动量和能量专题练习

合集下载

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

专题41 动量和能量的综合应用1.[2022·九师联盟质量检测]如图所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A.Mv0m+MmMv22(m+M)B.Mv0m+MmMv2m+MC.mv0m+MmMv22(m+M)D.mv0m+MmMv2m+M2.(多选)如图所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A.虽然A、B两物体会有加速运动,但它们的总动量保持不变B.在以后的运动过程中F1、F2一直做正功,系统的机械能一直在增大C.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体总动能最大D.当弹簧弹力的大小与F1、F2的大小相等时,弹簧弹性势能最大3.[2022·山东省德州市期中]如图所示,光滑水平面上静止着一长为L的平板车,一人站在车尾将一质量为m的物体水平抛出,物体恰好落在车的前端.物体可看做质点,抛出位置位于车尾正上方,距车上表面的竖直高度为h ,不计空气阻力,已知人和车的总质量为M,重力加速度为g ,物体水平抛出时获得的冲量大小为( )A.mLg2hB.MLg2hC.m2LM+mg2hD.MmLM+mg2h4.[2022·八省八校第一次联考](多选)内部长度为L、质量为M的木箱静止在光滑的水平面上,木箱内部正中间放置一可视为质点的质量为m的木块,木块与木箱之间的动摩擦因数为μ.初始时木箱向右的速度为v0,木块无初速度.木箱运动的v­t图像如图所示,所有碰撞均为弹性碰撞且碰撞时间极短,重力加速度为g,则在0~t0时间内,下列说法正确的是( )A.M=2mB.M与m间的相对路程为v2 04μgC.M对地的位移为v2 08μg +32LD.m对地的位移为3v28μg -32L5.[2022·江苏盐城期末]如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5 m/s向右做匀速直线运动.已知甲、乙两球质量分别为0.1 kg和0.2 kg.某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0 s,两球之间的距离为x=2.7 m,则下列说法正确的是( )A.刚分离时,甲、乙两球的速度方向相同B.刚分离时,甲球的速度大小为0.6 m/sC.刚分离时,乙球的速度大小为0.3 m/sD.爆炸过程中释放的能量为0.027 J6.[2022·湖南省五市十校联考]如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是水平粗糙轨道,两段轨道相切于B 点.一质量为m的滑块(可视为质点)从小车上的A点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C点.已知M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g.则下列说法正确的是( )A.滑块从A滑到C的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L) D .水平轨道的长度L =R μ7.[2022·湖北十堰高三阶段练习]如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m /s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m (未脱离轨道).取重力加速度大小g =10 m /s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m /sB .碰撞后瞬间,小球a 的速度大小为3 m /sC .小球b 的质量为3 kgD .两球会发生第二次碰撞8.如图所示,静止在光滑水平面上的小车质量为M =20 kg .从水枪中喷出的水柱的横截面积为S =10 cm 2,速度为v =10 m /s ,水的密度为ρ=1.0×103kg /m 3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.试求:(1)当有质量为m =5 kg 的水进入小车时,小车的速度大小;(2)若将小车固定在水平面上,且水冲击到小车前壁后速度立即变为零,求水对小车的冲击力大小.专题41 动量和能量的综合应用1.C 木块在小车上表面滑动的过程中动量守恒,有mv 0=(M +m )v ,系统因摩擦产生的热量Q =12mv 20 -12(M +m )v 2,两式联立解得木块的最终速度v =mv 0M +m,摩擦产生的热量Q =mMv 22(M +m ),C 正确.2.AC 由题意,水平恒力F 1、F 2等大反向,则系统受合外力为零,总动量守恒,故A 正确;拉力与物体的运动方向相同,则F 1、F 2一直做正功,系统的机械能一直在增大,当物体减速为零后此时弹簧的弹力大于拉力,物体会反向运动,此时拉力与运动方向相反,都做负功则机械能减少,B 错误;当弹簧弹力的大小与F 1、F 2的大小相等后,弹力大于拉力,则物体减速运动,故弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度最大,总动能最大,C 正确;当弹簧弹力的大小与F 1、F 2的大小相等后,物体减速运动,但仍然会使弹簧继续伸长,弹性势能继续增大,D 错误.3.D 系统水平方向动量守恒,mv 1=Mv 2,有mx 1=Mx 2,且x 1+x 2=L ,解得x 1=ML M +m,x 2=mL M +m .由平抛运动的规律得h =12gt 2,x 1=v 1t ,由动量定理得I =mv 1,解得I =MmL M +m g 2h.4.BCD 由v ­t 图像可知木块与木箱最终共速,则mv 0=(M +m )v 02,得m =M ,则A 错;由能量守恒可得:12Mv 20 =12(M +m )v 20 4+μmgs ,得到两物体的相对路程为v 20 4μg,B 正确;由图知共碰撞三次,都是弹性碰撞,到共速为止所花总时间为t =v 0-v 02μg=v 02μg,则木箱运动的位移为32L +v 20 8μg ,木块相对地面的位移为3v 20 8μg -32L ,C 、D 正确.5.D 设甲、乙两球的质量分别为m 1、m 2,刚分离时两球速度分别为v 1、v 2,以向右为正方向,则由动量守恒得(m 1+m 2)v 0=m 1v 1+m 2v 2,根据题意有v 2-v 1=xt,代入数据可解得v 2=0.8 m/s ,v 1=-0.1 m/s ,说明刚分离时两球速度方向相反,故A 、B 、C 错误;爆炸过程中释放的能量ΔE =12m 1v 21 +12m 2v 22 -12(m 1+m 2)v 20 ,将v 2=0.8 m/s ,v 1=-0.1 m/s ,代入计算可得ΔE =0.027 J ,故D 正确.6.D 滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=mv m -Mv M ,mgR =12mv 2m +12Mv 2M ,解得v m =3gR2,v M = gR6,滑块滑到B 点时的速度为3gR2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14(R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =Rμ,故D 正确.7.C 由机械能守恒m b gh =12mv 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12m a v 20 =12m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.8.(1)2 m/s (2)100 N解析:(1)流进小车的水与小车组成的系统动量守恒,当流入质量为m 的水后,小车速度为v 1,则mv =(m +M )v 1代入数据解得v 1=2 m/s.(2)在极短的时间Δt 内,冲击小车的水的质量为Δm =ρSv Δt 根据动量定理-F Δt =0-Δmv 联立解得F =100 N .。

动量和能量练习题

动量和能量练习题

物理专题——动量和能量一.选择题1.一小型爆炸装置在光滑.坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是:A .总动量守恒B .机械能守恒C .水平方向动量守恒D .竖直方向动量守恒 2(多选).向空中发射一物体,不计空气阻力。

当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则:A .b 的速度方向一定与原速度方向相反B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大C .a .b 一定同时到达水平地面D .在炸裂过程中,a .b 受到的爆炸力的冲量大小一定相等3(多选).光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是:A .子弹对木块做的功等于()222121v v m -B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能D .子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和4(多选).子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木块后子弹的动能为E 2,动量大小为2p 。

若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为:A .2121p p E E ++ B .1212p p E E -- C .2211p E p E + D .2211p E p E - 5(多选).如图所示,质量分别为m 和2m 的A .B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。

用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。

这时突然撤去F ,关于A .B 和弹簧组成的系统,下列说法中正确的是:A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /36(多选).一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示.下列说法正确的是:A .半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B .半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C .半圆槽固定不动时,物体M 在滑动过程中机械能守恒D .半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒7.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m .M 及M 与地面间接触光滑。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

专题3.1 动量和能量答案2

专题3.1 动量和能量答案2

动量和能量 第一讲答案训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222E mv mv Mv mgl μ∆=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=21m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102⨯⨯=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR(2)根据机械能守恒 ΔE k =ΔE p mv 2=12mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30°(3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:Rv m mg F B NB2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即21=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2h mgh mg mv μθθ-⋅=- 所以v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。

动量守恒能量守恒练习题

动量守恒能量守恒练习题

动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。

它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。

下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。

练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。

它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。

根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。

练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。

忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。

根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。

练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。

当物体受到外力F推动后,它绕平衡位置做简谐振动。

根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。

根据这个式子,可以求解物体的运动参数。

练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。

当弹簧释放时,它将能量转化为物体的动能。

根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。

根据这个式子,可以求解物体的速度。

练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。

忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。

根据这个式子,可以求解球体在到达底部时的速度。

动量与能量专题65页

动量与能量专题65页

动量和能量专题高考试题1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A .P 的初动能B .P 的初动能的1/2C .P 的初动能的1/3D .P 的初动能的1/4提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有02mv mv = ①由机械能守恒定律,有22Pm 01122E mv mv =-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是A .物体的位移相等B .物体动能的变化量相等C .F 对物体做的功相等D .物体动量的变化量相等提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ∆=∆,所以,物体动量的变化量相等.4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则A .它的速度大小不变,动量也不变B .它不断克服地球对它的万有引力做功C .它的速度大小不变,加速度等于零D .它的动能不变,引力势能也不变5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则A.甲比乙先到最高点B.甲和乙在最高点的重力势能相等C.落回地面时,甲的动量的大小比乙的大D.落回地面时,甲的动能比乙的大7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于A B C.D.8.(2001年·全国理综)下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反以上说法正确的是A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b 14.(1994年·全国)质量为4.0kg 的物体A 静止在水平桌面上,另一个质量为2.0kg 的物体B以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .【答案】6.015.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).【答案】(1)gh 2;(2)211212()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有21112m gh m v =解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有112()m v m m v '=+碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+由能量守恒定律,有212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有2212112mgR mv mv β=+12mv mv β=+解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:(1)两球从开始运动到相碰,A 球下落的高度.(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规律得0l v t =① 212h gt = ② 联立①②得2202gl h v = ③(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得0A B x x mv mv mv ''=+ ④由机械能守恒定律,得22222220B A A A B B 1111()()()2222y y x y x y m v v mv m v v m v v ''''++=+++ ⑤式中A A B B ,y y y y v v v v ''== 联立④⑤解得A0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【答案】0.3m解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则11225F mg f mg μ=<= 且222(2)5F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有2211()(2)2F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:mv 1=(m +m )v 2碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m +m )v 2=(2m +m +m )v 3设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m gm -=-=++对C 物体,由动能定理得221113111(2)(2)2222F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g .解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211()()()()22m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2m m v m g x x ⑤ 由①②⑤式得v = ⑥21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .【答案】201)2v g m解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有212h gt =① L =Vt② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④由以上各式得201)2l v g m = ⑤22.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得212121()()2B m m gR m m v +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,从运动学规律,21142R gt s v t ==根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =已知m 1=2m 2,由以上各式可得s=8R23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ①代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有-(F BA +F CA )t =m A v A -m A v A ③F AB t =m B v B ④其中F AB =F BA F CA =μ(m A +m B )g ⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB ⑦动量与动能之间的关系为A A m v = ⑧B B m v =⑨ 木板A 的长度L =s A -s B ⑩代入数据解得L =0.50m24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.【答案】(1)54;(2)32L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①则1254v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL由③式得v 22 =2μgL 又因208,325l L v gL μ==得 如果卡车滑到故障车前就停止,由20102Mv MgL μ'-= ④ 故32L L '= 这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有220111122mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.2223211(2)(2)(2)(2)22m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112mv mgl μ=由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.【答案】2.1×105N解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102Mgl Fl Mv -=-由上各式解得()[2mg m F mg h l l M=+-+ 代入数据解得F =2.1×105N27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+= ①设全过程损失的机械能为E ,则220)(2121v M m mv E +-= ②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ ③W 2=)(1s s mg +-μ ④W 3=2mgs μ-⑤ (a ) (b )W 4=)(2s s mg -μ ⑥W =W 1+W 2+W 3+W 4 ⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧ 由①~⑧式解得mgs v M m mM E μ221201-+= ⑨代入数据得E 1=2.4J ⑩28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍. 【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得mv 0=2mv 1 ①设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ④ 由以上各式解得73s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).【答案】15N解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .物块受到的滑动摩擦力F 1=μmg撤去力F 后,由动量定理得-F 1t =-mv由运动学公式得s -s 1=vt /2全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgsF s gt μμ=-代入数据得F =15N30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?【答案】06m g F m m -=;g F v m l m22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得tv m m g m m F 21001)()(+=+- ③ tv m m g m m F 22002)()(+=++ ④根据机械能守恒定律可得 2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1⑦ 由以上各式可解得,反映系统性质的物理量是06m g F m m -= ⑧ g F v m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003m m v E gF =31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.【答案】(1)021,0u u u ==;(2)014E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有021mu mu mu =+(以向右为速度正方向)202221212121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:mE v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有1102mv mv =用E 1表示最大弹性势能,由能量守恒有 211210210212121mv E mv mv =++解得0141E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N .这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [222TL N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩解得P =T Nm [222TL N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R。

第十六章 专题 动量和能量的综合应用

第十六章  专题 动量和能量的综合应用

第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。

经典课时作业 动量和能量综合训练

经典课时作业  动量和能量综合训练

经典课时作业动量和能量综合训练(含标准答案及解析)时间:45分钟分值:100分一、选择题1.一铅球正在做平抛运动.下列说法正确的是(不计空气阻力)( )A.在连续相等的时间内铅球的动量变化量都相等B.在连续相等的时间内铅球的动能变化量都相等C.在相等的时间内铅球动能增加量一定等于它重力势能的减少量D.重力对铅球做功不影响它水平方向的匀速运动2.质量不同而初动量相同的两个物体,在水平地面上由于摩擦力的作用而停止运动,它们与地面间的动摩擦因数相同,比较它们的滑行时间和滑行距离,则( )A.两个物体滑行的时间一样长B.质量大的物体滑行的时间较长C.两个物体滑行的距离一样长D.质量小的物体滑行的距离较长3.质量为5 kg的A球静止在光滑水平面上,质量为2 kg的B球以10 m/s的速度与A 正碰,则碰后A和B的速度可能的是(设B球初速度方向为正)( )A.v A=2m/s,v B=5m/sB.v A=5m/s,v B=2m/sC.v A=-2m/s,v B=15m/sD.v A=4m/s,v B=04.一质点以一定的初速度飞入一个恒定有界引力场(进入后该质点受到一个恒力),又从该引力场飞出来,从质点进入到离开该有界场,可能的情况有( )A.动量和动能都变化B.动量和动能都不变C.只有动能变化,而动量不变D.只有动量变化,而动能不变5.如图a所示,物块A、B间拴接一个压缩后被锁定的弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为2 kg.现解除对弹簧的锁定,在A 离开挡板后,B物块的v-t图象如图b所示,则可知( )A.在A离开挡板前,A、B系统动量不守恒,之后守恒B.在A离开挡板前,A、B与弹簧组成的系统机械能守恒,之后不守恒C.弹簧锁定时其弹性势能为9 JD.A的质量为1 kg,在A离开挡板后弹簧的最大弹性势能为3 J6.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B速度相等时,A的速度达到最大D.当A、B速度相等时,弹簧的弹性势能最大7.质量为m=1 kg的物块A从倾角为θ=37°的固定斜面顶端由静止开始下滑到斜面底端,在此过程中重力对物块的冲量为5 N·s,重力做的功为4.5 J.若将该斜面放在光滑水平地面上,仍让物块A从斜面顶端由静止开始下滑,当物块到达斜面底端时(取g=10m/s2,sin37°=0.6,cos37°=0.8)( )A.物块和斜面的总动量为3 kg· m/sB.物块和斜面的总动量为5 kg· m/sC.物块和斜面的总动能为4.5 JD.物块的动能为4.5 J8.如图所示, 该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C点时的速度相等,已知AB=BC,则下列说法正确的是( )斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等.今使A.物体在AB段与BC段的加速度大小相等B.物体在AB段与BC段的运动时间相等C.重力在这两段中所做的功相等D.物体在AB段与BC段的动量变化相等9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块物体的速度方向仍沿原来的方向,则有( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等10.如图所示将一光滑的半圆槽置于光滑水平面上,让一小球自左侧槽口A的正上方从静止开始下落,与圆弧槽相切自A点进入槽内,到达最低点B,再上升到C点后离开半圆槽,则以下结论中不正确的是( )A.小球在半圆槽内从A到B的运动的过程中,只有重力对它做功,所以小球的机械能守恒B.小球在半圆槽内运动的过程中,小球与半圆槽组成的系统的机械能守恒C.小球在半圆槽内运动的过程中,小球与半圆槽的水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动11.同一粗糙水平面上有两个完全相同的滑块并排放置,现分别用方向相同的恒定拉力F1与F2(F1>F2)作用于滑块,使滑块从静止开始运动一段时间后撤去拉力,最终两滑块位移相同,滑块运动的v-t图象如图所示(两图线速度减小阶段平行),则( )A.两拉力的冲量I1>I2B.两拉力的冲量I1<I2C.两拉力做的功W1>W2D.两拉力做的功W1=W212.物体只在力F作用下运动,力F随时间变化的图象如图所示,在t=1 s时刻,物体的速度为零,则下列论述正确的是( )A.0~3 s内,力F所做的功等于零,冲量也等于零B.0~4 s内,力F所做的功等于零,冲量也等于零C.第1 s内和第2 s内的速度方向相同,加速度方向相反D.第3 s内和第4 s内的速度方向相反,加速度方向相同13.(1)下列是一些有关高中物理实验的描述,其中错误的是________.A.在“验证力的平行四边形定则”实验中,拉橡皮筋的细绳要稍长,并且实验时要使弹簧与木板平面平行B.在“用单摆测定重力加速度”实验中,如果摆长测量无误,但测得的g值偏小,其原因可能是将全振动的次数n误计为n-1C.在“验证机械能守恒定律”的实验中,需要用天平测物体(重锤)的质量D.在做“验证动量守恒定律”实验中,确定小球落后的方法是:用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置(2)下列说法中正确的是________.A.在用落体法“验证机械能守恒定律”的实验中,所用的重锤的质量宜大一些B.做“验证力的平行四边形定则”实验时,两个测力计可以和木板成一定的角度C.做“碰撞中的动量守恒”的实验时,必须让斜槽末端的切线水平D.在“用单摆测定重力加速度”实验中,应该在摆球摆到最高点时开始计时14.如图所示的实验装置,水平桌面上固定一个曲面斜面体C,曲面下端的切平面是水平的,并且曲面是不光滑的.桌上还有质量不等的小滑块A、B,小滑块A、B放在曲面上时放手后均能沿曲面向下滑动且能滑出斜面体C.另外还有实验器材:天平,重锤线,刻度尺,白纸,复写纸.(1)要想比较准确地测出小滑块A从曲面顶端滑到曲面底端(曲斜面体最右端)的过程中,滑块A克服摩擦力所做的功:(重力加速度g为已知)①写出实验中需要直接测量的物理量:(用字母表示,并对字母简要说明)_______________________________________________________________②滑块A克服摩擦力做功W f的表达式:________________________________________________________________(2)应用以上器材和测量仪器,还可以完成的物理实验有:_________________________________________________________________15.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如下图,运动员将静止于O点的冰壶(视为质点)沿直线OO′推到A点放手,此后冰壶沿AO′滑行,最后停于C点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,CO′=r,重力加速度为g.(1)求冰壶在A点的速率;(2)求冰壶从O点到A点的运动过程中受到的冲量大小;(3)若将BO′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.16.某机械打桩机原理可简化为如图所示,直角固定杆光滑,杆上套有m A=55 kg和m B=80 kg两滑块,两滑块用无弹性的轻绳相连,绳长为5 m,开始在外力作用下将A滑块向右拉到与水平夹角为37°时静止释放,B滑块随即向下运动,并带动A滑块向左运动,当运动到绳与竖直方向夹角为37°时,B滑块(重锤)撞击正下方的桩头C,桩头C的质量m C=200 kg.碰撞时间极短,碰后A滑块由缓冲减速装置让其立即静止,B滑块反弹上升h1=0.05 m,C桩头朝下运动h2=0.2 m静止.取g=10 m/s2.求:(1)滑块B碰前的速度;(2)泥土对桩头C的平均阻力.17.竖直平面内有一半径为R=3.2 m的光滑圆弧轨道,O为轨道的最低点,A点距O点的高度为h1=0.2 m,B点距O点的高度为h2=0.8 m.现从A点释放一质量为M的大球(半径远小于R),且每隔适当的时间从B点释放一质量为m的小球,它们和大球碰撞后都结为一体,已知M=4m,g取10 m/s2.(1)若大球向右运动到O点时,第一个小球与之碰撞,求碰撞后大球的速度;(2)若大球向右运动到O点时,第一个小球与之碰撞,当大球第一次向左运动到O点时,第二个小球恰好与之碰撞,求第一、二两个小球释放的时间差;(3)若大球第一次向右运动到O点时与小球碰撞,以后每当大球向左运动到O点时,就会与一个小球碰撞,求经过多少次碰撞后,大球将越过A点?标准答案及解析: 一、选择题 1.解析:由动量定理可知,铅球在连续相等时间内动量的变化等于重力的冲量mgΔt,因此是相等的,A 正确;由动能定理得动能的变化等于重力做的功,相等时间内位移不等,重力做功不等,因此动能的变化不等,B 错;由于机械能守恒,铅球动能的增量总等于重力势能的减少量,C 正确;重力做功改变物体的动能,由于重力产生的加速度在竖直方向上,因此不影响水平方向的匀速运动,D 正确.答案:ACD 2.解析:由动量定理P=μmgt,由动能定理得22P m=μmgs,即P 2=2μm 2gs,显然P 相同,m 大则时间长、滑行距离长,D 对.答案:D 3.解析:本题考查碰撞,动量守恒定律.此类碰撞问题中对于碰撞速度、质量可能性分析的试题主要从以下三个方面分析:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理.两球在碰撞过程中动量守恒即P A +P B =P A′+P B′,代入数据发现B 选项动量不守恒;由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有:22222222A B A B A B A BP P P P m m m m ''++≥,代入数据发现C 选项机械能增加了,同时也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景;同理发现A 项也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景.经上分析可知只有D 选项正确.答案:D 4.解析:相当于质点受恒力作用一段时间而做类抛体运动,由动量定理可知质点的动量是一定要变化的,B 、C 错;质点的动能是否改变就要看质点速度的大小是否改变,若恒力先做负功后做正功,且总功为零,则动能不变,所以质点的动能可能变,也可能不变,A 、D 正确.质点受到的恒力可以是重力与引力场恒力的合力,也可以仅受引力场恒力,结果都是一样的.答案:AD 5.解析:在A 离开挡板前,由于挡板对A 有作用力,所以,A 、B 系统所受合外力不为零,则系统动量不守恒;A 离开挡板后,系统所受合外力为零,动量守恒,A 选项正确.在A 离开挡板前,挡板对A 的作用力不做功,A 、B 及弹簧组成的系统在整个过程中机械能都守恒,B 选项错误.解除对弹簧的锁定后至A 刚离开挡板的过程中,弹簧的弹性势能释放,全部转化为B 的动能,根据机械能守恒定律,有:E p =201,2B m v 由图象可知,v 0=3m/s,解得:E p =9 J,C 选项正确.分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2 m/s,根据机械能守恒定律和动量守恒定律,有:m B v 0=(m A +m B )v共,E′p =22011(),22B A B m v m m v -+共联立解得:E′p =3 J,D 选项正确. 答案:ACD 6.解析:本题通过弹簧连接AB 两物体,考查对牛顿运动定律、功能规律的综合运用能力.根据牛顿运动定律,对A 物体,,A F kx a m -=对B 物体,B kxa m=.可见随着弹簧压缩量x 增加,A 的加速度逐渐减小,B 的加速度逐渐增大.AB 物体运动过程利用速度图象表示,如图,很方便地判断出B 、C 、D 项正确,A 项错误.答案:BCD 7.解析:当斜面固定时,物块在斜面上滑动可能受到重力、斜面支持力和滑动摩擦力的作用,下滑到底端的过程中重力的冲量为5 N\5s=mgt,t=0.5 s;重力做的功为4.5 J=mgh,h=0.45 m;斜面长21237hL at sin ==。

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3((角)动量与能量守恒定律)大学物理练习题3:“力学―(角)动量与能量守恒定律”一、填空一、一个质量为10kg的物体以4m/s的速度落到砂地后经0.1s停下来,则在这一过程中物体对砂地的平均作用力大小为。

2、外汇?30? 4T的组合外力(其中FX以N为单位,t以s为单位)作用在M的质量上?在10kg物体上,则:(1)在前2S内,力FX的冲量为:;(2)如果物体的初始速度V1?10米?s1.如果方向与FX相同,力FX的冲量I?300n?S、对象的速度为:。

3.一根质量为1kg、长度为1.0m的均匀细杆,支点位于杆的上端,杆在开始时自由悬挂。

现在用100N的力撞击其下端,撞击时间为0.02s。

如果杆在撞击前是静止的,杆的角动量变为,撞击后杆的角速度为。

4、某质点最初静止,受到外力作用后开始运动,该力的冲量是4.00kg?m?s?1,同时间内该力作功4.00j,则该质点的质量是,力撤走后其速率为。

5、设一质量为1kg的小球,沿x轴正向运动,其运动方程为x?2t2?1,则在时间t1?1s到t2?3s内,合外力对小球的功为;合外力对小球作用的冲量大小为。

? 6.力F作用在质量为1.0kg的粒子上,使其沿x轴移动。

粒子在这个力下的运动是已知的?学方程为x?3t?4t?t(si)。

则在0到4s的时间间隔内,力f的冲量大小i=,23? 力F对质点w=所做的功。

7、设作用在质量为2kg上的物体上的力fx?6x(式中fx的单位为n,x的单位为m)。

若物体由静止出发沿直线运动,则物体从x?0运动到x?2m过程中该力作的功W十、物体在2m v?下的速度?。

8、已知质量m?2kg物体在一光滑路面上作直线运动,且t?0时,x?0,ν?0。

若该物体受力为f?3?4x(式中f的单位为n,x的单位为m),则该物体速率ν随x的函数关系ν(x)来自x的物体?0比x?该力在2MW?过程中所做的功?。

??9、一质量为10kg的物体,在t=0时,物体静止于原点,在作用力f?(3?4x)i作用下,无摩第1页,共7页?擦地运动,则物体运动到3米处,在这段路程中力f所做的功为。

动量守恒与能量守恒练习题

动量守恒与能量守恒练习题

动量守恒与能量守恒复习 1.质量为1m 的物体以速度1v 与质量为物体2m 发生弹性碰撞,求碰撞后它们的速度分别是多少?2.质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 0向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求:(1)小球能上升到的最大高度H 是多少 ?(2)小球与物块最终速度1v 和2v 是多少?3.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视做质点,质量分别为2m 和m .Q 与轻质弹簧相连(弹簧处于原长).设开始时P 和Q 分别以2v 和v 初速度向右匀速运动,当小滑块P 追上小滑块Q 与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q 的最大速度?4.如图所示,质量M 的小车B 静止光滑的水平轨道上,一个质量m 的物体A 以初速度0v 冲上小车B 后经一段时间t 从小车的右端以速度1v 滑下。

物体A 与小车板面间的动摩擦因数为μ,(取g=10m/s 2)(1)对物体A 动量定理: (4)对物体A 动能定理:(2)对车B 动量定理: (5)对车B 动能定理:(3)系统动量守恒: (6)系统能量守恒:5.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A (可视为质点),同时给A 和B 以大小均为2.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,要使小木块A 不滑离长木板B 板,已知小木块与长木板之间的动摩擦因数为0.6,求长木板B 的最小长度L=?6.如图所示,质量为3m 、长度为L 的木块静止放置在光滑的水平面上。

质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出木块速度变为025v 。

试求:子弹穿透木块的过程中,所受到平均阻力的大小。

7.如图,长木板a b 的b 端固定一档板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m 。

动能定理和动量定理专题

动能定理和动量定理专题

例1 如图2-1所示,单摆的质量为m、摆长为l,最大摆角为θ(θ<100),则在摆球从最高点第一次运动到平衡位置的过程中,求:(1)重力的冲量;(2)合外力的冲量?图2-1 例2 在一次抗洪抢险活动中,解放军某部动用直升飞机抢救落水人员,静止在空中的直升飞机上电动机通过悬绳将人从离飞机90m处的洪水中吊到机舱里.已知人的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12kw,为尽快把人安全救起,操作人员采取的办法是:先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当人到达机舱时恰好达到最大速度.(g=10m/s2)求:(1)人刚到达机舱时的速度;(2)这一过程所用的时间.例3 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m/s2)例4 有一宇宙飞船,以v=10km/s的速度进入分布均匀的宇宙微粒区,飞船每前进s =1km与n=1×104个微粒相碰.已知每个微粒的质量m=2×10-4g.假如微粒与飞船碰撞后附于飞船上,则要保持飞船速度不变,飞船的牵引力应增加多少?1.下列说法中正确的是 ( )A .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同B .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反C .在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反D .在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反2.质量为m 的物体以初速度v 0水平抛出,经过时间t ,下降的高度为h ,速率变为v ,在这段时间内物体动量变化量的大小为 ( )A .m (v -v 0)B .mgtC .22v v mD .gh m 23.古有“守株待兔”的寓言。

高中物理专题练习: 动量守恒 能量守恒

高中物理专题练习:   动量守恒   能量守恒

合力作功为 正确者为 A.
, 到 时间内合力作功为 , 到 时间内合力作功为 ,则下述

B.

C.

D.

17.在竖直面上刻有光滑圆弧槽的物体静止在光滑水平地面上。现让一小球自槽的顶端下滑,
在小球下滑过程中,若运用机械能守恒定律,则组成系统的物体为
A.小球、有圆弧槽的物体;
B.小球、有圆弧槽的物体、地球;
高中物理专题练习: 动量守恒 能量守恒
1.下列说法中,错误的是: A.质点在始、末位置的动量相等,表明其动量一定守恒; B.动量守恒是指运动全过程中动量时时(处处)都相等; C.系统的内力无论为多大,只要合外力为零,系统的动量必守恒; D.内力不影响系统的总动量,但要影响其总能量。
2.用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为 A.前者遇到的阻力大,后者遇到的阻力小; B.前者动量守恒,后者动量不守恒; C.后者动量大,给钉的作用力就大; D.后者动量变化率大,给钉的作用冲力就大;
A.(1)(2); B.(2)(3); C. 只有(2); D. 只有(3)。 15.一质量为 的物体,原来以速率 向正北运动,它受到外力打击后,变为向正西运 动,速率仍为 ,则外力的冲量大小和方向为
A.
,指向东南;
B.
,指向西南;
C.
,指向西南;
D.
,指向东南。
16.一个作直线运动的物体,其速度 与时间 的关系曲线如图所示。设 到 时间内
时人体内力作正功; D.重力和支持力都不作功。 10.质量为 的小球,以水平速度 与固定的竖直壁作弹性碰撞。以小球的初速度 沿
轴的正方向,则在此过程中小球动量的增量为 11.下列说法中正确的是

高中动量守恒、能量守恒定理经典练习题(含答案)

高中动量守恒、能量守恒定理经典练习题(含答案)

动量守恒、能量守恒、机械能守衡一冲量1.定义:力与力的作用时间的乘积叫做力的冲量。

2.公式:Ft I =3.矢量,方向与作用力方向一致二、动量定理:物体所受合外力的冲量等于它的动量的改变量,这叫做动量定理。

(1)公式:o t mv mv t F -=合三动量守恒:四、弹性碰撞:'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+= ()2121211'22m m v m m v m v +-+=练习一:1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( A )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段 D.静止不动2(多选).如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E 0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E 1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( AD )A .201E E = B .01E E = C .202E E = D .02E E = 3(多选).光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。

假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。

忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( CD )22112211v m v m v m v m '+'=+Pv QA.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量和能量专题练习1
1. 如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直平面内的半圆,半径R=0.30m。

质量m=0.20kg的小球A静止在轨道上,另一质量M=0.60kg、速度V0=5.5m/s的小球B与小球A正碰。

已知相碰后小球A经过半圆的最高点c落到轨道上距b点为L=4R处,重力加速度g取10m/s2,求:(1)碰撞结束时,小球A和B的速度大小;
(2)试论证小球B是否能沿着半圆轨道到达c点?
2.如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=30kg的小车B静止于轨道右侧,其板面与轨道底端靠近且在同一水平面上,一个质量m=10kg的物体C以初速度零从轨道顶滑下,冲上小车B后经一段时间与小车相对静止并继续一起运动。

若轨道顶端与底端水平面的高度差h为0.80m,物体与小车板面间的动摩擦因数μ为0.40,小车与水平面间的摩擦忽略不计,(取g=10m/s2),求:
(1)物体与小车保持相对静止时的速度;
(2)从物体冲上小车到与小车相对静止所用的时间;(3)物体冲上小车后相对于小车板面滑动的距离。

A
B
a b
E
C
B
B
C
3. 如图所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L = 0.5m,这段滑板与木块A之间的动摩擦因数=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.可视为质点的小木块A以速度μ=0.2,由滑板B左端开始沿滑板B表面向右运动.已知A的质量m = l kg,g 取10m/ s 2 。

求:
(1)弹簧被压缩到最短时木块A 的速度;
(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.
4.如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC相切,BC的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。

可视为质点的物块从A点正上方某处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行至轨道末端C处恰好没有滑出。

已知物块到达圆弧轨道最低点B时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。

求:
(1)物块开始下落的位置距水平轨道BC的竖直高度是圆弧半径的几倍;
(2)物块与水平轨道BC间的动摩擦因数μ。

5.如图所示,质量均为m 的两球AB 间有压缩的轻、短弹簧处于锁定状态,放置在水平面上竖直光滑的发射管内(两球的大小尺寸和弹簧尺寸都可忽略,他们整体视为质点),解除锁定时,A 球能上升的最大高度为H ,现在让两球包括锁定的弹簧从水平面出发,沿光滑的半径为R 的半圆槽从右侧由静止开始下滑,至最低点时,瞬间锁定解除,求A 球离开圆槽后能上升的最大高度。

6.如图所示,两块完全相同的木块A 、B 并排靠在一起放在光滑水平桌面上静止,它们的质量都是M =0.60kg 。

一颗质量为m=0.10kg 的子弹C 以v 0=40m/s 的水平速度从左面飞来射向A ,射穿A 后接着射入B ,并留在B 中。

此时A 、B 都还没有离开桌面。

测得A 、B 离开桌面后的落地点到桌边的水平距离之比为1∶2。

求:A 、B 、C 系统在桌面上相互作用的全过程中产生的内能是多少?(取g =10m/s 2)
A B B
A R A
B v
7.如图16所示,EF 为水平地面,O 点左侧是粗糙的、右侧是光滑的。

一轻质弹簧右端与墙壁固定,左端与静止在O 点质量为m 的小物块A 连结,弹簧处于原长状态。

质量为m 的物块B 在大小为F 的水平恒力的作用下由C 处从静止开始向左运动,已知物块B 与地面EO 段间的滑动摩擦力大小为
4
F ,物块B 运动到O
点与物块A 相碰并一起向右运动(设碰撞时间极短),运动到D 点时撤去外力F 。

已知CO = 4S ,OD = S 。

求撤去外力后: (1)弹簧的最大弹性势能 (2)物块B 最终离O 点的距离。

图16
8. 如图14-1所示,长为L ,质量为m1的物块A 置于光滑水平面上,在A 的水平上表面左端放一质量为m2的物体B ,B 与A 的动摩擦因数为μ。

A 和B 一起以相同的速度V 向右运动,
在A 与竖直墙壁碰撞过程中无机械能损失,要使B 一直不从A 上掉下来,V 必须满足什么条 件?(用m1、m2,L 及μ表示)
图14-1
9.如图所示,质量为M=20kg的平板车静止在光滑的水平面上,车上最左端停Array放着质量为m=5kg的电动车,电动车与平板车上的档板相距L=5m。

电动车由
静止开始向右做匀加速运动,经时间t=2s电动车与挡板相碰,问:
(1)碰撞前瞬间两车的速度各为多少?
(2)若碰撞过程中无机械能损失,且碰后电动机关闭,使电动车只能在平板上滑动,要使电动车不脱离
平板车,它们之间的动摩擦因数至少多少?
10.如图所示,在足够长的光滑水平轨道上静止三个小木块A,B,C,质量分别为m A=1kg,m B=1kg,m C=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。

现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。

求:
(1)在A追上B之前弹簧弹性势能的最大值;
(2)A与B相碰以后弹簧弹性势能的最大值。

11.如图14所示,一个半径R=0.80m 的
4
1光滑
圆弧轨道固定在竖直平面内,其下端切线是水平 的,轨道下端距地面高度h=1.25m 。

在圆弧轨道 的最下端放置一个质量m B =0.30kg 的小物块B (可视为质点)。

另一质量m A =0.10kg 的小物 块A (也视为质点)由圆弧轨道顶端从静止开始 释放,运动到轨道最低点时,和物块B 发生碰撞, 碰后物块B 水平飞出,其落到水平地面时的水平 位移s=0.80m 。

忽略空气阻力,重力加速度g 取
10m/s 2,求:
(1)物块A 滑到圆弧轨道下端时的速度大小; (2)物块B 离开圆弧轨道最低点时的速度大小; (3)物块A 与物块B 碰撞过程中,A 、B 所组成的系统损失的机械能。

12.如图2-4-7所示,滑块A 的质量m =0.01kg ,与水平地面间的动摩擦因素μ=0.2,用细线悬挂的小
球质量均为m =0.01kg ,沿x 轴排列,A 与第1只小球及相邻两小球间距离均为s =2m ,线长分别为L 1、L 2、L 3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v 0=10m/s 沿x 轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动,重
力加速度g=10m/s 2。

试求:(1)滑块能与几个小球碰撞?(2)碰撞中第n 个小球悬线长L n 的表达式?
A v 0 L 1
L 3 L 2 O 1
O 2 O 3 图 2-4-7
13.竖直平面内的轨道ABCD由水平滑道AB与光滑的四分之一圆弧滑道CD组成AB恰与圆弧CD在C 点相切,轨道放在光滑的水平面上,如图所示。

一个质量为m的小物块(可视为质点)从轨道的A端以初动能E冲上水平滑道AB,沿着轨道运动,由DC弧滑下后停在水平滑道AB的中点。

已知水平滑道AB 长为L,轨道ABCD的质量为3m。

求:
(1)小物块在水平滑道上受到摩擦力的大小。

(2)为了保证小物块不从滑道的D端离开滑道,圆弧滑道的半径R至少是多大?
(3)若增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度是1.5R,试分析小物块最终能否停在滑道上?。

相关文档
最新文档