21.2.1用配方法-解一元二次方程

合集下载

21.2.1配方法解一元二次方程

21.2.1配方法解一元二次方程

1
配方法解一元二次方程
学习过程 【自主学习】
(一)复习:知识回顾:完全平方公式: 和 1.解下列方程:
(1)2
430x -= (2)2
693x x -+=
2.填上适当的数,使下列等式成立:
(1) 212x x ++____ = 2
(6)x + (2) 2
4x x -+____ = (x -___)2
(3) 28x x ++____ = (x +____)2 (4)22
____)(_____4
5
+=++
x x x 由上面等式的左边可知,常数项和一次项系数的关系是:
(二)探索新知:请阅读教材第32页,解方程2
450x
x +-=,完成下面框图:
2450x x +-=
归纳总结:
1、通过配成_______形式来解一元二次
方程的方法,叫做配方法。

2、配方是为了降次..,把一个一元二次方程化为______________方程来解。

三.自学课本例题1: 1.观察方程(1)的解题过程,归纳用配方法
解二次项系数是1的一元二次方程的一般步骤是: ①、移项,把_____移到方程右边;
②、配方,在方程的两边各加上___________,使左边成为完全平方;
③、利用直接开平方法解之。

2.观察方程(2)(3)的解题过程,归纳:方程的二次项系数不是1时,可以让方程的各项除以____________,将方程的二次项系数化为____。

2。

21.2.1 解一元二次方程---配方法 课时练习(2课时、无答案)人教版数学九年级上册

21.2.1 解一元二次方程---配方法  课时练习(2课时、无答案)人教版数学九年级上册
∴ −(−1)² ≤ 0, ∴ −² + 2−3 = −(−1)²−2 ≤
-2,原式有最大值,是-2.
完成下列问题:
(1)求代数式 2²−4 + 1的最小值.
(2)解决实际问题:在紧靠围墙的空地上,用长为 100 米的木栅栏围成一个长方形花圃(如
图),设花圃中垂直于围墙的一边的长度为 x 米,完成下列任务.
(
3 2
(
3 2
1
2
4
. −
. −
)
2
+
)−
1
(
(
. +
1
2
4
)−
. +
4
3 2Biblioteka 3 2)2
+
)
1
4
2.用配方法解方程 ²−6 + 5 = 0,配方后所得的方程是
.( + 3)² = −4
.(−3)² = −4
.( + 3)² = 4
.(−3)² = 4
(
)
3.用配方法解一元二次方程 ² + 2 = 3时,将其化为( ( + )² = 的形式,则.m,n 的值分别
(1)(4 + 1)2−
16
9
= 0.
(2)4(2−1)²−25( + 1)² = 0.
.
)
能力提升全练
1
8.用直接开平方法解一元二次方程 (−1)2 = 9,步骤如下:
4
①(x-1)²=36;②x-1=±6;③x=±7;④即.x₁=7,x₂=-7.其中开始出错的步骤是
A.①
B.②
C.③
(
x²+2x=

人教版九年级数学上册用配方法解一元二次方程

人教版九年级数学上册用配方法解一元二次方程
一元二次方程
21.2.1用配方法解一元二
次方程
(3) x2+5x+ =(x+ )2; 解:移项,得 2x2-3x=-1.
学习目标
C(x-8)2=16 C(x+8)2=57
3、理解配方法的关键、基本思想和步骤;
A(x-4)2=9 B(x+4)2=9
对于二次项系数不为1的一元二次方程,
像上面那样,把方程左边变成一个含有未知数的
(3)x2+4x-9=2x-11
(4)x(x+4)=8x+12
(5)求解
(6)定根
解下列方程
x2 10x 9 0 3x2 6x 4 0 x2 4x 9 2x 11
归纳:
像上面那样,把方程左边变成一 个含有未知数的 完全平方 式,右边 是一个 非负 数,再用直接开平方法 来解一元二次方程的方法叫做配 方法. 配方是为了 降次 ,把一个一 元二次方程转化成两个一元一次方程来 解.
例1 解下列方程:
(1) x2-8x+1=0;
解:移项,得:x2-8x=__-_1_.
这种解一元二次方程的方法叫做开平方法. (1)移项,使方程左边为_________项、_______项,右边为_____项:(一移)
用配方法求解时首先要怎样做 ? =(a-b) 2
_______________
用配方法解方程 X2 + 8X + 7 = 0方程可化为( )
首先要把二次项系数化为1 A(x-4)2=9
配方,得
x2-8x+__4__2 _ =-1+__4_2__,
(____X_-_4___)2=__1_5____.
∴ x-4=____1_5___.
即x-4=__1__5__ 或 x-4=_____1_5__.

21.2.1配方法解一元二次方程

21.2.1配方法解一元二次方程

1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
小练习
1.解方程:3x2+27=0得( ). (A)x=±3 (B)x=-3 (C)无实数 根 (D)方程的根有无数个 2.方程(x-1)2=4的根是( ). (A)3,-3 (B)3,-1 (C)2,-3 (D)3,-2

人教版数学九年级初三上册 21.2.1 第2课时 配方法解一元二次方程 名师教学教案 教学设计反思

人教版数学九年级初三上册 21.2.1 第2课时 配方法解一元二次方程 名师教学教案 教学设计反思

21.2配方法解一元二次方程分层教学导学案51【学习目标】1.会用开平方法解一元二次方程;理解配方的概念并掌握配方的技巧;2.通过自主探索和小组合作,学会运用配方法解一元二次方程;【使用说明和学法指导】1.用15分钟左右的时间认真阅读、探究课本基础知识,理解配方的概念并掌握配方的技巧。

2.认真完成导学案的问题;3.初步评价自己完成学习目标情况,并把自己的疑问写出来,以求课堂上解决。

【课前导学】一、探究新知:知识点1 直接开平方法解一元二次方程:【知识链接1】求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______; 如果02=x ,则x =_______。

试求下列方程的根:(1) 092=-x (2) 2x²-10=0【提示】当满足方程的根不止一个时,为了区分,应把方程的根写为1x 、2x 的形式。

一般情况下,方程根的个数与其次数一样。

【探究1】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的?2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的?知识点2 配方法解一元二次方程【知识链接2】1、完全平方式——运算形式形如222b ab a +±的二次三项式。

试着写出两个完全平方式:___________________,_____________________。

2、配方——对二次三项式q px x ++2,配上适当的数(不改变式子的值),使得式子中的一部分是一个完全平方式,如342++x x ,将式子加1,再减1(不改变式子的值),即可得1)44(2-++x x ,从而得到1)2(2-+x 。

试着将下列式子配方:(1) 142+-x x (2)4152++x x【探究2】填上适当的数或式,使下列各等式成立对于方程02=++q px x ,可先将方程变形为______2=+px x ,然后将方程左边进行配方(根据等式基本性质,两边同时加上2)2(p(一次项系数的一半的平方)即可),如0562=++x x ,移项得:______62=+x x ,两边同时加上_____,可得____________,从而得__________________,这样就可以用“开平方”的方法求解方程了。

21.2.1用配方法解一元二次方程(教案)

21.2.1用配方法解一元二次方程(教案)
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:

21.2.1配方法(1)

21.2.1配方法(1)
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
一、情景导入,初步认识
问题:一块石头从20m高的塔上落下,石头 离地面的高度h(m)和下落时间x(s)大致 2 有如下关系:h 5 x 20,问石头经过多 长时间落到地面?
探究:
2 x (1) 25 ,则x的值为_____. (2) ( x 1)2 16 ,则x的值有____个,它们分别 是______. 2 ( 2 t 1 ) 8 ,则t=______. (3)如果 (4) (5x) 2 4 6 ,则x的值是_____. 2 3 x 27 ,则此方程的根_____. (5)
四、运用新知,深化理解
1.若8x²-16=0,则x的值是( 2) 2.若方程2(x-3)²=72,那么这个一元二次方
程的两个根是( 9或-3) 3.如果实数a、b满足 3a 4 b2 12b 36 0 则ab的值为( -8 )
4.解关于x的方程
(1)(x+m)²=n(n≥0)




(Ⅰ)
一般地,对于方程x²=p,
(1)当p>0时,根据平方根的意义,方程(Ⅰ) x1 p , x2 p ; 有两个不等的实数根:
(2)当p=0时,方程(Ⅰ)有两个相等的 实数根:x1=x2=0; (3)当p<0时,因为对于任意实数x,都 有x²≥0,所以方程(Ⅰ)无实数根。
思 考
二、思考探究,获取新知
探究 一桶油漆可刷的面积为1500dm²,李林 勇这桶油漆恰好刷完10个同样的正方体形状的盒子 的全部外表面,你能算出盒子的棱长吗?
设一个盒子的棱长为xdm,则它的外表面面 积为
6x²
,10个这种盒子的外表面面积的 ,由此你可得到的方程是___

21.2.1配方法解一元二次方程 说课课件 人教版九年级数学上册

21.2.1配方法解一元二次方程 说课课件 人教版九年级数学上册

思考:解方程 (2x 1)2 5 …②
x2 6x 9 2 …③
问题3:方程②与方程①在形式上有何联系? 可否借鉴方程①的解法,求解方程②
解:由方程②得
(2x 1) 5
整体思 想
所以 (2x 1) 5 或 (2x 1) 5
解得
x1
5 1, 2
1 5 x2 2
返回
问题4:方程③与方程②①在形式上有何异同?能 否将方程③转化为方程②的形式?怎样求解?
①若 8x2 16 0,则x的值是
.
②如果方程 2(x 3)2 72 ,那么这个一元二次方程
的两根是 .
③解关于x的方程 (x m)2 n.
返回
五、教学评价分析
数学教学主要是数学活动的教学。
教师要真正成为学习的组织 者、引导者和合作者。
谢谢各位评委! 谢谢各位老师!
⑤ x 2 4x 4 5 ; ⑥ 9x2 6x 。1 4
(五)反思评价、发展提高
学生谈本课的学习感受和收获;
我学会了……
我体会到……
我感到困难的是……
课后作业布置: ⑴必做题:解下列方程
① 36x2 1 0
② 4x2 81
③ (x 5)2 25 ⑵选做题
④ x2 2x 1 4
结论:方程等号的左边是一个完全平方式, 右边是一个非负常数,这类一元二次方程都可以 表示为 x2 p( p 0) 或 (mx n)2 p ( p 0) 的形式.
返回
问题6:你能由问题5中的结论,谈一谈此类方程 解法的特点吗?
交流得出: ①转化为用直接开平方法解形如: x 2 p( p 0) 的方程,得 x p ,变一元
配方法解一元二次方程
一、教材分析

21.2.1 解一元二次方程—配方法

21.2.1 解一元二次方程—配方法

【跟踪训练】 1.一元二次方程 x2-3=0 的根为( C ) A.x=3 B.x=3 C.x1= 3,x2=- 3 D.x1=3,x2=-3
2.用直接开平方降次法解下列方程:
(1)x2-16=0;
(2)(x-2)2=5.
解:(1)x2-16=0,即 x2=16.
∴x1=4,x2=-4.
(2)(x-2)2=5,即 x-2=± 5.
∴x1=2+ 5,x2=2- 5.
作业
• 练习册第3页基础巩固的1、2、3、方程叫一元二次方程? • 2.它的一般形式是: • 3.二次项、二次项系数、一次项、一次项
系数、常数项分别是: • 4.如何求出2x2-8=0的解呢?
21.2 解一元二次方程
第1课时 配方法
学习目标
• 1.用直接开平方法解一元二次方程
自学指导
自学课本第5---6页,并完成以下填空。
解:(1)3x2-1=5 可化成 x2=2,
则原方程的解为 x1=- 2,x2= 2. (2)4(x-1)2-9=0 可化成(x-1)2=94. 两边开平方,得 x-1=±32. 则原方程的解为 x1=-12,x2=52. (3)4x2+16x+16=9 可化成(2x+4)2=9. 两边开平方,得 2x+4=±3. 则原方程的解为 x1=-72,x2=-12.
1.直接开平方降次法 根据平方根的定义,把一个一元二次方程_降__次___,转化为 ___两__个___一元一次方程,这种方法可解形如(x-a)2=b(b≥0)的 方程,其解为___x_=__a_±__b___.
注意:用直接开平方法求一元二次方程的解的类型有:
x2=a(a≥0);ax2=b(a,b 同号,且a≠0);(x+a)2=b(b≥0);

人教版数学九年级上册21.2.1配方法解一元二次方程 教案

人教版数学九年级上册21.2.1配方法解一元二次方程 教案

配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。

一、教学目标(一)知识目标1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。

四、知识考点运用配方法解一元二次方程。

五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。

实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。

通过问题吸引学生的注意力,引发学生思考。

问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。

这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。

1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。

(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。

21.2.1 配方法解一元二次方程

21.2.1    配方法解一元二次方程

通过配成完全平方形式 来解一元二次方程的方 法,叫做配方法。
练一练
填上适当的数,使等式成立。
(1) x 12x ____ x 6
2
6
2
2
(2) x2 4x 2 ____ x ___ 2
(3) x
2 2 4 4 8x ____ x ___
要使一块长方形场地的长比宽多6m,并且 面积为16m2,场地的长和宽应各是多少? 设场地的宽为 xm ,长
x 6m,列方程得

xx 6 16 2 x 6 x 16 0
0 方程 x 6 x 16 和方程
2
x 6 x 9 25
2
有何联系与区别呢?
4 x 2x 3
2
二次项系数化为1,得 配方
4 2 x 2x 1 1 3
2 2
x 1
由此可得
2
7 3
21 x 1 3
x1 1 21 , x2 1 3 21 3
(3)移项,得 2 配方
2
x 2 x 2
2 2
x 2 x 1 2 1
2
2
问题1 一桶油漆可刷的面积为1500 d m ,李林用这桶
2
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
2
设正方体的棱长为 xdm, 列方程10 6 x 1500 由此可得 x 25 x 5, 即 x1 5, x2 5
2
这种解法叫做什么? 直接开平方法
九年级
上册
21.2.1
配方法解一元二次方程
完全平方公式:
a a

人教版数学九年级上册 第21章 21.2.1用配方法解一元二次方程 研究课 教案

人教版数学九年级上册 第21章 21.2.1用配方法解一元二次方程 研究课 教案

人教版数学九年级上册第21章21.2.1用配方法解一元二次方程研究课教案21.2.1用配方法解一元二次方程教案第 2 页第 3 页教学过程教学具体目标教学内容实施途径教师学生课前任务1、了解配方的过程,并能够通过模仿进行配方;2、完成课前学案识别已经能够解决1.看配方的微课(洋葱数学微课);2.完成课前学案;3.提出自己的疑问.教师发布任务.学生看微课,并完成课前学案.第 4 页的一元二次方程.课前任务反馈培养学生的集体荣誉感.1.网上任务完成情况;2.学案的完成情况.注:给完成较好的同学,加分;给完成好的小组加红旗.教师ppt呈现.学生看,班长记录加分情况.回顾课前任务解决学生课前学习的共性问题,归纳总结用配方1.呈现课前任务的内容,用颜色区分课前任务的共性问题;2.归纳总结.(1)配方的规律;教师组织,引导学生解决问通过学生回答或小组讨论讲解,归纳解题程序.第 5 页法解一元二次方程的步骤.(2)用配方法解一元二次方程的步骤;(3)思想方法.题.配方检测巩固落实配方.(1)例22221(1)x x x++=+(2)28x x++=(3)25x x-+=(4)24+3x x+=(5)234x x-+=(6)2+x x+=教师出示问题,巡视批改,表扬完成较好的同学.学生做题,并板演,给其它小伙伴批改,做错的题同学分享错误原因.第 6 页(7)2+x px+=我的收获知识和方法.1.配方;2.数学思想.教师引导学生总结.学生总结.课堂检测具体内容反馈目标配方法检测,用配方法解一元二次方程.会用配方法解系数为1的一元二次方程.作业设计具体内容作业目标学探诊九上第3页.会用配方法解二次项系数为1的一元二次第 7 页方程.板书设计21.2.1用配方法解一元二次方程主板左侧:配方:222+()22p px px x⎛⎫+=+⎪⎝⎭当二次项系数为1时,配一次项系数一半的平方例:2210x x--=解:移项,得221x x-=配方,得222222+1+22x x⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭2(1)2x-=开方,得12x-=±12x-=,或12x-=-1+2x=,或12x=-第 8 页中间:学生板演主板右侧:解一元二次方程的方法:(1)直接开平方法——特法(2)因式分解法(3)配方法第 9 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)方程 x 2 0.25的根是 X1=0.5, x2=-0.5
(2)方程 2 x 18 的根是 X1=3, x2=—3
2
(3) 方程 (2 x 1)Leabharlann 2 9的根是 X1=2, x2=-1
解下列方程:
1、9x2=9
x1=1, x2=-1
2、 (x+5)2=9
x1=-2, x2=-8
3、16x2-13=3
x1=1, x2=-1
4、(3x+2)2-49=0
x1=-3, x2=5/3
5、2(3x+2)2=2
x1=-3, x2=-1/3
6、81(2x-5)2-16=0
x1=49/18, x2=41/18
a 2ab b (a b)
2 2
2
4 22 完成填空: 1、x2-4x+___=(x-__)
-4x=2xb
6 2 12x=2xb 2、x2+12x+___=(x+__) 36 4 2 3、y2-8y+___=(y-__) 16 4、x2+1/2x+___ 1/16 =(x+___) 1/4 2
思考:你所填写的b、b2与一次项 的系数有怎样的关系?
(1)x² +10x+
(2)x² -12x+

2
a
这种方 程怎样 解?
的形式.(a为非负常数)
把一元二次方程的左边配成一个 完全平方式,然后用开平方法求解,这 种解一元二次方程的方法叫做配方法.
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2 )2 6 + 9 =(x- 3 )2 (3)x2-___x
配方时, 等式两边同时加上的是一次项系数一 半的平方
例1:用配方法解下列方程
(1)x2+6x=1 (2)x2=6-5x
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
5² =(x+ 5 )² 6²=(x- 6 )²
2
5 5 (3)x² +5x+ 2 =(x+ 2 )² 2 1 1 2 (4)x² - x+ 3 =(x- 3 )² 3
(5)4x² +4x+1² =(2x+ 1 )²
X2-4x+1=0 变 形 为
变形为
(x-2)2=3
用配方法--解一元二次方程
学习目标
1、理解掌握用直接开平方法解一元 二次方程? 2、了解什么是配方法? 3、会用配方法解一元二次方程。
一般地,对于形如x2=a(a≥0)的方程, 根据平方根的定义,可解得 x a, x2 a 1 这种解一元二次方程的方法叫做直接开平方 法.
例1.用直接开平方法解下列方程: (1)3x2-27=0; (2)(2x-3)2=7
1、用配方法解下列方程 (1)x2 -3x-1=0 (3)(x-1)(x+2)=1
(2)x2 –1/2x-1/2=0
2、 关于x的二次三项式x2 +4x+k是一个 完全平方式。求k的值。
3、若x2 –mx+49是一个完全平方式,m=?
练习1:用配方法解下列方程: (1) x2+12x =-9 (2) -x2+4x-3=0 2. 用配方法说明:不论k取何实数,多项式 k2-3k+5的值必定大于零.
思考:先用配方法解下列方程: x2-2x-1=0 x2-2x+4=0 x2-2x+1=0 然后回答下列问题: (1)你在求解过程中遇到什么问题?你是怎样 处理所遇到的问题的? (2)对于形如(x+n)2=p这样的方程,在什么条 件下才有实数根?
相关文档
最新文档