成都华西中学八年级数学上册第三单元《轴对称》测试(有答案解析)
成都市八年级数学上册第三单元《轴对称》测试题(有答案解析)
一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 2.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③ 3.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .204.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .55.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 6.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 7.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .88.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个 9.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 10.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个11.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .912.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形二、填空题13.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.14.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.15.如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.16.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,P 是BC 上一点,且∠BAP =90°,CP =4cm .则BP 的长=________.18.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .19.如图,在△ABC 中,AD 平分∠BAC ,交BC 于点D ,BE ⊥AD 于E ,AB =6,AC =14,∠ABC =3∠C ,则BE =____.20.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.三、解答题21.如图,,A B AE BE ∠=∠=,点D 在AC 边上,12,AE ∠=∠和BD 相交于点O . (1)求证:AEC BED ∆≅∆(2)若70BDE ︒∠=,求1∠的度数.22.如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE =OF .23.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.24.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;25.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .26.如图,在平面直角坐标系xOy 中点(6,8)A ,点(6,0)B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法);①点P 到A ,B 两点的距离相等;②点P 到xOy 的两边的距离相等.(2)在(1)作出点P 后,直接写出点P 的坐标______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=12(180°-36°)=72°, ∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC ,∴BC=CE ,∵AE=CE ,ED ⊥AC ,∴CD=12AC =3, 在Rt △CED 中,∴故选A .【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键. 2.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.3.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a 和b 的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵ ()2370a b -+-=, ∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C .【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;. 4.C解析:C【分析】以O 为圆心,AO 长为半径画圆可得与x 轴有2个交点,再以A 为圆心,AO 长为半径画圆可得与x 轴有1个交点,然后再作AO 的垂直平分线可得与x 轴有1个交点.【详解】解:如图所示:点P 在x 轴上,且使△AOP 为等腰三角形,符合题意的点P 的个数共4个,故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.5.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A 、全等三角形的对应边相等,是真命题;B 、面积相等的两个三角形不一定全等,原命题是假命题;C 、两个全等三角形不一定成轴对称,原命题是假命题;D 、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A .【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.6.B解析:B【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.7.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.8.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.9.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A 、由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;B 、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;C 、由“∠A =60°,∠B =60°”可以得到“∠A =∠B =∠C =60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;D 、由“AB =AC ,且∠B =∠C”只能判定△ABC 是等腰三角形,故本选项符合题意. 故选:D .【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.C解析:C【分析】易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△DCB和△ACM≌△DCN是解题的关键.11.B解析:B【分析】先确定对称轴,再找到对称点进而可以找到符合题意的对称三角形即可.【详解】解:如图,左右对称的有4个,如图,上下对称的有1个,如图,关于正方形的对角线对称的有2个,∴一共有7个与原三角形关于某直线对称的格点三角形,故选:B.【点睛】本题考查了轴对称图形的性质,找到正确的对称轴,画出相应的对称三角形是解决本题的关键.12.D解析:D【分析】由偶次方的非负性质得出a-b=0,a-c=0,b-c=0,得出a=b=c ,即可得出结论.【详解】解:∵222()()()0,a b a c b c -+-+-=,∴a-b=0,a-c=0,b-c=0,∴a=b ,a=c ,b=c ,∴a=b=c ,∴这个三角形是等边三角形;故选:D .【点睛】本题考查了等边三角形的判定、偶次方的非负性质;熟练掌握等边三角形的判定方法,由偶次方的非负性质得出a=b=c 是解题的关键.二、填空题13.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.14.5【分析】连接CE 根据等边三角形的性质得到AE =ABAC =AD ∠CAD =∠BAE =60°再利用SAS 推出△BAD ≌△EAC 由全等三角形的性质得到BD =EC 由于线段BD 长的最大值=线段EC 的最大值即可解析:5【分析】连接CE,根据等边三角形的性质得到AE =AB ,AC =AD ,∠CAD =∠BAE =60°,再利用SAS 推出△BAD ≌△EAC ,由全等三角形的性质得到BD =EC ,由于线段BD 长的最大值=线段EC 的最大值,即可得到结果.【详解】解:连接CE ,∵△ACD 与△ABE 是等边三角形,∴AE =AB ,AC =AD ,∠CAD =∠BAE =60°,∴∠CAD +∠BAC =∠BAE +∠BAC ,即∠BAD =∠EAC ,在△BAD 与△EAC 中,AD AC BAD EAC AB AE ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△EAC (SAS ),∴BD =EC ;∵线段BD 长的最大值=线段EC 的最大值,当线段EC 的长取得最大值时,点E 在CB 的延长线上,且BC =4,AB =1,∴线段BD 长的最大值为BE +BC =AB +BC =5.故答案为:5.【点睛】本题考查了三角形的综合问题,掌握等边三角形的性质、全等三角形的判定与性质,并正确的作出辅助线构造全等三角形是解题的关键.15.【分析】利用余角等腰三角形和三角形外角的性质即可求出【详解】∵∴∵∴根据题意可知∴∴故答案为:45【点睛】本题考查等腰三角形和三角形外角的性质以及余角找出图形中角的等量关系是解答本题的关键解析:45【分析】利用余角、等腰三角形和三角形外角的性质即可求出.【详解】∵BDA DAE AEC ∠=∠+∠,DAE DAC EAC ∠=∠+∠,∴BDA DAC EAC AEC ∠=∠+∠+∠.∵90DAC BAC BAD BAD ∠=∠-∠=︒-∠,∴90BDA BAD EAC AEC ∠=︒-∠+∠+∠.根据题意可知=BDA BAD EAC AEC ∠=∠∠∠,.∴45BDA AEC ∠-∠=︒,∴=45DAE ∠︒.故答案为:45.【点睛】本题考查等腰三角形和三角形外角的性质以及余角.找出图形中角的等量关系是解答本题的关键.16.32【分析】根据角平分线定义求出∠ABP =∠CBP 根据线段的垂直平分线性质得出BP =CP 根据等腰三角形的性质得到∠CBP =∠BCP 根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP =∠CBP ,根据线段的垂直平分线性质得出BP =CP ,根据等腰三角形的性质得到∠CBP =∠BCP ,根据三角形内角和定理得出方程3∠ABP +24°+60°=180°,解方程得到答案.【详解】解:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵直线l 是线段BC 的垂直平分线,∴BP =CP ,∴∠CBP =∠BCP ,∴∠ABP =∠CBP =∠BCP ,∵∠A +∠ACB +∠ABC =180°,∠A =60°,∠ACP =24°,∴3∠ABP +24°+60°=180°,解得:∠ABP =32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.17.8cm 【分析】先根据已知条件求得PA=PC 再含30度直角三角形的性质求得BP 的长即可【详解】解:∵AB=AC ∠BAC=120°∴∠B=∠C=30°∵∠BAC=120°∠BAP=90°∴∠PAC=30解析:8cm【分析】先根据已知条件求得PA=PC ,再含30度直角三角形的性质求得BP 的长即可.【详解】解:∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,∵∠BAC=120°,∠BAP=90°,∴∠PAC=30°,∴∠C=∠PAC ,∴PA=PC=4cm ,∵∠BAP=90°,∠B=30°,∴BP=2AP=8cm .故答案为:8cm【点睛】本题考查了含30度直角三角形的性质,等腰三角形的性质,解题关键是根据已知条件求得PA=PC=4cm ,再根据含30度直角三角形的性质求得BP 的长.18.10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm 为底时其它两边都为10cm5cm10cm10cm 可以构成三角形;当5cm 为腰时解析:10【分析】因为等腰三角形的两边分别为5cm 和10cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm 为底时,其它两边都为10cm ,5cm 、10cm 、10cm 可以构成三角形;当5cm 为腰时,其它两边为5cm 和10cm ,因为5+5=10,所以不能构成三角形,故舍去. 所以三角形三边长只能是5cm 、10cm 、10cm ,所以第三边是10cm .故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 19.【分析】如图延长交于证明可得再求解再证明:可得从而可得答案【详解】解:如图延长交于AD 平分∠BAC 故答案为:【点睛】本题考查的是三角形的内角和定理三角形的外角的性质角平分线的定义等腰三角形的判定与性 解析:4.【分析】如图,延长BE ,交AC 于G , 证明,AGB ABG ∠=∠ 可得,AG AB = ,GE BE = 再求解CG ,再证明:C CGB ∠=∠, 可得,BG CG = 从而可得答案. 【详解】解:如图,延长BE ,交AC 于G ,AD 平分∠BAC ,,GAE BAE ∴∠=∠,BE AD ⊥90AEG AEB ∴∠=∠=︒,,AGB ABG ∴∠=∠6AG AB ∴==,,GE BE = 14AC =,8CG ∴=,,AGB C CBG ∠=∠+∠2,ABC ABG CBG AGB CBG C CBG ∴∠=∠+∠=∠+∠=∠+∠3,ABC C ∠=∠32,C C CBG ∴∠=∠+∠,C CBG ∴∠=∠8BG CG ∴==,1 4.2BE BG ∴== 故答案为:4.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角平分线的定义,等腰三角形的判定与性质,掌握以上知识是解题的关键.20.【分析】根据勾股定理可得AC 的长度作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P 利用勾股定理求出AP+PC 的最小值从而得出答案【详解】AC=如图作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P 解析:21022【分析】根据勾股定理可得AC 的长度,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,利用勾股定理求出AP+PC 的最小值,从而得出答案.【详解】AC=222222+=,如图,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,则AP+PC=AP+PC′=AC′,此时AP+PC 2226210+=所以△PAC 周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1)见解析;(2)40°【分析】(1)由12∠=∠得到BED AEC ∠=∠,然后根据ASA 即可证明AEC BED ∆≅∆; (2)由(1)得DE=CE ,70C BDE ∠=∠=︒,由三角形内角和即可求出1∠的度数.【详解】解:()11=2∠∠,BED AEC ∠=∠∴又,A B AE BE ∠=∠=()AEC BED ASA ∴∆≅∆;()2AEC BED ∆≅∆70,BDE C DE CE ∴∠=∠=︒=70C EDC ︒∴∠=∠=118027040︒︒︒∴∠=-⨯=;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.22.(1)见解析;(2)见解析【分析】(1)由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明; (2)先根据三角形全等的性质得出∠AFB =∠DEC ,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形,在Rt △ABF 和Rt △DCE 中∵BF CE AB CD=⎧⎨=⎩, ∴Rt △ABF ≌Rt △DCE (HL );(2)∵Rt △ABF ≌Rt △DCE (已证),∴∠AFB =∠DEC ,∴OE =OF .【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL 判断两个直角三角形全等,是解题的关键.23.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y轴对称点的坐标变化规律,解题关键是正确描点和画对称点.24.(1)30;(2)AB=AC;证明详见解析.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM≌△CAN(SAS),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为AB=AC;①∵△ABC与△AMN是等边三角形,∴BC=AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴BM=CN,∴BM+CM=CN+CM即BC=AC=CN+CM.【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.25.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.26.(1)作图见解析;(2)(4,4)【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【详解】(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。
成都华兴外国语学校八年级数学上册第三单元《轴对称》测试题(答案解析)
一、选择题1.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( )A .B .C .D .2.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个3.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒ C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 4.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm 5.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .126.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm 7.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .40 8.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( )A .3-B .1-C .1D .39.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒10.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°11.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm12.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题13.如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.14.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.15.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________16.如图,等边△ABC 的边长为4,点D 在边AC 上,AD =1. (1)△ABC 的周长等于_____;(2)线段PQ 在边BA 上运动,PQ =1,BQ >BP ,连接QD ,PC ,当四边形PCDQ 的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC ,QD ,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.17.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.18.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用()1,1-表示,右下角的圆形棋子用()0,0表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是__________.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).20.如图,在ABC 中,点D 是BC 上一动点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,在点D 的运动过程中,EDF ∠与A ∠的大小关系是EDF ∠______A ∠(填“>”“=”或“<”).三、解答题21.如图,在△ABC 中,AB 边的中垂线PQ 与△ABC 的外角平分线交于点P ,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E .(1)求证:BD =AE ;(2)若BC =6,AC =4.求CE 的长度.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标23.小明遇到这样一个问题:如图①,在ABC 中,12AB =,8AC =,AD 是中线,求AD 的取值范围.她的做法是:过点B 作//BE AC 交AD 的延长线于点E ,证明BED CAD △≌△,经过推理和计算就可以使问题得到解决. 按照上面的思路,请回答: (1)小红证明BED CAD △≌△的判定定理是:______; (2)AD 的取值范围是______; 方法运用:(3)如图②,AD 是ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE EF =,求证:BF AC =.24.如图,在ABC 中,AB AC =,CD AB ⊥,BE AC ⊥,垂足为D 、E ,BE 、CD 相交于点O .(1)求证:DBC ECB △△≌; (2)求证:OD OE =.25.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹); (2)求证:AE 是ABC 的一个外角角平分线.26.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案. 【详解】解:∵点D 到点A 、点B 的距离AD=BD , ∴点D 在线段AB 的垂直平分线上, 故选择:D . 【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.2.B解析:B 【分析】根据∠ABC =45°,CD ⊥AB 可得出BD =CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE=12AC=12BF,∴2CE=BF;故③正确;由③可得△DFB ≌△DAC . ∴BF =AC ;DF =AD . ∵CD =CF +DF ,∴AD +CF =BD ;故④正确; 故选:B . 【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3.B解析:B 【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式. 【详解】解:∵AB AC =,ACE x ∠=, ∴ ∠ACB=∠ABC=x+∠BCE , ∵CE DE =,BCD y ∠= ∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角, ∴∠ABC=∠D+∠BCD , 即 x+∠BCE= y+∠BCE+ y , 即x=2y ,∴()101802y x x =<<︒, 故选:B . 【点睛】本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.4.B解析:B 【分析】过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可. 【详解】解:过P 作PC ⊥MN ,∵PM=PN,∴C为MN中点,即MC=NC= 1MN=1,2在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC= 1OP=4,2则OM=OC-MC=4-1=3cm,故选:B.【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.5.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.B解析:B【分析】根据折叠的性质得到:DE=CD,BE=BC=5cm,求出AE=4cm,根据△ADE的周长为AD+DE+AE=AC+AE代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键. 7.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 8.C解析:C【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解.【详解】∵点(),3M a ,点()2,N b 关于x 轴对称∴2a =,3b =-∴()()20182018231a b +=-= 故选:C . 【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.9.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.10.D解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 11.D解析:D【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.12.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.二、填空题13.【分析】利用余角等腰三角形和三角形外角的性质即可求出【详解】∵∴∵∴根据题意可知∴∴故答案为:45【点睛】本题考查等腰三角形和三角形外角的性质以及余角找出图形中角的等量关系是解答本题的关键解析:45【分析】利用余角、等腰三角形和三角形外角的性质即可求出.【详解】∵BDA DAE AEC ∠=∠+∠,DAE DAC EAC ∠=∠+∠,∴BDA DAC EAC AEC ∠=∠+∠+∠.∵90DAC BAC BAD BAD ∠=∠-∠=︒-∠,∴90BDA BAD EAC AEC ∠=︒-∠+∠+∠.根据题意可知=BDA BAD EAC AEC ∠=∠∠∠,.∴45BDA AEC ∠-∠=︒,∴=45DAE ∠︒.故答案为:45.【点睛】本题考查等腰三角形和三角形外角的性质以及余角.找出图形中角的等量关系是解答本题的关键.14.【分析】过点M 作MP ⊥ACMQ ⊥AB 首先证明MP =MQ 求出AC 的长度运用S △ABC =S △ABM +S △ACM 求出MP 即可解决问题【详解】如图设点B 的对应点为N 由题意得:∠BAM =∠CAMAB =AN =2 解析:43【分析】过点M 作MP ⊥AC ,MQ ⊥AB ,首先证明MP =MQ ,求出AC 的长度,运用S △ABC =S △ABM +S △ACM ,求出MP 即可解决问题.【详解】如图,设点B 的对应点为N ,由题意得:∠BAM =∠CAM ,AB =AN =2;过点M 作MP ⊥AC ,MQ ⊥AB ,则MP =MQ ,设MP =MQ=x ,∵AN =NC ,∴AC =2AN =4;∵S △ABC =S △ABM +S △ACM , ∴12AB•AC =12AB•MQ +12AC•MP , ∴2×4=2x +4x ,解得:x =43, 故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.15.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.16.见解析过点C作CE∥AB且CE=1作点D关于AB的对称点F连接EF交AB 于一点为Q在AB上BQ之间截取PQ=1连接CPDQ则四边形PCDQ为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形.【详解】⨯=,(1)△ABC的周长等于4312故答案为:12;(2)如图:故答案为:过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.17.3cm【分析】过点P作PF⊥OB于F根据角平分线上的点到角的两边距离相等可得PF=PE根据角平分线的定义可得∠AOC=∠BOC根据两直线平行内错角相等可得∠AOC=∠OPD两直线平行同位角相等可得∠解析:3cm【分析】过点P作PF⊥OB于F,根据角平分线上的点到角的两边距离相等可得PF=PE,根据角平分线的定义可得∠AOC=∠BOC,根据两直线平行,内错角相等可得∠AOC=∠OPD,两直线平行,同位角相等可得∠PDF=∠AOB,再求出∠BOC=∠OPD,根据等角对等边可得PD=OD ,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF =12PD ,进而即可求解.【详解】如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°, ∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.18.【分析】首先确定平面直角坐标系再根据轴对称图形的定义画出淇淇放的方形棋子的位置即可解决问题【详解】解:平面直角坐标系如图所示淇淇放的方形棋子的位置如图坐标为(-12)故答案为(-12)【点睛】本题考解析:()1,2-【分析】首先确定平面直角坐标系,再根据轴对称图形的定义画出淇淇放的方形棋子的位置,即可解决问题.【详解】解:平面直角坐标系如图所示,淇淇放的方形棋子的位置如图,坐标为(-1,2),故答案为(-1,2).【点睛】本题考查坐标与图形的性质,坐标位置的确定等知识,解题的关键是灵活运用所学知识解决问题.19.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.=【分析】先根据线段的垂直平分线的性质得到EB=EDFD=FC则根据等腰三角形的性质得到∠EDB=∠B∠FDC=∠C然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC)利用三角形内角和定理解析:=【分析】先根据线段的垂直平分线的性质得到EB=ED,FD=FC,则根据等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC),利用三角形内角和定理得到∠A=180°-(∠B+∠C),所以∠EDF=∠A.【详解】解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°-(∠EDB+∠FDC),∠A=180°-(∠B+∠C),∴∠EDF=∠A.故答案为:=.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.三、解答题21.(1)见解析;(2)CE=1【分析】(1)连接PA、PB,根据角平分线的性质得到PD=PE,根据线段垂直平分线的性质得到PA=PB ,证明Rt △AEP ≌Rt △BDP ,根据全等三角形的性质得到AE=BD ;(2)结合图形计算得到答案.【详解】(1)连接PA 、PB ,∵CP 是∠BCE 的平分线,PD ⊥BC ,PE ⊥AC ,∴PD =PE ,在Rt △CDP 和Rt △CEP 中,PD PE PC PC =⎧⎨=⎩, ∴Rt △CDP ≌Rt △CEP (HL )∴CD =CE ,∵PQ 是线段AB 的垂直平分线,∴PA =PB ,在Rt △AEP 和Rt △BDP 中,PE PD PA PB =⎧⎨=⎩, ∴Rt △AEP ≌Rt △BDP (HL ),∴AE =BD ;(2)AC +CE +CD =BD +CD =BC =6, ∴1(64)12CE CD ==⨯-=. 【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)角角边或者角边角(AAS 或ASA );(2)210AD <<;(3)见解析【分析】(1)由“ASA”或“AAS”可证△BED ≌△CAD ;(2)由全等三角形的性质可得AC=BE=8,由三角形的三边关系可求解;(3)延长AD 至H ,使AD=DH ,连接BH ,由“SAS”可证△BHD ≌△CAD ,可得AC=BH ,∠CAD=∠H ,由等腰三角形的性质可得∠H=∠BFH ,可得BF=BH=AC ;【详解】解:(1)∵AD 是中线,∴BD=CD ,又∵∠ADC=∠BDE ,∵//BE AC ,∴EBD C ∠=∠,E CAD ∠=∠,∴△BED ≌△CAD (ASA ),或△BED ≌△CAD (AAS ),故答案为:SAS 或AAS ;(2)∵△BED ≌△CAD ,∴AC=BE=8,在△ABE 中,AB-BE <AE <AB+BE ,∴4<2AD <20,∴2<AD <10,故答案为:2<AD <10;(3)过点B 作//BG AC 交AD 的延长线于点G ,则CAD BGD ∠=∠∵AD 是中线,∴BD CD =在ADC 和GDB △中∵CAD BGD ∠=∠,ADC GDB ∠=∠,BD CD =,∴ADC GDB ≌△△∴BG CA =∵AE EF =∴EAF AFE ∠=∠又∵CAD BGD ∠=∠,AFE BFG ∠=∠∴BGD BFG ∠=∠∴BG BF =,又∵BG CA =,∴BF AC =;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的三边关系,添加恰当辅助线构造全等三角形是本题的关键.24.(1)见解析;(2)见解析【分析】(1)由“AAS”即可证明△BDC ≌△CEB ;(2)由△BDC ≌△CEB ,推出BD=CE ,∠BCD=∠CBE ,得到OB=OC ,即可证明结论.【详解】(1)∵CD AB ⊥,BE AC ⊥,∴∠BDC=∠BEC=90︒,∵AB=AC ,∴∠ABC=∠ACB ,在△BDC 和△CEB 中,90BDC BEC ABC ACB BC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (AAS );(2)∵△BDC ≌△CEB ,∴CD=BE ,∠BCD=∠CBE ,∴OB=OC,∴OD=OE.【点睛】本题考查了等腰三角形和全等三角形的判定和性质,关键是利用AAS证明△BDC≌△CEB.25.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C即可;(2)延长BA,根据两直线平行,同位角相等,有∠EAF=∠B,由(1)可知∠CAE=∠C,再根据AB=AC,可得∠B=∠C,等量替换之后即可得证.【详解】(1)射线AE为所求;(2)证明:如图所示,延长BA,AE BC,∵//∴∠EAF=∠B,∠CAE=∠C,∵AB=AC,∴∠B=∠C,∴∠EAF=∠CAE,∴AE是ABC的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.26.(1)见解析;(2)成立,证明见解析;(3)DEF为等边三角形【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.。
成都西川中学八年级数学上册第三单元《轴对称》测试题(答案解析)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm 2.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .103.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆= 4.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒ 5.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .1186.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .37.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .6 8.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .40 9.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠B .,60AB AC B =∠=︒ C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 10.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .11.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10312.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm二、填空题13.如图,∠C=90°,CB=CO ,且点B 坐标为(-2,0),则点C 坐标为_________.14.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.15.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.16.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.17.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .18.如图:已知在ABC 中,90ACB ︒∠=,36BAC ︒∠=,在直线AC 上找点P ,使ABP △是等腰三角形,则APB ∠的度数为________.19.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.20.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .三、解答题21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 和△DEF 的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 向上平移4个单位长度所得到的△A 1B 1C 1,并写出点A 1,B 1的坐标; (2)画出△DEF 关于x 轴对称后所得到的△D 1E 1F 1,并写出点E 1,F 1的坐标;(3)△A 1B 1C 1和△D 1E 1F 1组成的图形是轴对称图形,请画出它的对称轴.22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.23.在等边ABC 中,D E 、分别为AB AC 、边上的动点,以DE 为一边作等边DEF .(1)如图1,若等边DEF 的顶点F 恰好在BC 上,求证:ADE CEF ≌;(2)如图2,若2BD AE ,当点D 从点A 向点B 运动(不运动到点B )时,连接CF ,请判断ECF ∠的大小是否变化并说明理由.24.在等边三角形ABC 中,点E 为线段AB 上一动点,点E 与A ,B 不重合,点D 在CB 的延长线上,且ED =EC .(1)当E 为边AB 的中点时,如图1所示,确定线段AE 与BD 的大小关系,并证明你的结论;(2)如图2,当E 不是边AB 的中点时,(1)中的结论是否成立?若不成立,请直接写出BD 与AE 的数量关系;若成立,请给予证明;(提示:过E 作//EF BC 交AC 于点F ) (3)在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC ,ABC 的边长为1,AE =2,请直接写出CD 的长.25.如图,在平面直角坐标系xOy 中点(6,8)A ,点(6,0)B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法);①点P 到A ,B 两点的距离相等;②点P 到xOy ∠的两边的距离相等.(2)在(1)作出点P 后,直接写出点P 的坐标______.26.如图所示,已知AB AC =,AD 是中线,BE CF =.(1)求证:BDE CDF ≌;(2)当60B ∠=︒时,过AB 的中点G ,作//GH BD ,求证:4GH AB 1=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.D解析:D【分析】由已知等式,结合非负数的性质求a 、b 的值,再根据等腰三角形的性质,分类求解即可.【详解】解:∵a 2-4a +4+(b -4)2=0,∴(a -2)2+(b -4)2=0,∴a−2=0,b−4=0,解得:a =2,b =4,当a =2作腰时,三边为2,2,4,不符合三角形三边关系定理;当n =4作腰时,三边为2,4,4,符合三角形三边关系定理,周长为:2+4+4=10. 故选:D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求a ,b 的值,再根据a 或b 作为腰,分类求解.3.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S ⋅=,12ABD DB AC S ⋅=,∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D .【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.4.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.5.B解析:B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 6.B解析:B【分析】由已知可以写出∠B 和∠C ,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k ∠A=(36k )°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B .【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .7.C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒, ∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒,∴AED DAE ∠=∠,∴DE DA =,∴ADE 是等腰三角形,∵BDE B ∠=∠,∴BE DE =,∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】 本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定. 8.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.9.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.11.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】 本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键. 12.D解析:D【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.二、填空题13.(-11)【分析】过点C 作CD ⊥y 轴于点D 根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C 作CD ⊥y 轴于点D ∵∠ACB=90°CB=CO ∴∠CBO=∠COB=45°∵CD ⊥y 轴∴∠C解析:(-1,1)【分析】过点C 作CD ⊥y 轴于点D ,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C作CD⊥y轴于点D,∵∠ACB=90°,CB=CO,∴∠CBO=∠COB=45°,∵CD⊥y轴,∴∠CDO=90°,∴∠COD=∠DOC,∴OD=CD,∵CD⊥y轴,CB=CO,∴OD=12OB,∵点B坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C坐标为(-1,1),故答案为(-1,1).【点睛】本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.14.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.15.16【分析】根据线段的垂直平分线的性质得到EB=EAAF=FC根据三角形的周长公式计算得到答案【详解】解:∵DE是AB边的垂直平分线∴EB=EA∵FG是AC边的垂直平分线∴AF=FC∴△AEF的周长解析:16【分析】根据线段的垂直平分线的性质得到EB=EA、AF=FC,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是AB边的垂直平分线,∴EB=EA,∵FG是AC边的垂直平分线,∴AF=FC,∴△AEF的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.35°【分析】连接OB同理得AO=OB=OC由等腰三角形的性质得∠A=∠ABO∠C=∠CBO进而得到∠A+∠C=∠ABC由等腰三角形三线合一得∠AOD=∠BOD∠BOE=∠COE由平角的定义得∠DO解析:35°【分析】连接OB,同理得AO=OB=OC,由等腰三角形的性质得∠A=∠ABO,∠C=∠CBO,进而得到∠A+∠C=∠ABC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠DOE=145°,最后由四边形内角和定理可得结论.【详解】解:连接OB,∵线段AB 、BC 的垂直平分线l 1、l 2相交于点O ,∴AO=OB=OC ,∴∠AOD=∠BOD ,∠BOE=∠COE ,∠A=∠ABO ,∠C=∠CBO ,∴∠A+∠C=∠ABC ,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°-∠DOE-∠BDO-∠BEO=35°;故答案为:35°【点睛】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,四边形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.18.72°或18°或108°或36°【分析】分四种情况:①AB =BP1时②当AB =AP3时③当AB =AP2时④当AP4=BP4时分别讨论根据等腰三角形的性质求出答案即可【详解】∵在Rt △ABC 中∠C =9解析:72°或18°或108°或36°【分析】分四种情况:①AB =BP 1时,②当AB =AP 3时,③当AB =AP 2时,④当AP 4=BP 4时,分别讨论,根据等腰三角形的性质求出答案即可.【详解】∵在Rt △ABC 中,∠C =90°,∠A =36°,∴当AB =BP 1时,∠BAP 1=∠BP 1A =36°,当AB =AP 3时,∠ABP 3=∠AP 3B =12∠BAC =12×36°=18°, 当AB =AP 4时,∠ABP 4=∠AP 4B =12×(180°−36°)=72°, 当AP 2=BP 2时,∠BAP 2=∠ABP 2,∴∠AP 2B =180°−36°×2=108°,∴∠APB 的度数为:18°、36°、72°、108°.故答案为:72°或18°或108°或36°【点睛】此题主要考查了等腰三角形的性质,分类讨论思想的运用是解题关键.19.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.20.10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm为底时其它两边都为10cm5cm10cm10cm可以构成三角形;当5cm为腰时解析:10【分析】因为等腰三角形的两边分别为5cm和10cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm为底时,其它两边都为10cm,5cm、10cm、10cm可以构成三角形;当5cm为腰时,其它两边为5cm和10cm,因为5+5=10,所以不能构成三角形,故舍去.所以三角形三边长只能是5cm、10cm、10cm,所以第三边是10cm.故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.三、解答题21.(1)图见解析,A1(3,2),B1(4,1);(2)图见解析,E1(﹣2,﹣3),F1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A1,B1,C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点D1,E1,F1的坐标,然后描点即可;(3)直线C1F1和C1F1的垂直平分线都是△A1B1C1和△D1E1F1组成的图形的对称轴.【详解】解:(1)如图,△A1B1C1为所作,A1(3,2),B1(4,1);(2)如图,△D1E1F1为所作,E1(﹣2,﹣3),F1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.22.(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.(1)见解析;(2)不变,理由见解析.【分析】(1)根据AAS 证明ADE CEF ≌即可;(2)在AC 上截取CH AE =,连接FH ,根据等边△ABC 和等边△DEF 的性质证明△ADE HEF ≅∆可得FH CH =,得∠FCH HFC =∠,进一步可得∠30ECF =︒.【详解】解:(1)证明:∵△ABC 和△DEF 是等边三角形∴∠A=∠C=60°,∠DEF=60°,DE=EF∵∠DEF=60°,∴∠DEF+∠FEC=180°-60°=120°∵∠C=60°∴∠CFE+∠FEC=180°-60°=120°∴∠DEA EFC =∠在△ADE 和△CEF 中,A C DEA EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CEF ≌;(2)在AC 上截取CH AE =,连接FH ,设,AE CH x ==等边△ABC 的边长为a∵22BD AE x ==∴2AD EH a x ==-∵△ABC 是等边三角形∴∠60A =︒∴∠120ADE DEA +∠=︒∵△DEF 是等边三角形∴∠60,DEF DE EF =︒=∴∠120AED FEC +∠=︒∴∠ADE FEC =∠∴△()ADE HEF SAS ≅∆∴∠60,FHE A FH AE x =∠=︒==∴FH CH =∴∠FCH HFC =∠∵∠60FCH HFC FHE +∠=∠=︒∴260FCH ∠=︒∴∠30FCH =︒即∠30ECF =︒【点睛】本题考查的是全等三角形的判定和性质,等边三角形的性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.24.(1)AE =BD ;见解析;(2)成立;AE =BD ;见解析;(3)CD 的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB =30°,由DE =CE ,求出∠D =∠ECB =30°得到∠DEB =30°,推出BD =BE ,根据AE =BE 证得结论;(2)过E 作EF ∥BC 交AC 于点F ,得到△AEF 是等边三角形,推出BE=CF ,利用∠DBE =∠EFC =120°,∠BED =∠ECF ,证得△DEB ≌△ECF (AAS ),得到BD =EF=AE ;(3)作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,利用∠CEF =∠EDB ,EB =CF =3,∠F =∠B =60°,证得△CEF ≌△EDB (AAS ),得到BD =EF =2,求出CD =BD -BC =1,同理可得CD =3【详解】解:(1)AE =BD ;证明:∵△ABC 为等边三角形,AE =BE ,∴CE 平分∠ACB ,∴∠ECB =30°.∵DE =CE ,∴∠D =∠ECB =30°.∵∠ABC =∠D +∠DEB =60°,∴∠DEB =30°,∴∠D =∠DEB ,∴BD =BE .∵AE =BE ,∴AE =BD ;(2)当E 为边AB 上任意一点时,AE =BD 仍成立;证明:如图1,过E 作EF ∥BC 交AC 于点F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,即∠AEF =∠AFE =∠A =60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,∴△DEB≌△ECF(AAS),∴BD=EF,∴AE=BD;(3)CD的长为3或1如图2,作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC.∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC,∴∠CEF=∠EDB.又∵EB=CF=3,∠F=∠B=60°,∴△CEF≌△EDB(AAS),∴BD=EF=2,∴CD=BD-BC=1,如图3,同理可得CD=3,综上所述,CD的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.(1)作图见解析;(2)(4,4)【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【详解】(1)如图,点P 为所作;(2)P 点坐标为(4,4).故答案为(4,4).【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.(1)见详解;(2)见详解.【分析】(1)由AB=AC ,AD 是中线,得到∠B=∠C ,BD=CD ,即可得到结论;(2)由等腰三角形的性质得到AD ⊥BC ,根据平行线的性质得到∠AHG=90°,再根据三角形的中位线定理即可得到结果.【详解】证明(1)如图:∵AB=AC ,AD 是中线,∴∠B=∠C ,BD=CD ,在△BDE 与△CDF 中,BE CF B C BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF ;(2)∵GH ∥BD ,∠B=60°,∴∠AGH=60°,∵AB=AC ,AD 是中线,∴AD⊥BC,∴∠BAD=30°∠AHG=90°,∴GH=1AG,2∵AG=1AB,2∴GH=1AB.4【点睛】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,掌握定理是解题的关键.。
成都市八年级数学上册第三单元《轴对称》检测题(有答案解析)
一、选择题1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个2.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .53.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒4.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 5.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒6.如图,在ABC 中,34B ∠=︒,BCA ∠的平分线CD 交AB 于点D ,若DE 垂直平分BC 交BC 于点E ,则A ∠的度数为( )A .90°B .68°C .78°D .88° 7.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .12 8.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .129.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10310.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°11.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤ 12.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③二、填空题13.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.14.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.15.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________16.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________ 18.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.19.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).三、解答题21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标22.下面是小明设计“作三角形一边上的高”的尺规作图过程.已知:ABC求作:ABC的边BC上的高AD作法:(1)分别以点B和C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BE,CE.BA=______∴点B在线段AE的垂直平分线上()(填推理依据)同理可证,点C也在线段AE的垂直平分线上∴垂直平分AE()(填推理依据)BC∴是ABC的高.AD⊥,垂足为D,点E在线段AD上,23.如图,等边三角形ABC中,AD BC∠=︒,求ACE45EBC∠的度数.24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ), (3)求出'''A B C ∆的面积25.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.26.在平面直角坐标系中,△ABC 的位置如图所示,已知点A 、B 的坐标为(-4,3)(3,0).(1)点C关于x对称的点的坐标(,);(2)在图中作出△ABC关于y轴的对称图形△A′B′C′;(3)△ABC的面积为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【详解】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,②正确;∴BD=2CD,③正确;根据已知不能推出CD=DE,故④错误;故选:C.【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.2.C解析:C【分析】以O 为圆心,AO 长为半径画圆可得与x 轴有2个交点,再以A 为圆心,AO 长为半径画圆可得与x 轴有1个交点,然后再作AO 的垂直平分线可得与x 轴有1个交点.【详解】解:如图所示:点P 在x 轴上,且使△AOP 为等腰三角形,符合题意的点P 的个数共4个,故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.3.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.4.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+21=+2 ∴C(2,1+由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1+第3次变换后点C 的坐标变为(2-3,1),即(-1,1--第n 次变换后点C 的坐标变为(2-n ,1)(n 为奇数)或(2-n ,1+为偶数), ∴连续经过2021次变换后,等边ABC 的顶点C 的坐标为(-2019,1-, 故选:D .【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键. 5.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.6.C解析:C【分析】由垂直平分线的性质,可得∠DCB=34B ∠=︒,由角平分线的定义得∠ACB=2∠DCB=68°,进而即可求解.【详解】∵DE 垂直平分BC 交BC 于点E ,∴DB=DC ,∴∠DCB=34B ∠=︒,∵CD 是BCA ∠的平分线,∴∠ACB=2∠DCB=68°,∴∠A=180°-34°-68°=78°,故选C .【点睛】本题主要考查垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形内角和定理,熟练垂直平分线的性质定理,是解题的关键.7.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B .【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解. 8.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==, ∴2222543AD AB BD =--=,∴3sin 5AD B AB ==. 故选:C . 【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】 本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键. 10.A解析:A【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.11.D解析:D【分析】①由等腰直角三角形的性质可得出结论;②证明△ADE ≌△BCE ,可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题; ③证明△AEF ≌△BED 即可;④AE≠DE ,故④不正确;⑤易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.12.A解析:A【分析】由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确; AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确;90ABE ∠=︒,BE BD =,45CBA ∠=︒,45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.二、填空题13.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的 解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒.故答案是:25︒.【点睛】 本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 14.3cm 【分析】过点P 作PF ⊥OB 于F 根据角平分线上的点到角的两边距离相等可得PF =PE 根据角平分线的定义可得∠AOC =∠BOC 根据两直线平行内错角相等可得∠AOC =∠OPD 两直线平行同位角相等可得∠解析:3cm【分析】过点P 作PF ⊥OB 于F ,根据角平分线上的点到角的两边距离相等可得PF =PE ,根据角平分线的定义可得∠AOC =∠BOC ,根据两直线平行,内错角相等可得∠AOC =∠OPD ,两直线平行,同位角相等可得∠PDF =∠AOB ,再求出∠BOC =∠OPD ,根据等角对等边可得PD =OD ,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF =12PD ,进而即可求解.【详解】如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°,∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.15.110°或80°【分析】根据等腰三角形的性质先求出∠BAC 的度数然后分3种情况:①AD =AE 时②AD =ED 时③当AE =DE 时分别求解即可【详解】∵在△ABC 中AB =AC ∠B =40°∴∠B =∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC 的度数,然后分3种情况:①AD =AE 时,②AD =ED 时,③当AE =DE 时,分别求解,即可.【详解】∵在△ABC 中,AB =AC ,∠B =40°,∴∠B =∠C=40°∴∠BAC =100°,①AD =AE 时,∠AED =∠ADE =40°,∴∠DAE =100°,此时,点D 与点B 重合,不符合题意舍去,②AD =ED 时,∠DAE =∠DEA ,∴∠DAE =12(180°−40°)=70°, ∴∠BAD =∠BAC−∠DAE =100°−70°=30°,∴∠BDA =180°−∠B−∠BAD =110°,③当AE =DE 时,∠DAE =∠ADE =40°,∴∠BAD =100°−40°=60°,∴∠BDA =180°−40°−60°=80°,综上所述:∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.16.【分析】连接BP 过点E 作EF ⊥BC 根据可得PQ+PR=EF 结合等腰直角三角形三边长的关系即可求解【详解】连接BP 过点E 作EF ⊥BC ∵∴=BC×PQ+BE×PR=BC×(PQ+PR)=BC×EF ∴PQ【分析】连接BP ,过点E 作EF ⊥BC ,根据BCE BPE BPC SS S =+,BE BC =,可得PQ+PR=EF ,结合等腰直角三角形三边长的关系,即可求解.【详解】连接BP ,过点E 作EF ⊥BC ,∵BE BC =,∴BCE BPE BPC SS S =+ =12BC×PQ+12BE×PR =12BC×(PQ+PR) =12BC×EF , ∴PQ+PR=EF ,∵ABC 是等腰直角三角形,∴∠B=45°,∴EFB △是等腰直角三角形,且BE=BC=2, ∴222,∴PQ PR +2, 2【点睛】本题主要考查等腰直角三角形的性质,掌握“等积法”是解题的关键.17.70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110° ;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部, 如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.18.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD 即可求出OM的长【详解】解:过P作PD⊥OB交OB于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.19.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.20.①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC从而得到△BDF和△CEF都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE;③由②得:△ADE的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF,EF=EC,从而得到△BDF和△CEF都是等腰三角形;②同①有DB=DF,EF=EC,所以DE=DF+EF=BD+CE;③由②得:△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;④因为∠ABC不一定等于∠ACB,所以∠FBC不一定等于∠FCB,所以BF与CF不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()P-即为所求点.1,0【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)见解析;(2)BE,与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线【分析】(1)利用几何语言画出对应的几何图形;(2)利用作法得到BA=BE,CA=CE,则根据线段的垂直平分线的性质定理的逆定理得到点B、点C在线段AE的垂直平分线上,从而得到BC垂直平分AE.【详解】(1)如图,AD为所作;(2)证明:连接BE,CE.BA=__BE____∴点B在线段AE的垂直平分线上(与线段两个端点距离相等的点在这条线段的垂直平分线上)(填推理依据)同理可证,点C也在线段AE的垂直平分线上∴垂直平分AE(两点确定一条直线)(填推理依据)BC∴是ABC的高.AD故答案为:BE ;与线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点睛】本题考查了作图-基本作图和线段垂直平分线的性质与判定,熟练掌握基本作图,灵活运用垂直平分线的性质是解题关键.23.15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形 1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.26.(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C坐标为(-2,5),∴点C关于x对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:10.【点睛】此题考查关于坐标轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.。
(人教版)成都市八年级数学上册第三单元《轴对称》检测(含答案解析)
一、选择题1.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若,9,6BE AC BF CF ===,则AF 的长度为( )A .1B .1.5C .2D .2.52.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等3.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .54.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 5.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒6.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .7.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .88.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个9.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个10.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③ 11.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④ 12.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .2个B .3个C .4个D .5个二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形,且△AOP 的面积为16,则满足条件的P 点个数是______.15.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.16.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.17.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.18.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.19.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为___________.20.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .三、解答题21.(1)如图1,О是等边ABC 内一点,连接OA OB OC 、、,且3,4,5,OA OB OC ===BAO BCD ≅△△,连接OD .①OBD ∠= __度;(答案直接填写在横线上)②OD =_ __﹔(答案直接填写在横线上)③求BDC ∠的度数.(2)如图2所示,О是等腰直角()90ABC ABC ∠=︒△内一点,连接OA OB OC 、、,BAO BCD ≅△△,连接OD .当OA OB OC 、、满足什么条件时,90ODC ∠=.请给出证明.22.已知在ABC 中,CAB ∠的平分线AD 与BC 的垂直平分线DE 交于点D ,DM AB ⊥于M ,DN AC ⊥交AC 的延长线于N .(1)证明:BM CN =;(2)当80BAC ∠=︒时,求DCB ∠的度数.23.如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.①求EDG ∠的度数(用含α的式子表示);②请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.24.如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)求证:ABD △是等边三角形;(2)若2DG =,求AC 的长;(3)求证:AB AE AF =+. 25.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC=60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .26.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______)(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】延长AD 到G 使得DG AD =,连接BG ,证明()△△ACD GBD SAS ≅,根据全等三角形的性质可得到CAD G ∠=∠,AC=BD ,等量代换得到BE=BG ,再由等腰三角形的性质得到G BEG ∠=∠,推出EF=AF ,即可解决问题;【详解】如图,延长AD 到G 使得DG AD =,连接BG ,∵AD 是△ABC 的中线,∴CD=BD ,在△ACD 与△GBD 中,CD BD ADC BDG AD DG =⎧⎪∠=∠⎨⎪=⎩,∴()△△ACD GBDSAS ≅, ∴CAD G ∠=∠,AC=BD ,∵BE=AC ,∴BE=BG ,∴G BEG ∠=∠,∵BEG AEF ∠=∠,∴AEF EAF ∠=∠,∴EF=AF ,∴AF CF BF AF +=-,即69AF AF +=-,∴3AF ;2故选:B.【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质求解是解题的关键.2.B解析:B【分析】根据全等三角形的定义去判断A,全等三角形性质去判断B,等边三角形和等腰三角形性质判断C、D,依次分析解答即可.【详解】解:A.由全等三角形的定义得到:能够完全重合的两个图形全等,此命题是真命题;B.两边和一角对应相等且该角是两边的夹角的两个三角形全等,此命题是假命题;C. 三个角都相等的三角形是等边三角形,此命题是真命题;D. 等腰三角形的两底角相等,此命题是真命题;故选B.【点睛】此题主要考查了命题的真假,关键是掌握相关定义和性质.注意SAS时,一角必须是两边的夹角.3.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD平分∠BAC,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=1×60°=30°,2∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上,所以③正确;在直角△ACD中,∠CAD=30°,∴CD=1AD,2∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.4.B解析:B【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.5.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B的度数为:50°或20°或80°.观察各选项可知∠B不可能是60°.故选B.【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.6.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.7.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD是斜边AB上的高,利用互余关系求∠BCD=30°,DB=2,可求BC,在Rt△ABC中,再利用含30°的直角三角形的性质求AB,再用线段的差求AD.【详解】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD是斜边AB上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD=4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C.【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.8.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE S S ∴==,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.9.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG =∠BAP ,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN ,PM=PO ,则PN =PO ,即可证明结论.【详解】解:∵AP 平分∠BAC ,PB 平分∠CBE ,∴∠CAB =2∠PAB ,∠CBE =2∠PBE ,∵∠CBE =∠CAB +∠ACB ,∠PBE =∠PAB +∠APB ,即∠CBE =∠CAB +2∠APB ,∴∠ACB =2∠APB .故①正确;∵BE =BC ,BP 平分∠CBE ,∴BP 垂直平分CE (三线合一).故②正确;∵AP 平分∠BAC ,∴∠CAP =∠BAP ,∵PG ∥AD ,∴∠APG =∠CAP ,∴∠APG =∠BAP ,∴PG =AG .故③正确;如图,过点P 作PM ⊥AE 于点M ,PN ⊥AD 于点N ,PO ⊥BC 于点O ,∵AP 平分∠BAC ,PB 平分∠CBE ,∴PM=PN ,PM=PO ,∴PN =PO ,∴CP 平分∠DCB .故④正确.故选:D .【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.10.A解析:A【分析】由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确;AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确;90ABE ∠=︒,BE BD =,45CBA ∠=︒,45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.11.C解析:C【分析】根据∠ABC=45°,CD ⊥AB 可得出BD=CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF=AD ,BF=AC .则CD=CF+AD ,即AD+CF=BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE=AE=12AC ,又因为BF=AC 所以CE=12AC=12BF ,连接CG .因为△BCD 是等腰直角三角形,即BD=CD .又因为DH ⊥BC ,那么DH 垂直平分BC .即BG=CG .在Rt △CEG 中,CG 是斜边,CE 是直角边,所以CE <CG .即AE <BG .【详解】解:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD .故①正确;在Rt △DFB 和Rt △DAC 中,∵∠DBF =90°﹣∠BFD ,∠DCA =90°﹣∠EFC ,且∠BFD =∠EFC ,∴∠DBF =∠DCA. 又∵∠BDF =∠CDA =90°,BD =CD ,∴△DFB ≌△DAC .∴BF =AC ;DF =AD .∵CD =CF +DF ,∴AD +CF =BD ;故②正确;在Rt △BEA 和Rt △BEC 中∵BE 平分∠ABC ,∴∠ABE =∠CBE .又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.又由(2),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.∴正确的选项有①②③;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.12.C解析:C【分析】如果OA为等腰三角形的腰,有两种可能,①以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;②如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点,所以符合条件的点一共4个.【详解】分二种情况进行讨论:①当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心OA为半径的圆弧与y轴有一个交点;②当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点,∴符合条件的点一共4个,故选:C.【点睛】本题考查等腰三角形的性质,解题关键是根据两腰相等,分四种情况进行讨论.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA 当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B.【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15.5【分析】连接CE根据等边三角形的性质得到AE=ABAC=AD∠CAD=∠BAE=60°再利用SAS推出△BAD≌△EAC由全等三角形的性质得到BD=EC由于线段BD长的最大值=线段EC的最大值即可解析:5【分析】连接CE,根据等边三角形的性质得到AE=AB,AC=AD,∠CAD=∠BAE=60°,再利用SAS推出△BAD ≌△EAC ,由全等三角形的性质得到BD =EC ,由于线段BD 长的最大值=线段EC 的最大值,即可得到结果.【详解】解:连接CE ,∵△ACD 与△ABE 是等边三角形,∴AE =AB ,AC =AD ,∠CAD =∠BAE =60°,∴∠CAD +∠BAC =∠BAE +∠BAC ,即∠BAD =∠EAC ,在△BAD 与△EAC 中,AD AC BAD EAC AB AE ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△EAC (SAS ),∴BD =EC ;∵线段BD 长的最大值=线段EC 的最大值,当线段EC 的长取得最大值时,点E 在CB 的延长线上,且BC =4,AB =1,∴线段BD 长的最大值为BE +BC =AB +BC =5.故答案为:5.【点睛】本题考查了三角形的综合问题,掌握等边三角形的性质、全等三角形的判定与性质,并正确的作出辅助线构造全等三角形是解题的关键.16.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键. 17.110【分析】根据等腰三角形的性质求出∠B=70º再根据平行线的性质求出的度数【详解】解:∵AB=AC ∴∠B=∠ACB==70º∵//∴+∠B=180º∴=110º故答案为:110【点睛】本题考查了解析:110【分析】根据等腰三角形的性质,求出∠B=70º,再根据平行线的性质,求出BCD ∠的度数.【详解】解:∵AB=AC ,40A ∠=,∴∠B=∠ACB=180402︒-︒=70º, ∵CD //AB , ∴BCD ∠+∠B=180º,∴BCD ∠=110º,故答案为:110.【点睛】本题考查了等腰三角形的性质和平行线的性质,熟练运用已知条件,准确推理计算,是解决这类题的关键.18.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称,∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.19.25【分析】分腰长为10和腰长为5两种情况讨论不合题意的舍去据此即可求解【详解】解:当腰长为10时三边分别为10105构成三角形周长为10+10+5=25;当腰长为5时三边分别为5510∵5+5=1解析:25【分析】分腰长为10和腰长为5两种情况讨论,不合题意的舍去,据此即可求解.【详解】解:当腰长为10时,三边分别为10、10、5,构成三角形,周长为10+10+5=25; 当腰长为5时,三边分别为5、5、10,∵5+5=10,无法构成三角形,不合题意. 故答案为:25【点睛】本题考查了等腰三角形的定义和三角形的三边关系,熟知相关定理是解题关键. 20.6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm , ∴912x x -=,即:x=6, ∴AD =6.故答案是:6【点睛】 本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.三、解答题21.(1)①60︒;②4;③150︒;(2)2222OA OB OC +=,证明见解析.【分析】(1)①由BAO BCD ≅△△得到,BO BD ABO CBD =∠=∠,继而证明ABC OBD ∠=∠即可解题;②由BAO BCD ≅△△得到BO BD =,结合①结论60OBD ∠=︒,可证明OBD 是等边三角形,即可解题;③根据BAO BCD ≅△△得到=AO CD ,在ODC △中根据三角形三边关系即勾股定理的逆定理,可证明ODC △为直角三角形,继而得到90ODC ∠=,再结合OBD 是等边三角形即可解得60OBD ∠=︒据此解题即可;(2)由,BAO BCD ≅可得90,,OBD ABC BO BD CD AO ∠=∠=︒==,可证明OBD为等腰直角三角形,根据等腰直角三角形边的关系可得OD =,最后根据直角三角形三边满足勾股定理解题即可.【详解】解:(1)①BAO BCD ≅,BO BD ABO CBD ∴=∠=∠ABO OBC CBD OBC ∴∠+∠=∠+∠即ABC OBD ∠=∠60ABC OBD ∴∠=∠=︒故答案为:60︒;②BAO BCD ≅BO BD ∴=,由①得60OBD ∠=︒OBD ∴△是等边三角形,4OD OB BD ∴===故答案为:4;③BAO BCD ≅AO CD ∴=4,3,5OD DC OC ===222OD DC OC ∴+=ODC ∴为直角三角形90ODC ∴∠= OBD △为等边三角形60BDO ∴∠=︒90+60=150BDC ODC BDO ∴∠=∠+∠=︒︒;(2)当2222OA OB OC +=时,90ODC ∠=︒.理由如下:,BAO BCD ≅90,,OBD ABC BO BD CD AO ∴∠=∠=︒==,OBD ∴△为等腰直角三角形,2OD OB ∴=,当222CD OD OC +=时,OCD 为直角三角形,90ODC ∠=︒2222OA OB OC ∴+=,当OA OB OC 、、满足2222OA OB OC +=时,90ODC ∠=︒.【点睛】本题考查勾股定理及其逆定理、全等三角形的性质、等边三角形的判定、等腰直角三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)证明见解析;(2)∠DCB=40°.【分析】(1)根据角平分线的性质和线段垂直平分线的性质可得到DM=DN ,DB=DC ,根据HL 证明Rt △DMB ≌Rt △DNC ,即可得出BM=CN ;(2)根据角平分线的性质得到DM=DN ,根据全等三角形的性质得到∠ADM=∠ADN ,线段垂直平分线的性质和等腰三角形的性质得到∠EDC=50°于是得到结论.【详解】(1)证明:连接BD ,DC ,如图所示:∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分BC ,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN =⎧⎨=⎩, ∴Rt △DMB ≌Rt △DNC (HL ),∴BM=CN ;(2)解:由(1)得:∠BDM=∠CDN ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,在Rt △DMA 和Rt △DNA 中,DA DA DM DN =⎧⎨=⎩∴Rt △DMA ≌Rt △DNA (HL ),∴∠ADM=∠ADN ,∵∠BAC=80°,∴∠MDN=100°,∠ADM=∠ADN=50°,∵∠BDM=∠CDN ,∴∠BDC=∠MDN=100°,∵DE 是BC 的垂直平分线,∴DB=DC ,∴∠EDC=12∠BDC=50°, ∴∠DCB=90°-∠EDC=40°,∴∠DCB=40°.【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质、线段垂直平分线的性质,熟悉角平分线的性质和线段垂直平分线的性质,证明三角形全等是解决问题的关键. 23.(1)补图见解析;(2)①90EDG α∠=︒-;②以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) ①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)①∵ADF α∠=,∴180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,∵DF DE ⊥,∴90EDF ∠=︒,∴1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,②以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,∵D 是AB 的中点,∴AD BD =,∵GD BD =,∴AD GD =,∵90,GDE EDA DE DE α∠=∠=︒-=,∴GDE ADE ≌,∴,EGD EAD AE GE ∠=∠=,∵90EAD B ∠=︒+∠,∴90EGD B ∠=︒+∠,∴9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒,∴以线段,,GE GF EF 为边的三角形是直角三角形,∴以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.24.(1)见解析;(2)4AC =;(3)见解析【分析】(1)连接BD 由等腰三角形的性质和已知条件得出∠BAD =∠DAC =12×120°=60°,再由AD =AB ,即可得出结论;(2)由等边三角形三线合一可得,122DG AG AD ===,可得4AD AB AC ===,即可求解;(3)由△ABD 是等边三角形,得出BD =AD ,∠ABD =∠ADB =60°,证出∠BDE =∠ADF ,由ASA 证明△BDE ≌△ADF ,得出AF =BE ,即可求解.【详解】证明:(1)AB AC =,AD BC ⊥,12BAD DAC BAC ∴∠=∠=∠, 120BAC ∠=︒,1120602BAD DAC ∴∠=∠=⨯︒=︒, =AD AB ,ABD ∴是等边三角形.(2)ABD 是等边三角形,AD AB BD ∴==,AD BC ⊥,122DG AG AD ∴===, 4AD AB AC ∴===,即4AC =;(3)ABD 是等三角形,60ABD ADB ∴∠=∠=︒,BD AD =, 60EDF ∠=︒,ADB ADE EDF ADE ∴∠-∠=∠-∠,即BDE ADF ∠=∠.在BDE 和ADF 中,60ABD DAC ∠=∠=︒,BD AD =,BDE ADF ∠=∠,(ASA)BDE ADF ∴△≌△,BE AF ∴=,AB AE BE =+,AB AE AF ∴=+.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.25.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.26.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A(3,3),B(1,1),C(4,−1).∴点A关于x轴的对称点A1(3,−3),B关于x轴的对称点B1(1,−1),C关于x轴的对称点C1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC的面积为:3×4−12×2×2−12×2×3−12×1×4=5.【点睛】本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.。
初二上册数学轴对称试题(有答案)
初二上册数学轴对称试题(有答案)一.选择题(5小题,每小题3分,共15分)1、下列平面图形中,不是轴对称图形的是( )2、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A、ang;B=ang;CB、ADperp;BCC、AD平分ang;BACD、AB=2BD3、等腰三角形的一个角是80deg;,则它的底角是( )A、50deg;B、 80deg;C、50deg;或80deg;D、 20deg;或80deg;4、如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,ang;A=30deg;,则DE等于( )A、1mB、 2mC、3mD、 4m5、已知ang;AOB=30deg;,点P在ang;AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是 ( )A、直角三角形B、钝角三角形C、等腰三角形D、等边三角形二.填空题(5小题,每小题4分,共20分)6.如图,ang;A=36deg;,ang;DBC=36deg;,ang;C=72deg;,则图中等腰三角形有_______个.7.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为____________.8.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则ang;BOC=__________.9.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.10.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为_______________.三.解答题(5小题,每小题6分,共30分)11、如图,在△ABC中,AB=AD=DC,ang;BAD=26deg;,求ang;B和ang;C的度数.12、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,求ang;AQN的度数.13、如图,已知△ABC中,AHperp;BC于H,ang;C=35deg;,且AB+BH=HC,求ang;B度数.14、如图所示,已知△ABC和直线MN.求作:△Aprime;Bprime;Cprime;,使△Aprime;Bprime;Cprime;和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)15、如图所示,四边形EFGH是一个矩形的球桌面,有黑白两球分别位于A、B两点,试说明怎样撞击B,才使白球先撞击台球边EF,反弹后又能击中黑球A?四.解答题(4小题,每小题7分,共28分)16、如图所示,△ABC是等边三角形,延长BC至E,延长BA至F,使AF=BE,连结CF、EF,过点F作直线FDperp;CE 于D,试发现ang;FCE与ang;FEC的数量关系,并说明理由.17、如图所示,已知Rt△ABC中,ang;C=90deg;,沿过B点的一条直线BE折叠这个三角形,使C点落在AB边上的点D.要使点D恰为AB的中点,问在图中还要添加什么条件?(直接填写答案)⑴写出两条边满足的条件:______.⑵写出两个角满足的条件:_____.⑶写出一个除边、角以外的其他满足条件:___________.18、已知:如图,△ABC中,ang;C=90deg;,CMperp;AB 于M,AT平分ang;BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证CT=BE.19、用棋子摆成如图所示的“T”字图案.(1)摆成第一个“T”字需要___________个棋子,第二个图案需______________个棋子;(2)按这样的规律摆下去,摆成第10个“T”字需要_______个棋子,第n个需_______个棋子.五.解答题(3小题,每小题9分,共27分)20、如图所示,ang;BAC=105deg;,若MP和NQ分别垂直平分AB和AC.求ang;PAQ的度数.21、如图所示,ang;ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.22、如图,已知D是BC的中点,过点D作BC的垂线交ang;A的平分线于点E,EFperp;AB于点F,EGperp;AC于点G。
成都西川中学八年级数学上册第三单元《轴对称》检测卷(含答案解析)
一、选择题1.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( )A .B .C .D .2.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm3.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .4.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55° 5.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .126.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .2个B .3个C .4个D .5个7.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系8.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .9.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个 10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30B .60︒C .40︒或50︒D .30或60︒11.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .CD 平分ACB ∠D .AB 垂直平分CD12.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.14.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.15.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.16.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.17.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.18.如图,DF 垂直平分AB ,EG 垂直平分AC ,若110BAC ∠=︒,则DAE =∠__________°.19.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.20.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).三、解答题21.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C . (1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,323(8484)P ,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)中,已知D是BC的中点,过点D作BC的垂线交∠BAC的平分线于22.如图,在ABC点E,EF⊥AB于点F,EG⊥AC于点G.(1)求证:BF=CG;(2)若AB=12,AC=8,求线段CG的长.23.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE =CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.24.下面是小明设计“作三角形一边上的高”的尺规作图过程.已知:ABC求作:ABC 的边BC 上的高AD作法:(1)分别以点B 和C 为圆心,BA ,CA 为半径作弧,两弧相交于点E ; (2)作直线AE 交BC 边于点D . 所以线段AD 就是所求作的高.(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明. 证明:连接BE ,CE .BA =______∴点B 在线段AE 的垂直平分线上( )(填推理依据) 同理可证,点C 也在线段AE 的垂直平分线上BC ∴垂直平分AE ( )(填推理依据)AD ∴是ABC 的高.25.(1)如图1,О是等边ABC 内一点,连接OA OB OC 、、,且3,4,5,OA OB OC ===BAO BCD ≅△△,连接OD .①OBD ∠= __度;(答案直接填写在横线上) ②OD =_ __﹔(答案直接填写在横线上) ③求BDC ∠的度数.(2)如图2所示,О是等腰直角()90ABC ABC ∠=︒△内一点,连接OA OB OC 、、,BAO BCD ≅△△,连接OD .当OA OB OC 、、满足什么条件时,90ODC ∠=.请给出证明.26.如图,//AB CD ,点E 在CB 的延长线上,A E ∠=∠,AC ED =.(1)求证:BC CD =;(2)连接BD ,求证:ABD EBD ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案. 【详解】解:∵点D 到点A 、点B 的距离AD=BD , ∴点D 在线段AB 的垂直平分线上, 故选择:D . 【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.2.B解析:B 【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可. 【详解】解:∵OD ∥AB ,OE ∥AC , ∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点, ∴∠ABO=∠OBD ,∠ACO=∠OCE ; ∴∠OBD =∠BOD ,∠EOC=∠OCE ; ∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm , ∴BC=9cm . 故选:B .【点睛】此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.3.A解析:A 【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案. 【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A . 【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.4.B解析:B 【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠, ∵12180AEF D EG '∠+∠+∠+∠=︒, ∴2(12)180∠+∠=︒, ∴260∠=︒ 故选:B . 【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键. 5.B解析:B 【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析. 【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在; ②当4为腰时,符合题意,则周长是2+4+4=10. 故选:B . 【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.C解析:C 【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解. 【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点; 当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点, 共有4个点C , 故选:C ..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.7.B解析:B 【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等; 【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A′B′E ,同理△ACD ≅△A′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,∴12S S故选:B .【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.8.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N 位于海岛M 的北偏东30°方向上,∴海岛N 在海岛M 上方,故排除A 、B 选项, 根据直角三角形中30°角所对的边等于斜边的一半,排除选项C ,故选D .【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.9.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.10.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 11.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD =,BC BD =,∴AB 垂直平分CD ,故D 正确,A 、B 错误,OC 不平分∠ACB ,故C 错误,故选:D .【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.12.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键. 二、填空题13.5【分析】作PH ⊥MN 于H 如图根据等腰三角形的性质得MH=NH=MN=15在Rt △POH 中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=12MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC为等腰三角形AD为底边上的高∴AB=ACBD=DC∵△ABC的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD△的周长.【详解】∵△ABC为等腰三角形,AD为底边上的高,∴AB=AC,BD=DC,∵△ABC的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.15.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化 解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 16.【分析】过点M 作MP ⊥ACMQ ⊥AB 首先证明MP =MQ 求出AC 的长度运用S △ABC =S △ABM +S △ACM 求出MP 即可解决问题【详解】如图设点B 的对应点为N 由题意得:∠BAM =∠CAMAB =AN =2 解析:43【分析】过点M 作MP ⊥AC ,MQ ⊥AB ,首先证明MP =MQ ,求出AC 的长度,运用S △ABC =S △ABM +S △ACM ,求出MP 即可解决问题.【详解】如图,设点B 的对应点为N ,由题意得:∠BAM =∠CAM ,AB =AN =2;过点M 作MP ⊥AC ,MQ ⊥AB ,则MP=MQ,设MP=MQ=x,∵AN=NC,∴AC=2AN=4;∵S△ABC=S△ABM+S△ACM,∴12AB•AC=12AB•MQ+12AC•MP,∴2×4=2x+4x,解得:x=43,故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.17.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2,即:a1=1,a2=2,a3=4,a4=8,,进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,,以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.18.【分析】先由已知求出∠B+∠C=70°再根据线段垂直平分线的性质和等腰三角形的等边对等角的性质证得∠B=∠BAD ∠C=∠CAE 则有∠BAD+∠CAE=70°进而求得∠DAE 的度数【详解】解:∵在△A解析:40【分析】先由已知求出∠B+∠C=70°,再根据线段垂直平分线的性质和等腰三角形的等边对等角的性质证得∠B=∠BAD ,∠C=∠CAE ,则有∠BAD+∠CAE=70°,进而求得∠DAE 的度数.【详解】解:∵在△ABC 中,∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵DF 垂直平分AB ,EG 垂直平分AC ,∴AD=BD ,AE=CE ,∴∠B=∠BAD ,∠C=∠CAE ,∴∠BAD+∠CAE=70°,∴∠ADE=∠BAC ﹣(∠BAD+∠CAE )=110°﹣70°=40°,故答案为:40°.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的内角和等理,熟练掌握线段垂直平分线的性质和等腰三角形的等边对等角的性质是解答的关键.19.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.20.【分析】作DH⊥AB根据直角三角形的性质求出DH根据平行线的性质角平分线的性质解答【详解】解:作DH⊥AB于H∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE∥BC∴∠DBF=∠BDE∴∠DB解析:1 2 a【分析】作DH⊥AB,根据直角三角形的性质求出DH,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题21.(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴∴∠ABO=90°∵A 在y x =-上A a a-∴设(,)则AB=OB=a即△ABO为等腰直角三角形在Rt△AOB中∵222+=AB OB OA∴2232+=a a∴a=±4(负值舍去)A-,∴(44)(2)如图,过点C作CM⊥x轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM⊥x轴,CG⊥AB∴CM= CG∵OC平分∠AOB,CM⊥x轴 CH⊥OE∴CM= CH∴CG=CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5°∵OC平分∠AOB,BC∥OE∴∠BOC=∠COA ,∠BCO=∠COA∴∠BOC=∠BCO∴BO=BC=AB又∠ABC =45°∴∠BAC=∠BCA=67.5°∴∠ACP=112.5°∴∠ACP=∠BDC又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB∴∠APC=∠DBC=45°∴△APB 为等腰直角三角形∴AP=AB=OB=4∴P (8,-4)②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P -∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上,连接1CP,45CG AB CBG ⊥∠=︒BCG ∴是等腰直角三角形,CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+==2,4BG CG BC ∴===(42,2)C ∴+-1422224CP ∴=+=11,//CP BC CP x ∴=轴145CP A BOA CBD ∴∠=∠=∠=︒190,PGA ∠=︒ 145P AG ∴∠=︒1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=,2P ∴在BA 的延长线上,连接22,AP CP67.5BAC ∠=︒2180112.5CAP BAC ∴∠=︒-∠=︒2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴=CG AB ⊥245AP C ∴∠=︒2AP C ABC ∴∠=∠在BCD △与2P CA 中,22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅3P,点C的横坐标为4,3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -384422,84(4)22AQ PQ ∴=+-==---= 3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)见解析;(2)2【分析】(1)连接EC 、EB ,根据AE 是∠CAB 的平分线,得出EG=EF ,再根据ED 垂直平分BC ,得出Rt △CGE ≌△BFE ,从而证出BF=CG ;(2)根据全等三角形的性质得到AF=AG ,求得AG=10,于是得到结论.【详解】(1)连接EC 、EB .∵AE 是∠CAB 的平分线,EF ⊥AB 于点F ,EG ⊥AC 于点G ,∴EG=EF,又∵ED垂直平分BC,∴EC=EB,∴Rt△CGE≌Rt△BFE(HL),∴BF=CG;(2)在Rt△AEF和Rt△AEG中,AE AE EF EG=⎧⎨=⎩,∴△AEF≌△AEG(HL),∴AF=AG,∵BF=CG,∴AB+AC=AF+BF+AG-CG=2AG,∵AB=12,AC=8,∴AG=10,∴CG=AG-AC=2.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意全等三角形的判定和性质的灵活应用以及与角平分线的性质的联系是本题的关键.23.(1)见解析;(2)见解析【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定的方法即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中∵BF CE AB CD=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL判断两个直角三角形全等,是解题的关键.24.(1)见解析;(2)BE,与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线【分析】(1)利用几何语言画出对应的几何图形;(2)利用作法得到BA=BE ,CA=CE ,则根据线段的垂直平分线的性质定理的逆定理得到点B 、点C 在线段AE 的垂直平分线上,从而得到BC 垂直平分AE .【详解】(1)如图,AD 为所作;(2)证明:连接BE ,CE .BA =__BE____∴点B 在线段AE 的垂直平分线上(与线段两个端点距离相等的点在这条线段的垂直平分线上 )(填推理依据)同理可证,点C 也在线段AE 的垂直平分线上BC ∴垂直平分AE (两点确定一条直线 )(填推理依据)AD ∴是ABC 的高.故答案为:BE ;与线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点睛】本题考查了作图-基本作图和线段垂直平分线的性质与判定,熟练掌握基本作图,灵活运用垂直平分线的性质是解题关键.25.(1)①60︒;②4;③150︒;(2)2222OA OB OC +=,证明见解析.【分析】(1)①由BAO BCD ≅△△得到,BO BD ABO CBD =∠=∠,继而证明ABC OBD ∠=∠即可解题;②由BAO BCD ≅△△得到BO BD =,结合①结论60OBD ∠=︒,可证明OBD 是等边三角形,即可解题;③根据BAO BCD ≅△△得到=AO CD ,在ODC △中根据三角形三边关系即勾股定理的逆定理,可证明ODC △为直角三角形,继而得到90ODC ∠=,再结合OBD 是等边三角形即可解得60OBD ∠=︒据此解题即可;(2)由,BAO BCD ≅可得90,,OBD ABC BO BD CD AO ∠=∠=︒==,可证明OBD 为等腰直角三角形,根据等腰直角三角形边的关系可得2OD OB =,最后根据直角三角形三边满足勾股定理解题即可.【详解】解:(1)①BAO BCD ≅,BO BD ABO CBD ∴=∠=∠ ABO OBC CBD OBC ∴∠+∠=∠+∠即ABC OBD ∠=∠60ABC OBD ∴∠=∠=︒故答案为:60︒;②BAO BCD ≅BO BD ∴=,由①得60OBD ∠=︒OBD ∴△是等边三角形,4OD OB BD ∴===故答案为:4;③BAO BCD ≅AO CD ∴=4,3,5OD DC OC ===222OD DC OC ∴+=ODC ∴为直角三角形90ODC ∴∠= OBD △为等边三角形60BDO ∴∠=︒90+60=150BDC ODC BDO ∴∠=∠+∠=︒︒;(2)当2222OA OB OC +=时,90ODC ∠=︒.理由如下:,BAO BCD ≅90,,OBD ABC BO BD CD AO ∴∠=∠=︒==,OBD ∴△为等腰直角三角形,2OD OB ∴=,当222CD OD OC +=时,OCD 为直角三角形,90ODC ∠=︒2222OA OB OC ∴+=,当OA OB OC 、、满足2222OA OB OC +=时,90ODC ∠=︒.【点睛】本题考查勾股定理及其逆定理、全等三角形的性质、等边三角形的判定、等腰直角三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可得∠ABC=∠ECD ,则可利用AAS 证明△ABC ≌△ECD ,再由全等三角形的性质可证得结论;(2)根据“等边对等角”可得∠DBC=∠BDC ,结合∠ABC=∠ECD ,可得∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,再利用三角形的外角性质得∠EBD =∠ECD+∠BDC ,即可证明∠ABD=∠EBD .【详解】证明:(1)∵AB ∥CD ,∴∠ABC=∠ECD ,在△ABC 和△ECD 中,ABC ECD A EAC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ECD (AAS ),∴BC=CD .(2)证明:如图,∵BC=CD ,∴∠DBC=∠BDC ,∵∠ABC=∠ECD ,∴∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,又∵∠EBD =∠ECD+∠BDC ,∴∠ABD=∠EBD .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识,掌握全等三角形的判定与性质及等腰三角形的性质是解题的关键.。
最新人教版初中数学八年级数学上册第三单元《轴对称》测试(答案解析)(1)
一、选择题1.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上 D . : 1:3DAC ABD S S ∆∆=2.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm 3.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .4.若a ,b 为等腰ABC 的两边,且满足350a b --=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 5.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 6.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒ 7.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .8.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .69.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③10.下列图案中,是轴对称图形的是( )A .B .C .D .11.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5 12.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80° 二、填空题13.如图,∠C=90°,CB=CO ,且点B 坐标为(-2,0),则点C 坐标为_________.14.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.15.如图,在ABC 中,22A ∠=︒,D 为AB 边中点,E 为AC 边上一点,将ADE 沿着DE 翻折,得到A DE ',连接A B '.当A B A D ''=时,A EC '∠的度数为______.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.17.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,那么AP 的长是________.18.如图,在ABC 中,点D 是BC 上一动点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,在点D 的运动过程中,EDF ∠与A ∠的大小关系是EDF ∠______A ∠(填“>”“=”或“<”).19.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .20.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.三、解答题21.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.22.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.23.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.24.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.25.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q 运动的速度是每秒2cm ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t 秒.解答下列问题:(1)AP =_______________,BP =______________,BQ =______________.(用含t 的式子表示)(2)当点Q 到达点C 时,PQ 与AB 的位置关系如何.请说明理由.(3)在点P 与点Q 的运动过程中,BPQ 是否能成为等边三角形.若能,请求出t 的值.若不能,请说明理由.26.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt △ABC 的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC 的角平分线CD 交AB 于点D ;(2)画AB 边的垂直平分线l 交直线CD 于点P .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D.【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.2.B解析:B【分析】∆的周长= AB+AC,据此可解.由题意可知BD=CD,因此ACD【详解】解:∵DE垂直平分BC,∴BD=CD,∆的周长=AD+CD+AC∴ACD= AD+BD+AC= AB+AC=10+8=18(cm),故选:B.【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD.3.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.4.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.5.C解析:C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.6.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A.【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.7.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.8.B解析:B【分析】首先根据DE是线段AB的垂直平分线,可得AD=BD,然后根据△BCD的周长是9cm,以及AD+DC=AC,求出BC的长即可.【详解】解:∵DE是线段AB的垂直平分线,∴AD=BD,∵△BCD的周长是9cm,∴BD+DC+BC=9(cm),∴AD+DC+BC=9(cm),∵AD+DC=AC,∴AC+BC=9(cm),又∵AC=5cm,∴BC=9−5=4(cm).故选:B.【点睛】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.9.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.C解析:C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.【点睛】本题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.C解析:C【分析】根据线段的垂直平分线的性质得到DC=DB=6,则∠DCB=∠B,由∠ACB=∠ACD+∠DCB=90°,得∠A+∠B=90°,从而∠A=∠ACD,DA=DC=6,则AB=AD+DB便可求出.【详解】∵EF是线段BC的垂直平分线,DC =6,∴DC=DB=6,∴∠DCB=∠B,又∵∠ACB=∠ACD+∠DCB=90°,∴∠A+∠B=90°,∴∠A=∠ACD,∴DA=DC=6,∴AB=AD+DB=6+6=12.故选:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.12.D解析:D【分析】由50︒的角是顶角或底角,依据三角形内角和计算得出顶角的度数.【详解】当50︒的角为顶角时,它的顶角为50︒,︒-︒⨯=︒,当50︒的角为底角时,它的顶角为18050280∴它的顶角为50︒或80︒,故选:D.【点睛】此题考查等腰三角形等边对等角的性质,三角形内角和定理,熟记等边对等角的性质是解题的关键.二、填空题13.(-11)【分析】过点C作CD⊥y轴于点D根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C作CD⊥y轴于点D∵∠ACB=90°CB=CO∴∠CBO=∠COB=45°∵CD⊥y轴∴∠C解析:(-1,1)【分析】过点C作CD⊥y轴于点D,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C 作CD ⊥y 轴于点D ,∵∠ACB=90°,CB=CO ,∴∠CBO=∠COB=45°,∵CD ⊥y 轴,∴∠CDO=90°,∴∠COD=∠DOC ,∴OD=CD ,∵CD ⊥y 轴,CB=CO ,∴OD=12OB , ∵点B 坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C 坐标为(-1,1),故答案为(-1,1).【点睛】本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.14.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.15.【分析】根据折叠的性质可得根据及折叠的性质可得为等边三角形再根据三角形的外角性质求解即可【详解】在中将沿着翻折交于点得到如图;∴∴∵为边中点∴为等边三角形∴∴∵即∴故答案为:【点睛】本题考查了全等三 解析:16【分析】根据折叠的性质可得AED A ED '≅,根据A B A D ''=及折叠的性质可得A BD '为等边三角形,再根据三角形的外角性质求解即可【详解】在ABC 中,22A ∠=︒,将ADE 沿着DE 翻折,A D '交AC 于点F ,得到A DE ',如图;∴AED A ED '≅ ∴1=,222AD A D AB EA D A ''===∠∠, ∵A B A D ''=,D 为AB 边中点,∴A B A D DB ''==,A BD '为等边三角形, ∴=60A DB '∠,∴60A AFD +=∠∠,∵=AFD EA D A EC ''+∠∠∠即()60A EA D A EC ''++=∠∠∠∴=16A EC '∠.故答案为:16【点睛】本题考查了全等三角形的性质,等边三角形的性质,三角形外角的性质等知识点,解题的关键是根据折叠找到对应的边角关系16.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB≌△CEB得CE=AD=b即BF+EF=b再根据等边三角形的性质可得BE=a从而可得结论【详解】解:过C作CE⊥AB于E交AD解析:+a b【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=b,即BF+EF=b,再根据等边三角形的性质可得BE=a,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.6【分析】连接OD由题意可知OP=DP=OD即△PDO为等边三角形所以∠OPA=∠PDB=∠DPA=60°推出△OPA≌△PDB根据全等三角形的对应边相等知OA =BP =3则AP =AB−BP =6【详解解析:6【分析】连接OD .由题意可知OP =DP =OD ,即△PDO 为等边三角形,所以∠OPA =∠PDB =∠DPA=60°,推出△OPA ≌△PDB ,根据全等三角形的对应边相等知OA =BP =3,则AP =AB−BP =6.【详解】解:如图,连接OD ,∵PO =PD ,∴OP =DP =OD ,∴△PDO 为等边三角形,即∠DPO =60°,∵等边△ABC ,∴∠A =∠B =60°,AC =AB =9,∴∠OPA =180°−60°−∠DPA=120°−∠DPA∠PDB =180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB ,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .18.=【分析】先根据线段的垂直平分线的性质得到EB=EDFD=FC 则根据等腰三角形的性质得到∠EDB=∠B ∠FDC=∠C 然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC )利用三角形内角和定理解析:=【分析】先根据线段的垂直平分线的性质得到EB=ED ,FD=FC ,则根据等腰三角形的性质得到∠EDB=∠B ,∠FDC=∠C ,然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC ),利用三角形内角和定理得到∠A=180°-(∠B+∠C ),所以∠EDF=∠A .【详解】解:∵BD 、CD 的垂直平分线分别交AB 、AC 于点E 、F ,∴EB=ED ,FD=FC ,∴∠EDB=∠B ,∠FDC=∠C ,∴∠EDB+∠FDC=∠B+∠C ,∵∠EDF=180°-(∠EDB+∠FDC ),∠A=180°-(∠B+∠C ),∴∠EDF=∠A .故答案为:=.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.19.6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm , ∴912x x -=,即:x=6, ∴AD =6.故答案是:6【点睛】 本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.20.10°【分析】设∠B =∠C =x ∠CDE =y 分别表示出∠DAE 构建方程解方程即可求解【详解】解:设∠B =∠C =x ∠EDC =y ∵AD =AE ∴∠ADE =∠AED =x +y ∵∠DAE =180°−2(x +y )=解析:10°【分析】设∠B =∠C =x ,∠CDE =y ,分别表示出∠DAE ,构建方程解方程即可求解.【详解】解:设∠B =∠C =x ,∠EDC =y ,∵AD =AE ,∴∠ADE =∠AED =x +y ,∵∠DAE =180 °−2(x +y )=180 °−20 °−2x ,∴2y =20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】(1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP , ∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM , ∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MF PF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°, ∴12OA AN =, ∴12AM AN AP =+, 故答案为:12AM AN AP =+. 【点睛】 本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键.22.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM =∴AP AH PH AN PM =+=+.【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE SS =, ∴1122CE AH BE AG ⨯⨯=⨯⨯, ∴AH=AG ,∴DA 平分∠CDE.【点睛】本题考查了三角形的全等,等边三角形的性质,角平分线性质定理的逆定理,准确选择全等判定方法,活用角的平分线的逆定理是解题的关键.24.见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.25.(1)AP t =,8BP t =-,2BQ t =;(2)PQ AB ⊥,理由见解析;(3)能,当t 为83时,BPQ 为等边三角形 【分析】(1)根据点P 、Q 的运动速度解答;(2)连接AC ,得到△ABC 为等边三角形,根据等腰三角形的三线合一证明;(3)根据等边三角形的判定定理列出方程,解方程即可.【详解】解:(1)AP t =,8BP t =-,2BQ t =故答案为:t ;8-t ;2t ;(2)PQ AB ⊥.理由如下:连接AC∵AB BC =,60B ∠=,∴ABC 是等边三角形.∵Q 的速度是每秒2cm ,故当Q 与C 重合时,t 4= 又P 的速度是每秒1cm ,=8cm AB ,∴=4AB BP =又∵=CA CB ,∴PQ AB ⊥.(3)能.∵60B ∠=,∴当BP BQ =时,BPQ 为等边三角形,∴82t t -=.∴83t =. ∴当t 为83时,BPQ 为等边三角形. 【点睛】 本题考查的是等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一、等边三角形的判定定理和性质定理是解题的关键.26.(1)见解析;(2)见解析【分析】(1)取格点T,连接CT交AB于点D,线段CD即为所求.(2)取格点G,R,作直线GR交直线CT于点P,点P即为所求.【详解】解:(1)如图,线段CD即为所求.(2)如图,直线l即为所求.【点睛】本题考查作图的应用与设计,线段的垂直平分线,角平分线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
八年级数学轴对称单元测试题及答案
D C B A 八年级数学《轴对称》单元测试题选择题(本大题共12小题,每题2分,共24分)1. 以下几何图形中,是轴对称图形且对称轴条数大于1的有( )长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线.A 3个B 4个C 5个D 6个2. 以下说法正确的选项是( )A. 任何一个图形都有对称轴B.两个全等三角形必然关于某直线对称C.若△ABC 与△DEF 成轴对称,那么△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,假设AO =BO ,那么点A 与点B 关于直线L 对称3.如下图是一只停泊在安静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( )A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)5.已知点A 的坐标为(1,4),那么点A 关于x 轴对称的点的纵坐标为( )A. 1B. -1C. 4D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过极点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线.7.已知点A (-2,1)与点B 关于直线x =1成轴对称,那么点B 的坐标为( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与点M (m ,n )关于y 轴成轴对称,那么m -n 的值为( )A 3 B.-3 C. 1 D. -19.等腰三角形的一个内角是50°,那么另外两个角的度数别离为( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,那么那个等腰三角形的顶角为( )A. 30°B. 150°C. 30°或150°D.12°11.等腰三角形底边长为6cm ,一腰上的中线把周长分成两部份的差为2cm ,那么腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P1和点P 关于OA 对称,点P2和点P 关于OB 对称,那么P1、O 、P2三点组成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题:(本大题共8小题,每题3分,共24分)13.等边三角形是轴对称图形,它有 条对称轴.第14题第15题第16题O21题⑴L21题⑵B14.如图,若是△A1B1C1与△ABC关于y轴对称,那么点A的对应点A1的坐标为15.如图是某时刻在镜子中看到准确时钟的情形,那么实际时刻是.16.∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,那么PQ=.17.等腰三角形顶角为30°,腰长是4cm,那么三角形的面积为.18.点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=1对称的的坐标是.19.三角形三内角度数之比为1∶2∶3,最大边长是8cm,那么最小边的长是.20.在△ABC和△ADC中,以下3个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论组成一个命题,写出一个真命题:三、解答题:(本大题共52分)21.(每题5分,共10分)作图题:(不写作法,保留作图痕迹)如图,已知线段AB和直线L,作出与线段AB关于直线L对称的图形.已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.22.(5分)如下图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).⑴求出△ABC的面积.在图形中作出△ABC关于y轴的对称图形△A1B1C1.写出点A1,B1,C1的坐标.23.(5分)如下图,梯形ABCD关于y轴对称,点A2,0).写出点C和点D的坐标;求出梯形ABCD的面积.E DC B A P DC B A P ED C B ANM F E CB A24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC 为边别离向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE 而且相交于点P . 求证:⑴CD =BE. ⑵∠BPC =120°28.(7分)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证:BM =MN =NC.。
八年级上《轴对称图形》单元测试含答案.docx
八年级上《轴对称图形》单元测试含答案一、选择题1.下列图案中,属于轴对称图形的是()A.B.C.D.2.到三角形三个顶点距离相等的是()A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点3.如图,△ ABC与△ A′ B′C′关于直线l 对称,且∠ A=78°,∠ C′ =48°,则∠ B 的度数为()A. 48° B . 54° C. 74° D. 78°4.如图, Rt△ ABC中,∠ ACB=90°,∠ A=50°,将其折叠,使点 A 落在边 CB上 A′处,折痕为CD,则∠A′ DB=()A. 40° B . 30° C. 20° D. 10°二、填空题(共 6 小题,每小题 3 分,满分18 分)5.如图, AD∥ BC, BD平分∠ ABC,且∠ A=110°,则∠ D=°.6.如图,△ ABC中,∠ B,∠ C 的平分线相交于点O,过O作 DE∥ BC,若 BD+EC=5cm,则 DE等于cm.7.如图,在正方形 ABCD中,E 是 AB上一点,BE=2,AE=3BE,P是 AC上一动点,则 PB+PE的最小值是.8.点 P 在线段 AB的垂直平分线上,PA=10,则 PB=.9.如图,△ ABC中,∠ ACB=90°, AD平分∠ BAC, AD=10, AC=8.则点 D 到 AB 边的距离为.10.如图,△ ABC中, AB+AC=6cm, BC的垂直平分线l 与 AC相交于点D,则△ABD的周长为cm.三、解答题11.已知:如图,在△ABC中,∠ BAC=90°, BD平分∠ ABC,DE⊥ BC于 E.证明: BD垂直平分AE.12.已知:如图,∠ABC=∠ ADC=90°, E、 F 分别是 AC、 BD的中点.求证:EF⊥ BD.13.( 1)如图,在△ ABC中,∠ BAC=90°, AB=AC,点 D 在 BC上,且 BD=BA,点 E 在 BC的延长线上且CE=CA,试求∠ DAE的度数;( 2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由;(3)如果把第( 1)题中“∠ BAC=90°”的条件改为“∠ BAC> 90°”,其余条件不变,那么∠ DAE与∠ BAC有怎样的大小关系?14.有一条道路和两个养鸡场.( 1)把这条道路看成一条直线,两个养鸡场分别看成点A、 B,点 A、 B 与直线有多少种不同的位置关系?画出可能位置的图形.( 2)现要在道路旁建一座冷藏库,冷藏库应建在何处,可使两个养鸡场到该冷藏库的距离和最短?参考答案与试题解析一、选择题1.下列图案中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、 C、 D 都不是轴对称图形,只有 A 是轴对称图形.故选 A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.到三角形三个顶点距离相等的是()A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点【考点】线段垂直平分线的性质.【分析】根据题意得出到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,画出图形后根据线段垂直平分线定理得出PA=PC,PC=PB,推出 PA=PC=PB即可.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,理由是:∵ P 在 AB的垂直平分线EF 上,∴PA=PB,∵P 在 AC的垂直平分线 MN上,∴ PA=PC,∴ PA=PC=PB,即 P 是到三角形三个顶点的距离相等的点.故选 C.【点评】本题考查了线段垂直平分线定理,注意:线段垂直平分线的交点到三角形三个顶点的距离相等,而三角形三个角平分线的交点到三角形三边的距离相等.3.如图,△ ABC与△ A′ B′C′关于直线l 对称,且∠ A=78°,∠ C′ =48°,则∠ B 的度数为()A. 48° B . 54° C. 74° D. 78°【考点】轴对称的性质;三角形内角和定理.【分析】由对称得到∠C=∠ C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠ B′=54°.【解答】解:∵在△ABC中,∠ A=78°,∠ C=∠ C′ =48°,∴∠ B=180°﹣ 78°﹣ 48° =54°∵△ ABC与△ A′ B′C′关于直线l 对称,∴∠ B=∠ B′ =54°.故选 B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.4.如图, Rt△ ABC中,∠ ACB=90°,∠ A=50°,将其折叠,使点 A 落在边 CB上 A′处,折痕为CD,则∠A′ DB=()A. 40° B . 30° C. 20° D. 10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′ DB=∠ CA'D﹣∠ B,又折叠前后图形的形状和大小不变,∠CA'D=∠ A=50°,易求∠ B=90°﹣∠ A=40°,从而求出∠A′ DB的度数.【解答】解:∵Rt △ABC中,∠ ACB=90°,∠ A=50°,∴∠ B=90°﹣ 50° =40°,∵将其折叠,使点 A 落在边 CB上 A′处,折痕为CD,则∠ CA'D=∠ A,∵∠ CA'D 是△ A'BD 的外角,∴∠ A′ DB=∠ CA'D﹣∠ B=50°﹣ 40° =10°.故选: D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.二、填空题(共 6 小题,每小题 3 分,满分18 分)5.如图, AD∥ BC, BD平分∠ ABC,且∠ A=110°,则∠ D= 35°.【考点】平行线的性质;角平分线的定义.【专题】计算题.【分析】根据平行线的性质先求得∠ABC的度数,再根据角平分线的性质及平行线的性质求得∠D的度数.【解答】解:∵AD∥BC,∠ A=110°,∴∠ ABC=180﹣∠ A=70°;又∵ BD平分∠ ABC,∴∠ DBC=35°;∵AD∥ BC,∴∠ D=∠ DBC=35°.故答案为: 35.【点评】此题考查了角平分线的性质及平行线的性质,比较简单.6.如图,△ ABC中,∠B,∠C的平分线相交于点 O,过 O作 DE∥ BC,若 BD+EC=5cm,则 DE等于5cm.【考点】等腰三角形的判定与性质.【专题】计算题.【分析】根据∠B,∠ C 的平分线相交于点O,可得出∠ OBD=∠ OBC,∠ OCE=∠ OCB,再由 DE∥ BC,得出∠ DOB=∠ OBC,∠ EOC=∠ OCB,从而得出∠ OBD=∠ DOB,∠EOC=∠ ECO,则 OD=BD,OE=CE,从而得出DE=BD+EC.【解答】解:∵∠B,∠ C 的平分线相交于点O,∴∠ OBD=∠OBC,∠ OCE=∠ OCB,∵DE∥ BC,∴∠ DOB=∠OBC,∠ EOC=∠ OCB,∴∠ OBD=∠DOB,∠ EOC=∠ ECO,∴OD=BD, OE=CE,∴DE=OD+OE=BD+EC,∵ BD+EC=5cm,∴DE=5cm.故答案为 5.【点评】本题考查了等腰三角形的判定和性质,以及平行线的性质和角平分线的定义,是基础知识要熟练掌握.7.如图,在正方形ABCD中, E 是 AB上一点, BE=2, AE=3BE,P 是 AC上一动点,则PB+PE的最小值是10.【考点】轴对称- 最短路线问题;正方形的性质.【分析】由正方形性质的得出B、 D 关于 AC对称,根据两点之间线段最短可知,连接DE,交 AC于 P,连接 BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交 AC于 P,连接 BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、 D 关于 AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2, AE=3BE,∴ AE=6, AB=8,∴ DE==10,故PB+PE的最小值是 10.故答案为: 10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.8.点 P 在线段 AB的垂直平分线上,PA=10,则 PB= 10.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出PA=PB,即可求出答案.【解答】解:∵点P 在线段 AB的垂直平分线上,∴PA=PB,∵ PA=10,∴PB=10,故答案为: 10.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.如图,△ ABC中,∠ ACB=90°, AD平分∠ BAC, AD=10, AC=8.则点 D 到 AB 边的距离为6.【考点】角平分线的性质.【分析】根据勾股定理求出CD,过 D 作 DE⊥ AB 于 E,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在△ ABC中,∠ ACB=90°, AD=10, AC=8,由勾股定理得: CD==6,过D 作 DE⊥ AB于 E,∵, DE⊥ AB,∠ ACB=90°, AD平分∠ BAC,∴DE=CD=6,故答案为: 6.【点评】本题考查了角平分线性质和勾股定理的应用,注意:角平分线上的点到角两边的距离相等.10.如图,△ ABC中, AB+AC=6cm, BC的垂直平分线l 与 AC相交于点D,则△ ABD 的周长为6cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l 垂直平分BC,∴DB=DC,∴△ ABD的周长 =AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为: 6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.三、解答题11.( 2014 秋?海陵区期中)已知:如图,在△ABC中,∠ BAC=90°, BD平分∠ ABC, DE⊥ BC于 E.证明: BD垂直平分AE.【考点】线段垂直平分线的性质;角平分线的性质.【专题】证明题.【分析】根据已知和角平分线性质求出AD=DE,∠ ABD=∠ EBD,∠ BAD=∠ BED=90°,证△ BAD≌△ BED,推出 AB=BE,根据等腰三角形的性质得出即可.【解答】证明:∵∠BAC=90°, BD平分∠ ABC,DE⊥ BC,∴AD=DE,∠ ABD=∠ EBD,∠ BAD=∠BED=90°,在△ BAD和△ BED中∴△ BAD≌△ BED( AAS),∴AB=BE,∵BD平分∠ ABE,∴ BD垂直平分 AE,【点评】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质的应用,解此题的关键是求出 AB=BE.12.( 2014 秋?无锡校级期末)已知:如图,∠ABC=∠ ADC=90°, E、 F 分别是 AC、 BD的中点.求证:EF⊥ BD.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【专题】证明题.【分析】连接BE、 DE,根据直角三角形斜边上的中线等于斜边的一半可得BE=DE= AC,再根据等腰三角形三线合一的性质证明.【解答】证明:如图,连接BE、 DE,∵∠ ABC=∠ADC=90°, E 是 AC的中点,∴BE=DE= AC,∵F 是BD的中点,∴ EF⊥ BD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线是解题的关键.13.( 2008 秋?南通期末)( 1)如图,在△ ABC中,∠ BAC=90°, AB=AC,点 D在 BC上,且 BD=BA,点E 在 BC的延长线上且CE=CA,试求∠ DAE的度数;( 2)如果把第(1)题中“ AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由;(3)如果把第( 1)题中“∠ BAC=90°”的条件改为“∠ BAC> 90°”,其余条件不变,那么∠ DAE与∠ BAC有怎样的大小关系?【考点】等腰三角形的性质;三角形内角和定理.【分析】( 1)要求∠ DAE,必先求∠ BAD和∠ CAE,由∠ BAC=90°, AB=AC,可求∠ B=∠ACB=45°,又因为BD=BA,可求∠ BAD=∠ BDA=67.5°,再由 CE=CA,可求∠ CAE=∠E=22.5 °,所以∠ DAE=∠ BAE﹣∠BAD=112.5°﹣ 67.5 ° =45 度;(2)先设∠ CAE=x,由已知 CA=CE可求∠ ACB=∠CAE+∠ E=2x,∠ B=90°﹣ 2x,又因为 BD=BA,所以∠ BAD=∠BDA=x+45°,再根据三角形的内角和是180°,可求∠ BAE=90° +x,即∠ DAE=∠ BAE﹣∠ BAD=(90°+x)﹣( x+45°) =45 度;(3)可设∠ CAE=x,∠ BAD=y,则∠ B=180°﹣ 2y,∠ E=∠ CAE=x,所以∠ BAE=180°﹣∠ B﹣∠ E=2y﹣ x,∠ BAC=∠ BAE﹣∠ CAE=2y﹣ x﹣x=2y ﹣ 2x,即∠ DAE= ∠ BAC.【解答】解:(1)∵ AB=AC,∠ BAC=90°,∴∠ B=∠ ACB=45°,∵BD=BA,∴∠ BAD=∠BDA= ( 180°﹣∠ B)=67.5 °,∵CE=CA,∴∠ CAE=∠E=∠ ACB=22.5°,在△ ABE中,∠ BAE=180°﹣∠ B﹣∠ E=112.5 °,∴∠ DAE=∠BAE﹣∠ BAD=112.5°﹣ 67.5 ° =45 度;(2)不改变.设∠CAE=x,∵ CA=CE,∴∠ E=∠ CAE=x,∴∠ ACB=∠CAE+∠ E=2x,在△ ABC中,∠ BAC=90°,∴∠ B=90°﹣∠ ACB=90°﹣ 2x,∵BD=BA,∴∠ BAD=∠BDA= ( 180°﹣∠ B)=x+45°,在△ ABE中,∠ BAE=180°﹣∠ B﹣∠ E,=180°﹣( 90°﹣ 2x)﹣ x=90° +x,∴∠ DAE=∠BAE﹣∠ BAD,=( 90° +x)﹣( x+45°) =45°;(3)∠ DAE= ∠ BAC.理由:设∠ CAE=x,∠ BAD=y,则∠ B=180°﹣ 2y ,∠ E=∠ CAE=x,∴∠ BAE=180°﹣∠ B﹣∠ E=2y﹣ x,∴∠ DAE=∠BAE﹣∠ BAD=2y﹣x﹣ y=y ﹣x,∠BAC=∠ BAE﹣∠ CAE=2y﹣ x﹣x=2y ﹣ 2x,∴∠ DAE= ∠ BAC.【点评】本题考查三角形外角的性质及三角形的内角和定理以及等腰三角形的性质;求角的度数常常要用到“三角形的内角和是180°这一隐含的条件和三角形的一个外角等于与它不相邻的两个内角的和.本题由易到难,由特例到一般,是一道提高学生能力的训练题.14.有一条道路和两个养鸡场.( 1)把这条道路看成一条直线,两个养鸡场分别看成点A、 B,点 A、 B 与直线有多少种不同的位置关系?画出可能位置的图形.(2)现要在道路旁建一座冷藏库,冷藏库应建在何处,可使两个养鸡场到该冷藏库的距离和最短?【考点】轴对称 - 最短路线问题;作图—应用与设计作图.【分析】( 1)由题意可知点A、B 与直线有 2 种位置关系,一是点A、B 与直线 L 同侧,另一个是点A、B 与直线 L 异侧;( 2)当 A、 B 与直线 l 同侧时,过点A作 l 的对称点 A ,连接 BA ,相交 l 于 O, O即为冷藏库位置;11当A、 B 与直线 l 异侧时,连接 AB,相交 L 于 O′, O′即为冷藏库位置.【解答】解:( 1)如图所示:( 2)如图所示:【点评】本题考查了应用与设计作图,此类题目主要把简单作图放入实际问题中,解题关键是首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
新人教版初中数学八年级数学上册第三单元《轴对称》测试题(答案解析)(1)
一、选择题1.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm2.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .53.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个4.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 5.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .86.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°7.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 8.平面直角坐标系中,点A (3,2)与点B 关于y 轴对称,则点B 的坐标为( ) A .(3,-2) B .(-3,-2)C .(-3,2)D .(-2,3) 9.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.510.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤ 11.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④ 12.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题13.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)14.在平面直角坐标系中,将点(3,2)P -向右平移4个单位得到点P ',则点P '关于x 轴的对称点的坐标为________.15.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.16.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____17.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.18.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.19.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.20.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.三、解答题21.如图,在△ABC 中,AB 边的中垂线PQ 与△ABC 的外角平分线交于点P ,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E .(1)求证:BD =AE ;(2)若BC =6,AC =4.求CE 的长度.22.在等边ABC 中,D E 、分别为AB AC 、边上的动点,以DE 为一边作等边DEF .(1)如图1,若等边DEF 的顶点F 恰好在BC 上,求证:ADE CEF ≌;(2)如图2,若2BD AE ,当点D 从点A 向点B 运动(不运动到点B )时,连接CF ,请判断ECF ∠的大小是否变化并说明理由.23.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.24.已知:点A 在直线DE 上,点B 、C 都在PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分CAD ∠,且ABC BAC ∠=∠.(1)如图1,求证://DE PQ ;(2)如图2,点K 为AB 上一点,连接CK ,若2EAC ACK ∠=∠,求AKC ∠的度数; (3)在(2)的条件下,点F 在直线DE 上,连接FK ,且DAB AFK KCB ∠=∠+∠,若13FKA AKC ∠=∠,则ACB ∠的大小为_________.(要求:在备用图中画出图形,并直接写出答案) 25.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.26.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q 运动的速度是每秒2cm ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t 秒.解答下列问题:(1)AP =_______________,BP =______________,BQ =______________.(用含t 的式子表示)(2)当点Q 到达点C 时,PQ 与AB 的位置关系如何.请说明理由.(3)在点P 与点Q 的运动过程中,BPQ 是否能成为等边三角形.若能,请求出t 的值.若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB 即可.【详解】解:∵AB=AC ,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD⊥AC,∴∠BDA=90°,∴AB=2BD,点B到边AC的距离是3cm,即BD=3cm,∴AB=2BD=6cm,故选:D.【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.2.C解析:C【分析】以O为圆心,AO长为半径画圆可得与x轴有2个交点,再以A为圆心,AO长为半径画圆可得与x轴有1个交点,然后再作AO的垂直平分线可得与x轴有1个交点.【详解】解:如图所示:点P在x轴上,且使△AOP为等腰三角形,符合题意的点P的个数共4个,故选:C.【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.3.B解析:B【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用ASA判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE=12AC=12BF,∴2CE=BF;故③正确;由③可得△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故④正确;故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.4.D解析:D【分析】先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.5.C解析:C根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.6.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.7.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.8.C解析:C【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点A(3,2)关于y轴对称点的坐标为B(−3,2).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.D解析:D【分析】①由等腰直角三角形的性质可得出结论;②证明△ADE ≌△BCE ,可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题; ③证明△AEF ≌△BED 即可;④AE≠DE ,故④不正确;⑤易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.11.C解析:C【分析】根据∠ABC=45°,CD ⊥AB 可得出BD=CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF=AD ,BF=AC .则CD=CF+AD ,即AD+CF=BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE=AE=12AC ,又因为BF=AC 所以CE=12AC=12BF ,连接CG .因为△BCD 是等腰直角三角形,即BD=CD .又因为DH ⊥BC ,那么DH 垂直平分BC .即BG=CG .在Rt △CEG 中,CG 是斜边,CE 是直角边,所以CE <CG .即AE <BG .【详解】解:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD .故①正确;在Rt △DFB 和Rt △DAC 中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.又由(2),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.∴正确的选项有①②③;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.12.D解析:D【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,依次表示出BF、CF、CD、AE、AD,然后根据AD+BD=AB列方程即可求出x的值.【详解】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴∠BFD=∠ADE=∠CEF=30°,∴BF=2x,∴CF=6-2x,∴CE=2CF=12-4x,∴AE=6-CE=4x-6,∴AD=2AE=8x-12,∵AD+BD=AB,∴8x-12+x=6,∴x=2,∴AD=8x-12=16-12=4.故选:D.【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题13.①③④【分析】根据SAS证明△ACE≌△DCB可判断①;根据△ACD和△BCE是等边三角形但AC不一定等于BC可判断②;由三角形的外角性质可判断③;由△ACE≌△DCB可知AE=BD根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC =DC ,BE=BC=EC ,但AC 不一定等于BC ,故AD 不一定等于BE ,所以②错误;③∵∠APB 是△APD 的外角,∴∠APD=∠ADP+∠DAP由①得△ACE ≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC ,故③正确;④如图,分别过点C 作CH ⊥AE 于H ,CG ⊥BD 于G ,∵△ACE ≌△DCB ,∴AE=BD ,S △ACE =S △DCB ,∴AE 和BD 边上的高相等,即CH=CG ,∴∠APC=∠BPC ,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等. 14.【分析】先根据向右平移4个单位横坐标加4纵坐标不变求出点的坐标再根据关于x 轴对称横坐标不变纵坐标相反解答【详解】解:∵将点P (3-2)向右平移4个单位得到点∴点的坐标是(7-2)∴点关于x 轴的对称点解析:(7,2)【分析】先根据向右平移4个单位,横坐标加4,纵坐标不变,求出点P '的坐标,再根据关于x 轴对称,横坐标不变,纵坐标相反解答.【详解】解:∵将点P (3,-2)向右平移4个单位得到点P ',∴点P '的坐标是(7,-2),∴点P '关于x 轴的对称点的坐标是(7, 2).故答案为:(7, 2)【点睛】本题考查了坐标与图形变化−平移,以及关于x 轴、y 轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.15.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题 解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.16.90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA 、EA ,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF 是AB 的垂直平分线,EG 是AC 的垂直平分线,∴DA=DB ,EA=EC ,∴∠B=∠DAB ,∠C=∠EAC ,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质. 17.3cm 【分析】过点P 作PF ⊥OB 于F 根据角平分线上的点到角的两边距离相等可得PF =PE 根据角平分线的定义可得∠AOC =∠BOC 根据两直线平行内错角相等可得∠AOC =∠OPD 两直线平行同位角相等可得∠解析:3cm【分析】过点P 作PF ⊥OB 于F ,根据角平分线上的点到角的两边距离相等可得PF =PE ,根据角平分线的定义可得∠AOC =∠BOC ,根据两直线平行,内错角相等可得∠AOC =∠OPD ,两直线平行,同位角相等可得∠PDF =∠AOB ,再求出∠BOC =∠OPD ,根据等角对等边可得PD =OD ,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF =12PD ,进而即可求解.【详解】如图,过点P作PF⊥OB于F,∵OC平分∠AOB,PE⊥OA,∴PE=PF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵PD∥OA,∴∠AOC=∠OPD,∠PDF=∠AOB=30°,∴∠BOC=∠OPD,∴PD=OD=6cm,∴PF=12PD=12×6=3cm,∴PE=PF=3cm.故答案为:3cm.【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.18.【分析】根据等腰三角形的性质∠BAC=108°由线段垂直平分线的性质可得AE=CE∠EAD=∠ECD=36°进而根据角的和差可得∠BAE=∠BEA进而可得BA=BE =AC然后问题可求解【详解】∵AB解析:3a b【分析】根据等腰三角形的性质∠BAC=108°,由线段垂直平分线的性质可得AE=CE,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE=∠BEA,进而可得BA=BE=AC然后问题可求解.【详解】∵AB=AC,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC=108°,∵DE是AC的垂直平分线,∴AE=CE,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC,∴∠BAE=∠BAC-∠CAE=108°-36°=72°∵∠BEA=180°-∠AEC=180°-108°=72°即∠BAE=∠BEA∴BA=BE∵BE a=,EC b=,∴BA=BE=AC=a∴△ABC的周长=AB+BE+EC+AC=3a+b故答案为:3a+b.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.19.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.20.100【分析】连接AO延长交BC于D根据线段垂直平分线的性质可得OB=OA=OC再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A即可求解【详解】解:连接AO延长交BC于D∵O为△A解析:100【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A,即可求解.【详解】解:连接AO延长交BC于D,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.三、解答题21.(1)见解析;(2)CE=1【分析】(1)连接PA、PB,根据角平分线的性质得到PD=PE,根据线段垂直平分线的性质得到PA=PB,证明Rt△AEP≌Rt△BDP,根据全等三角形的性质得到AE=BD;(2)结合图形计算得到答案.【详解】(1)连接PA 、PB ,∵CP 是∠BCE 的平分线,PD ⊥BC ,PE ⊥AC ,∴PD =PE ,在Rt △CDP 和Rt △CEP 中,PD PE PC PC =⎧⎨=⎩, ∴Rt △CDP ≌Rt △CEP (HL )∴CD =CE ,∵PQ 是线段AB 的垂直平分线,∴PA =PB ,在Rt △AEP 和Rt △BDP 中,PE PD PA PB =⎧⎨=⎩, ∴Rt △AEP ≌Rt △BDP (HL ),∴AE =BD ;(2)AC +CE +CD =BD +CD =BC =6, ∴1(64)12CE CD ==⨯-=. 【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)见解析;(2)不变,理由见解析.【分析】(1)根据AAS 证明ADE CEF ≌即可;(2)在AC 上截取CH AE =,连接FH ,根据等边△ABC 和等边△DEF 的性质证明△ADE HEF ≅∆可得FH CH =,得∠FCH HFC =∠,进一步可得∠30ECF =︒.【详解】解:(1)证明:∵△ABC 和△DEF 是等边三角形∴∠A=∠C=60°,∠DEF=60°,DE=EF∵∠DEF=60°,∴∠DEF+∠FEC=180°-60°=120°∵∠C=60°∴∠CFE+∠FEC=180°-60°=120°∴∠DEA EFC =∠在△ADE 和△CEF 中,A C DEA EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CEF ≌;(2)在AC 上截取CH AE =,连接FH ,设,AE CH x ==等边△ABC 的边长为a∵22BD AE x ==∴2AD EH a x ==-∵△ABC 是等边三角形∴∠60A =︒∴∠120ADE DEA +∠=︒∵△DEF 是等边三角形∴∠60,DEF DE EF =︒=∴∠120AED FEC +∠=︒∴∠ADE FEC =∠∴△()ADE HEF SAS ≅∆∴∠60,FHE A FH AE x =∠=︒==∴FH CH =∴∠FCH HFC =∠∵∠60FCH HFC FHE +∠=∠=︒∴260FCH ∠=︒∴∠30FCH =︒即∠30ECF =︒【点睛】本题考查的是全等三角形的判定和性质,等边三角形的性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.23.(1)54;(2)见详解 【分析】(1)先求出∠DCE=30°,根据直角三角形的性质,可得CD=12AD ,DE =12CD ,进而即可求解; (2)连接CG ,先证明∆BFC ≅∆CEA ,从而得BF=CE ,结合等腰直角三角形的性质,得CG=BG ,CG ⊥AB ,进而证明∆GCE ≅∆GBF ,即可得到结论.【详解】(1)∵CE AD ⊥,30CAD ∠=︒,∴∠ACE=90°-30°=60°,∵90ACB ∠=︒,∴∠DCE=30°,∵5AD =,∴CD=12AD=52,DE =12CD=54; (2)连接CG ,∵CE AD ⊥,∴∠ACE+∠CAE=90°,∵90ACB ∠=︒,∴∠ACE+∠BCF=90°,∴∠CAE=∠BCF ,∵BF CE ⊥,∴∠BFC=∠CEA=90°,又∵AC BC =,∴∆BFC ≅∆CEA (AAS ),∴BF=CE ,∵点G 是AB 的中点,∴CG=BG ,CG ⊥AB ,∴∠CGB=∠BFC=90°,∴∠GCE=∠GBF ,∴∆GCE ≅∆GBF ,∴GE GF =.【点睛】本题主要考查全等三角形的判定和性质以及等腰直角三角形的性质,熟练掌握AAS 证明全等三角形以及等腰直角三角形的性质,是解题的关键.24.(1)见解析;(2)90AKC ∠=︒;(3)60ACB ∠=︒或20ACB ∠=︒【分析】(1)根据角平分线定义和平行线的判定方法求解;(2)根据平行线的性质和等腰三角形的性质可以得到解答;(3)分F 在A 左边和F 在A 右边两种情况讨论 .【详解】(1)∵AB 平分CAD ∠,∴DAB BAC ∠=∠,∵ABC BAC ∠=∠,∴DAB ABC ∠=∠,∴//DE PQ ;(2)∵//PQ DE ,∴EAC ACB ∠=∠,∵2EAC ACK ∠=∠, ∴1122ACK BCK EAC ACB ∠=∠=∠=∠, ∵∠ABC=∠BAC,∴△CAB 是等腰三角形,∴CK ⊥AB ,∴∠AKC=90°;(3)分两种情况讨论:①如图,F 在A 左边,延长VK 交DE 于M ,设∠BCK=x°,则由(1)得:∠FKA=1303AKC ∠=︒,∠DAB=∠ABC=(90-x)°,∴∠AFK=180°-30°-(90-x)°=(60+x)°,∴由∠DAB=∠AFK+∠KCB 可得:90-x=60+x+x ,解之得:x=10,∴∠ACB=2x=20°,②如图,F 在A 右边,设∠BCK=x°,则∠AFK=∠DAB-∠AKF=90-x-30=(60-x)°,∴由∠DAB=∠AFK+∠KCB 可得:90-x=60-x+x ,解之得:x=30,∴∠ACB=2x=60°,∴∠ACB=20°或60°,【点睛】本题考查角平分线、平行线和三角形的综合应用,熟练掌握角平分线的定义、平行线的性质、三角形的综合性质及方程思想的解题方法是解题关键.25.见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=,DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.26.(1)AP t =,8BP t =-,2BQ t =;(2)PQ AB ⊥,理由见解析;(3)能,当t 为83时,BPQ 为等边三角形 【分析】(1)根据点P 、Q 的运动速度解答;(2)连接AC ,得到△ABC 为等边三角形,根据等腰三角形的三线合一证明;(3)根据等边三角形的判定定理列出方程,解方程即可.【详解】解:(1)AP t =,8BP t =-,2BQ t =故答案为:t ;8-t ;2t ;(2)PQ AB ⊥.理由如下:连接AC∵AB BC =,60B ∠=,∴ABC 是等边三角形.∵Q 的速度是每秒2cm ,故当Q 与C 重合时,t 4= 又P 的速度是每秒1cm ,=8cm AB ,∴=4AB BP =又∵=CA CB ,∴PQ AB ⊥.(3)能.∵60B ∠=,∴当BP BQ =时,BPQ 为等边三角形,∴82t t -=. ∴83t =. ∴当t 为83时,BPQ 为等边三角形. 【点睛】 本题考查的是等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一、等边三角形的判定定理和性质定理是解题的关键.。
成都八中八年级数学上册第三单元《轴对称》检测卷(有答案解析)
一、选择题1.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个2.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个3.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm4.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .45.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 6.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 7.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118 8.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .129.如图所示的是A 、B 、C 三点,按如下步骤作图:①先分别以A 、B 两点为圆心,以大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ;②再分别以B 、C 两点为圆心,以大于12BC 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,GH 与MN 交于点P ,若66BAC ∠=︒,则BPC ∠等于( )A .100°B .120°C .132°D .140°10.如图,ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于点E 、D ,若52BAC ∠=︒,则DBC ∠=( ).A .12︒B .14︒C .16︒D .18︒11.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 12.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .22020二、填空题13.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.14.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.15.如图,等腰ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则BDM 的周长最小值为_____cm .16.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.17.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.18.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.19.如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB上,PM=PN,若NM=6,则OM=______________.20.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.三、解答题21.如图,△ABC是边长为12cm的等边三角形,动点M、N同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)若点M的运动速度是2cm/s,点N的运动速度是4cm/s,当N到达点C时,M、N两点都停止运动,设运动时间为t(s),当t=2时,判断△BMN的形状,并说明理由;(2)当它们的速度都是2cm/s,当点M到达点B时,M、N两点停止运动,设点M的运动时间为t(s),则当t为何值时,△MBN是直角三角形?22.如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC ∆经过一次轴对称变换后得到'''A B C ∆,图中标出了点C 的对应点'C()1在给定方格纸中画出变换后的'''A B C ∆;()2画出AC 边上的中线BD 和BC 边上的高线AE ;()3求'''A B C ∆的面积.23.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.24.如图,在ABC 中,50B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,连接DE ,且ADE AED ∠=∠,当60BAD ∠=︒时,求CDE ∠的度数.25.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.26.已知:(0,1),(2,0),(4,4)A B C -.(1)在图中所示的坐标系中描出各点,画出ABC ,并求ABC 的面积.(2)若ABC 各顶点的横坐标不变,纵坐标都乘以1-,在同一坐标系中描出对应的点A ',B ',C ',并依次连结这三个点得A B C ''',并写出ABC 与A B C '''有怎样的位置关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据角平分线的定义、平行线的性质得到∠ABC=∠C ,得到AC=AB ,根据等腰三角形的性质得到DB=DC ,AD ⊥BC ,证明△CDE ≌△BDF ,根据全等三角形的性质证明得到答案.【详解】解:∵BC 平分∠ABF ,∴∠ABC=∠FBC ,∵BF ∥AC ,∴∠C=∠FBC ,∴∠ABC=∠C ,∴AC=AB ,∵AC=AB ,AD 是△ABC 的角平分线,∴DB=DC ,AD ⊥BC ,故②、③说法正确;在△CDE 和△BDF 中,C DBF CD DBCDE BDF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDE ≌△BDF (ASA ),∴DE=DF ,故①说法正确;∵△CDE ≌△BDF ,∴BF=CE ,∵AE=2BF ,∴AB=AC=3BF ,故④说法正确;故选:A .【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.2.B解析:B【分析】根据∠ABC =45°,CD ⊥AB 可得出BD =CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF =AD ,BF =AC .则CD =CF +AD ,即AD +CF =BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE =AE =12AC ,又因为BF =AC 所以CE =12AC =12BF ,连接CG .因为△BCD 是等腰直角三角形,即BD =CD .又因为DH ⊥BC ,那么DH 垂直平分BC .即BG =CG . 在Rt △CEG 中,CG 是斜边,CE 是直角边,所以CE <CG .即AE <BG .【详解】解:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD .故①正确;连接CG .∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE=12AC=12BF,∴2CE=BF;故③正确;由③可得△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故④正确;故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3.B解析:B【分析】过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可.【详解】解:过P 作PC ⊥MN ,∵PM=PN ,∴C 为MN 中点,即MC=NC=12MN=1, 在Rt △OPC 中,∠AOB=60°,∴∠OPC=30°,∴OC= 12OP=4, 则OM=OC-MC=4-1=3cm ,故选:B .【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.4.C解析:C【分析】根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.5.D解析:D【分析】先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大, 故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.6.C解析:C【分析】根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.B解析:B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 8.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B .【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解. 9.C解析:C【分析】根据基本作图可判断MN 垂直平分AB ,GH 垂直平分BC ,根据垂直平分线的性质可得PA PB PC ==,再利用等腰三角形的性质得到PAB PBA ∠=∠,PAC PCA ∠=∠,最后根据三角形的外角性质可得∠BPC=2∠BAC ,据此求解即可.【详解】解:如图,连接AB 、AC 、BC 、BP 、PC 、PA ,由作法可知MN 垂直平分AB ,GH 垂直平分BC ,∴PA PB PC ==,∴PAB PBA ∠=∠,PAC PCA ∠=∠,∴PBA PCA PAB PAC BAC ∠+∠=∠+∠=∠,∴2BPC PAB PAC PBA PCA BAC ∠=∠+∠+∠+∠=∠,∴2266132BPC BAC ∠=∠=⨯︒=︒.故选:C .【点睛】本题考查了线段垂直平分线的基本作图及线段垂直平分线的性质,利用等腰三角形的性质,三角形的外角性质.10.A【分析】由在△ABC 中,AB =AC ,∠BAC =52°,又由DE 是AB 的垂直平分线,即可求得∠ABD 的度数,继而求得答案.【详解】在ABC 中,AB AC =,52BAC ∠=︒,()11802ABC ACB BAC ∴∠=∠=⨯︒-∠ ()1180522=⨯︒-︒64=︒, DE 为AB 的中垂线,AD BD ∴=,52ABD BAC ∴∠=∠=︒,12DBC ABC ABD ∴∠=∠-∠=︒.故选A .【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.11.D解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 12.B解析:B根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.二、填空题13.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的 解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒.故答案是:25︒.【点睛】 本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 14.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化 解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 15.8【分析】连接AD 由题意易得AD ⊥BC 则有三角形BDM 的周长为BM+MD+BD 若使△BDM 的周长为最小值则需满足BM+MD 为最小值根据两点之间线段最短可得AD 为BM+MD 的最小值故问题可解【详解】解解析:8【分析】连接AD ,由题意易得AD ⊥BC ,则有三角形BDM 的周长为BM+MD+BD ,若使△BDM 的周长为最小值,则需满足BM+MD 为最小值,根据两点之间线段最短可得AD 为BM+MD 的最小值,故问题可解.【详解】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12 BC•AD =12×4×AD =12,解得AD =6cm , ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM+MD 的最小值,∴△BDM 的周长最短=(BM+MD )+BD =AD+12BC =6+12×4=6+2=8cm . 故答案为:8.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质,关键是根据垂直平分线的性质定理及等腰三角形的性质得到最短路径长,进而可求解.16.【分析】根据等腰三角形的性质∠BAC =108°由线段垂直平分线的性质可得AE=CE ∠EAD=∠ECD=36°进而根据角的和差可得∠BAE =∠BEA 进而可得BA =BE =AC 然后问题可求解【详解】∵AB解析:3a b +【分析】根据等腰三角形的性质∠BAC =108°,由线段垂直平分线的性质可得AE=CE ,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE =∠BEA ,进而可得BA =BE =AC 然后问题可求解.【详解】∵AB=AC ,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC =108°,∵DE 是AC 的垂直平分线,∴AE=CE ,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC ,∴∠BAE =∠BAC -∠CAE =108°-36°=72°∵∠BEA =180°-∠AEC =180°-108°=72°即∠BAE =∠BEA∴BA =BE∵BE a =,EC b =,∴BA =BE =AC =a∴△ABC 的周长=AB +BE +EC +AC =3a +b故答案为:3a+b .【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.17.110【分析】根据等腰三角形的性质求出∠B=70º再根据平行线的性质求出的度数【详解】解:∵AB=AC ∴∠B=∠ACB==70º∵//∴+∠B=180º∴=110º故答案为:110【点睛】本题考查了解析:110【分析】根据等腰三角形的性质,求出∠B=70º,再根据平行线的性质,求出BCD ∠的度数.【详解】解:∵AB=AC ,40A ∠=,∴∠B=∠ACB=180402︒-︒=70º, ∵CD //AB , ∴BCD ∠+∠B=180º,∴BCD ∠=110º,故答案为:110.【点睛】本题考查了等腰三角形的性质和平行线的性质,熟练运用已知条件,准确推理计算,是解决这类题的关键.18.【分析】连接BP 过点E 作EF ⊥BC 根据可得PQ+PR=EF 结合等腰直角三角形三边长的关系即可求解【详解】连接BP 过点E 作EF ⊥BC ∵∴=BC×PQ+BE×PR=BC×(PQ+PR)=BC×EF ∴PQ解析:2【分析】连接BP ,过点E 作EF ⊥BC ,根据BCE BPE BPC SS S =+,BE BC =,可得PQ+PR=EF ,结合等腰直角三角形三边长的关系,即可求解.【详解】连接BP ,过点E 作EF ⊥BC ,∵BE BC =,∴BCE BPE BPC SS S =+ =12BC×PQ+12BE×PR =12BC×(PQ+PR) =12BC×EF , ∴PQ+PR=EF ,∵ABC 是等腰直角三角形,∴∠B=45°,∴EFB △是等腰直角三角形,且BE=BC=2,∴EF=BE÷2=2÷2=2,=2,∴PQ PR故答案是:2.【点睛】本题主要考查等腰直角三角形的性质,掌握“等积法”是解题的关键.19.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD 即可求出OM的长【详解】解:过P作PD⊥OB交OB于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.20.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B =∠C =x ,∠CDE =y ,分别表示出∠DAE ,构建方程解方程即可求解.【详解】解:设∠B =∠C =x ,∠EDC =y ,∵AD =AE ,∴∠ADE =∠AED =x +y ,∵∠DAE =180 °−2(x +y )=180 °−20 °−2x ,∴2y =20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)△BMN 是等边三角形,见解析;(2)当t=2或t=4时,△BMN 是直角三角形.【分析】(1)先由等边三角形的性质解得,当t=2时,AM =4,BN=8,继而证明BM=BN ,再根据等边三角形的判定解题即可;(2)若△MBN 是直角三角形,则∠BNM=90°或∠BMN=90°,根据直角三角形含30°角的性质列方程解题即可.【详解】解:(1)△BMN 是等边三角形当t=2时,AM =4,BN=8,∵△ABC 是等边三角形且边长是12∴BM=12-4=8,∠B=60°∴BM=BN∴△BMN 是等边三角形;(2)△BMN 中,BM=12-2t ,BN=2t①当∠BNM=90°时,∠B=60°∴∠BMN=30° ∴12BN BM = ∴12(122)2t t =-∴t=2②当∠BMN=90°时,∠B=60°∴∠BNM=30°∴12BM BN = ∴112222t t -=⨯ ∴t=4综上:当t=2或t=4时,△BMN 是直角三角形.【点睛】本题考查直角三角形的判定、等边三角形的判定与性质、几何动点与一元一次方程等知识,涉及含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)见解析;(2)见解析;(3)152【分析】(1)连接CC′,作CC′的垂直平分线l ,然后分别找A 、B 关于直线l 的对称点A′、B′,连接A′、B′、C′,即可得到A B C ''';(2)作AC 的垂直平分线找到中点D ,连接BD ,BD 就是所求的中线;从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(3)根据三角形面积公式即可求出A B C '''的面积.【详解】解:(1)如图,A B C '''即为所求;(2)如图,线段BD 和线段AE 即为所求;(3)111553222A B C ABC S S BC AE '''∆∆==⋅⋅=⨯⨯=. 【点睛】 本题主要考查几何变换作图,作已知图形关于某直线的对称图形的一般步骤:(1)找:在原图形上找特殊点(如线段的端点、线与线的交点等);(2)作:作各个特殊点关于已知直线的对称点;(3)连:按原图对应连接各对称点.熟练掌握作图步骤是解题的关键. 23.(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】 (1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.24.30∠=︒CDE .【分析】根据等腰三角形的性质,求得DAE ∠,利用ADE AED ∠=∠,确定AED ∠的度数,在三角形DEC 中,利用三角形外角性质计算即可.【详解】∵50B C ∠=∠=︒,∴18080BAC B C ∠=︒-∠-∠=︒.∵60BAD ∠=︒,∴20DAE BAC BAD ∠=∠-∠=︒, ∴18020802ADE AED ︒-︒∠=∠==︒. ∵AED CDE C ∠=∠+∠,∴805030CDE AED C ∠=∠-∠=︒-︒=︒.【点睛】本题主要考查了等腰三角形的顶角计算,底角的计算,熟记等腰三角形的性质和三角形外角性质是解题的关键.25.15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.26.(1)图见解析,3;(2)ABC 与A B C '''关于x 轴对称【分析】(1)根据点坐标确定其在坐标系中的位置,顺次连线即可得到ABC ,利用割补法求面积;(2)根据点A 、B 、C 纵坐标都乘以1-,得到对应的点A ',B ',C '的坐标,再确定各点位置,即可得到两个三角形的关系.【详解】(1)如图,ABC 即为所求,111451245(15)23222ABC S =⨯-⨯⨯-⨯⨯-⨯+⨯=;A B C-,(2)∵(0,1),(2,0),(4,4)∴A'(0,-1),B'(2,0),C'(4,4),'''关于x轴对称.∴ABC与A B C.【点睛】此题考查点坐标的确定,坐标与图形,图形的变换关系,正确根据点的坐标确定其在直角坐标系中的位置是解题的关键.。
(人教版)成都市八年级数学上册第三单元《轴对称》测试卷(包含答案解析)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm 2.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .20 3.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75° B .90° C .105° D .120°或20° 4.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆= 5.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等6.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm 7.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,EF 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 8.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 9.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .310.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒11.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1212.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5二、填空题13.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.14.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.15.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.16.如图,在ABC 中,22A ∠=︒,D 为AB 边中点,E 为AC 边上一点,将ADE 沿着DE 翻折,得到A DE ',连接A B '.当A B A D ''=时,A EC '∠的度数为______.17.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.18.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .19.如图:已知在ABC 中,90ACB ︒∠=,36BAC ︒∠=,在直线AC 上找点P ,使ABP △是等腰三角形,则APB ∠的度数为________.20.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.三、解答题21.如图1,在直角△ABC 中,∠C=90°,分别作∠CAB 的平分线AP 和AB 的垂直平分线DP ,交点为P .(1)如图2,若点P 正好落在BC 边上.①求∠B 的度数;②求证:BC=3PC .(2)如图3,若点C 、P 、D 恰好在一条直线上,线段AD 、PD 、BC 之间的数量关系是否满足AD +PD=BC ?若满足,请给出证明;若不满足,请说明理由.22.如图,在ABC ∆中,点,D E 分别是AB AC 、边上的点,BE 与CD 相交于点F ,且 BD CE =.(1)在下列给出的条件中,只需添加一个条件即可证明ABC ∆是等腰三角形,这个条件可以是 (多选);A .DF EF =B . BF CF =C .ABE ACD ∠=∠D .BCD CBE ∠=∠E . ADC AEB ∠=∠(2)利用你选的其中一个条件,证明ABC ∆是等腰三角形.23.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)求FAE ∠的度数.24.如图,在ABC 中,AB AC =,CD AB ⊥,BE AC ⊥,垂足为D 、E ,BE 、CD 相交于点O .(1)求证:DBC ECB △△≌;(2)求证:OD OE =.25.如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)求证:ABD △是等边三角形;(2)若2DG =,求AC 的长;(3)求证:AB AE AF =+.26.已知:90,A D AB DC ︒∠=∠==,点,E F 在直线BC 上,位置如图所示,且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,求证:PO 垂直平分线段BC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN垂直平分线段AD,∴AC=DC,AE+ED=AD=10cm,∵AB+BC+AC=15cm,∴AB+BC+DC=15cm,∴△ABD的周长=AB+BC+DC+AD=15+10=25cm,故选:C.【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a和b的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵()2-+-=,a b370∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.3.D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.4.D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D.【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.5.B解析:B【分析】根据全等三角形的定义去判断A,全等三角形性质去判断B,等边三角形和等腰三角形性质判断C、D,依次分析解答即可.【详解】解:A.由全等三角形的定义得到:能够完全重合的两个图形全等,此命题是真命题;B.两边和一角对应相等且该角是两边的夹角的两个三角形全等,此命题是假命题;C. 三个角都相等的三角形是等边三角形,此命题是真命题;D. 等腰三角形的两底角相等,此命题是真命题;故选B.【点睛】此题主要考查了命题的真假,关键是掌握相关定义和性质.注意SAS时,一角必须是两边的夹角.6.B解析:B【分析】∆的周长= AB+AC,据此可解.由题意可知BD=CD,因此ACD【详解】解:∵DE垂直平分BC,∴BD=CD,∆的周长=AD+CD+AC∴ACD= AD+BD+AC= AB+AC=10+8=18(cm),故选:B.【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD .7.D解析:D【分析】先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.8.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.9.B解析:B【分析】由已知可以写出∠B和∠C,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k∠A=(36k)°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B.【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .10.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A .【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.11.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==,∴3AD ==, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.C解析:C【分析】根据线段的垂直平分线的性质得到DC=DB=6,则∠DCB=∠B ,由∠ACB=∠ACD+∠DCB=90°,得∠A+∠B=90°,从而∠A=∠ACD ,DA=DC=6,则AB=AD+DB 便可求出.【详解】∵EF 是线段BC 的垂直平分线,DC =6,∴DC=DB=6,∴∠DCB=∠B ,又∵∠ACB=∠ACD+∠DCB=90°,∴∠A+∠B=90°,∴∠A=∠ACD ,∴DA=DC=6,∴AB=AD+DB=6+6=12.故选:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.二、填空题13.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC ≌△ADE ∴AB =AD ∠B =∠ADE ∴∠ADB =∠B ∵∠BAD =70°∴∠B =∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC ≌△ADE ,∴AB =AD ,∠B =∠ADE ,∴∠ADB =∠B ,∵∠BAD =70°,∴∠B =∠ADB =(180°-70°)÷2=55°,∴∠EDC =180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.14.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.15.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC 为等腰三角形,AD 为底边上的高,∴AB=AC ,BD=DC ,∵△ABC 的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD 的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.16.【分析】根据折叠的性质可得根据及折叠的性质可得为等边三角形再根据三角形的外角性质求解即可【详解】在中将沿着翻折交于点得到如图;∴∴∵为边中点∴为等边三角形∴∴∵即∴故答案为:【点睛】本题考查了全等三 解析:16【分析】根据折叠的性质可得AED A ED '≅,根据A B A D ''=及折叠的性质可得A BD '为等边三角形,再根据三角形的外角性质求解即可【详解】在ABC 中,22A ∠=︒,将ADE 沿着DE 翻折,A D '交AC 于点F ,得到A DE ',如图;∴AED A ED '≅ ∴1=,222AD A D AB EA D A ''===∠∠, ∵A B A D ''=,D 为AB 边中点,∴A B A D DB ''==,A BD '为等边三角形, ∴=60A DB '∠,∴60A AFD +=∠∠,∵=AFD EA D A EC ''+∠∠∠即()60A EA D A EC ''++=∠∠∠∴=16A EC '∠.故答案为:16【点睛】本题考查了全等三角形的性质,等边三角形的性质,三角形外角的性质等知识点,解题的关键是根据折叠找到对应的边角关系17.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.18.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形;当6cm的边为底边时,腰长=1(246)92⨯-=(cm),由于6+9>9,故能构成三角形,故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.19.72°或18°或108°或36°【分析】分四种情况:①AB=BP1时②当AB=AP3时③当AB=AP2时④当AP4=BP4时分别讨论根据等腰三角形的性质求出答案即可【详解】∵在Rt△ABC中∠C=9解析:72°或18°或108°或36°【分析】分四种情况:①AB=BP1时,②当AB=AP3时,③当AB=AP2时,④当AP4=BP4时,分别讨论,根据等腰三角形的性质求出答案即可.【详解】∵在Rt△ABC中,∠C=90°,∠A=36°,∴当AB=BP1时,∠BAP1=∠BP1A=36°,当AB=AP3时,∠ABP3=∠AP3B=12∠BAC=12×36°=18°,当AB=AP4时,∠ABP4=∠AP4B=12×(180°−36°)=72°,当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°−36°×2=108°,∴∠APB的度数为:18°、36°、72°、108°.故答案为:72°或18°或108°或36°【点睛】此题主要考查了等腰三角形的性质,分类讨论思想的运用是解题关键.20.9【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P(x-yy)与点Q(-1-5)关于x轴对称得x-y=-1y=5解得x=4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P(x-y,y)与点Q(-1,-5)关于x轴对称,得x-y=-1,y=5.解得x=4,y=5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题21.(1)①∠B的度数是30°;②见解析;(2)满足,理由见解析【分析】(1)①由垂直平分线与角平分线的性质证明:∠PAD=∠PAC=∠B,再利用直角三角形的内角和定理即可得到答案;②先利用角平分线的性质证明PC=PD,再用∠B=30°证明BP=2PD,进而即可得到结论;(2)过点P作PE⊥AC于点E,由垂直平分线的性质可知AC=BC,∠ACD=∠BCD=45°,进而证明PE=CE,由角平分线的性质可知PE=PD,即可证明Rt△AEP≌Rt△ADP(HL),可得AE=AD,再利用线段的和差性质即可证明AD+PD=BC.【详解】(1)①∵DP是AB的垂直平分线,∴PA=PB,∴∠PAD=∠B,又∵AP平分∠CAB,∴∠PAD=∠PAC,∴∠PAD=∠PAC=∠B,设∠B=x°,则∠CAB=∠PAD+∠PAC=2x°,∵在Rt ABC中,∠C=90°,∴∠B+∠BAC=90°,即3x=90,x=30,∴∠B的度数是30°.②∵AP平分∠CAB,∠C=90°,DP⊥AB,∴PC=PD,∵在Rt△BDP中,∠B=30°,∴BP=2PD,∴BC=BP+PC=3PC.(2)如图,过点P作PE⊥AC于点E,∵CD是AB的垂直平分线,∴AC=BC ,∴∠ACD=∠BCD=12∠ACB=45°. ∵PE ⊥AC ,∴∠CPE=90°−∠PCE=90°−45°=45°=∠PCE ,∴PE=CE ,又∵AP 平分∠CAB ,PD ⊥AB ,PE ⊥AC ,∴PE=PD ,∴在Rt △AEP 和Rt △ADP 中, ,,AP AP PE PD =⎧⎨=⎩∴Rt △AEP ≌Rt △ADP (HL ),∴AE=AD ,∴AC=AE+EC=AD+PE=AD+PD ,又∵AC=BC ,∴AD+PD=BC .【点睛】本题考查了角平分线的性质、垂直平分线的性质、三角形的内角和定理、锐角三角函数、等腰直角三角形的性质、直角三角形全等的判定与性质、含30°的直角三角形的性质、线段的和差性质,解答本题的关键是掌握并熟练运用以上知识.22.(1),C E ;(2)见解析【分析】(1)选C 的话,可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;选E 的话,可以求得∠BDF=∠CEF ,然后可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;(2)选C 的话,可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;选E 的话,可以求得∠BDF=∠CEF ,然后可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解.【详解】解:(1)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠ 即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠, ∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠ 即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形而其余选项均无法证明△ABC 为等腰三角形 故答案为:C ;E(2)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠ 即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠, ∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质和判定,掌握AAS 定理证明三角形全等是解题关键.23.(1)见解析;(2)135FAE ∠=︒.【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE 的度数.【详解】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°.【点睛】本题考查全等三角形的判定与性质及等腰三角形的性质,解答本题的关键是明确题意,找出全等所需要的条件.24.(1)见解析;(2)见解析【分析】(1)由“AAS”即可证明△BDC ≌△CEB ;(2)由△BDC ≌△CEB ,推出BD=CE ,∠BCD=∠CBE ,得到OB=OC ,即可证明结论.【详解】(1)∵CD AB ⊥,BE AC ⊥,∴∠BDC=∠BEC=90︒,∵AB=AC ,∴∠ABC=∠ACB ,在△BDC 和△CEB 中,90BDC BEC ABC ACB BC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (AAS );(2)∵△BDC ≌△CEB ,∴CD=BE ,∠BCD=∠CBE ,∴OB=OC ,∴OD=OE .【点睛】本题考查了等腰三角形和全等三角形的判定和性质,关键是利用AAS 证明△BDC ≌△CEB . 25.(1)见解析;(2)4AC =;(3)见解析【分析】(1)连接BD 由等腰三角形的性质和已知条件得出∠BAD =∠DAC =12×120°=60°,再由AD =AB ,即可得出结论;(2)由等边三角形三线合一可得,122DG AG AD ===,可得4AD AB AC ===,即可求解;(3)由△ABD 是等边三角形,得出BD =AD ,∠ABD =∠ADB =60°,证出∠BDE =∠ADF ,由ASA 证明△BDE ≌△ADF ,得出AF =BE ,即可求解.【详解】证明:(1)AB AC =,AD BC ⊥,12BAD DAC BAC ∴∠=∠=∠, 120BAC ∠=︒,1120602BAD DAC ∴∠=∠=⨯︒=︒, =AD AB ,ABD ∴是等边三角形.(2)ABD 是等边三角形,AD AB BD ∴==,AD BC ⊥,122DG AG AD ∴===, 4AD AB AC ∴===,即4AC =;(3)ABD 是等三角形,60ABD ADB ∴∠=∠=︒,BD AD =, 60EDF ∠=︒,ADB ADE EDF ADE ∴∠-∠=∠-∠,即BDE ADF ∠=∠.在BDE 和ADF 中,60ABD DAC ∠=∠=︒,BD AD =,BDE ADF ∠=∠,(ASA)BDE ADF ∴△≌△,BE AF ∴=,AB AE BE =+,AB AE AF ∴=+.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.26.(1)证明见解析;(2)证明见解析.【分析】(1)根据已知条件证明Rt △ABF ≌Rt △DCE(HL)即可得出结论;(2)根据Rt △ABF ≌Rt △DCE 可得出∠E=∠F ,即△PEF 为等腰三角形,又因为PO 平分∠EPF ,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】(1)证明:∵BE=CF ,BC=CB∴BF=CE ,在Rt △ABF 与Rt △DCE 中,BF CE AB DC =⎧⎨=⎩∴Rt △ABF ≌Rt △DCE(HL),∴AF=DE ;(2)∵Rt △ABF ≌Rt △DCE ,∴∠E=∠F∴△PEF 为等腰三角形,又∵PO 平分∠EPF∴PO ⊥BC(三线合一),EO=FO(三线合一)又∵EB=FC∴BO=CO ,∴PO 垂直平分线段BC.【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力.。
八年级数学上册轴对称单元测试题(带详细答案解析)
八年级数学上册轴对称单元测试题一、选择题(3分X 7=21分)1. 李芳同学球衣上的号码是 253,当他把镜子放在号码的正左边时, 镜子中的号码是()2. 如图,有8块相同长方形地砖拼成一个矩形地面,则每块长方形 地砖地长和宽分别是()A . 48, 12 B. 48, 16C. 44, 16D. 45, 153. 如图,在方格纸中有四个图形 <1>、<2>、<3>、<4>,其中面积相 等的图形是()4.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.B. <2> 和 <3> C <2> 和 <4> D <1> 和<4>(A( B(C )(D )A <1> 和 <2>第3题±±(D)(中去遅役悒行)(B)(A ) (C )5. 如图是我国几家银行的标志,在这几个图案中是轴对称图形的有()A. 1 个B. 2 个C. 3个D. 4个6. 直角三角形三边垂直平分线的交点位于三角形的()A.形内B.形外C.斜边的中点 D.不能确实7. 在下列说法中,正确的是()A. 如果两个三角形全等,则它们必是关于直线成轴对称的图形B. 如果两个三角形关于某直线成轴对称,那么它们是全等三角形C. 等腰三角形是关于底边中线成轴对称的图形D. 一条线段是关于经过该线段中点的直线成轴对称的图形二、填空题(3分X 6=18分)T (Ul^ AGrJk J-l >XJIL5? OTU*8. 王红在电脑中用英文写个人简历时,把其中一句倒排成:,则正确的英文为.9. 下列10个汉字:林上下目王田天王显吕,其中不是轴对称图形的是;有一条对称轴的是;°有两条对称轴的是;有四条对称轴的是.10 . 一个汽车车牌在水中的倒影为,则该车的牌照号码是.11. 身高1.80米的人站在平面镜前 2米处,它在镜子中的像高米, 人与像之间距离为米;如果他向前走0.2米,人与像之间距离为米. 12. 已知等腰三角形的一个角为 42。
成都西华大学附属中学八年级数学上册第三单元《轴对称》检测卷(包含答案解析)
一、选择题1.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .2.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形3.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm 4.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若a ,b 为等腰ABC 的两边,且满足350a b --=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 6.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°7.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 8.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,DE 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒9.如图,ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于点E 、D ,若52BAC ∠=︒,则DBC ∠=( ).A .12︒B .14︒C .16︒D .18︒10.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm11.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 12.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题13.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.14.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.15.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.16.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.17.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).18.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .19.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.20.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.三、解答题21.如图,已知:射线AM是△ABC的外角∠NAC的平分线.(1)作BC的垂直平分线PF,交射线AM于点P,交边BC于点F;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P作PD⊥BA,PE⊥AC,垂足分别为点D,E,请补全图形并证明BD=CE.22.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度所得到的△A1B1C1,并写出点A1,B1的坐标;(2)画出△DEF关于x轴对称后所得到的△D1E1F1,并写出点E1,F1的坐标;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,请画出它的对称轴.23.如图,△ABC是等边三角形,E、F分别是边AB、AC上的点,且AE=CF,且CE、BF 交于点P,且EG⊥BF,垂足为G.(1)求证:∠ACE=∠CBF;(2)若PG =1,求EP 的长度.24.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.25.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.26.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt△ABC的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC的角平分线CD交AB于点D;(2)画AB边的垂直平分线l交直线CD于点P.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】点D到点A、点B的距离相等可知点D在线段AB的垂直平分线上,据此可得答案.【详解】解:∵点D到点A、点B的距离AD=BD,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.2.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A、B,根据对顶角的定义判断C,根据等边三角形的判定判断D.解:A.两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B.已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL可以得出两个三角形全等,故本选项是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C.【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.3.B解析:B【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC-MC求出OM的长即可.【详解】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC= 1MN=1,2在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC= 1OP=4,2则OM=OC-MC=4-1=3cm,故选:B.【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.4.A解析:A根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.6.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.7.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.8.C解析:C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.A解析:A【分析】由在△ABC 中,AB =AC ,∠BAC =52°,又由DE 是AB 的垂直平分线,即可求得∠ABD 的度数,继而求得答案.【详解】在ABC 中,AB AC =,52BAC ∠=︒,()11802ABC ACB BAC ∴∠=∠=⨯︒-∠ ()1180522=⨯︒-︒64=︒, DE 为AB 的中垂线,AD BD ∴=,52ABD BAC ∴∠=∠=︒,12DBC ABC ABD ∴∠=∠-∠=︒.故选A .【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.10.D解析:D【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.11.D解析:D【分析】由偶次方的非负性质得出a-b=0,a-c=0,b-c=0,得出a=b=c ,即可得出结论.【详解】解:∵222()()()0,a b a c b c -+-+-=,∴a-b=0,a-c=0,b-c=0,∴a=b ,a=c ,b=c ,∴a=b=c ,∴这个三角形是等边三角形;故选:D .【点睛】本题考查了等边三角形的判定、偶次方的非负性质;熟练掌握等边三角形的判定方法,由偶次方的非负性质得出a=b=c 是解题的关键.12.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4=,DM cm△是等边三角形,EBM∴60∠=,EMB∴30∠=,NDM∴2=,NM cm∴4=-=,BN BM NM cm∴28==.BC BN cm故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.二、填空题13.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A关于CM的对称点A’,作点B关于DM的对称点B’,学会利用两点之间线段最短解决最值问题.14.18【分析】因为BC的垂直平分线为DE所以点C和点B关于直线DE对称所以当点动点P和E重合时则△ACP的周长最小值再结合题目的已知条件求出AB的长即可【详解】解:如图∵P为BC边的垂直平分线DE上一解析:18【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【详解】解:如图,∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.15.30【分析】由等边三角形三线合一可知:点B和点C关于AD成轴对称连接BE交AD于点F此时取得最小值进而求出的度数即可【详解】∵是等边三角形是边上的中线∴AD⊥BCAD平分∠BAC∴点B和点C关于AD解析:30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°, ∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.16.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,,以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.17.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.18.6【分析】根据垂直平分线的性质可得AE=BE 即可得出AC=BE+CE 根据△BCE 的周长即可得答案【详解】∵DE 是AB 的垂直平分线∴AE=BE ∵AB=ACAC=AE+CEAB=11∴BE+CE=AC=解析:6【分析】根据垂直平分线的性质可得AE=BE ,即可得出AC=BE+CE ,根据△BCE 的周长即可得答案.【详解】∵DE 是AB 的垂直平分线,∴AE=BE ,∵AB=AC ,AC=AE+CE ,AB=11,∴BE+CE=AC=11,∵BCE的周长为17cm,∴BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.19.2:3:4【分析】将△APB绕A点逆时针旋转60°得△AP′C显然有△AP′C≌△APB连PP′证△AP′P是等边三角形PP′=AP所以△P′CP的三边长分别为PAPBPC;由∠APB:∠BPC:∠解析:2:3:4.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,证△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;由∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,5x+6x+7x=360,x=20,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=40°,∠P′PC=80°,∠PCP′=60°即可.【详解】如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连P P′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,∴5x+6x+7x=360,∴18x=360,∴x=20,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=40°:60°:80°=2:3:4.故答案为:2:3:4.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.利用方程来解角成比例问题,三角形的内角和,用角度的和差计算解决问题.20.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB、PC,根据线段垂直平分线的性质得到PB=PC,根据角平分线的性质得PD=PE,则可判断Rt△BDP≌Rt△CEP,从而得到BD=CE.【详解】解:(1)如图,PF为所作;(2)证明:如图,连接PB 、PC ,如图,∵PF 垂直平分BC ,∴PB =PC ,∵AM 是△ABC 的外角∠NAC 的平分线,PD ⊥BA ,PE ⊥AC ,∴PD =PE ,在Rt △BDP 和Rt △CEP 中,PB PC PD PE=⎧⎨=⎩, ∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.22.(1)图见解析,A 1(3,2),B 1(4,1);(2)图见解析,E 1(﹣2,﹣3),F 1(0,﹣2);(3)见解析【分析】(1)利用点平移的坐标变换规律写出点A 1,B 1,C 1的坐标,然后描点即可; (2)利用关于x 轴对称的点的坐标特征写出点D 1,E 1,F 1的坐标,然后描点即可; (3)直线C 1F 1和C 1F 1的垂直平分线都是△A 1B 1C 1和△D 1E 1F 1组成的图形的对称轴.【详解】解:(1)如图,△A 1B 1C 1为所作,A 1(3,2),B 1(4,1);(2)如图,△D 1E 1F 1为所作,E 1(﹣2,﹣3),F 1(0,﹣2);(3)如图,直线l和直线l′为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了平移变换.23.(1)见解析;(2)PE=2【分析】(1)证明△ACE≌△CBF(SAS),即可得到∠ACE=∠CBF;(2)利用由(1)知∠ACE=∠CBF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根据在直角三角形中,30°所对的直角边等于斜边的一半,可求出EP 的长.【详解】(1)证明:∵△ABC是等边三角形,∴AC=BC,∠A=∠BCF=60°,AB=AC,在△ACE与△BCF中,AC=BC,∠A=∠BCF,AE=CF,∴△ACE≌△CBF(SAS),∴∠ACE=∠CBF;(2)解:∵由(1)知,∠ACE=∠CBF,又∠ACE+∠PCB=∠ACB=60°,∴∠PBC+∠PCB=60°,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△PGE中,PE=2PG,∵PG=1,∴PE=2.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,含30度的直角三角形的性质,解决本题的关键是证明△ACE≌△CBF.24.(1) 3.5DE ;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.25.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM =∴AP AH PH AN PM =+=+.【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.26.(1)见解析;(2)见解析【分析】(1)取格点T ,连接CT 交AB 于点D ,线段CD 即为所求.(2)取格点G ,R ,作直线GR 交直线CT 于点P ,点P 即为所求.【详解】解:(1)如图,线段CD 即为所求.(2)如图,直线l 即为所求.【点睛】本题考查作图的应用与设计,线段的垂直平分线,角平分线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
八年级数学上册轴对称单元测试题(带详细答案解析)(K12教育文档)
八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册轴对称单元测试题(带详细答案解析)(word版可编辑修改)的全部内容。
(A )(B )(C )(D )第3题第4题(A )(B )(C )(D )八年级数学上册轴对称单元测试题一、选择题(3分×7=21分)1.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )2.如图,有8块相同长方形地砖拼成一个矩形地面,则每块长方形地砖地长和宽分别是( )A .48cm ,12cmB .48cm ,16cmC .44cm ,16cmD .45cm ,15cm 3.如图,在方格纸中有四个图形〈1〉、〈2>、〈3〉、〈4>,其中面积相等的图形是( )A . 〈1〉和<2>B 。
<2>和<3>C . <2〉和〈4>D 。
〈1>和〈4>4.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.5.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个6.直角三角形三边垂直平分线的交点位于三角形的( )A .形内B .形外C .斜边的中点D .不能确实7.在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形C .等腰三角形是关于底边中线成轴对称的图形D .一条线段是关于经过该线段中点的直线成轴对称的图形 二、填空题(3分×6=18分)8.王红在电脑中用英文写个人简历时,把其中一句倒排成: , 则正确的英文为____________.9.下列10个汉字:林 上 下 目 王 田 天 王 显 吕,其中不是轴对称图形的是_______;有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________.10.一个汽车车牌在水中的倒影为 ,则该车的牌照号码是______. 11.身高1.80米的人站在平面镜前2米处,它在镜子中的像高______米,人与像第5题60cm ↑↓第2题ABMCNO第13题之间距离为_______米;如果他向前走0.2米,人与像之间距离为_________米. 12.已知等腰三角形的一个角为42°,则它的底角度数_______.13.如图,已知△ABC 中,AC + BC =24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12B .24C .36D .不确定三、多项选择题:14.下列说法中,不正确的是( )A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称.15.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E .当∠B =30°时,图中一定相等的线段有( )A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD四、解答题(第17题10分,其余每小题7分,共73分)16.如图所示,四边形EFGH 是一个矩形的球桌面,有黑白两球分别位于A 、B 两点,试说明怎样撞击B , 才使白球先撞击台球边EF ,反弹后又能击中黑球A ?17.如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF =BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 理由.18.如图所示,已知Rt △ABC 中,∠C =90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点落在AB 边上的点D .要使点D 恰为AB 的中点,问在图中还要添加什么条件?BACDEFBD第15题A CBD E(直接填写答案)⑴写出两条边满足的条件:______. ⑵写出两个角满足的条件:_____.⑶写出一个除边、角以外的其他满足条件:___________.19.你能根据图中(1)的操作步骤,将一张正方形的纸片剪出图案(2)吗?请简述其图案形成过程.20.已知:如图,△ABC 中,∠C =90°,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E ,求证CT =BE .21.用棋子摆成如图所示的“T "字图案.(1)摆成第一个“T ”字需要___________个棋子,第二个图案需______________个棋子; (2)按这样的规律摆下去,摆成第10个“T ”字需要_______个棋子,第n 个需_______个棋子.(2)(1)ACBMD(1)(2)22.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.23.如图所示,∠ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.24.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.求∠PAQ的度数.25.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状CABHMBANCQP相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图1);⑵过一条边的四等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求,分别在下面两个正方形中给出另外..两种不同的分割方法...........(正确画图,不写画法)1.A (点拨:把球衣上253的号码沿水平方向翻折180°,得到的图案即是他背对镜子时的像.)2.D (点拨:设长方形地砖的长和宽分别为x ㎝,(60-x )㎝,则2x =x +3(60-x ),x =45,60-x =15.)3.A (点拨:设每个小正方形方格面积为1,则图(1)、(2)、(3)、(4)的面积分别为6,6,8,9.)4.D (点拨:图案D 有两条对称轴,其余三个图案都只有一条对称轴.) 5.C (点拨;只有中国建设银行的标志不是轴对称图形.) 6.C .(点拨:直角三角形斜边的中点到三顶点的距离相等.)7.B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.) 8.“I this year 14 years old , ” (点拨:在这句话的正上方放一面镜子,中文为:“我今年14岁,”.) 9.(点拨:林 上 下 不是轴对称图形 , 天 王 显 吕 这四个字都有1条对称轴, 目 王 有2条对称轴, 田 有4条对称轴.)10. (点拨:只需将倒影沿垂直旋转180°即可,因此该车的牌照号码为:W 5236499.)11.1.8,4,3.6(点拨:根据镜子中的像与物体大小相同,且都到镜子的距离相等.) 12.42°或69°(点拨:这个42°的内角可以为等腰三角形的底角,也可为等腰三角形的顶角.) 13.24. 14.A ,B15.ABC . 5对.因为∠B =30°,AD =BD ,则∠DAB =30°,又因为∠C =90°,∴∠CAD =∠EAD =30°,得CD =DE ,△ACD ≌△AED ,则AC =AE =BE .16.先作出点A 关于台球边EF 的对称点A 1,连结BA 1交EF 于点O .将球杆沿BOA 1图(1)图(2)图(3)图(4)图7-2-8BAFG的方向撞击B球,可使白球先撞击台球边EF,然后反弹后又能击中黑球A.17.如图所示,延长BE到G,使EG=BC,连FG.∵AF=BE,△ABC为等边三角形,∴BF=BG,∠ABC=60°,∴△GBF也是等边三角形.在△BCF和△GEF中,∵BC=EG,∠B=∠G=60°,BF=FG, ∴△BCF≌△GEF,∴CE=DE,又∵FD⊥CE,∴∠FCE=∠FEC(等腰三角形的“三线合一”).18.(1)①AB=2BC或②BE=AE等;(2)①∠A=30°或②∠A=∠DBE等;(3)△BEC≌△AED 等.19.按(1)中提示的方法,连续折叠三次,再用剪刀剪去一个左下方的一个小角即可.20.过T作TF⊥AB于F, 证△ACT≌∠AFT(AAS),△DCE≌△FTB(AAS).21.(1)5, 8; (2)32, 3n+2.22.在CH上截取DH=BH,连结AD,先证△ABH≌△ADH,再证∠C=∠DAC,得到∠B=70°.23.如图,以BC为对称轴作P的对称点M,以BA为对称轴作出P的对称点N,连MN 交BA、BC于点P1、P2.∴△PP1P2为所求作三角形.24.由于MP、NQ分别垂直平分AB和AC,所以PB=PA,QC=QA.所以∠PBA=∠PAB,∠QCA=∠QAC,∠PAB+∠QAC=∠PBA+∠QCA=180-105=75°,∴∠PAQ=105°-75°=30°.25.如图(1)、(2)符合题意,图(3)的四部分面积相等但形状大小不同.图(1)图(2)图(3)25题图23题图。
成都石室联合中学蜀华分校八年级数学上册第三单元《轴对称》测试题(包含答案解析)
一、选择题1.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .102.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .114.等腰三角形的两边a ,b 满足7260a b --=,则它的周长是( )A .17B .13或17C .13D .195.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个6.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .220207.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°8.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤ 9.如图,AEC BED △△≌,点D 在AC 边上,AE 和BD 相交于点O ,若30AED ∠=︒,120∠=︒BEC ,则ADB ∠的度数为( )A.45°B.40°C.35°D.30°10.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A.125B.95C.85D.7511.已知等边△ABC的边长为6,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.1 B.2 C.3 D.412.在直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.5个二、填空题13.平面直角坐标系xOy中,先作出点P (2,3)关于y轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P1,称为完成一次图形变换,再将点P1进行同样的图形变换得到点P2,以此类推,则点P2020的坐标为___________.14.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.15.如图,∠C=90°,CB=CO,且点B坐标为(-2,0),则点C坐标为_________.16.在平面直角坐标系中,将点(3,2)P -向右平移4个单位得到点P ',则点P '关于x 轴的对称点的坐标为________.17.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.18.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.19.在平面直角坐标系中,O 为坐标原点,()1,1A ,在x 轴上确定一点P ,使AOP 为等腰三角形,则符合条件的等腰三角形的顶角度数为______.20.如图,在ABC 中,点D 是BC 上一动点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,在点D 的运动过程中,EDF ∠与A ∠的大小关系是EDF ∠______A ∠(填“>”“=”或“<”).三、解答题21.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.22.如图,在Rt ABC △中,90ACB ∠=︒,CAP 和CBQ △都是等边三角形,BQ 和CP 交于点H ,求证:BQ CP ⊥.23.如图,在ABC 中,50B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,连接DE ,且ADE AED ∠=∠,当60BAD ∠=︒时,求CDE ∠的度数.24.如图,//AB CD ,点E 在CB 的延长线上,A E ∠=∠,AC ED =.(1)求证:BC CD =;(2)连接BD ,求证:ABD EBD ∠=∠.25.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.26.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由已知等式,结合非负数的性质求a 、b 的值,再根据等腰三角形的性质,分类求解即可.【详解】解:∵a 2-4a +4+(b -4)2=0,∴(a -2)2+(b -4)2=0,∴a−2=0,b−4=0,解得:a =2,b =4,当a =2作腰时,三边为2,2,4,不符合三角形三边关系定理;当n =4作腰时,三边为2,4,4,符合三角形三边关系定理,周长为:2+4+4=10. 故选:D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求a ,b 的值,再根据a 或b 作为腰,分类求解.2.D解析:D【分析】点D 到点A 、点B 的距离相等可知点D 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点D 到点A 、点B 的距离AD=BD ,∴点D 在线段AB 的垂直平分线上,故选择:D .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图. 3.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.4.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】 ∵7260a b -+-=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C ..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.6.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a 3=4a 1=4,a 4=8a 1=8,a 5=16…进而发现规律是解题关键.7.A解析:A【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.8.D解析:D【分析】①由等腰直角三角形的性质可得出结论;②证明△ADE ≌△BCE ,可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题; ③证明△AEF ≌△BED 即可;④AE≠DE ,故④不正确;⑤易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.9.A解析:A【分析】由△AEC ≌△BED 可知:EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠ADB 的度数.【详解】解:∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,∴∠BEO+∠AED=∠CED+∠AED ,∴∠BEO=∠CED,∵∠AED=30°,∠BEC=120°,∴∠BEO=∠CED=120302︒-︒=45°, 在△EDC 中,∵EC=ED ,∠CED=45°,∴∠C=∠EDC=67.5°,∴∠BDE=∠C=67.5°,∴∠ADB=180°-∠BDE-∠EDC=180°-67.5°-67.5°=45°,故选A .【点睛】本题考查全等三角形的性质,等腰三角形的性质,解题的关键是熟练运用全等三角形的性质. 10.A解析:A【分析】根据作图过程可得AP 是BD 的垂直平分线,根据勾股定理可得BC 的长,再根据等面积法求出AE 的长即可.【详解】解:∵∠BAC =90°,AB =3,AC =4,∴BC5=,根据作图过程可知:AP 是BD 的垂直平分线,∴BE =DE ,AE ⊥BD ,∴△ABC 的面积:12AB•AC =12BC•AE , ∴5AE =12, ∴AE =125. 故选:A .【点睛】本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.11.D解析:D【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,依次表示出BF、CF、CD、AE、AD,然后根据AD+BD=AB列方程即可求出x的值.【详解】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴∠BFD=∠ADE=∠CEF=30°,∴BF=2x,∴CF=6-2x,∴CE=2CF=12-4x,∴AE=6-CE=4x-6,∴AD=2AE=8x-12,∵AD+BD=AB,∴8x-12+x=6,∴x=2,∴AD=8x-12=16-12=4.故选:D.【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.12.C解析:C【分析】如果OA为等腰三角形的腰,有两种可能,①以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;②如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点,所以符合条件的点一共4个.【详解】分二种情况进行讨论:①当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心OA为半径的圆弧与y轴有一个交点;②当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点,∴符合条件的点一共4个,故选:C.【点睛】本题考查等腰三角形的性质,解题关键是根据两腰相等,分四种情况进行讨论.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA 当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B.【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15.(-11)【分析】过点C作CD⊥y轴于点D根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C作CD⊥y轴于点D∵∠ACB=90°CB=CO∴∠CBO=∠COB=45°∵CD⊥y轴∴∠C解析:(-1,1)【分析】过点C作CD⊥y轴于点D,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C作CD⊥y轴于点D,∵∠ACB=90°,CB=CO,∴∠CBO=∠COB=45°,∵CD⊥y轴,∴∠CDO=90°,∴∠COD=∠DOC,∴OD=CD,∵CD⊥y轴,CB=CO,∴OD=1OB,2∵点B坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C坐标为(-1,1),故答案为(-1,1).【点睛】本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.16.【分析】先根据向右平移4个单位横坐标加4纵坐标不变求出点的坐标再根据关于x轴对称横坐标不变纵坐标相反解答【详解】解:∵将点P(3-2)向右平移4个单位得到点∴点的坐标是(7-2)∴点关于x轴的对称点解析:(7,2)【分析】先根据向右平移4个单位,横坐标加4,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.【详解】解:∵将点P(3,-2)向右平移4个单位得到点P',∴点P'的坐标是(7,-2),∴点P '关于x 轴的对称点的坐标是(7, 2).故答案为:(7, 2)【点睛】本题考查了坐标与图形变化−平移,以及关于x 轴、y 轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.17.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC 为等腰三角形,AD 为底边上的高,∴AB=AC ,BD=DC ,∵△ABC 的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD 的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.18.30【分析】由等边三角形三线合一可知:点B 和点C 关于AD 成轴对称连接BE 交AD 于点F 此时取得最小值进而求出的度数即可【详解】∵是等边三角形是边上的中线∴AD ⊥BCAD 平分∠BAC ∴点B 和点C 关于AD解析:30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F是角平分线AD与BE的交点,∴CF平分∠BCA,即:∠FCA=12∠ACB=12×60°=30°,∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.19.90°45°135°【分析】此题应该分情况讨论以OA为腰或底分别讨论当A是顶角顶点时P是以A为圆心以OA为半径的圆与x轴的交点共有1个当O是顶角顶点时P是以O为圆心以OA为半径的圆与x轴的交点共有2解析:90°,45°,135°【分析】此题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA 为半径的圆与x轴的交点,共有2个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,进而求出对应等腰三角形的顶角度数,即可.【详解】(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:90°;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:45°或135°;(2)若OA是底边时,P是OA的中垂线与x轴的交点,此时,顶角度数为:90°.综上所述,符合条件的等腰三角形的顶角度数为:90°,45°,135°,故答案是:90°,45°,135°.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.20.=【分析】先根据线段的垂直平分线的性质得到EB=EDFD=FC则根据等腰三角形的性质得到∠EDB=∠B∠FDC=∠C然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC)利用三角形内角和定理解析:=【分析】先根据线段的垂直平分线的性质得到EB=ED,FD=FC,则根据等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC),利用三角形内角和定理得到∠A=180°-(∠B+∠C),所以∠EDF=∠A.【详解】解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°-(∠EDB+∠FDC),∠A=180°-(∠B+∠C),∴∠EDF=∠A.故答案为:=.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.三、解答题21.(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型. 22.见解析【分析】由已知条件证得∠BHC=90°即可得到解答.【详解】∵CAP 和CBQ △都是等边三角形;∴60ACP CBQ ∠=∠=︒, ∵90ACB ∠=︒,∴30BCP ACB ACP ∠=∠-∠=︒在BCH 中,18090BHC BCH CBH ∠=︒-∠-∠=︒∴BQ CP ⊥【点睛】本题考查等边三角形和直角三角形的综合运用,熟练掌握等边三角形、直角三角形的性质并灵活运用是解题关键.23.30∠=︒CDE .【分析】根据等腰三角形的性质,求得DAE ∠,利用ADE AED ∠=∠,确定AED ∠的度数,在三角形DEC 中,利用三角形外角性质计算即可.【详解】∵50B C ∠=∠=︒,∴18080BAC B C ∠=︒-∠-∠=︒.∵60BAD ∠=︒,∴20DAE BAC BAD ∠=∠-∠=︒, ∴18020802ADE AED ︒-︒∠=∠==︒. ∵AED CDE C ∠=∠+∠,∴805030CDE AED C ∠=∠-∠=︒-︒=︒.【点睛】本题主要考查了等腰三角形的顶角计算,底角的计算,熟记等腰三角形的性质和三角形外角性质是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可得∠ABC=∠ECD ,则可利用AAS 证明△ABC ≌△ECD ,再由全等三角形的性质可证得结论;(2)根据“等边对等角”可得∠DBC=∠BDC ,结合∠ABC=∠ECD ,可得∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,再利用三角形的外角性质得∠EBD =∠ECD+∠BDC ,即可证明∠ABD=∠EBD .【详解】证明:(1)∵AB ∥CD ,∴∠ABC=∠ECD ,在△ABC 和△ECD 中,ABC ECD A EAC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ECD (AAS ),∴BC=CD .(2)证明:如图,∵BC=CD ,∴∠DBC=∠BDC ,∵∠ABC=∠ECD ,∴∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,又∵∠EBD =∠ECD+∠BDC ,∴∠ABD=∠EBD .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识,掌握全等三角形的判定与性质及等腰三角形的性质是解题的关键.25.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM =∴AP AH PH AN PM =+=+.【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.26.见解析【分析】由已知可得∠ABD=∠D,从而得到AB=AD,进而得到AC=AD.【详解】证明:∵BD是∠ABC 的平分线,∴∠ABD=∠CBD,又AD//BC,∴∠CBD=∠D,∴∠ABD=∠D,∴AB=AD,∵AB=AC,∴AC=AD.【点睛】本题考查等腰三角形的性质与判定,熟练掌握平行线的性质、角平分线的定义、等腰三角形的判定与性质是解题关键.。
人教版初中数学八年级数学上册第三单元《轴对称》测试卷(答案解析)(2)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm 2.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm3.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .202224.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5 5.已知等腰三角形有一边长为5,一边长为2,则其周长为( ) A .12 B .9 C .10 D .12或9 6.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .37.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60 B .40或60 C .25或40 D .408.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019=( )A .22017B .22018C .22019D .220209.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒10.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A.5cm B.6cm C.7cm D.8cm11.如图,AC AD=,BC BD=,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.CD平分ACB∠D.AB垂直平分CD12.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A.125B.95C.85D.75二、填空题13.平面直角坐标系xOy中,先作出点P (2,3)-关于y轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P1,称为完成一次图形变换,再将点P1进行同样的图形变换得到点P2,以此类推,则点P2020的坐标为___________.14.若点P(x-y,y)与点Q(-1,-5)关于x轴对称,则x+y=______.15.如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=70°,若点P是等腰三角形ABC的腰上的一点,则当DEP是以∠EDP为顶角的等腰三角形时,∠EDP的度数是_____.16.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________ 17.如图,在22⨯的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC为格点三角形,在图中最多能画出______个不同的格点三角形与ABC成轴对称.18.含30角的直角三角板与直线1l ,2l 的位置关系如图所示,已知12//l l ,30A ∠=︒,160∠=︒,若6AB =,CD 的长为__________.19.如图,在△ABC 中,AB =AC ,∠BAC=36°,AD 、CE 是△ABC 的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.20.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________.三、解答题21.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .22.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长;(2)求证:AB BC =.23.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △;(3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .24.如图,在△ABC 中, AB =AC .过点A 作BC 的平行线交∠ABC 的角平分线于点D ,连接CD .(1)求证:△ACD 为等腰三角形.(2)若∠BAD =140°,求∠BDC 的度数.25.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.26.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB 即可.【详解】解:∵AB=AC ,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD ⊥AC ,∴∠BDA=90°,∴AB=2BD ,点B 到边AC 的距离是3cm ,即BD=3cm ,∴AB=2BD=6cm ,故选:D .【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.3.A解析:A【分析】先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.4.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.5.A解析:A【分析】由等腰三角形有一边长为5,一边长为2,可分两种情况:①5为腰长,2为底边长;②2为腰长,5为底边长,依次分析即可求得答案.【详解】解:①若5为腰长,2为底边长,∵5,5,2能组成三角形,此时周长为:5+5+2=12;②若2为腰长,5为底边长,∵2+2=4<5,不能组成三角形,故舍去;∴三角形周长为12.故选:A .【点睛】此题考查等腰三角形的性质与三角形的三边关系,解题的关键是注意分类讨论.6.B解析:B【分析】由已知可以写出∠B和∠C,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k∠A=(36k)°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B.【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键.7.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.8.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.9.A解析:A【分析】利用AD=AC,求出∠ADC=∠C=50︒,利用AD=AB,即可求得∠B=∠BAD1252ADC==∠︒.【详解】∵AD=AC,∴∠ADC=∠C,∵80CAD︒∠=,∴∠ADC=∠C=50︒,∵AD=AB,∴∠B=∠BAD1252ADC==∠︒,故选:A.【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.10.D解析:D【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.11.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD =,BC BD =,∴AB 垂直平分CD ,故D 正确,A 、B 错误,OC 不平分∠ACB ,故C 错误,故选:D .【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.12.A解析:A【分析】根据作图过程可得AP 是BD 的垂直平分线,根据勾股定理可得BC 的长,再根据等面积法求出AE 的长即可.【详解】解:∵∠BAC =90°,AB =3,AC =4,∴BC 5=,根据作图过程可知:AP 是BD 的垂直平分线,∴BE =DE ,AE ⊥BD ,∴△ABC的面积:12AB•AC=12BC•AE,∴5AE=12,∴AE=125.故选:A.【点睛】本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.9【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P(x-yy)与点Q(-1-5)关于x轴对称得x-y=-1y=5解得x=4y=5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P(x-y,y)与点Q(-1,-5)关于x轴对称,得x-y=-1,y=5.解得x=4,y=5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.40°或100°或140°【分析】根据△DEP是以∠EDP为顶角的等腰三角形可知DP=DE所以可以分两种情况考虑:①点P在AB上;②点P在AC上分别画出符合条件的图形根据等腰三角形的性质和全等三角形解析:40°或100°或140°【分析】根据△DEP是以∠EDP为顶角的等腰三角形,可知DP= DE,所以可以分两种情况考虑: ①点P在AB上;②点P在AC上.分别画出符合条件的图形,根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.【详解】解:∵AB=AC,∠B=50°,∠AED=70°,∴∠EDB=20°,∵当△DEP是以∠EDP为顶角的等腰三角形,∴DP= DE,①如图,当点P在AB上时,记为P1,∵DE=DP1,∴∠DP1E=∠AED=70°,∴∠EDP1=180°﹣70°﹣70°=40°,②如图,当点P在AC上时,有两个点P2、 P3符合条件,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,2DE DP DG DH =⎧⎨=⎩, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =70°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=140°,同理证得Rt △DEG ≌Rt △D P 3H (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =100°,故答案为:40°或100°或140°.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,分类讨论画出符合条件的图形是解题的关键.16.70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110° ;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部, 如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.17.5【分析】画出所有与成轴对称的三角形【详解】解:如图所示:和对称和对称和对称和对称和对称故答案是:5【点睛】本题考查轴对称图形解题的关键是掌握画轴对称图形的方法解析:5【分析】画出所有与ABC成轴对称的三角形.【详解】解:如图所示:ABC和ADC对称,ABC和EBD△对称,ABC和DEF对称,ABC 和DCB 对称,ABC 和CDA 对称,故答案是:5.【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.18.3【分析】再根据含角的直角三角形的边角关系证得BC=AB=3根据平行线的性质可求得∠BDC=∠1=60°根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形即可证得CD=BC=3【详解】解析:3【分析】再根据含30角的直角三角形的边角关系证得BC=12AB=3,根据平行线的性质可求得∠BDC=∠1=60°,根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形,即可证得CD=BC=3.【详解】解:∵∠ACB=90°,∠A=30°,∴BC=12AB=3,∠CBD=60°, ∵12//l l ,∴∠BDC=∠1=60°,又∠CBD=60°,∴∠BCD=60°,∴△BCD 为等边三角形,∴CD=BC=3,故答案为:3.【点睛】本题考查了含30角的直角三角形的边角关系、平行线的性质、三角形的内角和定理、等边三角形的判定与性质,熟练掌握含30角的直角三角形的边角关系,证得△BCD 为等边三角形是解答的关键.19.10【分析】连结CP 利用等腰三角形顶角平分线所在直线为对称轴得BP=CPBD=CD=5当点CPE 在一直线是BP +EP 最小值最小值为BP +EP=EC 由∠BAC=36°AB=AC 求出∠ABC=∠ACB=解析:10【分析】连结CP ,利用等腰三角形顶角平分线所在直线为对称轴得 BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,最小值为BP +EP= EC ,由∠BAC=36°,AB=AC ,求出∠ABC=∠ACB=72°,又CE 是△ABC 的角平分线有∠BCE=36°,求出∠BEC=72º,得CE=BC =10即可.【详解】连结CP ,点P 在AD 上运动,∵AB=AC ,AD 平分∠BAC ,∴AD 所在直线为对称轴,∴BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,∴BP +EP=PC+EP=EC ,∵∠BAC=36°,AB=AC ,∴∠ABC=∠ACB=()1180-36=722︒︒︒, ∵CE 是△ABC 的角平分线, ∴∠BCE=1ACB=362∠︒, ∴∠BEC=180º-∠EBC-∠BCE =180º-72º-36º=72º,∴∠BEC=∠EBC ,∴CE=BC=BD+CD=10.故答案为:10.【点睛】本题考查等腰三角形的判定和性质,角平分线性质,轴对称性质,掌握等腰三角形的判定和性质,角平分线性质,线段和最短问题经常利用轴对称性质作出对称线段,三点在一线时最短作出图形是解题关键.20.7【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A (a-13)与点B (2-2b-1)关于x 轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A (a-1,3)与点B (2,-2b-1)关于x 轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b +=2×3+1=7.故答案为:7.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题21.(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.22.(1)DE=5;(2)证明见解析.【分析】(1)根据角平分线和平行线的性质可得∠ABD=∠EDB,从而可得DE= BE=5;(2)根据等边对等角得出∠A=∠ADE,根据平行线的性质可得∠C=∠ADE,从而可得∠A=∠C,根据等角对等边可证得结论.【详解】解:(1)∵BD是ABC的角平分线,∴∠ABD=∠DBC,∵DE//BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=DE,∵BE=5,∴DE=5;(2)∵AE=BE,BE=DE,∴AE=DE,∴∠A=∠ADE,∵DE//BC,∴∠C=∠ADE,∴∠A=∠C,∴AB=BC.【点睛】本题考查等腰三角形的性质和判定,平行线的性质.解决此题的关键是借助等腰三角形的性质和判定完成边相等与角相等之间的互相转化.23.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.24.(1)证明见解析;(2)50BDC ∠=︒.【分析】(1)根据平行线的性质和角平分线的定义可得∠ADB=∠ABD ,从而可得AB=AD ,再依据等量代换即可得出结论;(2)根据等腰三角形等边对等角可求得∠ADB=20°,再依据角平分线的性质、平行线的性质和等腰三角形等边对等角求得70ADC ∠=︒,最后利用角的和差即可求得结论.【详解】解:(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 为∠ABC 的平分线,∴∠ABD=∠DBC ,∴∠ADB=∠ABD ,∴AB=AD ,∵AB =AC ,∴AC=AD ,即△ACD 为等腰三角形;(2)∵AB=AD ,∠BAD =140°,∴∠ADB=∠ABD=1802BAD ︒-∠=20°, ∴∠ABC=∠ABD+∠DBC=2∠ABD=40°,∵AB =AC ,∴∠ACB=∠ABC=40°,∵AD ∥BC ,∴∠DAC=∠ACB=40°,∵AC=AD , ∴180702DAC ADC ACD ︒-∠∠=∠==︒, ∴50AD DC AD C B B ∠-∠=∠=︒.【点睛】 本题考查等腰三角形的性质和判定,平行线的性质,角平分线的有关证明.(1)中需正确识别角平分线与平行线所构成的等腰三角形;(2)中能根据等边对等角依次计算角度是解题关键.25.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C 即可;(2)延长BA ,根据两直线平行,同位角相等,有∠EAF=∠B ,由(1)可知∠CAE=∠C ,再根据AB=AC ,可得∠B=∠C ,等量替换之后即可得证.【详解】(1)射线AE 为所求;(2)证明:如图所示,延长BA ,∵//AE BC ,∴∠EAF=∠B ,∠CAE=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠EAF=∠CAE ,∴AE 是ABC 的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.26.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠, ∴30DBC ∠=︒.∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC , ∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.。
最新人教版初中数学八年级数学上册第三单元《轴对称》检测(有答案解析)(1)
一、选择题1.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .202.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒3.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 4.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个5.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.56.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S =.A .1B .2C .3D .4 7.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 8.如图,在ABC ∆中,5AC =,线段AB 的垂直平分线交AC 于点,D BCD ∆的周长是9,则BC 的长为( )A .3B .4C .5D .69.下列图案是轴对称图形的是有( )A .①②B .①③C .①④D .②③10.下列图案中,是轴对称图形的是( )A .B .C .D .11.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm 12.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80° 二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.15.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.17.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.18.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .19.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.20.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.三、解答题21.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .22.(1)问题:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,AB BP BC +=.求证:90APD ∠=︒;(2)问题:如图②,在三角形ABC 中,45B C ∠=∠=︒,P 是AC 上一点,PE PD =,且90EPD ∠=︒.求AE AP PC+的值.23.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.24.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.25.如图,在ABC ∆中,点D 是边BC 上一点,点E 在边AC 上,且,,BD CE BAD CDE =∠=∠ADE C ∠=∠.(1)如图1,求证:ADE ∆是等腰三角形,(2)如图2,若DE 平分ADC ∠,在不添加辅助线的情况下,请直接写出图中所有与CDE ∠相等的角(CDE ∠除外).26.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN 是线段AB 的垂直平分线,P 是MN 上任一点,连结PA 、PB .将线段AB 沿直线MN 对折,我们发现PA 与PB 完全重合.由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.已知:如图,MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上的任意一点求证:PA =PB .分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得PA=PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a和b的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵()2-+-=,a b370∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.2.A解析:A根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC的度数,进而求出∠CDE的度数.【详解】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A.【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.3.C解析:C【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.4.C解析:C【分析】分三种情况:当AB=AC时,当BA=BC时,当AC=AB时,根据等腰三角形两边相等的性质分别作图即可得解.当AB=AC时,点C与点O重合;当BA=BC时,以点B为圆心,AB长为半径画弧,与x轴有两个交点;当AC=AB时,作线段AB的垂直平分线,与x轴有一个交点,共有4个点C,故选:C..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.5.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.6.D解析:D【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,由作法得AD平分∠BAC,所以①正确;∴∠BAD=∠CAD=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∵∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上,所以③正确;∵如图,在直角△ACD中,∠CAD=30°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=14AC•AD:34AC•AD=1:3,∴S△DAC:S△ABD=1:2.即S△ABD=2S△ACD,故④正确.故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.7.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.8.B解析:B【分析】首先根据DE是线段AB的垂直平分线,可得AD=BD,然后根据△BCD的周长是9cm,以及AD+DC=AC,求出BC的长即可.【详解】解:∵DE是线段AB的垂直平分线,∴AD=BD,∵△BCD的周长是9cm,∴BD+DC+BC=9(cm),∴AD+DC+BC=9(cm),∵AD+DC=AC,∴AC+BC=9(cm),又∵AC=5cm,∴BC=9−5=4(cm).故选:B.【点睛】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.9.C解析:C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:①是轴对称图形,②不是轴对称图形,③不是轴对称图形,④是轴对称图形.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.C解析:C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.【点睛】本题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.B解析:B【分析】解决本题要注意分为两种情况4cm为底或8cm为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm和8cm,∴此题有两种情况:①4cm为底边,那么8cm就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm.故选:B.【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.D解析:D【分析】由50︒的角是顶角或底角,依据三角形内角和计算得出顶角的度数.【详解】当50︒的角为顶角时,它的顶角为50︒,︒-︒⨯=︒,当50︒的角为底角时,它的顶角为18050280∴它的顶角为50︒或80︒,故选:D.【点睛】此题考查等腰三角形等边对等角的性质,三角形内角和定理,熟记等边对等角的性质是解题的关键.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A(1+m1-n)与点B(-32)关于y轴对称∴1+m=31-n=2∴m=2n=-1∴(m+n)202解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.15.32【分析】根据角平分线定义求出∠ABP=∠CBP根据线段的垂直平分线性质得出BP=CP根据等腰三角形的性质得到∠CBP=∠BCP根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP=∠CBP,根据线段的垂直平分线性质得出BP=CP,根据等腰三角形的性质得到∠CBP=∠BCP,根据三角形内角和定理得出方程3∠ABP+24°+60°=180°,解方程得到答案.【详解】解:∵BP平分∠ABC,∴∠ABP=∠CBP,∵直线l是线段BC的垂直平分线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,∵∠A+∠ACB+∠ABC=180°,∠A=60°,∠ACP=24°,∴3∠ABP+24°+60°=180°,解得:∠ABP=32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.16.【分析】过C作CE⊥AB于E交AD于F连接BF则BF+EF最小证△ADB≌△CEB得CE=AD=b即BF+EF=b再根据等边三角形的性质可得BE=a从而可得结论【详解】解:过C作CE⊥AB于E交ADa b解析:【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=b,即BF+EF=b,再根据等边三角形的性质可得BE=a,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.100°【分析】作点A关于BC的对称点A′关于CD的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD的交点即为所求的点MN利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三解析:100°【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.18.6【分析】根据垂直平分线的性质可得AE=BE即可得出AC=BE+CE根据△BCE的周长即可得答案【详解】∵DE是AB的垂直平分线∴AE=BE∵AB=ACAC=AE+CEAB=11∴BE+CE=AC=解析:6【分析】根据垂直平分线的性质可得AE=BE,即可得出AC=BE+CE,根据△BCE的周长即可得答案.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC,AC=AE+CE,AB=11,∴BE+CE=AC=11,∵BCE的周长为17cm,∴BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.19.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.20.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A 是顶角;②∠A是底角∠B=∠A时③∠A是底角∠B=∠A时利用三角形的内角和进行求解【详解】①∠A是顶角∠B=(180°−∠A)÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A是顶角;②∠A是底角,∠B=∠A 时,③∠A是底角,∠B=∠A时,利用三角形的内角和进行求解.【详解】①∠A是顶角,∠B=(180°−∠A)÷2=65°;②∠A是底角,∠B=∠A=50°.③∠A是底角,∠A=∠C=50°,则∠B=180°−50°×2=80°,∴当∠B的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.三、解答题21.(1)见详解;(2)见详解.【分析】(1)只要证明△ABE≌△ADC即可解决问题;△≌△,再证(2)延长AN到G,使AG=BC,连接GE,先证AEG CAB△≌△即可解决问题.ADN NGE【详解】(1)证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,∴△ABE≌△ADC,∴BE=DC,∠ABE=∠ADC,又∵∠DOF=∠AOB,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠ AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.22.(1)见解析;(2)1【分析】(1)先证明()ABP PCD HL ≅△△,从而得APB PDC ∠∠=,进而即可得到结论;(2)过D 点做DF AC ⊥于点F ,易证()APE FDP AAS ≅△△,DPC △是等腰直角三角形,进而即可求解.【详解】(1)∵BP PC BC +=,BP AB BC +=,∴PC AB =,在t R ABP △与t R PCD 中∵AP PD AB PC =⎧⎨=⎩, ∴()ABP PCD HL ≅△△,∴APB PDC ∠∠=,∴180APD APB DPC ∠=︒-∠-∠180()PDC DPC =︒-∠+∠18090=︒-︒90=︒; (2)过D 点做DF AC ⊥于点F ,在ABC 中,18090A B C ∠=︒-∠-∠=︒,∴A PFD ∠∠=,∵90APE DPF +=︒∠∠ ,90AEP APE ∠+∠=︒,∴DPF AEP ∠∠=,在APE 与FDP 中 A DFP DPE AEP PE PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()APE FDP AAS ≅△△,∴AE PF =,AP DF =,∵在DPC △中,90904545FDC C ∠∠︒︒︒︒=-=-=,∴DF FC =,∴AP FC =,∴PC PF FC AE AP =+=+,∴1AE AP PC+=.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握“一线三等角”模型,添加合适的辅助线,构造全等三角形,是解题的关键.23.15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.24.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE SS =, ∴1122CE AH BE AG ⨯⨯=⨯⨯, ∴AH=AG ,∴DA 平分∠CDE.【点睛】本题考查了三角形的全等,等边三角形的性质,角平分线性质定理的逆定理,准确选择全等判定方法,活用角的平分线的逆定理是解题的关键.25.(1)详见解析;(2)与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C【分析】(1)证明△ABD ≌△DCE ,推出AD=DE ,即可得到结论;(2)根据DE 平分∠ADC ,推出∠ADE=∠CDE=12∠ADC ,利用BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,得到∠B=∠BAD=∠ADE=∠CDE ,再由ADE C ∠=∠,得到∠C=CDE ∠.【详解】(1)∵∠ADC=∠B+∠BAD ,∠BAD=∠CDE ,∴∠B=∠ADE ,∵∠ADE=∠C ,∴∠B=∠C ,在△ABD 和△DCE 中,BAD CDE B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE ,∴AD=DE ,∴ADE ∆是等腰三角形;(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE=12∠ADC , ∵BAD CDE ∠=∠,∠ADC=∠B+∠BAD ,∴∠B=∠BAD=∠ADE=∠CDE ,∵ADE C ∠=∠,∴∠C=CDE ∠,∴与CDE ∠相等的角有:∠B ,∠BAD ,∠ADE ,∠C .【点睛】此题考查全等三角形的判定及性质,等腰三角形的判定定理,角平分线的性质,三角形外角性质,熟记三角形全等的判定定理是解题的关键.26.(1)见解析;(2)见解析;(3)5【分析】(1)证明△PAC ≌△PBC 即可解决问题.(2)如图②中,设直线l 、m 交于点O ,连结AO 、BO 、CO .利用线段的垂直平分线的判定和性质解决问题即可.(3)连接BD ,BE ,证明△BDE 是等边三角形即可.【详解】证明:(1)如图①中,∵MN ⊥AB ,∴∠PCA =∠PCB =90°.在△PAC 和△PBC 中,AC BC PCA PCB PC PC =⎧⎪∠=∠⎨⎪=⎩,∴△PAC ≌△PBC (SAS ),∴PA =PB .(2)如图②中,设直线l 、m 交于点O ,连结AO 、BO 、CO .∵直线l 是边AB 的垂直平分线,∴OA =OB ,又∵直线m 是边BC 的垂直平分线,∴OB =OC ,∴OA =OC ,∴点O 在边AC 的垂直平分线n 上,∴直线l 、m 、n 交于点O .(3)解:如图③中,连接BD ,BE .∵BA =BC ,∠ABC =120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15,∴DE=1AC=5.3故答案为5.【点睛】本题属于几何变换综合题,考查了线段的垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③2.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个3.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .84.如图所示的是A 、B 、C 三点,按如下步骤作图:①先分别以A 、B 两点为圆心,以大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ;②再分别以B 、C 两点为圆心,以大于12BC 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,GH 与MN 交于点P ,若66BAC ∠=︒,则BPC ∠等于( )A .100°B .120°C .132°D .140° 5.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40 6.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.57.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒8.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系 9.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒10.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°11.下列图案中,是轴对称图形的是( )A .B .C .D .12.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .2个B .3个C .4个D .5个二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.14.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .15.在平面直角坐标系中,O 为坐标原点,()1,1A ,在x 轴上确定一点P ,使AOP 为等腰三角形,则符合条件的等腰三角形的顶角度数为______.16.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.17.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.18.如图,在等边三角形ABC 中,CM 平分ACB ∠交AB 于点M .(1)ACM ∠的大小=__________(度);(2)AMC ∠的大小=__________(度);(3)已知4AB =,点D 为射线CM 上一点,作∠DCE=60︒,()CE CD CD AB =≠,连接DE 交射线CB 于点F ,连接BD ,BE 当以B ,D ,M 为顶点的三角形与BEF 全等时,线段CF 的长为__________.19.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,那么AP 的长是________.20.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________.三、解答题21.如图,已知:射线AM 是△ABC 的外角∠NAC 的平分线.(1)作BC 的垂直平分线PF ,交射线AM 于点P ,交边BC 于点F ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P 作PD ⊥BA ,PE ⊥AC ,垂足分别为点D ,E ,请补全图形并证明BD =CE .22.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .23.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.24.如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.①求EDG ∠的度数(用含α的式子表示);②请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.25.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN 是线段AB 的垂直平分线,P 是MN 上任一点,连结PA 、PB .将线段AB 沿直线MN 对折,我们发现PA 与PB 完全重合.由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.已知:如图,MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上的任意一点求证:PA =PB .分析:图中有两个直角三角形APC 和BPC ,只要证明这两个三角形全等,便可证得PA =PB .(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC 中,直线l ,m ,n 分别是边AB ,BC ,AC 的垂直平分线. 求证:直线l 、m 、n 交于一点;(请将下面的证明过程补充完整)证明:设直线l ,m 相交于点O .(3)如图③,在△ABC 中,AB =BC ,边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E ,若∠ABC =120°,AC =15,则DE 的长为 .26.如图,ABC 中,AD 平分BAC ∠,BC 的垂直平分线DG 交AD 于D ,DE AB ⊥于E ,DF AC ⊥于F .求证:(1)BE CF =.(2)2AB AC CF -=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.B解析:B【分析】根据∠ABC =45°,CD ⊥AB 可得出BD =CD ,利用ASA 判定Rt △DFB ≌Rt △DAC ,从而得出DF =AD ,BF =AC .则CD =CF +AD ,即AD +CF =BD ;再利用ASA 判定Rt △BEA ≌Rt △BEC ,得出CE =AE =12AC ,又因为BF =AC 所以CE =12AC =12BF ,连接CG .因为△BCD 是等腰直角三角形,即BD =CD .又因为DH ⊥BC ,那么DH 垂直平分BC .即BG =CG . 在Rt △CEG 中,CG 是斜边,CE 是直角边,所以CE <CG .即AE <BG .【详解】解:∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形.∴BD =CD .故①正确;连接CG .∵△BCD 是等腰直角三角形,∴BD =CD又DH ⊥BC ,∴DH 垂直平分BC .∴BG =CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE=12AC=12BF,∴2CE=BF;故③正确;由③可得△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故④正确;故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD是斜边AB上的高,利用互余关系求∠BCD=30°,DB=2,可求BC,在Rt△ABC中,再利用含30°的直角三角形的性质求AB,再用线段的差求AD.【详解】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.4.C解析:C【分析】根据基本作图可判断MN 垂直平分AB ,GH 垂直平分BC ,根据垂直平分线的性质可得PA PB PC ==,再利用等腰三角形的性质得到PAB PBA ∠=∠,PAC PCA ∠=∠,最后根据三角形的外角性质可得∠BPC=2∠BAC ,据此求解即可.【详解】解:如图,连接AB 、AC 、BC 、BP 、PC 、PA ,由作法可知MN 垂直平分AB ,GH 垂直平分BC ,∴PA PB PC ==,∴PAB PBA ∠=∠,PAC PCA ∠=∠,∴PBA PCA PAB PAC BAC ∠+∠=∠+∠=∠,∴2BPC PAB PAC PBA PCA BAC ∠=∠+∠+∠+∠=∠,∴2266132BPC BAC ∠=∠=⨯︒=︒.故选:C .【点睛】本题考查了线段垂直平分线的基本作图及线段垂直平分线的性质,利用等腰三角形的性质,三角形的外角性质.5.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.6.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.7.C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.B解析:B【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等;【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD ,又AB=A′B′,∴△ABD ≅△A′B′E ,同理△ACD ≅△A′C′E ;∴ABD A B E SS ''=,ACD A C E S S ''=, 故ABD ACD A B E A C E S S S S ''''+=+,又ABC ,A B C '''的面积分别为1S 、2S ,故选:B.【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.9.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A.【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.10.B解析:B【分析】根据题中作图知:DM垂直平分AB,BD平分∠ABC,利用三角形内角和定理计算即可.【详解】由题意得:DM垂直平分AB,BD平分∠ABC,∵DM垂直平分AB,∴AD=BD,∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠A+∠ABD+∠CBD+∠C=180︒,∠C=84°,∴∠A=32︒,【点睛】此题考查线段垂直平分线作图及性质,角平分线作图及性质,三角形的内角和定理,根据题意得到DM垂直平分AB,BD平分∠ABC是解题的关键.11.C解析:C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.【点睛】本题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.C解析:C【分析】如果OA为等腰三角形的腰,有两种可能,①以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;②如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点,所以符合条件的点一共4个.【详解】分二种情况进行讨论:①当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心OA为半径的圆弧与y轴有一个交点;②当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点,∴符合条件的点一共4个,故选:C.【点睛】本题考查等腰三角形的性质,解题关键是根据两腰相等,分四种情况进行讨论.二、填空题13.5【分析】作PH⊥MN于H如图根据等腰三角形的性质得MH=NH=MN=15在Rt△POH中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH ⊥MN 于H ,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt △POH 中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH 即可. 【详解】作PH ⊥MN 于H ,如图,∵PM=PN ,∴MH=NH=12MN=1.5, 在Rt △POH 中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5, ∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.15.90°45°135°【分析】此题应该分情况讨论以OA为腰或底分别讨论当A是顶角顶点时P是以A为圆心以OA为半径的圆与x轴的交点共有1个当O是顶角顶点时P是以O为圆心以OA为半径的圆与x轴的交点共有2解析:90°,45°,135°【分析】此题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA 为半径的圆与x轴的交点,共有2个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,进而求出对应等腰三角形的顶角度数,即可.【详解】(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:90°;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:45°或135°;(2)若OA是底边时,P是OA的中垂线与x轴的交点,此时,顶角度数为:90°.综上所述,符合条件的等腰三角形的顶角度数为:90°,45°,135°,故答案是:90°,45°,135°.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.3cm【分析】过点P作PF⊥OB于F根据角平分线上的点到角的两边距离相等可得PF=PE根据角平分线的定义可得∠AOC=∠BOC根据两直线平行内错角相等可得∠AOC=∠OPD两直线平行同位角相等可得∠解析:3cm【分析】过点P作PF⊥OB于F,根据角平分线上的点到角的两边距离相等可得PF=PE,根据角平分线的定义可得∠AOC=∠BOC,根据两直线平行,内错角相等可得∠AOC=∠OPD,两直线平行,同位角相等可得∠PDF=∠AOB,再求出∠BOC=∠OPD,根据等角对等边可得PD=OD,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF=12PD,进而即可求解.【详解】如图,过点P作PF⊥OB于F,∵OC平分∠AOB,PE⊥OA,∴PE=PF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵PD∥OA,∴∠AOC=∠OPD,∠PDF=∠AOB=30°,∴∠BOC=∠OPD,∴PD=OD=6cm,∴PF=12PD=12×6=3cm,∴PE=PF=3cm.故答案为:3cm.【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.17.100°【分析】作点A关于BC的对称点A′关于CD的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD的交点即为所求的点MN利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三解析:100°【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.18.2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时当点D在线段CM的延长线上时分别画出图形利用全解析:3090︒ 2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时,当点D在线段CM的延长线上时,分别画出图形,利用全等三角形的性质解答.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60︒,∵CM平分ACB∠,∴∠ACM=1∠ACB=30,2故答案为:30;∠,(2)∵△ABC是等边三角形,CM平分ACB∴CM⊥AB,∴∠AMC=90︒,故答案为:90︒;(3)∵∠DCE=60︒,CD=CE,∴△CDE是等边三角形,∴DE=CE=CD,∵∠BCM=∠ACM=30,∴∠BCE=30,∴CF平分∠DCE,∵CD=CE,∴CB垂直平分DE,①当点D在线段CM上时,当△BDM≌△BEF时,如图1,∴BF=BM=2,∴CF=CB-BF=4-2=2;当△BDM≌△EBF时,如图1,则EF=BM=2,∴CD=DE=4,,∵AB=4,CD<CM<4,∴此种情况不成立,舍去;②当点D在线段CM的延长线上时,当△BDM≌△BEF时,如图2,∴BF=BM=2,∴CF=BC+BF=4+2=6,;当△BDM≌△EBF时,如图3,则EF=BM=2,∴CE=2EF=4,∴2223=-=,CF CE EF故答案为: 2或6或23..【点睛】此题考查等边三角形的性质,利用三线合一的性质进行证明,全等三角形的性质,熟记等边三角形的性质是解题的关键.19.6【分析】连接OD由题意可知OP=DP=OD即△PDO为等边三角形所以∠OPA=∠PDB=∠DPA=60°推出△OPA≌△PDB根据全等三角形的对应边相等知OA=BP=3则AP=AB−BP=6【详解解析:6【分析】连接OD.由题意可知OP=DP=OD,即△PDO为等边三角形,所以∠OPA=∠PDB=∠DPA=60°,推出△OPA≌△PDB,根据全等三角形的对应边相等知OA=BP=3,则AP=AB−BP =6.【详解】解:如图,连接OD ,∵PO =PD ,∴OP =DP =OD ,∴△PDO 为等边三角形,即∠DPO =60°,∵等边△ABC ,∴∠A =∠B =60°,AC =AB =9,∴∠OPA =180°−60°−∠DPA=120°−∠DPA∠PDB =180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB ,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .20.7【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A (a-13)与点B (2-2b-1)关于x 轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A (a-1,3)与点B (2,-2b-1)关于x 轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b =2×3+1=7.故答案为:7.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用基本作图作BC的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB、PC,根据线段垂直平分线的性质得到PB=PC,根据角平分线的性质得PD=PE,则可判断Rt△BDP≌Rt△CEP,从而得到BD=CE.【详解】解:(1)如图,PF为所作;(2)证明:如图,连接PB、PC,如图,∵PF垂直平分BC,∴PB=PC,∵AM是△ABC的外角∠NAC的平分线,PD⊥BA,PE⊥AC,∴PD=PE,在Rt △BDP 和Rt △CEP 中,PB PC PD PE=⎧⎨=⎩, ∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE .【点睛】本题考查了线段垂直平分线和角平分线的性质以及全等三角形的判定和性质,掌握相关性质定理正确推理论证是解题关键.22.(1)见详解;(2)见详解.【分析】(1)只要证明△ABE ≌△ADC 即可解决问题;(2)延长AN 到G ,使AG=BC ,连接GE ,先证AEG CAB △≌△,再证GE ADN N △≌△即可解决问题.【详解】(1)证明:∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE ,即∠BAE=∠DAC ,∴△ABE ≌△ADC ,∴BE=DC ,∠ABE=∠ADC ,又∵∠DOF=∠AOB ,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.23.(1)4;(2)见解析【分析】(1)证△ADE ≌△CDF (ASA ),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF ,则△DEF 是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC 中,∠BAC=90°,AB=AC ,AD 是高,∴BD=CD=AD=12BC ,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°, ∵DF ⊥DE ,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中, ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE ≌△CDF ,∴DE=DF ,又∵∠EDF=90°,∴△DEF 是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG ,∠AED=∠DEF+∠AEG=45°+∠AEG ,∴∠AGF=∠AED .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.24.(1)补图见解析;(2)①90EDG α∠=︒-;②以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) ①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)①∵ADF α∠=,∴180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,∵DF DE ⊥,∴90EDF ∠=︒,∴1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,②以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,∵D 是AB 的中点,∴AD BD =,∵GD BD =,∴AD GD =,∵90,GDE EDA DE DE α∠=∠=︒-=,∴GDE ADE ≌,∴,EGD EAD AE GE ∠=∠=,∵90EAD B ∠=︒+∠,∴90EGD B ∠=︒+∠,∴9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒, ∴以线段,,GE GF EF 为边的三角形是直角三角形,∴以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.25.(1)见解析;(2)见解析;(3)5【分析】(1)证明△PAC ≌△PBC 即可解决问题.(2)如图②中,设直线l 、m 交于点O ,连结AO 、BO 、CO .利用线段的垂直平分线的判定和性质解决问题即可.(3)连接BD ,BE ,证明△BDE 是等边三角形即可.【详解】证明:(1)如图①中,∵MN ⊥AB ,∴∠PCA =∠PCB =90°.在△PAC 和△PBC 中,AC BC PCA PCB PC PC =⎧⎪∠=∠⎨⎪=⎩,∴△PAC ≌△PBC (SAS ),∴PA =PB .(2)如图②中,设直线l 、m 交于点O ,连结AO 、BO 、CO .∵直线l 是边AB 的垂直平分线,∴OA =OB ,又∵直线m 是边BC 的垂直平分线,∴OB =OC ,∴OA =OC ,∴点O 在边AC 的垂直平分线n 上,∴直线l 、m 、n 交于点O .(3)解:如图③中,连接BD ,BE .∵BA =BC ,∠ABC =120°,∴∠A =∠C =30°,∵边AB 的垂直平分线交AC 于点D ,边BC 的垂直平分线交AC 于点E ,∴DA =DB ,EB =EC ,∴∠A =∠DBA =30°,∠C =∠EBC =30°,∴∠BDE =∠A +∠DBA =60°,∠BED =∠C +∠EBC =60°,∴△BDE 是等边三角形,∴AD =BD =DE =BE =EC ,∵AC =15,∴DE =13AC =5. 故答案为5.【点睛】 本题属于几何变换综合题,考查了线段的垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 26.(1)证明见解析;(2)证明见解析【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE=DF ,再证明△BDE ≌△CDF 就可以得出结论;(2)由条件可以得出△DAE ≌△DAF 就可以得出AE=AF ,进而就可以求出结论.【详解】(1)连接DB 、DC ,如图所示,DG 垂直平分BC ,DB DC ∴=, 又AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90DEB DFG ∠=∠=︒,DAE DAF ∠=∠, 在Rt BDE 和Rt CDF 中,DB DC DE DF =⎧⎨=⎩, ()HL Rt BDE Rt CDF ∴≅,BE CF ∴=.(2)在Rt DAE 和Rt DAF △中,DA DA DE DF =⎧⎨=⎩, ()Rt DAE Rt DAF HL ∴≅,AE AF ∴=,AB AE BE -=,∴-=,AB AF CF()-+=,AB AC CF CF--=,AB AC CF CFAB AC CF-=.2【点睛】本题考查了角平分线的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.。