数学模型与数学建模ppt课件

合集下载

数学建模入门PPT课件

数学建模入门PPT课件
y

a
o


b
x
CHENLI
19
4 模型求解
证明: 将椅子转动 ,对角线互换,由
2
g(0)0,f(0)0,可得
f()0,g()0,
2
2
令 h ( ) f ( ) g ( )则 , h ( 0 ) f ( 0 ) g ( 0 ) 0 ,
4)按建立模型的数学方法(或所属数学分支)分类: 初等模型、几何模型、线性代数模型、微分方程模型、 图论模型、马氏链模型、运筹学模型等。
CHENLI
13
5)按建模目的分类: 描述性模型、分析模型、预报模型、优化模型、 决策模型、控制模型等。
6)按对模型结构的了解程度分类:
白箱模型:其内在机理相当清楚的学科问题,包括 力学、热学、电学等。
优决策控制等。
6)模型检验: 把模型分析的结果“翻译”回到实 际对象中,用实际现象、数据等检验模型的合理性 和适应性检验结果有三种情况:符合好,不好,阶 段性和部分性符合好。 7)模型应用:应用中可能发现新问题,需继续完善。
CHENLI
11
模型的分类
1)按变量的性质分类:
离散模型 确定性模型 线性模型 单变量模型 连续模型 随机性模型 非线性模型 多变量模型
•要有严密的数学推理,模型本身要正确;
•要有足够的精确度。
4)模型求解:可以包括解方程、画图形、证明定理
以及逻辑运算等。会用到传统的和近代的数学方
法,计算机技术(编程或软件包)。特别地近似计
算方法(泰勒级数,三角级数,二项式展开、代数
近似、有效数字等)。
CHENLI
10
5)模型分析:结果分析、数据分析。 变量之间的依赖关系或稳定性态;数学预测;最

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学建模介绍PPT课件

数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答


数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5

数学建模ppt课件-文档资料

数学建模ppt课件-文档资料
数学建模
• 数学建模简介 • 大学生数学建模竞赛 • 数学建模的步骤 • 初等数学模型
• 数学建模简介 1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
• 大学生数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的, 1989年我国大学生开始参加美国的竞赛。经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10城市的大学生数学模型联赛。 • 教育部领导及时发现、并扶植、培育了这一 新生事物,决定从1994年起由教育部高教司和中 国工业与应用数学学会共同主办全国大学生数学 建模竞赛,每年一次。十几年来这项竞赛的规模 以平均年增长25%以上的速度发展。
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙 T 建模 热传导定律 Q k d 双层玻璃模型 T T T T T T 1 a a b b 2 Q k k k 1 1 2 1 d l d
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2019年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2019年竞赛的选手达到25000多名。 2019年竞 赛的选手达到25000多名。 • 2019年全国967所高校一万余支队伍、三万多名 大学生参加2019年度的数学建模竞赛,山东省有 59所高校,近七百支队参加竞赛。

数学建模讲座PPT课件

数学建模讲座PPT课件

决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河
模型构成
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态 S ~ 允许状态集合
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20公里)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格; 2
k奇,左下移; k偶,右上移.
d1, d11给出安全渡河方案
1 d11
s1
d1
评注和思考
0sn+1 1
2
3x
规格化方法, 易于推广 考虑4名商人各带一随从的情况
习题
• 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要
人划之外,至多能载猫、鸡、米三者之 一,而当人不在场时猫要吃鸡、鸡要吃 米。试设计一安全过河方案,并使渡河 次数尽量地少。
越来越受到人们的重视。
数学建模
如虎添翼
计算机技术
知识经济
建模示例 椅子能在不平的地面上放稳吗?
问题 椅子能在不平的地面上放稳吗?
模 1.椅子四条腿一样长,椅脚与地面接触处可视为一人点,四
型 假

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

数学模型与数学建模

数学模型与数学建模
下一页 返回
1. 1数学模型与数学建模
• 从而解释或描述某一系统或过程.数学模型对我们其实并不陌生.如牛 顿第二定律F=ma就是一个典型的数学模型;欧姆电路定律I=U/R也是 一个数学模型;历史上著名的七桥问题的答案更是一个巧妙的数学模 型。
• 七桥问题18世纪东普鲁士哥尼斯误被普列格尔河分为四块.它们通 过七座桥相互连接(图1. 2).当时.城里的市民热衷于这样一个游 戏:“一个散步者怎样才能从某块陆地出发.经每座桥一次且仅一次到 出发点?实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
科的专门知识外.还常常需要较广阔的应用数学方面的知识.以开拓思 路.
• N模型求解本环节对建立的模型可以采用解方程、问图形、证明定
理、逻辑运算、数值计算等各种传统的和近代的数学方法.特别是计
算机技术进行求解.确定模型所涉及关键参量的结果.
• V模型分析对模型结果及算法进行理论上的分析.
上一页 下一页 返回
上一页 下一页 返回
1. 1数学模型与数学建模
• 初始状态:x(0)=0,y(0)=h.x‘(0)=vcos0,y'(0)=vsin0.但如果考虑空气 阻力.问题的理解似乎并不那么简单.比如:空气阻力和什么因索有关? 关系如何?阻力对投掷距离的影响怎样?如果考虑这些附加问题会对建 立模型
• 那么.为什么还要再根据实际问题不断去修正、完善数学模型呢?实 际中.建立问题的模型不一定一次就能成功.不成功时自然需要根据实 际问题对模型加以改进、调整.最终让模型接近现实原形.否则.建立不 能反映实际状况的模型又有什么用呢?然而·模型只能近似描述实际问 题.不能苛求与真实事物完全吻合.

第一讲 数学模型与数学建模 简介

第一讲 数学模型与数学建模 简介

国31个省和特区的 个省和特区的19000名大中学学生中,只有4.7% 名大中学学生中,只有 个省和特区的 名大中学学生中
数学建模是培养学生的观察能力,抽象能力 创造 数学建模是培养学生的观察能力 抽象能力,创造 、对 抽象能力 像力;只有14.9%的学生认为培养自己的探索能力 的学生认为培养自己的探索能力、 像力;只有 的学生认为培养自己的探索能力 思维能力,逻辑推理能力 动手能力,数学语言表达 逻辑推理能力,动手能力 思维能力 逻辑推理能力 动手能力 数学语言表达 新事物的想像力和收集信息的能力;只有33%的学生参 新事物的想像力和收集信息的能力;只有 的学生参 能力,计算机使用 数学软件使以及科学计算能力. 计算机使用,数学软件使以及科学计算能力 能力 计算机使用 数学软件使以及科学计算能力
黔南民族师范学院数学系2010数学建模素质培训 黔南民族师范学院数学系2010数学建模素质培训 2010
严忠权
数学建模与能力的培养 最近几年里, 最近几年里,我校学
生都在只参加了半年 左右的学习和实践后, 左右的学习和实践后, 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 在全国大学生数学建 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 模竞赛取得了优异成 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 2002年开始获 绩,从2002年开始获 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 得国家一等奖1 得国家一等奖1项国家 题的本领。 题的本领。 在真正开始自己的研究之前, . ②在真正开始自己的研究之前,还应当尽可能先了解一下 二等奖十三奖. 二等奖十三奖 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。

数模ppt课件

数模ppt课件

数模在科技发展中的作用
促进科技创新
数模方法在科技发展中扮演着重要的 角色,通过建立数学模型,可以深入 探索自然现象和解决实际问题,推动 科技创新和进步。
优化资源配置
预测和决策支持
数模方法可以对未来趋势进行预测, 为决策者提供科学依据,支持决策制 定和实施。
数模方法可以帮助决策者优化资源配 置,提高资源利用效率,降低成本, 实现可持续发展。
熟练掌握常用的数学软件,如 MATLAB、Python等,能够 快速进行模型验证和结果展示 。
04
模拟练习
在竞赛前进行模拟练习,熟悉 竞赛的流程和时间安排,提高 实际竞赛中的应对能力。
数模竞赛中的团队协作
合理利用时间
明确分工
在团队中明确每个成员的分工 ,确保每个人都能够发挥自己 的长处,提高团队整体效率。
详细描述
MATLAB具有强大的矩阵计算和数值分析功能,支持多种编程语言和应用程序接口,可以用于解决各种数学问 题,如线性代数、微积分、概率统计等。它还提供了丰富的工具箱,包括信号处理、控制系统、图像处理等, 方便用户进行专业领域的计算和分析。
Python(包括NumPy和Pandas库)
总结词
Python是一种解释型、面向对象的编程语言,具有简单易学、代码可读性高、跨平台 等特点。NumPy和Pandas是Python中常用的数学和数据分析库。
总结词
Excel是一款由微软开发的电子表格软件,广泛应用于数据处理、分析和可视化等领域。
详细描述
Excel提供了丰富的函数和工具,可以进行各种数据处理和分析,如数据筛选、排序、图表制作等。它还支持宏 编程,可以通过VBA语言进行自动化处理和定制开发。Excel在商业、财务、管理等领域应用广泛,是数据处理 和分析的常用工具之一。

初中数学建模(第一课) PPT课件 图文

初中数学建模(第一课) PPT课件 图文

二、解答数学模型问题的一般步骤
(1)明确实际问题,并熟悉问题的背景; (2)构建数学模型(例如:方程模型、不等式模型、函数模
型、几何模型、概率模型、统计模型等); (3)求解数学问题,获得数学模型的解答; (4)回到实际问题,检验模型,解释结果。
三、初中数学建模的几种题型
1、建立“方程(组)”模型 2、建立“不等式(组)”模型 3、建立“函数”模型 4、建立“几何”模型 5、建立“概率”与“统计”模型
数学建模(第一课)

一、数学模型思想在初中数学中的意义
所谓数学模型,是指通过抽象和模拟,利用数学语言和方 法对所要解决的实际问题进行的一种刻画 。一般地,通过建立 数学模型来解决实际问题的过程称为数学建模。
数学教学要让学生亲身经历将实际问题抽象成数学模型并 进行解释与应用的过程,进而使学生获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展。
现实生活中同样也广泛存在着数量之间的 不等关系。如市场营销、生产决策、统筹 安排、核定价格范围等问题,可以通过给出 的一些数据进行分析,将实际问题转化成 相应的不等式问题,利用不等式的有关性 质加以解决。
例9、小明准备用50元钱买甲、乙两种饮料 共10瓶。已知甲饮料每瓶7元,乙饮料每瓶 4元,则小明最多能买多少瓶甲饮料?
所以,放入一个小球水面升高2cm,放入一个大球水面升 高3cm;
(2)设应放入大球m个,小球n个.由题意,
得:
解得: m 4

n

6
答:如果要使水面上升到50cm,应放入大球4个,小球6
个.
方法归纳:本题考查了列一元一次方程和列二元 一次方程组解实际问题的运用,二元一次方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sk+1=sk +(-1)dkk
~状态转移律
多步决 策问题
求dkD(k=1,2, n), 使skS按转移律
由s1=(3,3)到达sn+1=(0,0).
31
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
D={(u , v) u+v=1, 2}
32
态转移律,建立多步决策模型,
数学建模的全过程
表述
现 现实对象的信息
数学模型


(归纳)


验证
求解 (演绎) 世


现实对象的解答
数学模型的解答
解释
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成数学问题
模型求解 穷举法 ~ 编程上机
y
图 解
状态s=(x,y) ~ 16个格点
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格;
2
s1
d1
k奇,左下移; k偶,右上移.
1
d1, d11给出安全渡河方案
d11
评注和思考
规格化方法, 易于推广
0
sn+1
1
2
3x
考虑4名商人各带一随从的情况
适当地设置状态和决策,确定状
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… …
~ 符号模型
8
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… …
~ 符号模型
模型是为了一定目的,对客观事物的一部分进行简缩、 抽象、提炼出来的原型的替代物,集中反映了原型中 人们需要的那一部分特征。
且 g(0)=0, f(0) > 0.
证明:存在0,使f(0) = g(0) = 0.
25
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
设水池的总容量为1。两台抽水机同时工作所需要时
间为
1 =2.4 1+1
(小时)
46 11
A
弧度制是对角大小的另一种度量
方式,弧度制的基本原理与平面
A
相似形有关。
1
扇形 AOB 相似于扇形 AOB

O
B
B
AB OA
AB OA
AB AB OA OA
因此,可以用扇形弧长与半径之比来确定圆心角。
21
几个数学建模示例
22
例1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,任何方向都不会出现
设 间断,即地面可视为数学上的连续曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。 23
可得

y

5 3
(20

x)
z

2
(100

x)
3
这是一个不完全方程组的求整数解问题——丢番图问题。
13
那些我们所熟知的数学模型
“点”、“面”、“线”——抽象化的数学模型
哥尼斯堡七桥问题
1726年,瑞士数学家欧拉(1701-1783)受聘于沙俄科学院,后来 出任数学部主任。1736年秋天,欧拉收到来自东普鲁士首都哥尼斯 堡(今属奥地利)的一封信,哥尼斯堡大学的学生在来信中向他请 教的是下面一个问题。
9
模型的分类
模型
物质模型(形象模型)
直观模型 物理模型
理想模型(抽象模型)
思维模型 符号模型 数学模型
10
那些我们所熟知的数学模型
“1”是最简单的数学模型。
例 两台不同功率的抽水机向一个大水池中注水。如果第
一台抽水机单独工作,4小时可以将水池注满;如果第二 台抽水机单独工作,6小时可以将水池注满。现在由两台 抽水机同时工作,需要多长时间注满水池?
布勒格尔河横穿市区,哥尼斯堡大学的校园就坐落于新旧河道交汇处。校 园附近有一个小岛,七座小桥分别连通着河岸、小岛和半岛。傍晚前后, 学生们三三两两地散步于小岛上与河岸边。
有人突发奇想,能不能在一个晚上走遍这七座桥而每座桥又都只通 过一次呢?
14
哥尼斯堡是条顿骑士在1380年建立的,作为日耳曼势力最东端的前 哨达四百年之久。第二次世界大战以后,他被更名为加里宁格勒, 成为前苏联最大的海军基地。今天,哥尼斯堡位于立陶宛与波兰之 间,加里宁格勒现仍属俄罗斯。
模型构成
用数学语言把椅子位置和四 只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是 的函数
C
四个距离
两个距离
(四只脚) 正方形

对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f( ) B,D 两脚与地面距离之和 ~ g( )
——著名数学家 华罗庚
任何应用问题,一旦建立起了数学的模型,就会立即 显现出解决问题的清晰途径和通向胜利的一线曙光。
马克思教导我们: 一门学科只有成功地运用数学时,才算达到了完善的地步6 !
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
7
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
用 x 表示船速,y 表示水速,列出方程:
(x y) 30 750
x =20
( x y) 50 750 求解 y =5
答:船速每小时20千米/小时.
20
航行问题建立数学模型的基本步骤
• 作出必要的简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5); • 回答原问题(船速每小时20千米/小时); • 验证上述结果(用实际现象进行验证)。
12
那些我们所熟知的数学模型
“3x+1=10” 方程是表现等量关系的数学模型
例 一百匹马,一百块瓦,大马驮仨,小马驮俩,马仔俩驮一 块。问大马、小马、马仔各几何。
解 设大马,小马,马仔分别为
x y z 100

分别消去
3x

2
y

1 2
z

100
x, y, z z和 y
匹,应有
就杀人越货.
小船(至多2人)
但是乘船渡河的方案由商人决定. 3名商人
商人们怎样才能安全过河?
3名随从
问题分析
多步决策过程
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经
有限步使全体人员过河
30
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数
店主桥
铁匠桥
木桥
普雷盖 尔河
内福夫岛
蜜桥
绿桥
“馋嘴” 吉布莱茨桥
高桥
新河道 旧河道
15
B
欧拉在草纸上勾画出示意图。在他
看来,问题是否有可行的方案,与
岛、半岛的大小无关,也与河岸上桥头
的间隔及小桥的长度无关。因而不妨将
D
A
半岛、两侧河岸和小岛都缩为一点,将 各个小桥代之以线。
现在的问题是,能否用一只铅笔从“结点”A、B、C、D
数学模型与数学建模
1
主要内容
• 1.什么是数学模型?
——1.1基本概念 ——1.2特点和分类
• 2.如何数学建模?
——2.1方法和步骤 ——2.2示例
• 3.为什么数学建模?
—— 3.1现实意义 —— 3.2个人收获
2
1.什么是数学模型?
• 数学 • 模型 • 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造
全局勘察、信号处理、图象处理、
数据采掘

应急用储备物资的管理 复杂网络的稳定性
运筹学、最优化理论 逻辑、计算机科学、组合学

机密和完整性
数论、密码学/组合学

大气和海洋的建模
小波、统计学、数值分析
敏捷制造、自动制造、可视化、机器人 过程质量控制中的几何学、控制论

设计和训练

人类基因组分析 合理的药物设计
C
之中的某一点开始,不抬笔地连续描完每一条线而不出现
线路重复呢?
类似这样的问题,后来被统称为“一笔画”问题。
作为一笔画过程,应该只有一个起点和一个终点,并且起点和终点应该是 奇节点,而其它点都是通过点,并只能是偶节点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
16
什么是数学模型、数学建模
正方形ABCD 绕O点旋转 24
模型构成
用数学语言把椅子位置和四 只脚着地的关系表示出来
地面为连续曲面
椅子在任意位置 至少三只脚着地
f() , g()是连续函数
对任意, f(), g()
至少一个为0
相关文档
最新文档