2020高考数学试题分项版解析专题11解三角形理

合集下载

2020高考数学分类汇编--三角函数解三角形

2020高考数学分类汇编--三角函数解三角形

2020年普通高等学校招生全国统一考试一卷理科数学7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6C .4π3D .3π29.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=A .53B .23 C .13D .597.C9.A2020年普通高等学校招生全国统一考试理科数学2.若α为第四象限角,则A .02cos >αB .02cos <αC .02sin >αD .02sin <α17.(12分)ABC △中,222sin sin sin sin sin A B C B C --=.(1)求A ;(2)若3BC =,求ABC △周长的最大值.2020年普通高等学校招生全国统一考试理科数学7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B = A .19B .13C .12D .239.已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2B .–1C .1D .216.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 7.A9.D16.②③2020年普通高等学校招生全国统一考试文科数学7.设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π218.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a 3,b 7ABC △的面积; (2)若sin A 3C 2,求C . 7.C18.解:(1)由题设及余弦定理得22228323cos150c c c =+-⨯︒,解得2c =-(舍去),2c =,从而23a =ABC △的面积为1232sin15032⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin 3sin(30)3sin(30)A C C C C =︒-=︒+,故2sin(30)2C ︒+=而030C <<︒,所以3045C ︒+=︒,故15C =︒.2020年普通高等学校招生全国统一考试文科数学13.若2sin 3x =-,则cos2x =__________. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 13.1917.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形. 2020年普通高等学校招生全国统一考试文科数学5.已知πsin sin=3θθ++()1,则πsin =6θ+()A .12BC .23D11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B = AB .C .D .12.已知函数f (x )=sin x +1sin x,则 A .f (x )的最小值为2 B .f (x )的图像关于y 轴对称 C .f (x )的图像关于直线x =π对称D .f (x )的图像关于直线2x π=对称 5.B11.C12.D2020年普通高等学校招生全国统一考试(北京卷)(9)已知αβ∈R ,,则“存在k ∈Z ,使得π(1)kk αβ=+-”是“βαsin sin =”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)2020年3月14日是全球首个国际圆周率日(πay)D 。

2020届高考数学:解三角形常见题型及技巧 学案(含习题)

2020届高考数学:解三角形常见题型及技巧 学案(含习题)

高考解三角形常见题型及技巧【基础知识】1.正弦定理 a sin A =b sin B =c sin C=2R 其中2R 为△ABC 外接圆直径。

变式1:a =2R sin A ,b =2R sin B ,c =2R sin C 。

变式2:sin 2a A R =,sin 2b B R =,sin 2c C R= 变式3:a ∶b ∶c =sin A ∶sin B ∶sin C 。

2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C 。

(边换角后)sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。

变式1:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。

变式2:a 2=(b +c )2-2b c (1+cos A )(题目已知b +c ,bc 或可求时常用) 3.解三角形(知道三个元素,且含有边)(1)已知三边a ,b ,c 或两边a ,b 及夹角C 都用余弦定理(2)已知两边a ,b 及一边对角A,一般先用正弦定理,求sin B ,sin B =b sin Aa 。

(3)已知一边a 及两角A ,B (或B ,C )用正弦定理(已知两角,第三角就可以求)。

4.三角形常用面积公式(1)S =12a ·h 。

(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R 。

(3)S =12r (a +b +c )(r 为内切圆半径)。

5.在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。

2.任意两边之和大于第三边,任意两边之差小于第三边。

3.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C 2。

高考数学 三角函数与解三角形(解析版)

高考数学 三角函数与解三角形(解析版)

《备战2020年浙江省高考数学优质卷分类解析》三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.对三角恒等变换的独立考查,五年一考,对三角恒等变换与三角函数图象和性质的综合考查,五年五考,渐渐稳定为解答题,难度为中等.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.对解三角形的考查,做到了五年五考,近三年为填空题,且设计两空.一.选择题1.【浙江省2019届高三高考全真模拟(二)】将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是( )A .[2,2]-B .[3,4]C .[0,3]D .[0,4]2.【浙江省金华十校2019届高三上期末】已知,,则A .B .C .D .3.【浙江省金华十校2019届高三上期末】把函数的图象向左平移个单位,得到函数的图象,则m 的最小值是A .B .C .D .二.填空题4.【浙江省2019届高三高考全真模拟(二)】《九章算术》是我国古代著名的数学典籍,其中有一道数学问题:“今有勾八步,股十五步。

问勾中容圆,径几何?”意思是:在两条直角边分别为八步和十五步的直角三角形中容纳一个圆,请计算该圆直径的最大值为________步.5.【浙江省温州市2019届高三2月高考适应性测试】我国古代三国时期吴国的数学家赵爽创制了一幅如图所示的“勾股圆方图”,四个相同的直角三角形与边长为1的小正方形拼成一个边长为5的大正方形,若直角三角形的直角边分别记为a ,b ,有,则a +b =__,其中直角三角形的较小的锐角 的正切值为_ __ .6.【浙江省宁波市2019届高三上期末】将函数的图像的每一个点横坐标缩短为原来的一半,再向左平移个单位长度得到的图像,则_____;若函数在区间上单调递增,则实数的取值范围是_ __.7.【浙江省2019届高三高考全真模拟(二)】在锐角ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c .若2222a c b ac +=,则B ∠=________;若sin 2sin sin A B C =,则tan tan tan A B C 的最小值为________.8.【浙江省温州市2019届高三2月高考适应性测试】在 ABC 中,C=45°,AB=6 ,D 为 BC 边上的点,且AD=5,BD=3 ,则cos B=_____ ,AC=_____.9.【浙江省台州市2019届高三4月调研】在中,是边上的中线,∠ABD=.(1)若,则∠CAD=______;(2)若,则的面积为______.10.【浙江省金丽衢十二校2019届高三第二次联考】在中,角,和所对的边长为,和,面积为,且为钝角,则__;的取值范围是___.11.【浙江省三校2019年5月份第二次联考】在锐角中,内角所对的边分别是,,,则__________.的取值范围是__________.12. 【浙江省2019届高考模拟卷(二)】在中,角的对边分别为,,,,则____,___.13. 【浙江省2019届高考模拟卷(三)】在中,角所对的边,点为边上的中点,已知,,,则__________;__________.14.【浙江省湖州三校2019年普通高等学校招生全国统一考试】在中,内角,,所对的边分别为,,.已知,则的值为__________,若,,则的面积等于_________.15.【浙江省金丽衢十二校2019届高三第一次联考】己知函数是由向左平移个单位得到的,则__________.16.【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】在中,角所对的边分别为,,,且外接圆半径为,则______,若,则的面积为______.17.【浙江省浙南名校联盟2019届高三上期末联考】在中,内角所对的边分别是.若,,则__,面积的最大值为___.∆中,A,B,C内角所对的边分别为a,b,18.【浙江省金华十校2019届下学期高考模拟】在ABCc,已知2b=且cos cos4sin sin+=,则c的最小值为_____.c B b C a B C三.解答题19.【浙江省三校2019年5月份第二次联考】已知函数(Ⅰ)求函数的单调增区间;(Ⅱ)若,,求的值.【答案】(Ⅰ);(Ⅱ).20.【浙江省台州市2019届高三4月调研】已知函数,.(I)求的单调递增区间;(Ⅱ)若关于的方程在上有解,求实数的取值范围.21.【浙江省宁波市2019届高三上期末】如图所示,已知是半径为1,圆心角为的扇形,是坐标原点,落在轴非负半轴上,点在第一象限,是扇形弧上的一点,是扇形的内接矩形.(1)当是扇形弧上的四等分点(靠近)时,求点的纵坐标;(2)当在扇形弧上运动时,求矩形面积的最大值.22.【浙江省温州市2019届高三2月高考适应性测试】如图,在单位圆上,∠AOB=α(),∠BOC =,且△AOC的面积等于.( I)求 sinα的值;( II)求 2cos()sin)23.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知函数. (Ⅰ)求函数的单调递减区间;(Ⅱ)求方程在区间内的所有实根之和.24.【浙江省金华十校2019届高三上期末】已知函数.Ⅰ求的值;Ⅱ已知锐角,,,,求边长a.25.【浙江省金丽衢十二校2019届高三第一次联考】如图,在中,已知点在边上,,,,.(1)求的值; (2)求的长.26.【浙江省金华十校2019届下学期高考模拟】已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为π,且cos 2cos 0ϕϕ+=. (1)求ω和()2f π的值;(2)若3()(0)25f ααπ=<<,求sin α.27.【浙江省台州市2019届高三上期末】已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)设△ABC 中的内角,,所对的边分别为,,,若,且,求的取值范围.28.【浙江省2019届高考模拟卷(一)】已知函数2()sin cos 3cos 333x x x f x =+. (1)求该函数图象的对称轴;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足2b ac =,求()f B 的取值范围.29.【浙江省2019届高考模拟卷(二)】已知函数.(1)已知角的顶点和原点重合,始边与轴的非负半轴重合,它的终边过点,求的值;(2)若,,求的值.30.【浙江省2019届高考模拟卷(三)】已知函数.(1)求函数在上的值域;(2)若,求.答 案《备战2020年浙江省高考数学优质卷分类解析》三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.对三角恒等变换的独立考查,五年一考,对三角恒等变换与三角函数图象和性质的综合考查,五年五考,渐渐稳定为解答题,难度为中等.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.对解三角形的考查,做到了五年五考,近三年为填空题,且设计两空.一.选择题1.【浙江省2019届高三高考全真模拟(二)】将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是( ) A .[2,2]- B .[3,4]C .[0,3]D .[0,4]【答案】D 【解析】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++,230,(2)[,]sin(2)[1,1]()[0,4]36626x x x g x πππππ⎡⎤∈∴+∈∴+∈-∴∈⎢⎥⎣⎦Q ,故本题选D.2.【浙江省金华十校2019届高三上期末】已知,,则A. B. C. D.【答案】D【解析】已知,,,,则,故选:D.3.【浙江省金华十校2019届高三上期末】把函数的图象向左平移个单位,得到函数的图象,则m的最小值是A. B. C. D.【答案】B【解析】把函数的图象向左平移个单位,得到,,由,得,,当时,m 最小,此时,故选:B . 二.填空题4.【浙江省2019届高三高考全真模拟(二)】《九章算术》是我国古代著名的数学典籍,其中有一道数学问题:“今有勾八步,股十五步。

2020年高考数学专题讲解:解三角形

2020年高考数学专题讲解:解三角形

3.解三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示. 已知条件应用定理一般解法[解析] 设BC =x ,则AC =2x ,根据面积公式得S △ABC =12AB ·BC ·sin B=12×2x 1-cos 2B ① 根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x=4-x24x,代入①式可得S △ABC =x1-⎝ ⎛⎭⎪⎫4-x 24x 2=128-x 2-216,由三角形三边关系有⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2.故当x =23时,S △ABC 取得最大值2 2.3.命题方向:判断三角形的形状[例3] 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.[分析] 判定三角形的类型,一般是从题设条件出发,依正弦定理、余弦定理和面积公式,运用三角函数式或代数式的恒等变形导出角或边的某种特殊关系,从而判定三角形的类型 .[解析] 方法一:由正弦定理,设a sin A =b sin B =csin C =k >0,则a =k sin A ,b =k sin B ,c =k sin C 代入已知条件得 k sin A cos A +k sin B cos B =k sin C cos C , 即sin A cos A +sin B cos B =sin C cos C .根据二倍角公式得sin2A +sin2B =sin2C ,sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=2sin C cos C , ∴2sin(A +B )cos(A -B )=2sin C cos C . ∵A +B +C =π⇒A +B =π-C , ∴sin(A +B )=sin C ≠0,∴cos(A -B )=cos C ,∴cos(A -B )+cos(A +B )=0, ∴2cos A cos B =0⇒cos A =0或cos B =0,即A =90°或B =90°,∴△ABC 是直角三角形. 方法二:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,化简得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4,∴a 2-b 2=±c 2, 即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.跟踪练习3:△ABC 中,a 2tan B =b 2tan A ,判断三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 [答案] C[解析] 由正弦定理得sin2A tan B =sin2B tan A , sin A cos A =sin B cos B ,即sin2A =sin2B .又因为A ,B ∈(0,π),所以A =B 或A +B =90°. 4.命题方向:正、余弦定理的综合应用[例4] △ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2+bc =0.(1)求角A 的大小;(2)若a =3,求bc 的最大值;(3)求a sin (30°-C )b -c的值.[分析] (1)由b 2+c 2-a 2+bc =0的结构形式,可联想余弦定理,求出cos A ,进而求出A 的值.(2)由a =3及b 2+c 2-a 2+bc =0,可求出关于b ,c 的关系式,利用不等式即可求出bc 的最大值. (3)由正弦定理可实现将边化角的功能,从而达到化简求值的目的.[解析] (1)∵cos A =b 2+c 2-a 22bc =-bc 2bc =-12,∴A =120°.(2)由a =3,得b 2+c 2=3-bc .又∵b 2+c 2≥2bc (当且仅当c =b 时取等号), ∴3-bc ≥2bc (当且仅当c =b 时取等号), 即当且仅当c =b =1时,bc 取得最大值为1. (3)由正弦定理,得a sin A =b sin B =csin C =2R , ∴a(30°-C )b -c =2R sin A (30°-C )2R sin B -2R sin C=sin A(30°-C )sin B -sin C=32⎝ ⎛⎭⎪⎫12cos C -32sin C (60°-C )-sin C =34cos C -34sin C 32cos C -32sin C =12.跟踪练习4:在△ABC 中,A 、B 、C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =12+3,求A 和tan B 的值.[解析] 由余弦定理cos A =b 2+c 2-a 22bc =bc 2bc =12,因此A =60°.在△ABC 中,C =180°-A -B =120°-B .由已知条件,应用正弦定理 12+3=c b =sin C sin B=-B sin B=sin120°cos B -cos120°sin B sin B =32cot B +12,解得cot B =2,从而tan B =12.(五)思想方法点拨1.在利用正弦定理解决已知三角形的两边和其中一边的对角解三角形问题时,可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍. 2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角的关系或边边的关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解.注意等式两边的公因式不要约掉,要移项提取公因式,否则会有漏掉一种形状的可能.3.一般地,由sin α>sin β⇒/ α>β,但在△ABC 中,sin A >sin B ⇔A >B . 4.判断三角形形状的方法根据所给条件确定三角形的形状,主要有两条途径:(1)化边为角;(2)化角为边.具体有如下四种方法:①通过正弦定理实施边、角转换;②通过余弦定理实施边、角转换;③通过三角变换找出角之间的关系;④通过三角函数值符号的判断及正、余弦函数有界性的讨论;⑤b 2+c 2-a 2>0⇔A 为锐角,b 2+c 2-a 2=0⇔A 为直角,b 2+c 2-a 2<0⇔A 为钝角.(六)课后强化作业一、选择题1.在△ABC 中,AB =3,A =45°,C =75°,则BC 等于( ) A .3- 3 B. 2 C .2D .3+ 3[答案] A[解析] 由AB sin C =BCsin A得BC =3- 3.2.(2008·安徽)在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3B.5π6 C.3π4D.π3[答案] A[解析] cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =-12.∵0<∠BAC <π,∴∠BAC =2π3.3.在△ABC 中,cos 2A 2=b +c 2c,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角形 [答案] A30°(坐标轴的长度单位不变)构成一个斜坐标系作两坐标轴的平行线分别交坐标轴Ox于点M,B两点的坐标分别为(1,2)根据斜坐标系的定义这样就转化为利用正余弦定理解三轴的平行线,设两条平行线交于BC2+AC2-2AC×BC×cos C,解得根据题中对斜坐标系的定义将求距离问题转化为解三角形问题,这里涉及知识的迁移能力,这也是近几年高考试题中经常考查的内容,体现了数学知识的灵活应用.=2,sin B+cos B=2,则[答案]π6[解析] 本题考查了三角恒等变形,给值求角及正弦定理等知识点,考查学生灵活解三角形的能力,属中档题,sin B +cos B =2⇒2sin(B +π4)=2,∴sin(B +π4)=1,∴B +π4=π2,∴B =π4,又a =2,b =2,由正弦定理:2sin A =2sinπ4.解得:sin A =12,又a <b ,∴A <B =π4, ∴A =π6为所求.11.(2011·东营模拟)在△ABC 中,BC =a ,AC =b ,a 、b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,则AB =________.[答案]10[解析] 设AB =c ,∵⎩⎪⎨⎪⎧a +b =23,ab =2,A +B =12,∴cos C =-12.又∵cos C =a 2+b 2-c 22ab =a +b 2-2ab -c 22ab=8-c 24=-12,∴c 2=10,∴c =10,即AB =10. 三、解答题12.(2010·陕西文)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长. [解析] 本题考查正、余弦定理的应用. 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12,∴∠ADC =120°,∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin∠ADB sin B =10sin60°sin45°=10×3222=5 6.13.(2010·安徽理)设△ABC 是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对边长,并且2.方位角(三)基础自测1.若点A在点B的北偏西30°,则点的( )A.西偏北30°B C.南偏东30° D.东偏南[答案] C[解析] 由图可知B在A的南偏东2.一人向东走了x km后转向南偏西60°走了3km,结果他离出发点恰好3kmA. 3 B.2 3 C或 3 D.3[答案] C[解析] 如图所示,在△ABC BC=3,AC=3,∠ABC=30°,由余弦定理得,(3)2=32+x2-2×3×x×cos30°,即x2-33x+6=0,解得x 3.经检验均合题意.3.(教材改编题)在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角为A.10°B.50° C.120°D.130°[答案] D[解析] 如图,由已知∠BAD=60°,∠CAD=在△ABD 中,由正弦定理AD sin160°∴AD =AB ·sin160°sin10°=sin20°sin10°=2cos10°.5.(2011·南京模拟)如图,测量河对岸的塔高=15°,∠BDC =30°,CD =30m ,并在点[答案] 15 6[解析] 由已知可得∠DBC =135°,在△DBC 中,由正弦定理可得sin30°BC =CD sin30°sin135°=30×sin30°sin135°=∴AB =BC tan60°=152×36.在△ABC 中,已知AC =3,sin (1)求sin A 的值;(2)若△ABC 的面积S =3,求BC [解析] (1)由sin A +cos A =[解析] △ACD中,∠ACD=120°,∠CAD=∠ADC=30°∴AC=CD=3km在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°,∴BC=3sin75°sin60°=6在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC·cos∠ACB=(∴AB=5km答:A、B之间的距离为5km.[点评] 求距离问题要注意:(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.[解析] 本题主要考查正弦定理和余弦定理的应用,考查学生分析问题和解决问题的能力.方案一:①需要测量的数据有:A点到M,N点的俯角所示).②第一步:计算AM.由正弦定理AM=d sinα2sin(α1+α2)第二步:计算AN.由正弦定理AN=dsinβ2sin(β2-β1);第三步:计算MN,由正弦定理MN=AM2+AN2-2MA·AN cos(α1-β1).方案二:①需要测量的数据有:[解析] 在△BCD 中,CD =40,∠BCD =30°,∠由正弦定理得,CD sin ∠DBC =BDsin ∠BCD ,∴BD =40sin30°sin135°=20 2.在Rt △BED 中,∠BDE =180°-135°-30°=15°. ∴BE =BD sin15°=202×6-24=10(在Rt △ABE 中,∠AEB =30°, ∴AB =BE tan30°=103(3-3)(米).故所求的塔高为103(3-3)米.[点评] 本例中,方向角是属于水平面的角度,立体图形时,应有立体感,即水平面的图形画成倾斜的,如图所示.这是此题的一个难点.跟踪练习2:地平面上一旗杆设为OP ,为测得它的高度仰角∠OAP =30°,在B 处测得P 点的仰角∠OBP [分析] 依题画图,首先由Rt △OAP 可求得OA 与定理,在△AOB 中,由AB =200m ,从而求得h .[解析] 如图,OP =h ,∠OAP =30°,∠∴∠AOP =90°,则OA =OP cot30°=3h 在△OAB 中,由余弦定理得AB 2=OA 2+OB 2-2OA ·OB cos ∠AOB 即2002=3h 2+h 2-23h 2cos60°解得h =2004-3.答:旗杆的高度为2004-3m.3.命题方向:测量角度问题[例3] 沿一条小路前进,从A 到B 到C ,方位角是110°,距离是3km ,从33)km.到D 的方位角和距离(结果保留根号[分析] 画出示意图,要求A 到D 的方位角,需要构造三角形,连接理求出AC ,再在△ACD 中,求出AD [解析] 如图,连接AC ,在△ABC ∠ABC =50°+(180°-110°)=120°,又 AB =BC =3, ∴∠BAC =∠BCA =30°. 由余弦定理可得AC =AB 2+BC 2-2AB ·BC cos120°=9+9-2×3×3×⎝ ⎛⎭⎪⎫-12=27=33(km)在△ACD 中,∠ACD =360°-140°-(70°+30°)=120°,CD =33+9.由余弦定理得AD =AC 2+CD 2-2AC ·CD cos120°=27+3+2-2×333+⎝ ⎛⎭⎪⎫-12=92+962(km).=CD ·sin∠ACDAD=3+322 [解析] 如图所示,在△ABC 中,AB =20,AC =10,∠BAC =120°,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos120=202+102-2×20×10×⎝ ⎛⎭⎪⎫-12=700.由正弦定理得ABsin ∠ACB =sin BAC ,∴sin ∠ACB =AB BC ·sin∠BAC ∴∠ACB ≈41°,∴乙船应沿北偏东30°+41°=71°的方向沿直线前往B 处救援.(五)思想方法点拨解三角形应用题常见的几种情况(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,(六)课后强化作业、B 两点在河的两岸,一测量者在所在的河岸边选定一点C ,测出AC 的距离为50m =105°后,就可以计算A 、B 两点的距离为B .503mC .252m 由题意知∠ABC =30° ABC =ABsin ∠ACBACB=50×2212=502(m)..一船自西向东匀速航行,上午10时到达一座灯塔处,则这只船的航行速度为( ) 海里1724.为测量某塔AB 的高度,在一幢与塔AB 相距20m 的楼顶D 处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是( )A .20⎝ ⎛⎭⎪⎫1+33m B .20⎝ ⎛⎭⎪⎫1+32m C .20(1+3)m D .30m[答案] A[解析] 如图所示,四边形CBMD 为正方形,而CB =20m ,所以BM =20m. 又在Rt △AMD 中,DM =20m ,∠ADM =30°,∴AM =DM tan30°=2033(m),∴AB =AM +MB =2033+20=20⎝⎛⎭⎪⎫1+33m.5.如图所示,D ,C ,B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(α<β),则点A 离地面的高AB 等于( )A.a sin αsin ββ-αB.a sin αsin ββ-αC.a cos αcos ββ-αD.a cos αcos ββ-α[答案] A[解析] 在△ADC 中,∠DAC =β-α, 由正弦定理,ACsin α=aβ-α,得AC =a sin αβ-α.在Rt △ABC 中,AB =AC ·sin β=a sin αsin ββ-α.6.(2011·潍坊)已知A 船在灯塔C 北偏东80°处,且A 到C 距离为2km ,B 船在灯塔C 北偏西40°,AB 两船距离为3km ,则B 到C 的距离为( )A.19kmB.6-1kmC.6+1kmD.7km[答案] B[解析] 由条件知,∠ACB =80°+40°=120°,设BC =x km ,则由余弦定理知9=x 2+4-4x cos120°,∵x >0,∴x =6-1.A.32- 3 C.3-1D.22=AB sin ∠BACsin ∠ACB=100sin15°-=50(6-2),在△BCD 中,sin ∠BDC =BC sin ∠CBDCD =6-250=3-1,-1.点测得它的仰角为45°,同时在它南偏东米,这两个观测点均离地1米,那么测量时气球到地面的距离是 C .266米且与地面平行的平面上的正投影,设ABD 中,由余弦定理得AB 2=AD 岛望C 岛和B 岛成60°的视角,=120°.正东方向20海里的B处的渔船回处的拖轮接到海事部门营救信息后以30海里求解本题的关键是把实际应用问题转化为数学问题,然后再利用余弦定理解决.=120°,因为BC2=OC2+OB2-2·OC·OB·cos120°=,所以BC=107,所以拖小时).在货轮的北偏东75°,距离为126n mile,在处向正北航行到D处时,再看灯塔B在南偏东60°,求:结果精确到1n mile)=60°,∠B=45°,24(n mile).由于0°<θ<90°,所以由余弦定理得BC =所以船的行驶速度为(2)在△ABC 中,由正弦定理得∴sin ∠ABC =AC ·sin∠BC 自A 作BC 的垂线,交在Rt △ABD 中,AD =∴船在行驶过程中离观测站14.(2010·陕西理)点北偏西60°的D 点有一艘轮船发出求救信号,位于相距203海里的C 点的救援船立即前往营救,其航行速度为援船到达D 点需要多长时间?[解析] 本题考查正余弦定理在实际问题中的应用,三角形进行边角的求解,求解过程中三角函数的变形,转化是易错点,注意运算的准确性.由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =45°,∴∠ADB =105° 在△DAB 中,由正弦定理得,DB sin ∠DAB =ABsin ∠ADB∴DB =AB ·sin∠DABsin ∠ADB =+3sin105°=+3sin45°·cos60°+sin60°·cos45°=533+3+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里),在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos∠DBC =300+1200-2×103×203×12=900,∴CD =30(海里),则需要的时间t =3030=1(小时).答:救援船到达D 点需要1小时.点评:(1)解决实际应用问题,要过好语言关,图形关和数理关,考生在平时训练中要注意加强. (2)本题若认定△DBC 为直角三角形,由勾股定理正确求得CD ,同样可以.15.(2010·福建文)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小里的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.(3)是否存在v ,使得小艇以v 海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由.[解析] 本小题主要考查解三角形,二次函数等基础知识,考查推理论证能力,抽象概括能力,运算求解能力,应用意识,考查函数与方程思想,数形结合思想,化归与转化思想.(1)设相遇时小艇的航行距离为S 海里,则S =900t 2+400-2·30t-=900t 2-600t +400=t -132+300故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.-2·20·30t ·cos(90°-30°) =2-+400(-)2+675≤2,即t ≥2,所以当t =min =1013.1013海里小时. =t 2-t +,设t=(u >0),小艇总能有两种不同的航行方向与轮船相遇,等价于方程(*)应有两个不等正根,即:⎪⎧6002--v2。

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。

【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。

例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06三角函数及解三角形2020年高考真题1. [2020年高考全国I卷理数】设函数f(x) = cos(®x + -)在[-”,兀]的图像大致如下图,则/(%)的最小正6周期为9 64兀3兀C. —D.兰3 2【答案】C【解析】由图可得:函数图象过点( 4 兀1T \将它代入函数/(兀)可得:cosl一- •<« + —1 = 0,又[-普,o]是函数/(兀)图象与x轴负半轴的第一个交点,十.I 4兀兀兀5 e 3所以-亍0+丁丐,解得r •2K _ 2兀_ 4兀所以函数/(%)最小正周期为=T=T=T2故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2. [2020 年高考全国I 卷理数】已知cc G (0,7i),且3COS2Q-8COSQ =5 ,贝0 sin^z =A. B.【答案】A又 a e (0, n),.'. sin a = Jl-cos? a =•故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解 能力,属于基础题.3.【2020年高考全国II 卷理数】若a 为第四象限角,则B. cos2a<0D. sin2a<0 【答案】D【解析】方法-:由。

为第四象限角,可得亍2炽“<2卄2炽从Z,所以 3兀 + 4k 兀 < 2a < 4兀 + 4-kn, e Z此时2a 的终边落在第三、四象限及V 轴的非正半轴上,所以sin2a<0,故选:D.兀方法二:当& =——时,cos 2a = cos 由a 在第四象限可得:sin a <0, cos a > 0 ,则由2 a 蕃1 aaz Qz < ,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转 化能力和计算求解能力.C. sin2a>0>0,选项B 错误;<0,选项A 错误;【解析】3cos2a-8cosa = 5 ,得6cos 2tz-8coscr-8 = 0 -【答案】A2【解析】在ABC中,cosC = —, AC = 4, BC = 3, 3根据余弦定理:AB2 =AC2+BC2-2AC BC COS C,7AB- =42+32-2X4X3X-,3可得AB2 = 9,即AB — 3 ,… AB2+BC2-AC2 9 + 9-16 1由cos B = ------------------------- = ------------ =—,2ABBC2x3x3 9故cos B =—.9故选:A.5. [2020年高考全国III卷理数】已知2tan^-tan(0+ —)=7,则tan^=A. -2B. -1【答案】D【解析】2 tan - tan | ^ + — | = 7 , z. 2tan^~ tan^ + ^ =7 ,I 4 丿 1 - tan令/ = tan&,/Hl,则2/—土 = 7,整理得严_4/ + 4 = 0,解得t = 2,即tan6» = 2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(兀Day).历史上,求圆周率兀的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的方法是:当正整数"充分大时,计算单位圆的内接正6“边形的周长和外切正6“边形(各边均与圆相切的正6“边形)的周长,将它们的算术平均数作为2兀的近似值.按照阿尔•卡西的方法,兀的近似值的表达式是2 71 、[/ — 71 -- 当“一 2571 6 _ 时,y = —1 二 2x^ + ^ = —+ 2^(^ e Z),3n < .30° 30°) 6n < .30° 30°) A. sin —— + tan ----- B. sin —— + tan ----- 1 n n 丿 I n n ) 3n (.60° 60°) 6n (.60° < 60°) c. sin ---- + tan ----- D. sin ----- + tan ----- I nn 丿 I nn ) 【答案】A 360° 60° 30° 【解析】单位圆内接正6〃边形的每条边所对应的圆周角为一 =——,每条边长为2sin —, nx6 n n 30° 所以,单位圆的内接正6〃边形的周长为12nsin ——, n30° 30° 单位圆的外切正6n 边形的每条边长为2tan —,其周长为12〃tan —, n n30° 30° 12nsin ----- 12ntan ---------.・.* 二 ----- n --------------- n _ 2( 30° 30°则 7i = 3n\ sin------ + tan --- I n n故选:A.【点睛】本题考查圆周率兀的近似值的计算,根据题意计算出单位圆内接正6〃边形和外切正6〃边形的 周长是解答的关键,考查计算能力,属于中等题.7. [2020年新高考全国I 卷】下图是函数y 二sin (亦+卩)的部分图像,贝!j sin (亦+卩)=【答案】BC=6“ sin 竺+ tan 竺, I n n ) A. sin(x + f)¥亠)【解析】由函数图像可知:- = -7T —— 2 3 71 _71 6~2 27T 则血=—=—=2,所以不选A, T 71 B.解得:cp 二 Ikn + 彳兀(£ e Z ),即函数的解析式为:y = sin| 2x + —TT + 2A ;7Z - | = sin| 2x + —+ —| = cos| 2x + — | = sin| — -2x I 3 丿(6 2丿(6丿(3 (\5/r而 cos I 2x + — I — - cos( — 2x) 故选:BC.【点睛】已知fix) =Asin(a}x +^)(A>0, e>0)的部分图象求其解析式时,A 比较容易看图得出,困难的 是求待定系数e 和0常用如下两种方法:竺即可求出e ;确定y 时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标xo,则令 exo+0 = O(或 a )xo+<p=7t'),即可求出 <p.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出co 和<p, 若对A, e 的符号或对°的范围有要求,则可用诱导公式变换使其符合要求.&【2020年高考全国I 卷理数】如图,在三棱锥P ABC 的平面展开图中,AC=1, AB = AD =也,佔丄AC, AB±AD, ZCAE=30°,贝0 cosZFCB= _______________ .【答案】4【解析】 AB 丄AC, AB = j3, AC = E由勾股定理得BC = V A B 2+AC 2 = 2 ‘71 F(P)同理得 BD =品,:.BF = BD = ^,在△4CE 中,AC = 1, AE = AD =运,ZCAE = 30 ,由余弦定理得 CF = 3+^2—240 AEcos30 =l + 3-2xlxV3x —= 1, 2:.CF = CE = 1,在 BCF 中,BC = 2, BF =愿,CF = 1,CF~ + BC 2 -BF 2由余弦定理得cos ZFCB = 七——2CFBC故答案为:—. 4【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.【2020年高考全国III 卷理数】16.关于函数f (x) =sinx ——-—有如下四个命题: sinx®f (%)的图像关于y 轴对称.®f (x)的图像关于原点对称.1T®f (X )的图像关于直线x=3对称.®f (X )的最小值为2.其中所有真命题的序号是 __________ .【答案】②③所以,函数/(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数/(X )的定义域为[x\x^kn,k^Z^ ,定义域关于原点对称, / ( -x) = sin (-%) + —r = - sin x - -— = -fsinx + -^―] = -/(%),sin (—兀) sinx I sinx)所以,函数/(x)的图象关于原点对称,命题②正确;1 + 4-6 2x1x2 【解析】对于命题①,A 7C \ . (7C ] 1(2 丿(2 ) .(7i' 7' 7 sm —+ x12所以,函数/(x)的图象关于直线x = |对称,命题③正确;对于命题④,当一7i<x<0时,sinx<0,贝J f(x} = sinx + — <0< 2 , sinx命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.JT 210.【2020年高考江苏】已知sin2(-+ <?) = -,则sin2a 的值是▲.4 3【解析】Qsin2(—+ cr) = (-^cosa-\——sin a)2 = —(1 + sin 2a)4 2 2 21 2 1— (1 + sin 2a) = —sin 2a =—2 3 3故答案为:-3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数/(x) = sin(x+^) + cosx的最大值为2,则常数0的一个取值为 _______________IT TT【答案辽(2唸+亍心均可)【解析】因为 (兀)=cos ©sin 兀 +(sin 0 + 1)cos 兀=Jcos? 0 +(sin 0 + 1)2 sin (兀+ 0), 所以Jcos?(p + (sin(p +1『=2,解得sin0 = l,故可取^ = ~-7T7T故答案为:-(2^ + -,^eZ 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数 学运算能力,属于基础题.1T12. [2020 年高考浙江】已知 tan& = 2,则 cos2& = _______ , tan(6>-一) = ______ .3 1【答案】V 巧cos 2 0-sin 2 0 _ 1-tan 2 _ 1 -22cos 2 ^ + sin 2 0 1 + tan 2 0 1 + 223 1故答案为: 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13. [2020年高考江苏】将函数y = 3sin(2x +^)的图象向右平移夕个单位长度,则平移后的图象中与y 轴最 4 6近的对称轴的方程是▲ • 【答案】2-峯 24V/ 'j I r jl【解析】y — 3sin[2(x ---- ) —] = 3 sin(2x ------ ) 6 4 12小 TC TC , , x 7 TT k/C 7 x2x ------ — —F k 兀G Z)x — ----------- 1 ---- (k G Z) 12 2 24 2当k = -1时兀=——• 24故答案为:x =———24 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14. [2020年新高考全国I 卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔 及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧与直线BC 的切点,四边 形 DEFG 为矩形,BC 丄DG,垂足为 C, tanZODC= - , BH//DG , EF=12 cm, DE=2 cm, A 到直线5DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 ___________ cm 2.【解析】cos 20 = cos 2 0 - sin 2 0 = tan <9-1 l + tan& 2-11 + 2【答案】4 + »兀 2【解析】设05 = OA=r,由题意AM = AN = 1, EF = \2,所以NF = 5,因为 AP = 5,所以 ZAGP = 45\因为 BH//DG,所以 ZAH0 = 45°,因为AG 与圆弧4B 相切于A 点,所以Q4丄4G,即AOAH 为等腰直角三角形;在直角△0QD 中,0Q = 5_^r ,DQ = l-—r ,2 2因为 tanZ0DC = -^ = |,所以 21- —r = 25-^r , DQ 5 22 解得 r = 2A /2 ;等腰直角MAH 的面积为恥》2屈2尽4;I 所以阴影部分的面积为S] + S?—㊁兀=4 +三-•故答案为:4 + T.扇形A0B 的面积S 2 = =3乃,【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020 年高考全国II 卷理数】/XABC 中,sin2A —sin2B—sin2C= sinBsinC.(1)求A;(2)若BC=3,求zMBC周长的最大值.【解析】(1)由正弦定理和已知条件得BC2-AC2-AB2^AC AB,①由余弦定理得BC2 = AC2 +AB2- 2AC AB cos A,②由①,②得cos A =—.22兀因为0<4<兀,所以A =—.3(2)由正弦定理及(1)得上匕=少-=-?£ = 2巧,sin B sin C sin A从而AC = 2A/3 sin B , AB = 2^3 sin(兀一A - B) = 3 cos B一A/3 sin B.故BC + 4C + AB = 3 + 7^sinB + 3cosB = 3 + 2V^sin(B + ¥).X0<B<-,所以当B =-时,AABC周长取得最大值3 + 2^3-3 616.[2020年高考江苏】在A ABC中,角A, B, C的对边分别为°, b, c,已知a = 3,c =迈,B = 45。

专题07:解三角形-备战2021高考之2020新高考真题分项汇编(解析版)

专题07:解三角形-备战2021高考之2020新高考真题分项汇编(解析版)

专题07:解三角形-备战2021高考之2020新高考真题分项汇编一、单选题1.(2020·全国高考真题(文))在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .答案:C解答:设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C2.(2020·全国高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A .19 B .13 C .12 D .23答案:A解答:在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯ 故1cos 9B =.故选:A.二、填空题3.(2020·江苏高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.答案:185或0 解答:∵,,A D P 三点共线,∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭, ∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-, ∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =, ∴CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去. 故答案为:0或185. 4.(2020·全国高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,3AB AD ==,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.答案:14-解答: AB AC ⊥,3AB =1AC =,由勾股定理得222BC AB AC =+=,同理得6BD =6BF BD ∴==在ACE △中,1AC =,3AE AD ==30CAE ∠=,由余弦定理得22232cos301321312CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF △中,2BC =,6BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯. 故答案为:14-.三、解答题5.(2020·天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===.(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值. 答案:(Ⅰ)4Cπ;(Ⅱ)sin 13A =;(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭. 解答: (Ⅰ)在ABC中,由5,a b c ===及余弦定理得222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ; (Ⅱ)在ABC 中,由4C π,a c ==sin sin a C A c ===13; (Ⅲ)由a c <知角A为锐角,由sin A =cos A == 进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2cos cos2sin 444132132A A A πππ+=+=⨯+⨯=26.6.(2020·北京高考真题)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积. 条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分.答案:选择条件①(Ⅰ)8(Ⅱ)sin 2C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =解答:选择条件①(Ⅰ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 27a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B ===(Ⅱ)3795717sin sin()sin cos sin cos 8161684C A B A B B A =+=+=⨯+⨯= 117157sin (116)62244S ba C ==-⨯⨯= 7.(2020·浙江高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a -=. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.答案:(I )3B π=;(II )313,22⎛⎤ ⎥ ⎝⎦ 解答:(I )由2sin 3b A a =结合正弦定理可得:32sin sin 3,sin B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭ 131cos cos 222A A A =-++311cos 222A A =++ 1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<, 则3sin 3A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 232A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是313,22⎛⎤ ⎥ ⎝⎦.8.(2020·海南高考真题)在①ac =sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.答案:详见解析解答:解法一:由sin 3sin A B 可得:a b=不妨设(),0a b m m =>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析: 据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin 2A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析:可得1c m b m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+ ⎪⎝⎭,()1?2sinA A C =+= ,∴3sinA cosA =-,∴3tanA =-,∴23A π=,∴6B C π==, 若选①,3ac =,∵33a b c ==,∴233c =,∴c=1; 若选②,3csinA =,则332c =,23c =; 若选③,与条件3=c b 矛盾. 9.(2020·江苏高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 答案:(1)5sin C =2)2tan 11DAC ∠=. 解答: (1)由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b =由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=. 由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =-=. 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=+-= ⎪⎝⎭.由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin 25DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.10.(2020·全国高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a 3,b 7,求ABC 的面积;(2)若sin A 3C =22,求C . 答案:(132)15︒.解答:(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,23,c a ABC ∴==∴△的面积1sin 32S ac B ==; (2)30A C +=︒,sin 3sin sin(30)3sin A C C C ∴+=︒-+132cos sin(30)22C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒,3045,15C C ∴+︒=︒∴=︒.11.(2020·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若3b c -=,证明:△ABC 是直角三角形.答案:(1)3A π=;(2)证明见解析 解答:(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=, 即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又3b c a -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.12.(2020·全国高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值.答案:(1)23π;(2)3+解答:(1)由正弦定理可得:222BC AC AB AC AB --=⋅, 2221cos 22AC AB BC A AC AB +-∴==-⋅, ()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=. 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+.。

三年高考(2017-2019)理数真题分项版解析——专题10 解三角形(解析版)

三年高考(2017-2019)理数真题分项版解析——专题10 解三角形(解析版)

专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin 4C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=, 故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C +=,可得()cos 60C ︒+=.由于0120C ︒︒<<,所以()sin 602C ︒+=,故()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)()82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos 02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭. 【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .【答案】(1(2)5. 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3+. 【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC 的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B -. 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cosA =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-= 【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =. 【解析】(1)由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2)2. 【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =.由正弦定理得sin sin a b A B =⇒7sin A∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2), ∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A =11()2727-+⨯=14.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC 边上的高为2.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化; 第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.【答案】(1)b sin A (2)26.【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A(2)由(1)及a c <,得cos A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =. (2)由题设可得π2CAD ∠=, 所以π6BAD BAC CAD ∠=∠-∠=.故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=.因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A ∠=60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】(1)14;(2)【解析】(1)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (2)因为7a =,所以3737c =⨯=. 由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. (1)根据正弦定理sin sin a cA C=求sin C 的值; (2)根据条件可知7,3,a c ==根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2S bc A =进行求解即可.。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

2020年高考数学试题分项版—解析几何(原卷版)

2020年高考数学试题分项版—解析几何(原卷版)

2020年高考数学试题分项版——解析几何(原卷版)一、选择题1.(2020·全国Ⅰ理,4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p 等于( ) A .2 B .3 C .6 D .92.(2020·全国Ⅰ理,11)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0 B .2x +y -1=0 C .2x -y +1=0D .2x +y +1=03.(2020·全国Ⅱ理,5)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.4554.(2020·全国Ⅱ理,8)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .325.(2020·全国Ⅲ理,5)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 6.(2020·全国Ⅲ理,10)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +127.(2020·全国Ⅲ理,11)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a 等于( ) A .1 B .2 C .4 D .88.(2020·新高考全国Ⅰ,9)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nxD .若m =0,n >0,则C 是两条直线9.(2020·新高考全国Ⅱ,10)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线10.(2020·北京,5)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5 C .6 D .711.(2020·北京,7)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( ) A .经过点O B .经过点PC .平行于直线OPD .垂直于直线OP12.(2020·天津,7)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24-y 24=1 B .x 2-y 24=1 C.x 24-y 2=1 D .x 2-y 2=113.(2020·浙江,8)已知点O (0,0),A (-2,0),B (2,0),设点P 满足|PA |-|PB |=2,且P 为函数y =34-x 2图象上的点,则|OP |等于( ) A.222 B.4105C.7D.10 14.(2020·全国Ⅰ文,6)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .415.(2020·全国Ⅰ文,11)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( ) A.72 B .3 C.52D .2 16.(2020·全国Ⅱ文,8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.45517.(2020·全国Ⅱ文,9)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .3218.(2020·全国Ⅲ文,7)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 19.(2020·全国Ⅲ文,8)点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B. 2 C. 3 D .2 二、填空题1.(2020·全国Ⅰ理,15)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 2.(2020·新高考全国Ⅰ,13)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.3.(2020·新高考全国Ⅱ,14)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.4.(2020·北京,12)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.5.(2020·天津,12)已知直线x -3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB |=6,则r 的值为________.6.(2020·江苏,6)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是________. 7.(2020·江苏,14)在平面直角坐标系xOy 中,已知P ⎝⎛⎭⎫32,0,A ,B 是圆C :x 2+⎝⎛⎭⎫y -122=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________.8.(2020·浙江,15)已知直线y =kx +b (k >0)与圆x 2+y 2=1和圆(x -4)2+y 2=1均相切,则k =________,b =________.9.(2020·全国Ⅲ文,14)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,则C的离心率为________. 三、解答题1.(2020·全国Ⅰ理,20)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.2.(2020·全国Ⅱ理,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.3.(2020·全国Ⅲ理,20)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.4.(2020·新高考全国Ⅰ,22)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.5.(2020·新高考全国Ⅱ,21)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.6.(2020·北京,20)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q .求|PB ||BQ |的值.7.(2020·天津,18)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,-3),右焦点为F ,且|OA |=|OF |,其中O 为原点.(2)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.8.(2020·江苏,18)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →·QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.9.(2020·浙江,21)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点.过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(2020·全国Ⅰ文,21)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.(2020·全国Ⅱ文,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.12.(2020·全国Ⅲ文,21)已知椭圆C:x225+y2m2=1(0<m<5)的离心率为154,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.。

2020全国卷高考专题:三角函数和解三角形

2020全国卷高考专题:三角函数和解三角形

05三角函数和解三角形1.(2020•北京卷)2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似值可得出结果.【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.2.(2020•北京卷)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.3.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin 2C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, 4S =. 【解析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin ,sin A B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果. 【详解】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.4.(2020•全国1卷)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A . 10π9 B .7π6 C . 4π3D . 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.5.(2020•全国1卷)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( ) AB .23C .13D【答案】A 【解析】用二倍角余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.6.(2020•全国2卷)若α为第四象限角,则( ) A. cos 2α>0 B. cos 2α<0C. sin 2α>0D. sin 2α<【答案】D【解析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.7.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sinC. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+ 【解析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.8.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C.12D.23【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案. 【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯, 可得29AB = ,即3AB =,由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A. .【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 9.(2020•全国3卷)已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2 B. –1C. 1D. 2【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.(2020•全国3卷)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.11.(2020•江苏卷)已知2sin()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】直接按照两角和正弦公式展开,再平方即得结果. 【详解】221sin ())(1sin 2)42παααα+=+=+121(1sin 2)sin 2233αα∴+=∴=,故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.12.(2020•江苏卷)将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=-【解析】先根据图象变换得解析式,再求对称轴方程,最后确定结果. 【详解】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈,当1k =-时524x π=-,故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.13.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)sin C =;(2)2tan 11DAC ∠=.【解析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【详解】(1)由余弦定理得2222cos 92235b a c ac B =+-=+-⨯=,所以b =由正弦定理得sin sin sin sin c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5ADC ∠==.由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以cos 5C == 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅34555525⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以cos DAC ∠==.所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题. 14.(2020•新全国1山东)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果. 【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A , 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭,故选:B C. 【点睛】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.15.(2020•新全国1山东)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析【解析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由sin 3sin AB 可得:ab=(),0a b m m ==>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =.选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==.选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=c =1;若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.(2020•天津卷)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是 A . ① B . ①③C . ②③D . ①②③【答案】B【解析】对所给选项结合正弦型函数的性质逐一判断即可. 【详解】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.17.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===.(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)sin A =;(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)直接利用余弦定理运算即可; (Ⅰ)由(Ⅰ)及正弦定理即可得到答案;(Ⅰ)先计算出sin ,cos ,A A 进一步求出sin 2,cos 2A A ,再利用两角和的正弦公式计算即可.【详解】(Ⅰ)在ABC中,由5,a b c ===及余弦定理得222cos 22a b c C ab +-===,又因为(0,)C π∈,所以4C π;(Ⅰ)在ABC 中,由4Cπ,a c ==及正弦定理,可得sin sin a C A c=== (Ⅰ)由a c <知角A为锐角,由sin A =cos A= 进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.17.(2020•浙江卷).已知tan 2θ=,则cos2θ=________;πtan()4θ-=______. 【答案】 (1).35 (2). 13【解析】利用二倍角余弦公式以及弦化切得cos2θ,根据两角差正切公式得tan()4πθ-【详解】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.18.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )32⎤⎥⎝⎦ 【解析】(I )首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B 的大小; (II )结合(1)的结论将含有三个角的三角函数式化简为只含有∠A 的三角函数式,然后由三角形为锐角三角形确定∠A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是13,22⎛⎤⎥ ⎝⎦.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.10.(2020•上海卷)已知()=sin (0)f x x ωω>. (1)若f (x )的周期是4π,求ω,并求此时1()2f x =的解集; (2)已知=1ω,2g()()()()2x f x x f x π=+--,0,4x π⎡⎤∈⎢⎥⎣⎦,求g (x )的值域. 【答案】(1)1=2ω,5|=44,33x x x k x k k Z ππππ⎧⎫∈+=+∈⎨⎬⎩⎭或;(2)1-,02⎡⎤⎢⎥⎣⎦。

2020年高考数学(理)重难点专练02 三角函数与解三角形(解析版)

2020年高考数学(理)重难点专练02  三角函数与解三角形(解析版)

重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)1.(2019·吉林高考模拟(理))已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】【分析】先由最小正周期,求出ω,再由对x ∈R ,()3f x f π⎛⎫≥⎪⎝⎭恒成立,得到2,3k k Z πϕπ=+∈,进而可得()cos 23f x x π⎛⎫=+ ⎪⎝⎭,求出其单调递减区间,即可得出结果. 【详解】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭,所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈, 即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+⎪⎝⎭, 令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π.故选B 【名师点睛】本题考查三角函数的图象及其性质,考查运算求解能力.2.(2020·云南高三月考(理))ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若120B =︒,sin 7C =,2c =,则ABC ∆的面积等于( )A B .C D 【答案】A 【解析】 【分析】先通过已知求出sin ,cos ,cos B B C ,进而根据sin sin()A B C =+求出sin A ,再利用正弦定理求出b ,则利用面积公式可求出ABC ∆的面积. 【详解】解:120B =︒Q ,1sin 22B B ∴==-,又sin 7C =,C 为锐角,cos C ∴=sin sin()sin cos cos sin A B C B C B C ∴=+=+12⎛⎫=-=⎪⎝⎭由正弦定理得sin sin b cB C=,sins in 27c b B C ∴=⋅==11sin 222142ABC S bc A ∴==⨯=V , 故选:A . 【名师点睛】本题考查正弦定理解三角形,以及求三角形的面积,关键是对公式的灵活应用,缺什么,求什么即可,是基础题.3.(2019·山东高考模拟(理))函数sin 22y x x =+的图象可由2cos 2y x =的图象如何变换得到( ) A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移6π个单位 D .向右平移6π个单位 【答案】B 【解析】 【分析】由题意化简得sin 222cos[2()]12y x x x π=+=-,然后再把函数2cos 2y x =的图象经过平移后可得到所求答案. 【详解】 由题意得sin 222sin(2)2cos[(2)]2cos(2)3236y x x x x x ππππ==+=-+=-+2cos(2)2cos[2()]612x x ππ=-=-,所以将函数2cos 2y x =的图象向右平移12π个单位可得到函数2cos[2()]12y x π=-,即函数sin 22y x x =+的图象. 故选B . 【名师点睛】在进行三角函数图象的变换时要注意以下几点:①变换的方向,即由谁变换到谁;②变换 前后三角函数名是否相同;③变换量的大小.特别注意在横方向上的变换只是对变量x 而言的,当x 的系数不是1时要转化为系数为1的情况求解.4.(2019·辽宁高考模拟(理))已知1cos 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭( ) A .89-B .89C .79D .79-【答案】C 【解析】 【分析】根据二倍角公式求得cos 23πα⎛⎫+ ⎪⎝⎭,再利用诱导公式求得结果.【详解】1cos 63πα⎛⎫+= ⎪⎝⎭ 227cos 22cos 113699ππαα⎛⎫⎛⎫⇒+=+-=-=- ⎪ ⎪⎝⎭⎝⎭7cos 2cos 2sin 236269ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴+=-+=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦7sin 269πα⎛⎫∴-= ⎪⎝⎭本题正确选项:C 【名师点睛】本题考查二倍角公式、诱导公式的应用,关键是能够利用诱导公式将所求角与已知角联系起来.5.(2019·辽宁高三月考(理))已知ABC V 的面积为1,cos23A AB ==,则BC = ( )A B C D 【答案】C 【解析】 【分析】利用二倍角公式及平方关系求得cos ,sin A A ,由面积公式求出6AC =,再由余弦定理 求解即可 【详解】因为21cos cos 2cos 1223A A A =∴=-=-,sin A ABC ==Q V 的面积为1sin 2AB AC A =g g 又1AB =,所以6AC =,由余弦定理,得,2222cos 41BC AB AC AB AC A =+-=g g ,BC ∴=故选:C 【名师点睛】本题考查正余弦定理,考查面积公式,意在考查计算能力,是基础题. 二、填空题6.(2019·江西新余一中高考模拟(理))已知平面四边形ABCD 中,23ABC π∠=,AC =23AB BC =,2AD BD =,BCD ∆的面积为BD =______.【答案】【解析】 【分析】由题意,根据余弦定理先求解出AB 的长度;设DBC θ∠=,则∠DBA =2θ3π-,利用余弦定理建立方程组即可求解BD 的长度. 【详解】设DBC θ∠=,(20θ3π<<),BD=x,则AD=2x , 在△ABC 中,由余弦定理可得:AC 2=BC 2+AB 2﹣2BC•AB•cos ∠ABC=419⨯,又2233AB BC ABC ,π=∠=,∴AB=6,BC=4,又1sin θ2BCD S BD BC =V n =∴sin θ=; 在△ABD 中,由余弦定理可得:AD 2=BD 2+AB 2﹣2BD•AB•cos(2θ)3π-, 计算得到262θ0x xcos --=,即26θ2x cos x -=,由2sin θ+2cos θ=1,即2262x x-()+2=1,解得4x-162x +48=0,解得2x =12或4,又20θ3π<<,cos θ>-12,所以2x =12,x=故答案为【名师点睛】本题考查了正余弦定理的应用和计算能力.属于中档题.7.(2019·安徽高考模拟(理))在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD 长的取值范围是_______;【答案】⎭【解析】 【分析】本道题运用向量方法,计算AD 的长度,同时结合锐角三角形这一条件,计算bc 的范围,即可. 【详解】设,AB c AC b ==,2BC a ==,对sin sin 2sin B C A +=运用正弦定理,得到24b c a +==,解得4c b =-,结合该三角形为锐角三角形,得到不等式组()()()22222222224444444b c b b c b b b c b ⎧+=+->⎪⎪+=-+>⎨⎪+>=-⎪⎩,解得3522b <<,故()244bc b b b b =-=-+,结合二次函数性质,得到1544bc <≤,运用向量得到()12AD AB AC =+u u u v u u u v u u u v ,所以AD ==u u u v==bc 的范围,代入,得到AD u u u v的范围为⎭【名师点睛】本道题考查了向量的加法运算,考查了锐角三角形判定定理,考查了二次函数的性质,关键将模长联系向量方法计算,难度偏难.8.(2019·浙江高考模拟)在锐角ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,2c =,3A π=,则sin a C =__________.a b +的取值范围是__________.1,4+【解析】 【分析】由正弦定理可得sin a C 的值.由正弦定理可以把a b +表示为角C 的函数,由锐角三角形得出角C 的取值范围,进而可得a b +的取值范围. 【详解】由正弦定理,可得sin sin a cA C =,则πsin sin 2sin 3a C c A ===.由sin sin sin a b c A B C ==,可得sin sin c A a C ==,2π2sin sin 3sin sin C c B b CC⎛⎫- ⎪⎝⎭== , 所以)21cos 2111sin 2sin cos tan 222CC a b C C C ++==+=+=+. 由ABC △是锐角三角形,可得π02C <<,2ππ032C <-<,则ππ62C <<, 所以ππ124C <<,2tan 12C<<.所以11a b ++<+【名师点睛】本题考查正弦定理,综合运用三角恒等变换知识是解题关键. 三、解答题9.(2019·天津高考模拟(理))在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=.(Ⅰ)求A ;(Ⅰ)若4,6b c ==,求cos B 和()cos 2A B +的值.【答案】(Ⅰ)π3A =(Ⅰ)1114-【解析】 【分析】(Ⅰ)先根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(Ⅰ)根据余弦定理求a ,代入条件求得sinB =,解得cos B =最后根据两角和余弦定理得结果. 【详解】(Ⅰ)解:由条件1cos 2a C c b +=,得1sin sin sin sin 2A C CB +=,又由()sin sin B AC =+,得1sin cos sin sin cos cos sin 2A C C A C A C +=+.由sin 0C ≠,得1cos 2A =,故π3A =. (Ⅰ)解:在ABC V 中,由余弦定理及π4,6,3b c A ===,有2222cos a b c bc A =+-,故a =由sin sin b A a B =得sinB =b a <,故cos B =因此sin22sin cos 7B B B ==,21cos22cos 17B B =-=.所以()11cos 2cos cos2sin sin214A B A B A B +=-=-. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.10.(2019·广东高考模拟(理))在ABC △中,角、、A B C 所对的边分别为a b c 、、,2sin cos sin 2sin b C A a A c B +=;(1)证明:ABC △为等腰三角形;(2)若D 为BC 边上的点,2BD DC =,且2ADB ACD ∠=∠,3a =,求b 的值.【答案】(1)证明见解析;(2)b =【解析】 【分析】(1)根据已有等式2sin cos sin 2sin b C A a A c B +=,利用正弦定理作角化边,可得22cos 2bc A a cb +=,最后再由余弦定理把所有角都化为边的等式得2222222b c a bc a bc bc+-⋅+=;最后,根据等式可化简出b c =,故可证ABC V 为等腰三角形.(2)由 2BD =,1DC =,2,ADB ACD ACD DAC ∠=∠=∠+∠可得ACD DAC ∠=∠, 然后,就可以根据角的相等关系,根据余弦定理或相似关系列出等式进行求解即可. 【详解】(1)2sin cos sin 2sin b C A a A c B +=Q ,由正弦定理得:22cos 2bc A a cb +=,由余弦定理得:2222222b c a bc a bc bc+-⋅+=;化简得:222b c bc +=, 所以()20b c -=即b c =, 故ABC V 为等腰三角形. (2)如图,由已知得2BD =,1DC =,2,ADB ACD ACD DAC Q ∠=∠=∠+∠ACD DAC ∴∠=∠, 1AD CD ∴==,又cos cos ADB ADC ∠=-∠Q ,22222222AD BD AB AD CD AC AD BD AD CD +-+-∴=-⋅⋅, 即2222221211221211c b +-+-=-⨯⨯⨯⨯,得2229b c +=,由(1)可知b c =,得b =解法二:取BC 的中点E ,连接AE .由(1)知,AB AC AE BC =∴⊥,由已知得31,1,22EC DC ED ===, 2,ADB ACD ACD DAC Q ∠=∠=∠+∠ACD DAC ∴∠=∠,AE ∴===b AC ∴====解法三:由已知可得113CD a ==,由(1)知,,AB AC B C =∴∠=∠, 又2DAC ADB C C C C ∠=∠-∠=∠-∠=∠Q ,CAB CDA ∴V V ∽,即CB CA CA CD =,即31bb =,b ∴=【名师点睛】本题考查解三角形的问题,(1)题的关键就是利用正弦定理和余弦定理作角化边的转化,(2)题的难点在于根据已有关系化简出相应的等式关系求解,难度属于一般题.11.(2019·江西高三月考(理))已知向量()1cos ,1,,2a x b x ⎫=-=-⎪⎭r r,函数()()2f x a b a =+⋅-r r r.(1)求函数()f x 的最小正周期及单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知函数()f x 的图像经过点1,2A ⎛⎫⎪⎝⎭,,,b a c 成等差数列,且9AB AC ⋅=uu u r uuu r ,求a 的值. 【答案】(1)π,(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)a =【解析】 【分析】(1)利用向量的数量积和二倍角公式化简()f x 得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,故可求其周期与单调性;(2)根据图像过1,2A ⎛⎫ ⎪⎝⎭得到()12f A =,故可求得A 的大小,再根据数量积得到bc 的乘积,最后结合余弦定理和2b c a +=构建关于a 的方程即可. 【详解】(1)()()2122cos 22sin 2226f x a b a a a b x x x π⎛⎫=+⋅-=+⋅-=+=+ ⎪⎝⎭r r r r r r ,最小正周期:22T ππ==, 由()222,262k x k k Z πππππ-≤+≤+∈得()36k x k k πππ-≤≤π+∈Z , 所以()f x 的单调递增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)由()1sin 262f A A π⎛⎫=+= ⎪⎝⎭可得:()5222666A k k k Z πππππ+=++∈或, 所以3A π=.又因为,,b a c 成等差数列,所以2a b c =+而1cos 9,182AB AC bc A bc bc ⋅===∴=u u u r u u u r ,()22222214cos 11,223612b c a bc a a a A a bc +---∴===-=-∴=12.(2017·四川高考模拟(理))若函数f (x )=Asin (ϖx+φ)(A >0,0,)22ππωφ>-<<的部分图象如图所示. (I )设x ∈(0,3π)且f (α)=65,求sin 2a 的值; (II )若x ∈[5,1212ππ]且g (x )=2λf (x )+cos (4x ﹣3π)的最大值为32,求实数λ的值.【答案】(1(2)1 2【解析】试题分析:(Ⅰ)由函数的图象求出最值和周期,可得,Aω,进而求出ϕ值,可得函数的解析式,再利用和差公式进行求解;;(Ⅰ)分类讨论满足条件的实数λ的值,综合讨论结果,可得答案.试题解析:(Ⅰ)由图得,A=2.…,解得T=π,于是由T=,得ω=2.…∵,即,∴,即,k∈Z,又,故,∴.…由已知,即,因为,所以,∴.∴===. …(Ⅰ)由(Ⅰ)知,===,…∵x ∈,于是0≤≤,∴0≤≤1.…①当λ<0时,当且仅当=0时,g (x )取得最大值1,与已知不符.②当0≤λ≤1时,当且仅当=λ时,g (x )取得最大值2λ2+1,由已知得2λ2+1=,解得λ=.③当λ>1时,当且仅当=1时,g (x )取得最大值4λ﹣1,由已知得4λ﹣1=,解得λ=,矛盾.综上所述,λ=.… 【名师点睛】:由三角函数的图象求函数sin()y A x k ωϕ=++的解析式的一般思路:先利用最高点和最低点的纵坐标列出关于,A k 的方程组求得值,A k ,利用相邻零点间的距离、相邻对称轴间的距离、零点和对称轴间的距离求出ω值,再代入最高点或最低点的坐标求出ϕ值. 13.(2019·山东高三期中)△ABC 中,角A 、B 、C 对边分别是a 、b 、c ,满足222()AB AC a b c ⋅=-+u u u r u u u r.(Ⅰ)求角A 的大小;(Ⅰ)求24sin()23C B π--的最大值,并求取得最大值时角B 、C 的大小. 【答案】(1);(2).【解析】 【详解】(Ⅰ)由222()AB AC a b c ⋅=-+u u u r u u u r已知2222cos 2bc A a b c bc =---,·由余弦定理2222cos a b c bc A =+-得4cos 2bc A bc =-,∴1cos 2A =-,∵0A π<<,∴23A π=. (Ⅰ)∵23A π=,∴3B C π=-,03C π<<.241cos sin()sin()2323C C B B ππ+--=+-2sin()3C π=+. ∵03C π<<,∴2333C πππ<+<,∴当32C ππ+=,24sin()23C B π--2,解得6B C π==. 14.(2019·安徽高考模拟(理))在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且有()2cos cos cos sin sin A A C B B C +-=(Ⅰ)求角A ;(Ⅰ)若ABC ∆的内切圆面积为π,当AB AC ⋅u u u v u u u v的值最小时,求ABC ∆的面积.【答案】(Ⅰ)3π;(Ⅰ)【解析】 【分析】(Ⅰ)利用两角和差余弦公式可将已知等式化简为2cos sin sin sin sin A B C C B =,从而求得1cos 2A =;结合()0,A π∈可求得结果;(Ⅰ)根据内切圆面积可知内切圆半径为1,由内切圆特点及切线长相等的性质可得到b c a +-=b c +与bc 的关系,利用基本不等式可构造不等式求得12bc ≥,从而得到当b c =时,AB AC ⋅u u u v u u u v取得最小值,将12bc =代入三角形面积公式即可求得结果. 【详解】(Ⅰ)()()()2cos cos cos cos cos cos A A C B A B C C B +-=-++-⎡⎤⎣⎦Q()cos cos cos sin sin cos cos sin sin 2cos sin sin A B C B C C B C B A B C =-+++= 2cos sin sin sin sin A B C C B ∴=(),0,B C π∈Q sin sin 0C B ∴≠ 1cos 2A ∴= ()0,A π∈Q 3A π∴=(Ⅰ)由余弦定理得:222222cos a b c bc A b c bc =+-=+- 由题意可知:ABC ∆的内切圆半径为1如图,设圆I 为三角形ABC 的内切圆,D ,E 为切点可得:2AI =,AD AE == b c a ∴+-=(222b c b c bc ∴+-=+-,化简得()4b c =+≥b c =时取等号)12bc ∴≥或43bc ≤又b c +> 12bc ∴≥,即[)1cos 6,2AB AC bc A bc ⋅==∈+∞u u u v u u u v ,当且仅当b c =时,AB AC ⋅u u u v u u u v的最小值为6此时三角形ABC 的面积:11sin 12sin 223bc S A π==⨯⨯=【名师点睛】本题考查解三角形的相关知识,涉及到利用两角和差余弦公式化简求值、根据三角函数值求角、余弦定理的应用、三角形中最值问题的求解等知识;解题关键是能够灵活应用三角形内切圆的性质构造出三边之间的关系,代入余弦定理中,利用基本不等式求得两边之积的最值.。

2011—2020年新课标全国卷1理科数学分类汇编三角函数、解三角形(解析在下面)

2011—2020年新课标全国卷1理科数学分类汇编三角函数、解三角形(解析在下面)

2011-2020高考新课标1卷理科三角函数、解三角形一、选择题【2020,9】.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .53 B .23 C .13 D .59【2020,7】.设函数()cos()6f x x πω=+在[,]ππ-的图像大致如下图,则()f x 的最小正周期为( )A.109πB.76πC.43πD.32π【2019,11】关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③ 【2019,5】函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A. B.C. D.解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.【2018,16】已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________. 【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增二、填空题【2020,16】.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠= .【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【2011,16】在ABC 中,60,3B AC ==2AB BC +的最大值为 . 三、解答题【2019,17】.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(222a b c +=,求sin C .【2018,17】(12分)在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =. ⑴求cos ADB ∠; ⑵若2DC =,求BC .【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .3.三角函数、解三角形(解析版)一、选择题【2020,9】.已知(0,)απ∈,且3cos28cos5αα-=,则sinα=()A.5B.23C.13D.5解答:由3cos28cos5αα-=,得23(2cos1)8cos5αα--=,得23cos4cos40αα--=,化为(3cos2)(cos2)0αα+-=,得2cos3α=-,那么5sinα=【2020,7】.设函数()cos()6f x xπω=+在[,]ππ-的图像大致如下图,则()f x的最小正周期为()A.109πB.76πC.43πD.32π解析:∵4cos()096ππω-+=,∴42()962k k Zπππωπ-+=-∈,∴9322kω=-+,根据图像可知2413||99ππππω<+=,2||ππω>,∴18||213ω<<,故取0k=,则32ω=,∴2243||32Tπππω===,故选C.【2019,11】关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. 【2019,5】函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A. B.C. D.解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x +-+()f x =-,∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.【2018,16】已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-. ∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π= ∴5()3f π=()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为 【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ;【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈ZC .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D . 【2015,2】sin 20cos10cos160sin10-=( )A .3-B .3C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M到直线OP的距离表示为x的函数()f x,则y=()f x在[0,π]上的图像大致为()【解析】:如图:过M作MD⊥OP于D,则PM=sin x,OM=cos x,在Rt OMP∆中,MD=cos sin1x xOM PMOP=cos sinx x=1sin22x=,∴()f x1sin2(0)2x xπ=≤≤,选B.【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sintancosβαβ+=,则A.32παβ-=B.22παβ-=C.32παβ+=D.22παβ+=【解析】∵sin1sintancos cosαβααβ+==,∴sin cos cos cos sinαβααβ=+()sin cos sin2παβαα⎛⎫-==-⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2012,9】已知0ω>,函数()sin()4f x xπω=+在(2π,π)上单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【解析】因为0ω>,2xππ<<,所以2444xππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x xπω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选择A.【2011,11】设函数()sin()cos()(0,)2f x x xπωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x-=,则()A.()f x在0,2π⎛⎫⎪⎝⎭单调递减B.()f x在3,44ππ⎛⎫⎪⎝⎭单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2sin()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,()2sin(2)2cos22f x x x π∴=+=,选A. 【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B. 二、填空题【2020,16】.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠= .解析:3AB =1AC =,AB AC ⊥,∴2BC =, 同理6DB =3AE DA ==30CAE ∠=︒,1AC =.∴2222cos EC AE AC AE AC EAC =+-⨯⨯⨯∠3312311=+-=.在BCF ∆中,2BC =,1FC EC ==,6FB DB ==∴2221461cos 22214FC BC FB FCB FC BC +-+-∠===-⨯⨯⨯⨯.【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .解析: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得62BF =-,所以AB 的取值范围为(62,6+2)-.【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 32ABC S bc A ∆=≤, 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 解析:f (x )=sin x -2cos x =5sin cos 55x x ⎛⎫-⎪⎝⎭,令cos α=5,sin α=5-, 则f (x )=5sin(α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )有最大值5,即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=2555-=-. 【2011,16】在ABC 中,60,3B AC ==,则2AB BC +的最大值为 . 解析:0120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒= 022sin 2sin(120)3cos sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=3cos 5sin 28sin()27sin()A A A A ϕϕ+=+=+,故最大值是27三、解答题【2019,17】.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (3)求A ;(42b c +=,求sin C .解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-=结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=sin()2sin 3C C π++=,1cos 2C C -=sin()6C π-=又203C π<<∴662C πππ-<-<又sin()06C π->∴062C ππ<-<∴cos 62C π⎛⎫-= ⎪⎝⎭∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭4+=.【2018,17】(12分)在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =.⑴求cos ADB ∠; ⑵若DC =,求BC .解答:(1)在ABD ∆中,由正弦定理得:52sin 45sin ADB =∠,∴2sin ADB ∠=, ∵90ADB ∠<,∴223cos 1sin 5ADB ADB ∠=-∠=. (2)2ADB BDC π∠+∠=,∴cos cos()sin 2BDC ADB ADBπ∠=-∠=∠,∴cos cos()sin 2BDC ADB ADBπ∠=-∠=∠,∴222cos 2DC BD BC BDC BD DC+-∠=⋅⋅,∴2252522=⋅⋅.∴5BC =. 【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,3sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=ABC △周长为3+【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 【解析】⑴ ()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=【2013,17】如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=,故P A =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA sin sin(30)αα=︒-,α=4sin α,所以tan α,即tan ∠PBA【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c . 【解析】(1)根据正弦定理R CcB b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c +--=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

2020年高考数学(理数)解答题强化专练——解三角形含答案

2020年高考数学(理数)解答题强化专练——解三角形含答案

(理数)解答题强化专练——解三角形一、解答题(本大题共10小题,共120.0分)1.在△ABC中,角A,B,C的对边分别为a,b,c,sin A=sin B且b=c.(1)求角A的大小;(2)若a=2,角B的平分线交AC于点D,求△ABD的面积.2.已知函数的最大值为1.(1)求t的值;(2)设锐角△ABC的内角A,B,C所对的边分别为a,b,c,若a=2,△ABC的面积为,且f(A)=,求b+c的值.3.如图,在△ABC中,点D是边BC上一点,AB=14,BD=6,.(1)若C>B,且cos(C-B)=,求角C;(2)若△ACD的面积为S,且,求AC的长度.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2a+b=2c cos B,.(1)求角C;(2)延长线段AC到点D,使CD=CB,求△ABD周长的取值范围.5.△ABC的内角A,B,C的对边分别为a,b,c,且(sin A+sin B)(a-b)+b sin C=c sin C.(1)求A;(2)若b=2c,点D为边BC的中点,且,求△ABC的面积.6.△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求A;(2)若a=1,求△ABC面积的最大值.7.已知△ABC中,角A,B,C所对的边分别为a,b,c,a=,且=.(1)求△ABC外接圆的半径;(2)若c=3,求△ABC的面积.8.已知分别为三个内角的对边,且.(1)求角;(2)若,的面积为,求的周长.9.在△ABC中,角A,B,C的对边分别为a,b,c,且.(Ⅰ)求sin A的值;(Ⅱ)若△ABC的面积为,且sin B=3sin C,求△ABC的周长.10.△ABC的内角为A,B,C的对边分别为a,b,c,已知.(1)求角B;(2)若,当△ABC的面积最大值.答案和解析1.【答案】解:(1)由sin A=sin B及正弦定理知a=b,又b=c,由余弦定理得cos A==,A∈(0,π),A=;(2)由(1)知B=C=,又a=2,在△ABC中,由正弦定理知:AB=2,在△ABD中,由正弦定理及∠ABD=,∠BDC=解得AD=-1,故S△ABD===.【解析】(1)由正弦定理及其余弦定理,求出角A即可;(2)由(1)求出B,C,再由及∠ABD=,∠BDC=,求出AD,再求出面积.考查正余弦定理的应用,中档题.2.【答案】解:(1)=,∵f(x)的最大值为1,∴,解得,(2)∵,∴,又△ABC是锐角三角形,得,.∴,解得,由三角形面积公式得,,可得bc=4,由余弦定理a2=b2+c2-2bc cos A,可得8=(b+c)2-3bc,(b+c)2=20,而b+c>0,∴.【解析】(1)对f(x)化简,利用f(x)最大值为1,求出t;(2)由,求出A,利用面积公式,结合余弦定理求出b+c.考查两角和与差公式的应用,正弦函数的性质,三角形面积公式,正余弦定理等,中档题.3.【答案】解:(1)∵AB=14,BD=6,,∴•=AB•BD•cos B=14×6×cos B=66,∴解得cos B=,∵△ABC中,C>B,且B+C+∠ABC=π,∴B,∴sin B==,∵C-B∈(0,π),cos(C-B)=,∴cos C=cos[(C-B)+B]=cos(C-B)cos B-sin(C-B)sin B=-=,在△ABC中,∵C∈(0,π),∴C=.(2)∵△ACD的面积,∴CD•CA•sin C=AC•CD•cos C,∴sin C=cos C,∵△ACD中,C∈(0,π),∴sin C≠0,则cos C≠0,可得tan C=1,可得C=,在△ABC中,由正弦定理可得,又∵sin B=,AB=14,sin C=sin=,∴=,解得AC=5.【解析】(1)利用平面向量数量积的运算可求cos B的值,利用同角三角函数基本关系式可求sin B的值,由已知利用两角和的余弦函数公式可求cos C的值,结合C的范围可求C的值.(2)由已知利用三角形的面积公式,平面向量数量积的运算,同角三角函数基本关系式可求tan C=1,可得C=,在△ABC中,由正弦定理可得AC的值.本题主要考查了平面向量数量积的运算,同角三角函数基本关系式,两角和的余弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.4.【答案】解:(1)根据余弦定理得,整理得:a2+b2-c2=-ab,由余弦定理可得cos C===-,由于C∈(0,π),可得C=.(2)由于C=,即∠BCD=,又CD=CB,可得△BCD为等边三角形,可得BD=CD=a,所以△ABD的周长L=2a+b+,由正弦定理,所以:a=2sin A,b=2sin B,因为:A=-B,又B∈(0,),可得cos B∈(,1),所以2a+b=4sin A+2sin B=4sin(-B)+2sin B=4(cos B-sin B)+2sin B=2cos B,所以,所以周长L=2a+b+的取值范围是(2,3).【解析】(1)由已知利用余弦定理可得cos C=-,结合范围C∈(0,π),可求C=.(2)由已知可得△BCD为等边三角形,可得BD=CD=a,可求△ABD的周长L=2a+b+,由正弦定理,三角函数恒等变换的应用可求2a+b=2cos B,根据B的范围,根据余弦函数的性质可求,即可求得周长的范围.本小题主要考查正弦定理、余弦定理、三角函数恒等变换的应用等基础知识,考查运算求解能力,考查化归与转化思想等.5.【答案】解:(1)由(sin A+sin B)(a-b)+b sin C=c sin C,可得a2-b2+bc=c2,由余弦定理可得,故.(2)因为AD为△ABC的中线,所以,两边同时平方可得,故28=c2+b2+bc.因为b=2c,所以c=2,b=4.所以△ABC的面积.【解析】(1)直接利用正弦定理余弦定理的应用求出结果.(2)利用余弦定理和向量的应用求出结果.本题考查的知识要点:正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.【答案】解:(1)由及正弦定理可得,整理可得,sin A cos B+sin B cos A=2sin C cos A,即sin(A+B)=sin C=2sin C cos A,因为sin C≠0,所以cos A=,所以A=,(2)由余弦定理可得,=,所以b2+c2=1+bc≥2bc,当且仅当b=c时取等号,所以bc≤1,即bc的最大值为1,此时三角形的面积取得最大值S==.【解析】(1)由已知结合正弦定理及和差角公式进行化简即可求解cos A,进而可求A;(2)由余弦定理结合基本不等式可求bc的最大值,然后结合三角形的面积公式即可求解.本题主要考查了正弦定理及和差角公式在三角化简中的应用,还考查了三角形的面积公式的应用,属于中等试题.7.【答案】解:(1)∵=,∴=,由正弦定理可得,,所以(a-b)b=(c+a)(c+b-a),整理可得,c2+b2-a2=-bc,由余弦定理可得,cos A==-所以A=,由正弦定理可得2R==,即外接圆半径R=;(2)由c2+b2-a2=-bc,a=,c=3可得,9+b2-13=-3b,解可得,b=1,所以S△ABC===.【解析】(1)由已知结合正弦定理余弦定理及和差角公式进行化简即可求解A,然后再由正弦定理即可求解;(2)结合(1)中的三边关系时即可求解b,然后结合三角形的面积公式即可求解.本题主要考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档试题.8.【答案】解:(1)由正弦定理有,化简得,∵,∴,又,∴,(2),即,,又由余弦定理有,,则的周长为.【解析】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于中档题. (1)根据已知及正弦定理的计算,求出角A的值,(2)根据已知及余弦定理,三角形面积公式的计算,求出△ABC的周长.9.【答案】解:(Ⅰ)∵,∴由余弦定理可得2bc cos A=bc,∴cos A=,∴在△ABC中,sin A==.(Ⅱ)∵△ABC的面积为,∴bc sin A=bc=,即bc=6,又∵sin B=3sin C,∴由正弦定理可得b=3c,∴b=3,c=2,∴由余弦定理得a2=b2+c2-2bc cos A=6,∴a=,∴△ABC的周长为2+3+.【解析】本题考查了余弦定理,同角三角函数的基本关系式,三角形的面积公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.(Ⅰ)由已知利用余弦定理可求cos A的值,进而根据同角三角函数的基本关系式可求sin A的值.(Ⅱ)利用三角形的面积公式可求bc的值,由正弦定理化简已知等式可得b=3c,解得b,c的值,根据余弦定理可求a的值,即可求解三角形的周长.10.【答案】解:(1)根据题意,△ABC中,,即=,即a=b cos C+c sin B,由正弦定理可得:sin A=sin B cos C+sin C sin B,则有sin(B+C)=sin B cos C+sin C sin B,变形可得:sin B cos C+cos B sin C=sin B cos C+sin C sin B,化简可得:sin B=cos B,所以;(2)由(1)的结论,B=,由余弦定理可得:b2=a2+c2-2ac cos B,则有2=a2+c2-ac,即有2+ac=a2+c2,又由a2+c2≥2ac,则有2+ac≥2ac,变形可得:ac≤=2+,则S=ac sin B=ac≤.即△ABC的面积最大值为.【解析】(1)根据题意,将变形可得=,结合正弦定理变形可得sin A=sin B cos C+sin C sin B,进而可得sin B cos C+cos B sin C=sin B cos C+sin C sin B,即sin B=cos B,分析可得tan B=1,分析可得B 的值,(2)根据题意,由余弦定理可得b2=a2+c2-2ac cos B,即2=a2+c2-ac,变形可得2+ac=a2+c2,结合基本不等式的性质可得ac≤=2+,由三角形面积公式计算可得答案.本题考查三角形中的几何计算,关键是掌握正弦定理、余弦定理的形式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学试题分项版解析专题11解三角形理1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是C ∆AB A B C C ∆AB ()sin 12cosC 2sin cosC cos sinC B +=A +A (A )(B )(C )(D )2a b =2b a =2A =B 2B =A 【答案】A【解析】试题分析:sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以,选A.2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒= 【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.A B C 2a b =2.【2016高考新课标3理数】在中,,边上的高等于,则( )ABC△π4B =BC 13BC cos A = (A )(B )(C )(D 3101010-310- 【答案】C 【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C.BCAD3BC AD=225AC AD DC =+=2AB =22222210cos 210225AB AC BC A AB AC AD AD+-===⋅⨯⨯ 考点:余弦定理.3.【2016高考天津理数】在△ABC 中,若,BC=3, ,则AC= ()=13AB 120C ∠=o(A )1 (B )2 (C )3 (D )4【答案】A 【解析】试题分析:由余弦定理得,选A.213931AC AC AC =++⇒= 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.4.【2017浙江,14】已知△ABC ,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是______,cos ∠BDC=_______.【答案】24【解析】试题分析:取BC 中点E ,DC 中点F ,由题意:,,AE BC BF CD ⊥⊥△ABE 中,,,1cos 4BE ABC AB ∠==1cos ,sin 44DBC DBC ∴∠=-∠==BC 1sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△.又,21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=cos sin BDC DBF ∴∠=∠=,综上可得,△BCD 面积为,cos BDC ∠=【考点】解三角形5.【2015高考北京,理12】在中,,,,则 .ABC △4a =5b =6c =sin 2sin AC= 【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值. 6.【2016高考江苏卷】在锐角三角形中,若,则的最小值是.ABC sin 2sin sin A B C =tan tan tan A B C【答案】8.【解析】,因此sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥≥,即最小值为8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形中恒有,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识ABC tan tan tan tan tan tan A B C A B C =++7.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是. 【答案】(,)62-6+2【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得,即,解得=,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,,即,解得BF=,所以AB 的取值范围为(,).sin sin BC BE E C =∠∠o o2sin 30sin 75BE=BE 6+2sin sin BF BC FCB BFC =∠∠o o2sin 30sin 75BF =62-62-6+2【考点定位】正余弦定理;数形结合思想8.【2016高考新课标2理数】的内角的对边分别为,若,,,则.ABC ∆,,A B C ,,a b c 4cos 5A =5cos 13C =1a =b = 【答案】2113【解析】试题分析:因为,且为三角形内角,所以,,又因为,45cos ,cos 513A C ==,A C312sin ,sin 513A C ==13sin sin[()]sin()sin cos cos sin 65B A C A B A C A C π=-+=+=+=sin sin a bA B=所以.sin 21sin 13a Bb A == 考点:三角函数和差公式,正弦定理.9.【2015高考重庆,理13】在ABC 中,B=,AB=,A 的角平分线AD=,则AC=_______.120o 23 6【解析】由正弦定理得,即,解得,,从而,所以,.sin sin AB ADADB B =∠23sin sin120ADB =∠︒2sin 2ADB ∠=45ADB ∠=︒15BAD DAC ∠=︒=∠1801203030C =︒-︒-︒=︒2cos306AC AB =︒=【考点定位】解三角形(正弦定理,余弦定理)【名师点晴】解三角形就是根据正弦定理和余弦定理得出方程进行的.当已知三角形边长的比时使用正弦定理可以转化为边的对角的正弦的比值,本例第一题就是在这种思想指导下求解的;当已知三角形三边之间的关系式,特别是边的二次关系式时要考虑根据余弦定理把边的关系转化为角的余弦关系式,再考虑问题的下一步解决方法. 10.【2015高考天津,理13】在中,内角所对的边分别为,已知的面积为,则的值为.ABC ∆,,A B C ,,a b c ABC ∆31512,cos ,4b c A -==- 【答案】【解析】因为,所以,0A π<<215sin 1cos A A =-= 又,解方程组得,由余弦定理得115sin 315,242ABC S bc A bc ∆===∴=224b c bc -=⎧⎨=⎩6,4b c == 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以.8a =【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角的正弦值,再由三角形面积公式求出,解方程组求出的值,用余弦定理可求边有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现.A 24bc =,b c11.【2015高考湖北,理13】如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度 m. A 30o B 75o 30o CD =【答案】610012.【2015高考福建,理12】若锐角的面积为,且,则等于________.ABC ∆1035,8AB AC ==BC 【答案】【解析】由已知得的面积为,所以,,所以.由余弦定理得,.ABC∆1sin 20sin 2AB AC A A ⋅=103=3sin 2A =(0,)2A π∈3A π=2222cos BC AB AC AB AC A =+-⋅=497BC =【考点定位】1、三角形面积公式;2、余弦定理.【名师点睛】本题考查余弦定理,余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边,属于基础题.13.【2017课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC的面积为23sin a A(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC 的周长. 【解析】由正弦定理得.1sin sin sin 23sin AC B A=故.2sin sin 3B C =(2)由题设及(1)得,即.1cos cos 6B C =1cos cos sin sin 2B C B C -=-1cos()2B C +=- 所以,故.2π3B C +=π3A = 由题设得,即.21sin 23sin a bc A A=8bc =由余弦定理得,即,得.229b c bc +-=2()39b c bc +-=33b c += 故的周长为.ABC △333+ 【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.sin()y A x bωϕ=++14.【2017课标II ,理17】的内角所对的边分别为,已知,ABC ∆A B C 、、,,a b c ()2sin 8sin 2BA C += (1)求;cos B(2)若,的面积为,求。

相关文档
最新文档