过这一步骤,可以筛选出不合格的芯片,确保只有优质的芯片进入市场。
以上就是集成电路IC制造工艺的八大步骤。
每个步骤都至关重要,缺一不可。
微电子工艺流程
微电子工艺流程1. 概述微电子工艺是处理微尺寸的电子器件的制造过程,它涉及到一系列精细的工艺步骤。
在本文档中,我们将介绍微电子工艺的基本流程,包括光刻、沉积、腐蚀、离子注入等关键步骤。
了解微电子工艺流程的基本原理和步骤对于微电子设备的制造和理解至关重要。
2. 光刻光刻是微电子工艺中的关键步骤之一,用于在半导体材料上定义图案和结构。
下面是光刻的基本流程:1.准备基片:首先,选择合适的半导体材料作为基片,并进行清洗和处理,以确保表面的纯洁度和平坦度。
2.胶涂覆:将光刻胶涂覆在基片表面上,利用旋涂机或涂覆机来均匀地涂布光刻胶。
3.预烘烤:将涂覆了光刻胶的基片放入烘箱中进行预烘烤,以去除胶液中的溶剂和气泡。
4.对准与曝光:使用光刻机将掩膜对准和曝光到光刻胶表面,通过可见光或紫外光刺激光刻胶,形成所需图案。
5.显影:将曝光后的光刻胶基片浸泡在显影液中,显影液会将未曝光部分的光刻胶溶解掉,形成所需的图案。
6.后烘烤:将显影后的光刻胶基片进行后烘烤,以去除残留的显影液和增强光刻胶的附着力。
7.清洗:使用溶剂将光刻胶残留物彻底清洗干净,以保证基片表面的纯净度。
3. 沉积沉积是微电子工艺中另一个重要的步骤,用于在基片上沉积薄膜材料。
以下是典型的沉积过程:1.基片准备:与光刻类似,首先需要准备基片,并确保表面的平整度和清洁度。
2.选择沉积方法:根据需要沉积的材料和要求,选择合适的沉积方法,包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
3.沉积薄膜:将基片放入沉积室中,并通过提供适当的气体或蒸发源来沉积所需的薄膜材料。
4.监控和控制:在沉积过程中,通过监控和调整沉积速率、温度和气体浓度等参数,以确保薄膜的质量和厚度符合要求。
5.结束和清洗:当沉积达到预定的厚度后,停止供气或蒸发,将基片取出并清洗,以去除表面的残留物。
4. 腐蚀腐蚀是微电子工艺中的一种重要的加工方法,用于去除或改变薄膜或基片的部分区域。
以下是典型的腐蚀流程:1.基片准备:与前面的过程类似,准备基片并确保表面的清洁和平整。
芯片制造的4个主要工艺
芯片制造的4个主要工艺芯片制造的四个主要工艺是:晶圆制备、芯片制造、封装测试和封装。
下面将详细介绍这四个工艺的过程和作用。
一、晶圆制备:晶圆制备是芯片制造的第一步,它是将单晶硅材料制成具有高纯度和平整度的圆片。
晶圆可以看作是芯片的基础。
制备晶圆的过程主要包括:晶体生长、切割和抛光。
晶体生长是通过高温熔融硅材料,并在特定条件下使其重新结晶成为单晶体。
然后,将单晶体切割成薄片,通过抛光使其表面光滑平整。
晶圆制备的质量直接影响到后续工艺的可靠性和芯片的质量。
二、芯片制造:芯片制造是将晶圆上的芯片电路进行加工和形成的过程。
这个过程主要包括:光刻、薄膜沉积、蚀刻、离子注入和金属蒸镀等步骤。
光刻是将芯片上的电路图案通过光刻胶转移到硅片上,形成图案。
薄膜沉积是在芯片表面沉积一层薄膜,用于保护电路或改变电路特性。
蚀刻是通过化学反应将不需要的材料去除,保留需要的电路结构。
离子注入是通过注入掺杂物改变硅片的导电性能。
金属蒸镀是在芯片上蒸镀一层金属,用于连接电路。
芯片制造的过程需要高度精密的设备和工艺控制,以确保电路的精度和可靠性。
三、封装测试:封装测试是将制造好的芯片进行封装和测试的过程。
封装是将芯片封装在塑料或陶瓷封装体中,并连接外部引脚,以便将芯片与外部电路连接。
封装的作用是保护芯片,提高芯片的可靠性和耐久性。
测试是对封装好的芯片进行功能和可靠性测试,以确保芯片的质量和性能符合要求。
封装测试的过程需要精密的设备和测试程序,以确保芯片的质量和可靠性。
四、封装:封装是将封装好的芯片焊接到电路板上,并连接外部元件和电路。
封装的过程主要包括焊接、连接和测试。
焊接是将芯片与电路板上的焊盘通过焊料连接起来,形成电气连接。
连接是将外部元件和电路与芯片的引脚连接起来,以实现整个电路的功能。
测试是对封装好的电路板进行功能和可靠性测试,以确保整个系统的质量和性能符合要求。
封装过程需要高度精密的设备和工艺控制,以确保焊接的质量和连接的可靠性。
微电子工艺流程
微电子工艺流程微电子工艺流程是指在微电子器件的制造过程中,通过一系列的工艺步骤,将所需的材料和结构功能成功地加工在硅基片上,从而完成微电子器件的制造。
下面将介绍一个典型的微电子工艺流程。
首先,微电子工艺的第一步是准备硅基片。
硅基片是微电子器件的基础,需要在一定的工艺条件下制备出具有高纯度和高质量的硅片。
通常的制备方法包括从高纯度硅溶液中拉制单晶硅棒,然后将硅棒切割成一定厚度的硅片。
第二步是清洗硅基片。
经过切割的硅片表面可能被污染物污染,需要通过一系列的化学处理步骤,如浸泡在酸碱溶液中,去除表面的污染物和氧化层。
第三步是沉积薄膜。
在微电子器件的制造过程中,通常需要在硅基片上沉积一层或多层薄膜,用于构建电路、绝缘层或保护层。
常见的沉积方法包括化学气相沉积(CVD)、物理气相沉积(PVD)和溅射等。
第四步是光刻。
光刻技术是微电子工艺中非常关键的步骤,利用光敏胶和光刻机,将设计好的芯片图案转移到硅基片上。
首先,将光敏胶喷涂在硅基片上,然后使用光刻机将光刻胶曝光,即使得光刻胶中的某些部分发生物理或化学变化,形成芯片图案。
接下来,通过化学溶解或蒸发去除未曝光部分的光刻胶,得到芯片图案的模板。
第五步是蚀刻。
通过蚀刻技术,将光刻胶遮盖的部分去除,显露出硅基片上被保护的区域。
常用的蚀刻方法有干法蚀刻和湿法蚀刻。
干法蚀刻是利用气体或等离子体与硅基片上的材料反应,将其逐层蚀刻。
湿法蚀刻是使用化学溶液,将硅基片表面的材料溶解掉。
第六步是电镀。
有时候,为了增加芯片的导电性或保护层的厚度,需要在硅基片上进行电镀。
电镀是通过电化学反应,在硅基片上沉积金属,如铜、镍等。
第七步是退火。
退火是将硅基片加热到一定温度,以改善材料的电子性能和结构稳定性。
退火的温度和时间可以根据具体芯片的要求来确定。
最后一步是测试和封装。
制造好的芯片需要进行一系列的测试,包括电性能测试和可靠性测试等。
对于通过测试的芯片,还需要进行封装,以便在实际应用中能够方便地连接到其他电子器件。
芯片制造的基本过程
芯片制造的基本过程一、概述芯片是现代电子设备中不可或缺的核心组成部分,它集成了大量的电子元器件和电路,实现了信号处理和控制功能。
芯片制造是一项复杂而精细的工艺,涉及到多个步骤和工序。
本文将介绍芯片制造的基本过程。
二、晶圆制备芯片制造的第一步是晶圆制备。
晶圆是芯片的基底,通常由硅材料制成。
首先,选择高纯度的硅单晶作为原料,经过多道熔炼和晶体生长工艺,制备出大尺寸的硅单晶圆。
然后,对晶圆进行切割、打磨和抛光等工序,使其表面光滑平整。
三、沉积层制备接下来,需要在晶圆表面沉积一层薄膜,用于制造芯片的电路结构。
常用的沉积方法有化学气相沉积(CVD)和物理气相沉积(PVD)。
CVD是通过在高温下使气体反应生成沉积物,而PVD则是通过蒸发和溅射等方式将材料沉积在晶圆表面。
四、光刻光刻是芯片制造中非常重要的步骤,用于将电路图案转移到晶圆上。
首先,在沉积层上涂覆一层光刻胶,然后将光刻胶曝光到紫外光下,通过光刻机上的光罩,将光刻胶的部分区域暴露出来。
接着,对晶圆进行显影,使暴露的光刻胶被去除。
最后,使用化学腐蚀或离子注入等方法,将光刻胶未覆盖的区域进行蚀刻,形成芯片的电路结构。
五、离子注入离子注入是芯片制造中的关键步骤之一,用于改变晶圆中的材料性质。
通过离子注入,可以在晶圆中引入特定的杂质或改变晶格结构,从而影响芯片的电学性能。
离子注入过程中,晶圆被放置在离子注入机中,然后将高能离子加速并注入晶圆表面,形成离子掺杂层。
六、退火退火是芯片制造中的重要步骤之一,用于消除制造过程中的应力和缺陷,并改善晶圆的电学性能。
退火过程中,晶圆被加热到高温,使其结构重新排列,缺陷被修复。
不同材料和工艺需要不同的退火参数,以确保晶圆的质量。
七、金属化金属化是芯片制造的最后一步,用于连接芯片上的电路结构。
首先,在晶圆表面涂覆一层金属薄膜,通常使用铝或铜材料。
然后,使用光刻和蚀刻等技术,将金属薄膜制成芯片的导线和接触点。
最后,进行封装和测试,将芯片组装到封装中,以保护芯片并方便与其他电子器件连接。
微电子 工艺技术
微电子工艺技术微电子工艺技术是研发和制造微型电子元件和器件的一项专业技术。
随着科技的不断发展,微电子技术已经在许多领域广泛应用,比如计算机芯片、移动通信设备、汽车电子器件等。
本文将简要介绍微电子工艺技术的基本概念、主要工艺流程和应用前景。
微电子工艺技术是研发和制造电子元件的关键技术之一。
它通过利用微细加工和纳米技术,将材料在微米级别实现精确定位、加工、刻蚀和沉积,从而制造出各种微型电子器件和电子元件。
微电子工艺技术涉及的主要工艺包括晶片制造、化学蚀刻、光刻、薄膜沉积等等。
微电子工艺的主要流程包括准备硅片、晶片制造、光纳米制造技术和后期加工等。
首先,准备硅片是制造微电子元件的第一步。
硅片应用多晶硅或单晶硅制成,经过表面清洁和平整处理后,成为制造微电子元件的工作面。
然后,晶片制造是制造芯片的关键工艺。
晶片制造主要涉及的工艺包括掩膜光刻、离子注入、薄膜沉积、湿法刻蚀等等。
光纳米制造技术是微电子工艺的重要组成部分,它利用掩模和光刻技术制造出纳米级的微细结构。
最后,后期加工主要包括清洗、封装和测试等环节。
微电子工艺技术在现代科技中的应用广泛。
首先,计算机芯片是微电子技术的重要应用之一。
计算机芯片是计算机系统中心处理器的核心部分,它通过微电子工艺制造出大量的晶体管、集成电路和存储器等组件,从而实现计算和数据处理功能。
其次,移动通信设备也是微电子技术的重要应用领域。
随着移动通信技术的飞速发展,人们对手机、平板电脑、智能手表等个人移动设备的需求越来越高。
这些设备中的集成电路和芯片都依赖于微电子工艺技术制造。
此外,汽车电子器件也是微电子技术的重要应用领域。
随着汽车电子化程度的不断提高,人们对汽车的安全性、智能化和环保性能的要求越来越高,而这些功能都离不开微电子技术的支持。
总之,微电子工艺技术是研发和制造微型电子元件和器件的一项重要技术。
通过微电子工艺技术,我们可以制造出各种微型电子器件和电子元件,为计算机、移动通信设备、汽车电子器件等领域的发展提供了强有力的支持。
集成电路的基本制造工艺
集成电路的基本制造工艺集成电路(Integrated Circuit,简称IC)是现代电子技术中的重要组成部分,它将数百万个电子元件集成在一个微小的芯片上。
IC的制造工艺是一个复杂而精密的过程,涉及到多个步骤和工艺。
下面将介绍IC的基本制造工艺。
首先是晶圆制备。
晶圆是IC的基础材料,一般使用硅单晶材料。
制备晶圆的过程包括:取得高纯度的硅单晶材料,通过化学反应降低杂质含量,将硅单晶材料熔化后拉出圆柱形,再将其切割成片状。
这些片状的硅单晶材料就是晶圆。
接下来是晶圆洗净。
在IC制造过程中,晶圆表面不能有任何的杂质,因此需要对晶圆进行洗净处理。
这一步骤中,晶圆经过一系列的化学和物理过程,将表面的尘土、油脂等污染物清除,确保晶圆表面干净。
然后是层压。
IC芯片是通过在晶圆表面上涂覆多个材料层来制造的。
层压过程中,使用光刻技术将特定图案的光掩膜映射到晶圆表面,然后用化学物质将非光刻区域的材料去除,形成所需的材料层。
在层压完成后,还需要进行增强。
增强是通过在晶圆上施加高温和高压的方式加强不同材料层之间的结合。
这样可以确保材料层之间的粘合强度,提高整个芯片的可靠性。
接下来是金属沉积。
在IC制造的过程中,需要在晶圆上电镀一层金属,用于形成电子元件的导线。
金属沉积可以通过化学气相沉积或物理气相沉积等方法来实现,将金属材料沉积在晶圆表面。
最后是切割和封装。
在芯片制造完成后,需要将晶圆切割成一个个独立的芯片。
切割可以通过机械切割或者激光切割来完成。
然后,将这些独立的芯片封装在塑料或陶瓷封装体中,以保护芯片不受环境影响。
综上所述,IC的基本制造工艺包括晶圆制备、洗净、层压、增强、金属沉积、切割和封装等步骤。
这些步骤需要高精度的设备和复杂的工艺控制,以确保制造出高质量的集成电路芯片。
IC制造工艺是现代电子工业中的核心技术之一,通过将多个电子元件集成在一个微小的芯片上,实现了电子设备的高度集成和小型化。
IC的制造过程非常复杂,需要精密的设备和高度精确的工艺控制,下面将详细介绍IC制造的相关内容。
LED芯片制造的工艺流程
环境适应性测试
对成品进行环境适应性测试,如温度 循环、湿度、振动等,确保产品在实 际使用中稳定可靠。
可靠性测试
对成品进行可靠性测试,模拟实际使 用中的各种条件,评估产品的寿命和 可靠性。
05
LED芯片制造的未来发展
新材料的应用
高亮度和高可靠性材料
研发更高亮度和可靠性的LED芯片材料,提高LED产品的 性能和寿命。
光的散射,使更多的光能够从芯片内部逸出,从而提高LED的光输出。
镀膜技术
总结词
镀膜技术是在LED芯片表面涂覆一层或多层 光学薄膜,以改变光反射和透射特性,提高 芯片的光效。
详细描述
在LED芯片制造中,镀膜技术是关键的一环 。通过在芯片表面涂覆一层或多层光学薄膜 ,可以改变光的反射和透射特性,从而提高 芯片的光效。这些薄膜具有高反射性、高透 射性或特定波长范围的透过性等特点,能够 有效地控制光的传播方向和光谱分布,进一
详细描述
外延片制备技术是LED芯片制造的关键技术 之一。它通过化学气相沉积的方法,在单晶 衬底上生长出与衬底晶格匹配的半导体单晶 层。这一过程对于控制LED芯片的电学和光 学性能至关重要。
图案化技术
总结词
图案化技术是将LED芯片表面加工成特定形状和结构的过程,以提高芯片的光提取效率。
详细描述
在LED芯片制造中,图案化技术是一个重要的环节。通过光刻、刻蚀等方法,将芯片表 面加工成特定的形状和结构,以提高光提取效率。这种技术能够减小光的全反射,增加
研磨与抛光
总结词
研磨与抛光是为了减小LED芯片表面 的粗糙度,提高其光学性能。
详细描述
研磨是通过机械方法将LED芯片表面 磨平,使其变得光滑。抛光则是利用 化学或物理方法进一步平滑和光亮芯 片表面,以提高其光学性能,减少光 的散射和吸收。
简述微电子封装基本工艺流程
简述微电子封装基本工艺流程微电子封装听起来是不是特别高大上呀?其实呀,它的基本工艺流程就像一场奇妙的旅行呢。
一、芯片制备。
这可是整个微电子封装旅程的起点哦。
芯片的制备就像是精心打造一颗超级微小又无比强大的“心脏”。
先从硅晶圆开始,这个硅晶圆就像是一块神奇的“地基”,要在上面进行超级精细的加工。
比如说光刻啦,光刻就像是在硅晶圆上画画,不过这个画笔超级精细,能画出只有纳米级别的图案呢。
然后还有蚀刻,蚀刻就像是把不需要的部分去掉,只留下我们想要的电路图案。
这一道道工序就像打造艺术品一样,每一步都得小心翼翼,稍微出点差错,这颗“心脏”可能就不那么完美啦。
二、芯片贴装。
芯片做好了,接下来就要把它安置到合适的地方啦,这就是芯片贴装环节。
这时候就像给芯片找一个温暖的“小窝”。
通常会用到一些特殊的材料,比如黏合剂之类的。
把芯片稳稳地粘在封装基板上,这个过程可不能马虎哦。
要保证芯片和基板之间的连接非常牢固,就像盖房子时把柱子稳稳地立在地基上一样。
如果贴装得不好,芯片在后续的使用过程中可能就会出问题,就像房子的柱子不稳,那房子可就危险啦。
三、引线键合。
这可是个很有趣的环节呢。
它就像是在芯片和封装基板之间搭建起一座座“小桥”。
通过金属丝,比如说金线之类的,把芯片上的电极和封装基板上的引脚连接起来。
这个过程就像绣花一样精细,要把每一根金属丝都准确无误地连接好。
想象一下,那么多微小的连接点,就像在微观世界里编织一张精密的网。
如果有一根金属丝连接错了或者没连接好,那信号可就不能正常传输啦,就像桥断了,路就不通了呀。
四、灌封。
灌封就像是给整个芯片和连接部分穿上一层保护“铠甲”。
会用一些特殊的封装材料,把芯片、金属丝这些都包裹起来。
这个封装材料就像一个温柔的“保护罩”,它能防止芯片受到外界的干扰,比如湿气啦、灰尘啦之类的。
就像给我们珍贵的东西放在一个密封的盒子里一样,让它在里面安安稳稳的。
而且这个保护罩还能起到一定的散热作用呢,芯片在工作的时候会发热,如果热量散不出去,就像人在一个闷热的房间里一样,会很不舒服,时间长了还会出问题呢。
微电子工艺基础污染控制和芯片制造基本工艺(ppt版)
第3章 污染控制、芯片制造根本工艺概述(ɡài shù) 二、洁净室的建设
1、洁净室要素
2、人员产生(chǎnshēng)的污染〔**〕 3、工艺用水〔**〕
4、工艺化学品 5、化学气体
6、设备 7、洁净室的物质和供给
27 微电子工艺基础
27
第二十七页,共七十六页。
第3章 污染控制、芯片制造(zhìzào)根本工艺概
述
二、洁净室的建设
3、工艺(gōngyì)用水
〔1〕工艺(gōngyì)用水的重要性
在晶圆制造的整个过程中,晶圆要经过多次的化学刻蚀 与清洗,每步刻蚀与清洗后都要经过清水冲刷 。在整个的 制造过程中,晶圆总共要在冲洗的系统中待上好几个小时, 一个现代的晶圆制造厂每天要使用多达几百万加仑的水,这 样实际上产生了一个投资项目,包括水的加工处理、向各个 加工工艺区的水的传输、废水的处理与排放。由于半导体器 件容易受到污染,所以所有工艺用水,必须经过处理,达到 非常严格的洁净度要求。
〔2〕人类的呼吸(hūxī)也包含着大量的污染,每次呼 气向空气中排出大量的水汽和微粒。而一个吸烟者的 呼吸(hūxī)在吸烟后在很长时间里仍能带有上百万的微 粒〔。3〕而体液,例如(lìrú)含钠的唾液也是半导体器件 的主要杀手。
解决方法:全封闭、穿衣顺序、详见教材。
26 微电子工艺基础
26
第二十六页,共七十六页。
23 微电子工艺基础
第二十三页,共七十六页。
第3章 污染控制、芯片(xīn piàn)制造根本工艺
概述
二、洁净室的建设
1、洁净室要素(yào
sù)
24 微电子工艺基础
24
第二十四页,共七十六页。
第3章 污染控制、芯片制造(zhìzào)根本工艺概述
芯片生产工艺
芯片生产工艺芯片生产工艺是指将材料进行加工和组装,制造出具有特定功能和性能的集成电路芯片的过程。
在现代科技发展的背景下,芯片生产工艺的不断创新和提升,对于电子产品的性能和功能具有至关重要的影响。
芯片生产工艺的主要步骤包括:晶圆制备、掩膜光刻、蚀刻、成膜、扩散、化学机械抛光、清洗和封装等。
下面将对这些步骤进行详细介绍。
首先是晶圆制备。
晶圆是指用单晶或多晶硅材料制成的圆片,作为芯片的载体。
晶圆的制备通常包括晶圆切割、表面抛光和去除杂质等步骤,最终得到具备一定厚度和平滑度的晶圆。
接下来是掩膜光刻。
光刻技术是将掩膜中的图形投影到晶圆上,形成芯片的特定图案。
光刻涉及到光源、掩膜、曝光机和光刻胶等多个工艺环节,通过不同的掩膜设计和光刻胶厚度来实现芯片上的微细图案。
然后是蚀刻。
蚀刻是利用化学或物理的方式将晶圆表面的材料进行溶解或剥离,以形成芯片上的凹凸结构。
蚀刻工艺通常涉及到多个步骤和不同的化学溶液,以实现准确的蚀刻深度和蚀刻轮廓。
成膜是接下来的一个重要步骤。
成膜是在晶圆表面附加一层薄膜来增强芯片的功能或保护芯片。
常用的成膜工艺包括物理气相沉积(PVD)、化学气相沉积(CVD)、离子束沉积(IBD)等多种方法,每种成膜工艺都有其适用范围和特点。
扩散是芯片工艺中的一项关键步骤。
扩散是通过在晶圆表面加热的方式,使掺杂物(如硼、磷等)尽可能地扩散到晶圆材料中,以调控芯片的电气性能。
扩散工艺要求工艺参数的精确控制,以实现所需的掺杂浓度和厚度。
接着是化学机械抛光。
化学机械抛光是将晶圆表面的高度差进行平坦化的工艺。
它通过在晶圆表面施加力和磨料,使其与化学溶液一起作用,从而去除晶圆表面的凸起部分,实现表面的平坦度和光洁度。
清洗是芯片生产工艺中的最后一步。
清洗工艺主要是去除芯片表面的有机残留物、无机杂质和颗粒等。
清洗过程中使用的溶液和清洗条件要严格控制,以保证芯片的表面干净和无杂质。
最后是封装。
封装是将芯片连接到载体上,并通过封装材料来保护芯片和提供电气连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
3、空气的净化
(1)空气级别表示 一般城市的空气中通常包含烟、雾、气。每立方
英尺有多达五百万个颗粒,所以是五百万级。
14
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
3、空气的净化
(1)空气级别表示
15
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
一、芯片制造中的污染源
1、半导体器件的污染物 2、污染来源 3、空气的净化
10
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
2、污染来源
主要的污染源有: (1)空气 (2)厂务设备 (3)洁净室工作人员 (4)工艺使用水 (5)工艺化学溶液 (6)工艺化学气体 (7)静电
11
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
20
第3章 污染控制、芯片制造基本工艺概述 二、洁净室的建设
第3章 污染控制、芯片制造基本工艺概述 二、洁净室的建设
第3章 污染控制、芯片制造基本工艺概述 二、洁净室的建设
第3章 污染控制、芯片制造基本工艺
概述
二、洁净室的建设
1、洁净室要素
24
第3章 污染控制、芯片制造基本工艺概述
二、1、洁洁净净室室要的素建设
1、半导体器件的污染物 b 金属离子*
少量的掺杂物可实现我们希望的效果,但遗憾的是 在晶片中出现的极少量的具有电性的污染物也会改 变器件的典型特征,改变它的工作表现和可靠性参 数。
可以引起上述问题的污染物称为可移动离子污 染物 (MICs)。它们是在材料中以离子形态存在 的金属离子。而且,这些金属离子在半导体材料 中具有很强的可移动性。
钠是在未经处理的化学品中最常见的可移动离子 污染物,同时也是硅中移动性最强的物质。因此 ,对钠的控制成为硅片生产的首要目标。
7
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
1、半导体器件的污染物 C 化学品
在半导体工艺领域第三大主要的污染物是不需要 的化学物质。工艺过程中所用的化学品和水可能会 受到对芯片工艺产生影响的痕量物质的污染。它们 将导致晶片表面受到不需要的刻蚀,.器件上生成 无法除去的化合物,或者引起不均匀的工艺过程。 氯就是这样一种污染物,它在工艺过程中用到的化 学品中的含量受到严格的控制。
概述
二、洁净室的建设
1、洁净室要素
(1)净化空 气方法的 选择是洁 净室设计 的首要问 题。
(2)洁净室的所有建 造材料都由不易脱 落的材料建造。不 锈钢材料就广泛地 被用于制造工作台 。
(3)九种控制外界污 染的技术
1. 板垫 2. 更衣区 3 空气压力 4. 空气淋浴器 5. 维修区 6. 双层门进出通道 7. 静电控制 8. 净鞋器 9. 手套清洗器
2、人员产生的污染(**) 3、工艺用水(**) 4、工艺化学品 5、化学气体 6、设备 7、洁净室的物质和供给
25
二、洁பைடு நூலகம்室的建设
一、芯片制造中的污染源 二、洁净室的建设 三、硅片清洗 四、芯片制造基本工艺概述 五、工艺良品率
*
3
第3章 污染控制、芯片制造基本工艺概述
一、芯片制造中的污染源
1、半导体器件的污染物 2、污染来源 3、空气的净化
*
4
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
1、半导体器件的污染物
3、空气的净化
(1)空气级别表示
因为 209E 以 0.5 微米的 颗粒定义洁净度,而成功的 晶圆加工工艺要求更严格的 控制,所以工程技术人员工 程师们致力于减少10级和1级 环境中0.3 微米颗粒的数量 。Semetech/Jessi 建议: 64 兆内存加工车间为 0.1 级,256 兆内存为 0.01 级 。
8
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
1、半导体器件的污染物
d 细菌
细菌是第四类的主要污染物。细菌是在水的系统 中或不定期清洗的表面生成的有机物。细菌一旦在 器件上形成,会成为颗粒状污染物或给器件表面引 入不希望见到的金属离子。
9
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
微电子工艺基础污染控 制和芯片制造基本工艺
2020年7月12日星期日
第3章 污染控制、芯片制造基本工艺概 述
本章(3学时)目标:
1、列出至少三种在芯片厂中尽量减少人员污染的技术 2、掌握晶片的清洗技术 3、重点理解一号和二号溶液的使用方法 4、鉴别和解释四种基本的芯片生产工艺
2
第3章 污染控制、芯片制造基本工艺概述
一、芯片制造中的污染源 二、洁净室的建设 三、硅片清洗 四、芯片制造概述 五、工艺良品率
18
第3章 污染控制、芯片制造基本工艺概述
二、洁1、净洁净室室的要素建设
2、人员产生的污染(**) 3、工艺用水(**) 4、工艺化学品 5、化学气体 6、设备 7、洁净室的物质和供给
19
第3章 污染控制、芯片制造基本工艺
一、芯片制造中的污染源
1、半导体器件的污染物 2、污染来源 3、空气的净化
12
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
3、空气的净化
(1)空气级别表示
美国联邦标准209E 规定空气质量由区域中空气级别 数来表示。标准按两种方法设定,一是颗粒大小,二 是颗粒密度。 区域中空气级别数是指在一立方英尺 中所含直径为 0.5 微米或更大的颗粒总数。联邦标 准209E规定最小洁净度可到一级。
16
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
3、空气的净化
(1)空气的净化方法
洁净室的设计是要使生产免污染晶圆的能力更完整化。设 计时的主要思路是保持加工车间中空气的洁净。
共有四种不同的洁净室设计方法:
洁净工作台 隧道型设计 完全洁净室 微局部环境
17
第3章 污染控制、芯片制造基本工艺概 述
污染物可归纳为以下四类, 分别是: a 微粒 b 金属离子 c 化学物质 d 细菌
5
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源
1、半导体器件的污染物 a 微粒
由经验所得出的法则是微粒的大小要小于器件上最 小的特征图形尺寸的1/10倍。
6
第3章 污染控制、芯片制造基本工艺概述 一、芯片制造中的污染源