2020高考数学一轮复习第八章立体几何8.5.2利用空间向量求空间角与距离对点训练理
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
2020届高考数学一轮复习立体几何中的向量法(第2课时)求空间角与距离课时作业理(含解析)
第2课时 求空间角与距离课时作业1.在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点P 在棱CC 1上,且CC 1=4CP ,求点P 到平面ABD 1的距离.解:建立如图所示的空间直角坐标系,则由题设条件易知A (4,0,0),B (4,4,0),P (0,4,1),D 1(0,0,4).AB →=(0,4,0),AD 1→=(-4,0,4),过P 点作PH ⊥平面ABD 1,垂足为H ,则PH 即为点P 到平面ABD 1的距离. 设点H 的坐标为(x ,y ,z ),则PH →=(x ,y -4,z -1),AH →=(x -4,y ,z ), ∵PH ⊥平面ABD 1,∴PH →⊥AB →,PH →⊥AD 1→,PH →⊥AH →, ∴⎩⎪⎨⎪⎧PH →·AB →=y -=0,PH →·AD 1→=-4x +z -=0,PH →·AH →=x x -+y y -+z z -=0,解得x =32,y =4,z =52或x =0,y =4,z =1(舍去),∴H ⎝ ⎛⎭⎪⎫32,4,52,PH →=⎝ ⎛⎭⎪⎫32,0,32,∴|PH →|=322.故点P 到平面ABD 1的距离为322.2.(2019漳州5月)如图,在三棱台ABC -DEF 中,二面角B -AD -C 是直二面角,AB ⊥AC ,AB =3,AD =DF =FC =12AC =1.(1)求证:AB ⊥平面ACFD ;(2)求二面角F -BE -D 的平面角的余弦值.解析:(1)连接CD ,在等腰梯形ACFD 中,过D 作DG ⊥AC 交于G ,因为AD =DF =FC =12AC=1,所以AG =12,DG =32,CG =32,所以CD =3,所以AD 2+CD 2=AC 2,即CD ⊥AD ,又二面角B -AD -C 是直二面角,CD平面ACFD ,所以CD ⊥平面ABED ,又AB平面ABED ,所以AB ⊥CD ,又因为AB ⊥AC ,AC ∩CD =C ,AC 、CD平面ACFD ,所以AB ⊥平面ACFD .(2)如图,在平面ACFD 内,过点A 作AH ⊥AC ,由(1)可知AB ⊥AH ,以A 为原点,AB →,AC →,AH →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz .则B (3,0,0),D ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫0,32,32,C (0,2,0),所以BC →=(-3,2,0),CF →=⎝ ⎛⎭⎪⎫0,-12,32,设n =(x ,y ,z )是平面FBE 的一个法向量,则⎩⎪⎨⎪⎧n ⊥BC→n ⊥CF→,所以⎩⎨⎧-3x +2y =0-y +3z =0,取x =2,则y =3,z =3, 即n =(2,3,3), 由(1)可知CD ⊥平面BED ,所以CD →=⎝ ⎛⎭⎪⎫0,-32,32是平面BED 的一个法向量,所以cos 〈n ,CD →〉=n ·CD →|n |·|CD →|=-343=-34,又二面角F -BE -D 的平面角为锐角, 所以二面角F -BE -D 的平面角的余弦值为34.3.如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且AF =2FB ,CG =2GB .(1)证明:PE ⊥FG ;(2)求二面角P -AD -C 的正切值; (3)求直线PA 与直线FG 所成角的余弦值. 解:(1)证明:∵PD =PC 且E 为CD 的中点,∴PE ⊥DC .又平面PDC ⊥平面ABCD ,且平面PDC ∩平面ABCD =CD ,PE 平面PDC ,∴PE ⊥平面ABCD .又FG 平面ABCD , ∴PE ⊥FG .(2)∵四边形ABCD 是矩形,∴AD ⊥DC ,又平面PDC ⊥平面ABCD ,且平面PDC ∩平面ABCD =CD ,AD 平面ABCD ,∴AD ⊥平面PCD ,又CD ,PD平面PDC ,∴AD ⊥DC ,AD ⊥PD ,∴∠PDC 即为二面角P -AD -C 的平面角,在Rt △PDE 中,PD =4,DE =12AB =3,PE =PD 2-DE 2=7,∴tan ∠PDC =PE DE =73,即二面角P -AD -C 的正切值为73. (3)如图所示,连接AC .∵AF =2FB ,CG =2GB , 即AF FB =CGGB=2,∴AC ∥FG ,∴∠PAC 为直线PA 与直线FG 所成角或其补角, 在△PAC 中,PA =PD 2+AD 2=5,AC =AD 2+CD 2=35,由余弦定理可得cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =52+52-422×5×35=9525,∴直线PA 与直线FG 所成角的余弦值为9525.4.如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1与侧面CBB 1C 1都是菱形,∠ACC 1=∠CC 1B=60°,AC=2.(1)证明:AB1⊥CC1;(2)若三棱柱ABC-A1B1C1的体积为3,求二面角B1-AC-C1的余弦值.解析:(1)取CC1的中点O,连接AO、AC1、B1C、B1O,由菱形的性质及∠ACC1=∠CC1B1=60°.得△ACC1,△B1CC1为正三角形.∴AO⊥CC1,B1O⊥CC1,且AO∩B1O=O.∴CC1⊥平面AOB1,∴CC1⊥AB1.(2)三棱锥A-A1B1C1的体积是三棱柱ABC-A1B1C1体积的三分之一,得四棱锥A-BCC1B1的体积是柱体体积的三分之二,即等于2.平行四边形BCC1B1的面积为SBCC1B=2×2×sin 60°=2 3.设四棱锥A-BCC1B1的高为h,则:13×23×h =2,∴h =3, 又AO =3=h ,AO ⊥平面BCC 1B 1, 建立如图直角坐标系:O -xyz ,则A (0,0,3),B 1(3,0,0),C (0,-1,0),CB 1→=(3,1,0),CA →=(0,1,3),设平面CAB 1的一个法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·CA →=y +3z =0n 1·CB 1→=3x +y =0,取一个法向量为n 1=(3,-3,3), 显然n 2=(1,0,0)是平面C 1CA 的一个法向量. 则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=315=55.二面角B 1-AC -C 1的余弦值为55. 5.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.解:如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2),又因为M ,N 分别为B 1C 和D 1D 的中点,得M (1,12,1),N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=(0,-52,0),由此可得,MN →·n =0,又因为直线MN 平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0),设n 1=(x ,y ,z )为平面ACD 1的一个法向量,则 ⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x -2y +2z =0,2x =0.不妨设z =1,可得n 1=(0,1,1),设n 2=(x ,y ,z )为平面ACB 1的一个法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y +2z =0,2x =0.不妨设z =1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010,所以二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E (0,λ,2),从而NE →=(-1,λ+2,1),又n =(0,0,1)为平面ABCD的一个法向量,由已知得cos 〈NE →,n 〉=NE →·n |NE →|·|n |=1-2+λ+2+12=13,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=7-2,所以线段A 1E 的长为7-2.6.(2018承豫南九校)如图,在四棱锥P -ABCD 中,底面ABCD 是平面四边形,AB =AC =2,AD =22,PB =32,PB ⊥AC .(1)求证:平面PAB ⊥平面PAC ;(2)若∠PBA =45°,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33,若存在,求出AEAP的值;若不存在,请说明理由. 解析:(1)因为四边形ABCD 是平行四边形,AD =22,所以BC =AD =22, 又AB =AC =2,所以AB 2+AC 2=BC 2,所以AC ⊥AB , 又PB ⊥AC ,且AB ∩PB =B ,所以AC ⊥平面PAB , 因为AC平面PAC ,所以平面PAB ⊥平面PAC .(2)由(1)知AC ⊥AB ,AC ⊥平面PAB ,如图,分别以AB ,AC 所在直线为x 轴、y 轴,平面PAB 内过点A 且与直线AB 垂直的直线为z 轴,建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),AC →=(0,2,0),BC →=(-2,2,0) 由∠PBA =45°,PB =32,可得P (-1,0,3), 所以AP →=(-1,0,3),BP →=(-3,0,3),假设棱PA 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为33, 设AE AP=λ(0<λ<1),则AE →=λAP →=(-λ,0,3λ),CE →=AE →-AC →=(-λ,-2,3λ), 设平面PBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0n ·BP →=0,即⎩⎪⎨⎪⎧-2x +2y =0-3x +3z =0,令z =1,可得x =y =1,所以平面PBC 的一个法向量为n =(1,1,1), 设直线CE 与平面PBC 所成的角为θ,则 sin θ=|cos 〈n ,CE →〉|=|-λ-2+3λ|3·-λ2+-2+λ2=|2λ-2|3·10λ2+4=33, 整理得3λ2+4λ=0,因为0<λ<1,所以3λ2+4λ>0,故3λ2+4λ=0无解, 所以棱PA 上不存在与点P ,A 不重合的点E ,使得直线CD 与平面PBC 所成角的正弦值为33.。
高考数学一轮复习 第八章 立体几何 8.8 立体几何中的向量方法(二)——求空间角和距离 理
第八章 立体几何 8.8 立体几何中的向量方法(二)——求空间角和距离 理1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )1.(2017·烟台质检)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉=m ·n |m ||n |=11×2=22,即〈m ,n 〉=45°.∴两平面所成的二面角为45°或180°-45°=135°.2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150° 答案 A解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.故选A.3.(2016·郑州模拟)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=0+4-14+4+1×0+4+1=15=55,故选A. 4.(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.答案π6解析 以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线为坐标轴(如图)建立空间直角坐标系,设D 为A 1B 1中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=,3,22,0,2212×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.5.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图,作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22a ×b cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 (2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.如图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线B ′D ′上,∠HDA =60°.求DH与CC ′所成的角的大小.解 如图所示,以D 为原点,DA为单位长度,建立空间直角坐标系Dxyz ,则DA →=(1,0,0),CC ′→=(0,0,1). 设DH →=(m ,m,1)(m >0), 由已知,〈DH →,DA →〉=60°,由DA →·DH →=|DA →|·|DH →|·cos〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22, ∴DH →=(22,22,1),∵cos〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,又∵〈DH →,CC ′→〉∈[0°,180°], ∴〈DH →,CC ′→〉=45°, 即DH 与CC ′所成的角为45°.题型二 求直线与平面所成的角例2 (2016·全国丙卷)如图,四棱锥PABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,AE = AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成角的正弦值为8525.思维升华 利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD . ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63. 题型三 求二面角例3 (2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角FBCA 的余弦值.(1)证明 设FC 的中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M ,所以FM =FB 2-BM 2=3,可得F (0,3,3). 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角FBCA 的余弦值为77. 思维升华 利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2016·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(1)求证:EG ∥平面ADF ;(2)求二面角O —EF —C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.(1)证明 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0), D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).依题意,AD →=(2,0,0),AF →=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0,不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →·n 1=0, 又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →=(-1,1,2).设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0,不妨取 x 2=1,可得n 2=(1,-1,1). 因此有cos 〈OA →,n 2〉=OA →·n 2|OA →|·|n 2|=-63,于是sin 〈OA →,n 2〉=33.所以二面角O —EF —C 的正弦值为33. (3)解 由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2), 所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45.因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以直线BH 和平面CEF 所成角的正弦值为721. 题型四 求空间距离(供选用)例4 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.解 如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为△BCD 与△MCD 都是边长为2的正三角形, 所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0),BM →=(0,3,3). 设平面MBC 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BC →,n ⊥BM→得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0,取x =3,可得平面MBC 的一个法向量为n =(3,-1,1). 又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.思维升华 求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离; (2)等体积法;(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2016·四川成都外国语学校月考)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63?若存在,求出PQQD的值;若不存在,请说明理由.解 (1)在△PAD 中,PA =PD ,O 为AD 中点, ∴PO ⊥AD .又∵侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , ∴PO ⊥平面ABCD .在△PAD 中,PA ⊥PD ,PA =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,AB ⊥AD , ∴OC ⊥AD .以O 为坐标原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,如图所示,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), ∴PB →=(1,-1,-1). 易证OA ⊥平面POC ,∴OA →=(0,-1,0)为平面POC 的法向量, cos 〈PB →,OA →〉=PB →·OA →|PB →||OA →|=33,∴PB 与平面POC 所成角的余弦值为63. (2)∵PB →=(1,-1,-1),设平面PCD 的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP →=-x +z =0,u ·PD →=y -z =0.取z =1,得u =(1,1,1).则B 点到平面PCD 的距离d =|PB →·u ||u |=33.(3)假设存在,且设PQ →=λPD →(0≤λ≤1).∵PD →=(0,1,-1),∴OQ →-OP →=PQ →=(0,λ,-λ), ∴OQ →=(0,λ,1-λ), ∴Q (0,λ,1-λ).设平面CAQ 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AC →=x +y =0,m ·AQ →=λ+y +-λz =0.取z =1+λ,得m =(1-λ,λ-1,λ+1). 平面CAD 的一个法向量为n =(0,0,1), ∵二面角Q -AC -D 的余弦值为63, ∴|cos〈m ,n 〉|=|m ·n ||m ||n |=63.整理化简,得3λ2-10λ+3=0. 解得λ=13或λ=3(舍去),∴存在,且PQ QD =12.6.利用空间向量求解空间角典例 (12分)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 规范解答(1)证明 依题意,以点A 为原点建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).[1分]由E 为棱PC 的中点,得E (1,1,1). BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .[3分] (2)解 BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的一个法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,[5分]可得n =(2,1,1).于是有cos 〈n ,BE →〉=n ·BE →|n ||BE →|=26×2=33,所以,直线BE 与平面PBD 所成角的正弦值为33.[7分] (3)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ). 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF →=(-12,12,32).[9分]设n 1=(x ,y ,z )为平面FAB 的一个法向量, 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1).取平面ABP 的法向量n 2=(0,1,0), 则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角, 所以其余弦值为31010.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系; 第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标; 第四步:计算向量的夹角(或函数值); 第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30°答案 C解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ. 则sin β=|cos γ|=|cos 120°|=12.又∵β∈[0°,90°],∴β=30°,故选C.2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150° B .45° C .60° D .120° 答案 C解析 如图所示,二面角的大小就是〈AC →,BD →〉.∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →. ∴CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12,∴〈AC →,BD →〉=60°,故二面角为60°.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=(1,0,-12).设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.(2016·长春模拟)在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25 答案 C解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (12,0,0),E (12,12,0),F (0,12,1).∴PA →=(0,0,-2),DE →=(0,12,0),DF →=(-12,12,1).设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ, 则sin θ=|PA →·n ||PA →||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55.故选C. 5.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1到平面BDE 的距离为( )A .2 B. 3 C. 2 D .1 答案 D解析 以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量, 又DA →=(2,0,0),∴点A 到平面BDE 的距离是 d =|n ·DA →||n |=|-1×2+0+0|-2+12+-22=1.故直线AC 1到平面BDE 的距离为1.6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14C.14 D .-52答案 B解析 建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ), ∴PD →·PB 1→=0+0+(2-z )(3-z )=(z -52)2-14,故当z =52时,PD →·PB 1→取得最小值为-14.7.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.答案 13解析 如图,建立空间直角坐标系Dxyz ,则D 1(0,0,1),C 1(0,2,1),A 1(1,0,1),B (1,2,0). ∴D 1C 1→=(0,2,0),A 1C 1→=(-1,2,0),A 1B →=(0,2,-1),设平面A 1BC 1的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·A 1C 1→=x ,y ,z-1,2,=-x +2y =0,n ·A 1B →=x ,y ,z ,2,-=2y -z =0,得⎩⎪⎨⎪⎧x =2y ,z =2y ,令y =1,得n =(2,1,2),设直线D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1→,n 〉|=|D 1C 1→·n ||D 1C 1→||n |=22×3=13,即直线D 1C 1与平面A 1BC 1所成角的正弦值为13.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.答案 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ, 则sin θ=|cos 〈n ,DC →〉|=|n ·DC →||n ||DC →|=23.9.(2016·石家庄模拟)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________. 答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E (1,1,13),F (0,1,23),AE →=(0,1,13),AF →=(-1,1,23),设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的二面角为θ,由图知θ为锐角, 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1),则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接PA ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10. (1)求证:BD ⊥平面POA ; (2)求二面角B -AP -O 的正切值.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点, ∴BD ∥EF .∵菱形ABCD 的对角线互相垂直, ∴BD ⊥AC ,∴EF ⊥AC , ∴EF ⊥AO ,EF ⊥PO . ∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA . (2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形, ∴BD =4,BH =2,HA =23,HO =PO =3, 在Rt△BHO 中,BO =HB 2+HO 2=7. 在△PBO 中,BO 2+PO 2=10=PB 2, ∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0), ∴AP →=(0,33,3),AB →=(2,23,0). 设平面PAB 的法向量为n =(x ,y ,z ), 由n ⊥AP →,n ⊥AB →,得⎩⎨⎧33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面PAB 的一个法向量为n =(-3,1,-3). 由(1)知平面PAO 的一个法向量为BH →=(-2,0,0), 设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913,∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303,∴二面角B -AP -O 的正切值为303. 11.(2016·四川)如图,在四棱锥PABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .E为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角PCDA 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED . 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD ,从而CD ⊥PD . 所以∠PDA 是二面角PCDA 的平面角, 所以∠PDA =45°,设BC =1,则在Rt△PAD 中,PA =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知PA ⊥平面ABCD ,从而PA ⊥CE ,且PA ∩AH =A ,于是CE ⊥平面PAH . 又CE ⊂平面PCE , 所以平面PCE ⊥平面PAH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE , 所以∠APH 是PA 与平面PCE 所成的角. 在Rt△AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt△PAH 中,PH =PA 2+AH 2=322.所以sin∠APH =AH PH =13.方法二 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A , 所以CD ⊥平面PAD . 于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠PAB =90°,且PA 与CD 所成的角为90°,可得PA ⊥平面ABCD . 设BC =1,则在Rt△PAD 中,PA =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0). 所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线PA 与平面PCE 所成角为α, 则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+-2+12=13. 所以直线PA 与平面PCE 所成角的正弦值为13.*12.(2017·潍坊月考)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)判断点M 的位置,使得平面BDM 与平面ABF 所成的锐二面角为π3.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2, 又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD , ∴BD ⊥平面ADEF , 又BD ⊂平面BDM , ∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N , ∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD , ∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0), 设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1), ∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ), ∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0,又DM →=(0,λ,2(1-λ)),DB →=(1,1,0),∴⎩⎨⎧λy +2-λz =0,x +y =0,令x =1,得y =-1,z =λ2-λ,故n 1=(1,-1,λ2-λ)是平面BDM 的一个法向量.∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos〈n 1,DN →〉|=11+1+λ2-λ2=12,得λ=23, ∴M (0,23,23),∴点M 在线段CE 的三等分点且靠近点C 处.。
高考数学一轮复习 第八章 立体几何与空间向量8
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
2022届高考数学一轮复习第8章立体几何第5讲空间角与距离空间向量及应用作业试题2含解析新人教版
第五讲空间角与距离、空间向量及应用1.[2020湖北部分重点中学高三测试]如图8-5-1,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为( )图8-5-1A.30°B.60°C.120°D.150°2.[2020湖南长沙市长郡中学模拟]图8-5-2中的三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G 作正方体的截面.下列各选项中,关于直线BD1与平面EFG的位置关系描述正确的是( )图8-5-2∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③13.[多选题]如图8-5-3,正方体ABCD-A1B1C1D1的棱长为1,则以下说法正确的是( )图8-5-31D1所成的角等于π4B.点C到平面ABC1D1的距离为√221C和BC1所成的角为π41D1-BB1C1的外接球的半径为√324.[2019吉林长春质量监测][双空题]已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE 和该截面所成角的正弦值为.5.[2021广州市阶段模拟]如图8-5-4,在四棱锥E-ABCD中,底面ABCD为菱形,BE⊥平面ABCD,G为AC与BD的交点.(1)证明:平面AEC⊥平面BED.(2)若∠BAD=60°,AE⊥EC,求直线EG与平面EDC所成角的正弦值.图8-5-46.[2021晋南高中联考]如图8-5-5,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD,PA⊥PD,∠PAD=60°,Q为PD的中点.(1)证明:CQ∥平面PAB.(2)求二面角P-AQ-C的余弦值.图8-5-57.[2021湖南六校联考]如图8-5-6,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=√2a,点E是SD 上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE.(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若sin φ=cos θ,求λ的值.图8-5-68.[2020福建五校联考]图8-5-7是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,⏜上的动点(不与B1,A1重合).且AC⊥BC,P为B1A1(1)证明:PA1⊥平面PBB1.,求二面角P-A1B1-C的余弦值.(2)若四边形ABB1A1为正方形,且AC=BC,∠PB1A1=π4图8-5-79.[2020全国卷Ⅱ,12分]如图8-5-8,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图8-5-810.[2021黑龙江省六校联考]如图8-5-9,正方形ABCD和ABEF所在的平面互相垂直,且边长都是1,M,N,G分别为线段AC,BF,AB上的动点,且CM=BN,AF∥平面MNG,记BG=a(0<a<1).(1)证明:MG⊥平面ABEF.(2)当MN的长度最小时,求二面角A-MN-B的余弦值.图8-5-911.[2021蓉城名校联考]如图8-5-10(1),AD是△BCD中BC边上的高,且AB=2AD=2AC,将△BCD沿AD翻折,使得平面ACD⊥平面ABD,如图8-5-10(2)所示.(1)求证:AB⊥CD.时,求直线AE与平面BCE (2)在图8-5-10(2)中,E是BD上一点,连接AE,CE,当AE与底面ABC所成角的正切值为12所成角的正弦值.图8-5-1012.[2020洛阳市联考]如图8-5-11,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=2√6,DE=3√6.(1)求证:平面ACE⊥平面BED.(2)求直线CA与平面BEF所成角的正弦值.的值;若不存在,请说明理由. (3)在线段AF上是否存在点M,使得二面角M-BE-D的大小为60°?若存在,求出AMAF图8-5-1113.如图8-5-12,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,平面α经过棱PC的中点E,与棱PB,AC分别交于点F,D,且BC∥平面α,PA∥平面α.(1)证明:AB⊥平面α.(2)若AB=BC=PA=2,点M在直线EF上,求平面MAC与平面PBC所成锐二面角的余弦值的最大值.图8-5-1214.[2021安徽江淮十校第一次联考]如图8-5-13(1),已知圆O的直径AB的长为2,上半圆弧上有一点C,∠COB=60°,点P是弧AC上的动点,点D是下半圆弧的中点.现以AB为折痕,使下半圆所在的平面垂直于上半圆所在的平面,连接PO,PD,PC,CD,如图8-5-13(2)所示.(1)当AB∥平面PCD时,求PC的长;(2)当三棱锥P-COD体积最大时,求二面角D-PC-O的余弦值.图8-5-13答案第四讲直线、平面垂直的判定及性质1.B 如图D 8-5-8,取AC的中点D,连接DE,DF,因为D,E,F分别为AC,PA,BC的中点,所以DF∥AB,DF=12AB,DE∥PC,DE=12PC,所以∠EDF或其补角为异面直线PC与AB所成的角.因为PC=10,AB=6,所以在△DEF中,DE=5,DF=3,EF=7,由余弦定理得cos∠EDF=DE2+DF2-EF22DE×DF =25+9−492×5×3=-12,所以∠EDF=120°,所以异面直线PC与AB所成的角为60°.故选B.图D 8-5-82.A 对于题图①,连接BD,因为E,F,G均为所在棱的中点,所以BD∥GE,DD1∥EF,又BD⊄平面EFG,DD1⊄平面EFG,从而可得BD∥平面EFG,DD1∥平面EFG,又BD∩DD1=D,所以平面BDD1∥平面EFG,所以BD1∥平面EFG.对于题图②,连接DB,DA 1,设正方体的棱长为1,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·GE ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0, 即BD 1⊥EG.连接DC 1,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0,即BD 1⊥EF. 又EG ∩EF=E,所以BD 1⊥平面EFG.对于题图③,设正方体的棱长为1,连接DB,DG,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DG ⃗⃗⃗⃗⃗ -DE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DC ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -12DA ⃗⃗⃗⃗⃗ )=12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =12-√2×1×√22+12×√2×1×√22=0, 即BD 1⊥EG.连接AF,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(AF ⃗⃗⃗⃗⃗ -AE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ )=DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ -12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =1-12×√2×1×√22-12×√2×1×√22=0, 即BD 1⊥EF.又EG ∩EF=E,所以BD 1⊥平面EFG.故选A.3.ABD 正方体ABCD-A 1B 1C 1D 1的棱长为1,对于A,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;对于B,点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即距离为√22,故B 正确;对于C,连接AC,因为BC 1∥AD 1,所以异面直线D 1C 和BC 1所成的角即直线D 1C 和AD 1所成的角,又△ACD 1是等边三角形,所以异面直线D 1C 和BC 1所成的角为π3,故C 错误;对于D,三棱柱AA 1D 1-BB 1C 1的外接球就是正方体ABCD-A 1B 1C 1D 1的外接球,正方体ABCD-A 1B 1C 1D 1的外接球半径r=√12+12+122=√32,故D 正确.故选ABD.√2√1010如图D 8-5-9,正方体ABCD-A 1B 1C 1D 1中,设CD,BC 的中点分别为H,G,连接HE,HG,GE,HF,ME,NH.图D 8-5-9易知ME ∥NH,ME=NH,所以四边形MEHN 是平行四边形,所以MN ∥HE.因为MN ⊄平面EFHG,HE ⊂平面EFHG,所以MN ∥平面EFHG,所以过EF 且与MN 平行的平面为平面EFHG,易知平面EFHG 截正方体所得截面为矩形EFHG,EF=√2,FH=2,所以截面EFHG 的面积为2×√2=2√2.连接AC,交HG 于点I,易知CI ⊥HG,平面EFHG ⊥平面ABCD,平面EFHG ∩平面ABCD=HG,所以CI ⊥平面EFHG,连接EI,因为EI ⊂平面EFHG,所以CI ⊥EI,所以∠CEI 为直线CE 和截面EFHG 所成的角.在Rt △CIE 中,易知CE=√1+22=√5,CI=14AC=2√24=√22,所以sin ∠CEI=CICE=√1010. 5.(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,AC ⊂平面ABCD,所以AC ⊥BE.又BE ∩BD=B,所以AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.(2)解法一 设AB=1,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√32,BG=GD=12.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√32.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√22.如图D 8-5-10,过点G 作直线Gz ∥BE,因为BE ⊥平面ABCD, 所以Gz ⊥平面ABCD,又AC ⊥BD,所以建立空间直角坐标系 G-xyz.G(0,0,0),C(0,√32,0),D(-12,0,0),E(12,0,√22),图D 8-5-10所以GE ⃗⃗⃗⃗⃗ =(12,0,√22),DE ⃗⃗⃗⃗⃗ =(1,0,√22),CE ⃗⃗⃗⃗⃗ =(12,-√32,√22). 设平面EDC 的法向量为n=(x,y,z),由{DE ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,得{x +√22z =0,12x -√32y +√22z =0,取x=1,则z=-√2,y=-√33,所以平面EDC 的一个法向量为n=(1,-√33,-√2).设直线EG 与平面EDC 所成的角为θ,则sin θ=|cos<GE⃗⃗⃗⃗⃗ ,n>|=|12+0−1√14+12×√1+13+2|=|-12√32×√103|=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 解法二 设BG=1,则GD=1,AB=2,AG=√3.设点G 到平面EDC 的距离为h,EG 与平面EDC 所成角的大小为θ.因为AC ⊥平面EBD,EG ⊂平面EBD,所以AC ⊥EG.因为AE ⊥EC,所以△AEC 为等腰直角三角形.因为AC=2AG=2√3,所以AE=EC=√6,EG=AG=√3.因为AB=BD=2,所以Rt △EAB ≌Rt △EDB,所以EA=ED=√6.在△EDC 中,ED=EC=√6,DC=2,则S △EDC =√5.在Rt △EAB 中,BE=√EA 2-AB 2=√(√6)2-22=√2.V E-GDC =13BE ·12S △CBD =16×√2×S △ABD =16×√2×12×2×√3=√66.由V G-EDC =13h ·√5=V E-GDC =√66,得h=√62√5=√3010.所以sin θ=ℎEG =√1010.所以直线EG 与平面EDC 所成角的正弦值为√1010.解法三 如图D 8-5-11,以点B 为坐标原点,建立空间直角坐标系B-xyz.图D 8-5-11不妨设AB=2,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√3,BG=GD=1.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√3.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√2.则C(2,0,0),E(0,0,√2),D(1,√3,0),G(12,√32,0), 所以EG ⃗⃗⃗⃗⃗ =(12,√32,-√2),ED ⃗⃗⃗⃗⃗ =(1,√3,-√2),EC ⃗⃗⃗⃗⃗ =(2,0,-√2). 设平面EDC 的法向量为n=(x,y,z), 则{n ·ED ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x +√3y -√2z =0,2x -√2z =0,令x=√3,则z=√6,y=1.所以平面EDC 的一个法向量为n=(√3,1,√6).设EG 与平面EDC 所成的角为θ,则sin θ=|cos<EG⃗⃗⃗⃗⃗ ,n>|=|√32+√32-2√3|√1+2×√3+1+6=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 6.(1)如图D 8-5-12,取PA 的中点N,连接QN,BN.图D 8-5-12∵Q,N 分别是PD,PA 的中点,∴QN ∥AD,且QN=12AD. ∵PA ⊥PD,∠PAD=60°,∴PA=12AD, 又PA=BC,∴BC=12AD,∴QN=BC,又AD ∥BC,∴QN ∥BC,∴四边形BCQN 为平行四边形,∴BN ∥CQ.又BN ⊂平面PAB,CQ ⊄平面PAB,∴CQ ∥平面PAB.(2)在图D 8-5-12的基础上,取AD 的中点M,连接BM,PM,取AM 的中点O,连接BO,PO,如图D 8-5-13.图D 8-5-13设PA=2,由(1)得PA=AM=PM=2,∴△APM 为等边三角形,∴PO ⊥AM,同理BO ⊥AM.∵平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,∴PO ⊥平面ABCD.以O 为坐标原点,分别以OB ⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O-xyz, 则A(0,-1,0),C(√3,2,0),P(0,0,√3),Q(0,32,√32), ∴AC⃗⃗⃗⃗⃗ =(√3,3,0),AQ ⃗⃗⃗⃗⃗ =(0,52,√32), 设平面ACQ 的法向量为m=(x,y,z),则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AQ ⃗⃗⃗⃗⃗ =0,∴{√3x +3y =0,52y +√32z =0,取y=-√3,得m=(3,-√3,5)是平面ACQ 的一个法向量,又平面PAQ 的一个法向量为n=(1,0,0),∴cos<m,n>=m ·n|m|·|n|=3√3737, 由图得二面角P-AQ-C 的平面角为钝角,∴二面角P-AQ-C 的余弦值为-3√3737. 7.(1)由题意SD ⊥平面ABCD,AD ⊥DC,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DS ⃗⃗⃗⃗⃗ 的方向分别作为x,y,z 轴的正方向建立如图D 8-5-14所示的空间直角坐标系,图D 8-5-14则D(0,0,0),A(√2a,0,0),B(√2a,√2a,0),C(0,√2a,0),E(0,0,λa), ∴AC ⃗⃗⃗⃗⃗ =(-√2a,√2a,0),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa), ∴AC ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =2a 2-2a 2+0×λa=0, 即AC ⊥BE.(2)解法一 由(1)得EA ⃗⃗⃗⃗⃗ =(√2a,0,-λa),EC ⃗⃗⃗⃗⃗ =(0,√2a,-λa),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa). 设平面ACE 的法向量为n=(x,y,z),则由n ⊥EA ⃗⃗⃗⃗⃗ ,n ⊥EC ⃗⃗⃗⃗⃗ 得 {n ·EA ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{√2x -λz =0,√2y -λz =0,取z=√2,得n=(λ,λ,√2)为平面ACE 的一个法向量,易知平面ABCD 与平面ADE 的一个法向量分别为DS⃗⃗⃗⃗⃗ =(0,0,2a)与DC ⃗⃗⃗⃗⃗ =(0,√2a,0), ∴sin φ=|DS ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ||DS⃗⃗⃗⃗⃗ |·|BE ⃗⃗⃗⃗⃗ |=√λ2+4,易知二面角C-AE-D 为锐二面角,∴cos θ=|DC⃗⃗⃗⃗⃗ ·n||DC⃗⃗⃗⃗⃗ |·|n|=√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.解法二 如图D 8-5-15,连接BD,由SD ⊥平面ABCD 知,∠DBE=φ.图D 8-5-15由(1)易知CD ⊥平面SAD.过点D 作DF ⊥AE 于点F,连接CF,则∠CFD 是二面角C-AE-D 的平面角,即∠CFD=θ.在Rt △BDE 中,BD=2a,DE=λa,∴BE=√4a 2+λ2a 2,sin φ=DEBE =√λ2+4,在Rt △ADE 中,AD=√2a,DE=λa,∴AE=a √λ2+2,∴DF=AD ·DE AE=√2λa√λ2+2, 在Rt △CDF 中,CF=√DF 2+CD 2=2√λ2+1√λ2+2a,∴cos θ=DFCF =√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.8.(1)在半圆柱中,BB 1⊥平面PA 1B 1,PA 1⊂平面PA 1B 1,所以BB 1⊥PA 1.因为A 1B 1是上底面对应圆的直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1.(2)根据题意,以C 为坐标原点建立空间直角坐标系C-xyz,如图D 8-5-16所示.图D 8-5-16设CB=1,则C(0,0,0),A 1(0,1,√2),B 1(1,0,√2), 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√2).易知n 1=(0,0,1)为平面PA 1B 1的一个法向量. 设平面CA 1B 1的法向量为n 2=(x,y,z),则{n 2·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{y +√2z =0,x +√2z =0,令z=1,则x=-√2,y=-√2,所以n 2=(-√2,-√2,1)为平面CA 1B 1的一个法向量.所以cos<n 1,n 2>=1×√5=√55.由图可知二面角P-A 1B 1-C 为钝角,所以所求二面角的余弦值为-√55.9.(1)因为M,N 分别为BC,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN.因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 11C 1⊥MN,故B 1C 1⊥平面A 1AMN.所以平面A 1AMN ⊥平面EB 1C 1F.(2)由已知得AM ⊥BC.以M 为坐标原点,MA ⃗⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|MB ⃗⃗⃗⃗⃗⃗ |为单位长度,建立如图D 8-5-17所示的空间直角坐标系M-xyz,则AB=2,AM=√3.图D 8-5-17连接NP,则四边形AONP 为平行四边形,故PM=2√33,E(2√33,13,0).由(1)知平面A 1AMN ⊥平面ABC.作NQ ⊥AM,垂足为Q,则NQ ⊥平面ABC.设Q(a,0,0),则NQ=(2√331(a,1,(2√33故B 1E ⃗⃗⃗⃗⃗⃗⃗ =(2√33-a,-23,-√4−(2√33-a)2),|B 1E ⃗⃗⃗⃗⃗⃗⃗ |=2√103. 又n=(0,-1,0)是平面A 1AMN 的一个法向量,故 sin(π2- n,B 1E ⃗⃗⃗⃗⃗⃗⃗ )=cos n,B 1E ⃗⃗⃗⃗⃗⃗⃗ =n ·B 1E⃗⃗⃗⃗⃗⃗⃗⃗ |n|·|B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ |=√1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 10.(1)因为AF ∥平面MNG,且AF ⊂平面ABEF,平面ABEF ∩平面MNG=NG,所以AF ∥NG,所以CM=BN=√2a,所以AM=√2(1-a),所以AMCM =AGBG =1−a a,所以MG ∥BC,所以MG ⊥AB.又平面ABCD ⊥平面ABEF,且MG ⊂平面ABCD,平面ABCD ∩平面ABEF=AB,所以MG ⊥平面ABEF.(2)由(1)知,MG ⊥NG,MG=1-a,NG=a,所以MN=√a 2+(1−a)2=√2a 2-2a +1=√2(a -12)2+12≥√22,当且仅当a=12时等号成立,即当a=12时,MN 的长度最小.以B 为坐标原点,分别以BA,BE,BC 所在的直线为x 轴、y 轴、z 轴建立如图D 8-5-18所示的空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0),M(12,0,12),N(12,12,0),图D 8-5-18设平面AMN 的法向量为m=(x 1,y 1,z 1),因为AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{m ·AM ⃗⃗⃗⃗⃗⃗ =−x12+z12=0,m ·MN⃗⃗⃗⃗⃗⃗⃗ =y 12-z 12=0,取z 1=1,得m=(1,1,1)为平面AMN 的一个法向量.设平面BMN 的法向量为n=(x 2,y 2,z 2),因为BM ⃗⃗⃗⃗⃗⃗ =(12,0,12),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{n ·BM ⃗⃗⃗⃗⃗⃗ =x22+z22=0,n ·MN ⃗⃗⃗⃗⃗⃗⃗ =y 22-z 22=0,取z 2=1,得n=(-1,1,1)为平面BMN 的一个法向量.所以cos<m,n>=m ·n|m||n|=13, 又二面角A-MN-B 为钝二面角,所以二面角A-MN-B 的余弦值为-13.11.(1)由题图(1)知,在题图(2)中,AC ⊥AD,AB ⊥AD.∵平面ACD ⊥平面ABD,平面ACD ∩平面ABD=AD,AB ⊂平面ABD,∴AB ⊥平面ACD,又CD ⊂平面ACD,∴AB ⊥CD.(2)以A 为坐标原点,AC,AB,AD 所在的直线分别为x,y,z 轴建立如图D 8-5-19所示的空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),AD ⃗⃗⃗⃗⃗ =(0,0,1),BC ⃗⃗⃗⃗⃗ =(1,-2,0),DB⃗⃗⃗⃗⃗⃗ =(0,2,-1).图D 8-5-19设E(x,y,z),由DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ (0<λ<1),得(x,y,z-1)=(0,2λ,-λ), 得E(0,2λ,1-λ),∴AE⃗⃗⃗⃗⃗ =(0,2λ,1-λ),又平面ABC 的一个法向量为AD ⃗⃗⃗⃗⃗ =(0,0,1),AE 与底面ABC 所成角的正切值为12, 所以|tan AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ |=2,于是|cos AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ |=√5=√55, 即|√(2λ)2+(1−λ)2|=√55,解得λ=12,则E(0,1,12),AE ⃗⃗⃗⃗⃗ =(0,1,12),BE⃗⃗⃗⃗⃗ =(0,-1,12). 设平面BCE 的法向量为n=(x,y,z),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{x -2y =0,-y +12z =0, 令y=1,得x=2,z=2,则n=(2,1,2)是平面BCE 的一个法向量,设直线AE 与平面BCE 所成的角是θ,则sin θ=|cos AE ⃗⃗⃗⃗⃗ ,n |=|AE⃗⃗⃗⃗⃗ ·n||AE ⃗⃗⃗⃗⃗ ||n|=√52×3=4√515, 故直线AE 与平面BCE 所成角的正弦值为4√515.12.(1)因为平面ADEF ⊥平面ABCD,平面ADEF ∩平面ABCD=AD,DE ⊂平面ADEF,DE ⊥AD,所以DE ⊥平面ABCD.因为AC ⊂平面ABCD,所以DE ⊥AC.又四边形ABCD 是正方形,所以AC ⊥BD.因为DE ∩BD=D,DE ⊂平面BED,BD ⊂平面BED,所以AC ⊥平面BED.又AC ⊂平面ACE,所以平面ACE ⊥平面BED.(2)因为DA,DC,DE 两两垂直,所以以D 为坐标原点,建立如图D 8-5-20所示的空间直角坐标系D-xyz. 则A(3,0,0),F(3,0,2√6),E(0,0,3√6),B(3,3,0),C(0,3,0),所以CA⃗⃗⃗⃗⃗ =(3,-3,0),BE ⃗⃗⃗⃗⃗ =(-3,-3,3√6),EF ⃗⃗⃗⃗⃗ =(3,0,-√6).图D 8-5-20设平面BEF 的法向量为n=(x,y,z), 则{n ·BE ⃗⃗⃗⃗⃗ =−3x -3y +3√6z =0,n ·EF ⃗⃗⃗⃗⃗ =3x -√6z =0,取x=√6,得n=(√6,2√6,3)为平面BEF 的一个法向量.所以cos<CA ⃗⃗⃗⃗⃗ ,n>=CA⃗⃗⃗⃗⃗ ·n |CA⃗⃗⃗⃗⃗ ||n|=√63√2×√39=-√1313. 所以直线CA 与平面BEF 所成角的正弦值为√1313.(3)假设在线段AF 上存在符合条件的点M,由(2)可设M(3,0,t),0≤t ≤2√6,则BM ⃗⃗⃗⃗⃗⃗ =(0,-3,t).设平面MBE 的法向量为m=(x 1,y 1,z 1), 则{m ·BM ⃗⃗⃗⃗⃗⃗ =−3y 1+tz 1=0,m ·BE⃗⃗⃗⃗⃗ =−3x 1-3y 1+3√6z 1=0,令y 1=t,得m=(3√6-t,t,3)为平面MBE 的一个法向量.由(1)知CA ⊥平面BED,所以CA ⃗⃗⃗⃗⃗ 是平面BED 的一个法向量,|cos<m,CA ⃗⃗⃗⃗⃗ >|=|m ·CA⃗⃗⃗⃗⃗ ||m||CA⃗⃗⃗⃗⃗ |=√6-3√2×√(3√6-t)2+t 2+9=cos 60°=12,整理得2t 2-6√6t+15=0,解得t=√62,故在线段AF 上存在点M,使得二面角M-BE-D 的大小为60°,此时AMAF =14. 13.(1)因为BC ∥平面α,BC ⊂平面PBC,平面α∩平面PBC=EF,所以BC ∥EF,且F 为棱PB 的中点,因为BC ⊥AB,所以EF ⊥AB.因为PA ∥平面α,PA ⊂平面PAC,平面α∩平面PAC=DE,所以PA ∥DE.因为PA ⊥平面ABC,所以PA ⊥AB, 所以DE ⊥AB.又DE ∩EF=E,DE ⊂平面DEF,EF ⊂平面DEF,所以AB ⊥平面DEF,即AB ⊥平面α.(2)如图D 8-5-21,以点B 为坐标原点,分别以BA,BC 所在直线为x,y 轴,过点B 且与AP 平行的直线为z 轴建立空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),P(2,0,2),E(1,1,1),F(1,0,1),AC⃗⃗⃗⃗⃗ =(-2,2,0),BC ⃗⃗⃗⃗⃗ =(0,2,0), BP⃗⃗⃗⃗⃗ =(2,0,2).图D 8-5-21设M(1,t,1),平面MAC 的法向量为m=(x 1,y 1,z 1),则AM ⃗⃗⃗⃗⃗⃗ =(-1,t,1),则{m ·AC⃗⃗⃗⃗⃗ =−2x 1+2y 1=0,m ·AM ⃗⃗⃗⃗⃗⃗ =−x 1+ty 1+z 1=0,令x 1=1,则y 1=1,z 1=1-t,所以m=(1,1,1-t)为平面MAC 的一个法向量.设平面PBC 的法向量为n=(x 2,y 2,z 2),则{n ·BC ⃗⃗⃗⃗⃗ =2y 2=0,n ·BP ⃗⃗⃗⃗⃗ =2x 2+2z 2=0,得y 2=0,令x 2=1,则z 2=-1,所以n=(1,0,-1)为平面PBC 的一个法向量.设平面MAC 与平面PBC 所成的锐二面角为θ,则cos θ=|cos<m,n>|=|m ·n||m|×|n|=√12+12+(1-t)2×√2=√t 2-2t+3×√2.当t=0时,cos θ=0; 当t ≠0时, cos θ=√3t 2-2t+1×√2=√3(1t -13)+23×√2,当且仅当1t =13,即t=3时,3(1t -13)2+23取得最小值23,cos θ取得最大值,最大值为√23×√2=√32.所以平面MAC 与平面PBC 所成锐二面角的余弦值的最大值为√32.14.(1)因为AB ∥平面PCD,AB ⊂平面OCP,平面OCP ∩平面PCD=PC,所以AB ∥PC.又∠COB=60°,所以∠OCP=60°.又OC=OP,所以△OCP 为正三角形,所以PC=1.(2)由题意知DO ⊥平面COP,而V P-COD =V D-COP ,S △COP =12·OC ·OP ·sin ∠COP, 所以当OC ⊥OP 时,三棱锥P-COD 的体积最大.解法一 易知OP,OD,OC 两两垂直,以O 为坐标原点,OP⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图D 8-5-22所示的空间直角坐标系O-xyz,则P(1,0,0),D(0,1,0),C(0,0,1),PC ⃗⃗⃗⃗⃗ =(-1,0,1),DP ⃗⃗⃗⃗⃗ =(1,-1,0).图D 8-5-22设平面DPC 的法向量为n 1=(x,y,z),则{PC⃗⃗⃗⃗⃗ ·n 1=0,DP ⃗⃗⃗⃗⃗ ·n 1=0,即{-x +z =0,x -y =0,取x=1,得平面DPC 的一个法向量为n 1=(1,1,1).易知平面PCO 的一个法向量为n 2=(0,1,0),设二面角D-PC-O 的平面角为α,由题图知,二面角D-PC-O 的平面角为锐角,则cos α=|n 1·n 2||n 1||n 2|=√33, 所以二面角D-PC-O 的余弦值为√33.解法二如图D 8-5-23所示,取PC的中点H,连接OH,DH.图D 8-5-23 因为OC=OP,DC=DP,所以OH,DH都与PC垂直,即∠OHD为所求二面角的平面角.在Rt△OPC中,可得OH=√22,在Rt△OHD中,DH=(√22=√62,所以cos∠OHD=√22√62=√33,所以二面角D-PC-O的余弦值为√33.。
2020版高考数学(文)新增分大一轮人教通用版讲义:第八章 立体几何8.5 含解析
§8.5 空间中的垂直关系1.直线与平面垂直2.平面与平面垂直 (1)平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直. (2)判定定理与性质定理概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示 垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示 垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β,则a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( × ) 题组二 教材改编2.下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 答案 D解析 对于D ,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心;(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.∵PC⊥P A,PB⊥PC,P A∩PB=P,P A,PB⊂平面P AB,∴PC⊥平面P AB,又AB⊂平面P AB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,PO,PC⊂平面PGC,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.题组三易错自纠4.若l,m为两条不同的直线,α为平面,且l⊥α,则“m∥α”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直答案 A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC答案 B解析由题意得BC⊥AC,因为VA⊥平面ABC,BC⊂平面ABC,所以VA⊥BC.因为AC∩VA=A,所以BC⊥平面VAC.因为BC⊂平面VBC,所以平面VAC⊥平面VBC.故选B.题型一直线与平面垂直的判定与性质例1 如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.证明因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF2+B1F2=B1D2,所以∠B1FD=90°.所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.思维升华证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:①判定定理;②垂直于平面的传递性;③面面垂直的性质. (2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质.跟踪训练1如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD . 又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC . 题型二 平面与平面垂直的判定与性质例2 (2018·全国Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明 由已知可得,∠BAC =90°,即BA ⊥AC . 又BA ⊥AD ,AD ∩AC =A ,AD ,AC ⊂平面ACD , 所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)解 由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.如图,过点Q 作QE ⊥AC ,垂足为E ,则QE ∥DC 且QE =13DC .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为 V Q -ABP =13×S △ABP ×QE=13×12×3×22sin 45°×1=1. 思维升华 (1)判定面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.跟踪训练2 (2018·锦州调研)如图,三棱锥P -ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.(1)求证:平面P AC ⊥平面ABC ;(2)若P A =PC ,求三棱锥P -ABC 的体积. 证明 (1)如图,取AC 的中点O ,连接BO ,PO ,因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2, 所以PO ⊥OB .因为AC ∩OP =O ,AC ,OP ⊂平面P AC , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .(2)解 因为P A =PC ,P A ⊥PC ,AC =2, 所以P A =PC = 2. 由(1)知BO ⊥平面P AC ,所以V P -ABC =V B -APC =13S △P AC ·BO =13×12×2×2×3=33.题型三 垂直关系的综合应用命题点1 直线与平面所成的角例3 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的一动点. (1)证明:△PBC 是直角三角形;(2)若P A =AB =2,且当直线PC 与平面ABC 所成角的正切值为 2 时,求直线AB 与平面PBC 所成角的正弦值.(1)证明 ∵AB 是⊙O 的直径,C 是圆周上不同于A ,B 的一动点. ∴BC ⊥AC ,∵P A ⊥平面ABC ,∴BC ⊥P A , 又P A ∩AC =A ,P A ,AC ⊂平面P AC , ∴BC ⊥平面P AC ,∴BC ⊥PC , ∴△BPC 是直角三角形.(2)解 如图,过A 作AH ⊥PC 于H ,∵BC ⊥平面P AC ,∴BC ⊥AH , 又PC ∩BC =C ,PC ,BC ⊂平面PBC , ∴AH ⊥平面PBC ,∴∠ABH 是直线AB 与平面PBC 所成的角, ∵P A ⊥平面ABC ,∴∠PCA 即是PC 与平面ABC 所成的角, ∵tan ∠PCA =P AAC =2,又P A =2,∴AC =2, ∴在Rt △P AC 中,AH =P A ·AC P A 2+AC 2=233,∴在Rt △ABH 中,sin ∠ABH =AH AB =2332=33,即直线AB 与平面PBC 所成角的正弦值为33. 命题点2 与垂直有关的探索性问题例4 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是棱BC ,AB 的中点,点F 在棱CC 1上,已知AB=AC ,AA 1=3,BC =CF =2.(1)求证:C 1E ∥平面ADF ;(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF . (1)证明 连接CE 交AD 于O ,连接OF .因为CE ,AD 为△ABC 的中线, 则O 为△ABC 的重心, 故CF CC 1=CO CE =23,故OF ∥C 1E , 因为OF ⊂平面ADF ,C 1E ⊄平面ADF ,所以C1E∥平面ADF.(2)解当BM=1时,平面CAM⊥平面ADF.证明如下:因为AB=AC,AD⊂平面ABC,故AD⊥BC.在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,BB1⊂平面B1BCC1,故平面B1BCC1⊥平面ABC.又平面B1BCC1∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.思维升华对命题条件的探索的三种途径途径一:先猜后证.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.跟踪训练3 如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.(1)求证:平面CFG⊥平面ACE;(2)在AC上是否存在一点H,使得EH∥平面CFG?若存在,求出CH的长,若不存在,请说明理由.(1)证明连接BD交AC于点O,则BD⊥AC.设AB,AD的中点分别为M,N,连接MN,则MN∥BD,连接FM,GN,则FM∥GN,且FM=GN,所以四边形FMNG为平行四边形,所以MN∥FG,所以BD∥FG,所以FG⊥AC. 由于AE⊥平面ABCD,所以AE⊥BD.所以FG⊥AE,又因为AC∩AE=A,AC,AE⊂平面ACE,所以FG⊥平面ACE.又FG⊂平面CFG,所以平面CFG⊥平面ACE.(2)解存在.设平面ACE交FG于Q,则Q为FG的中点,连接EQ,CQ,取CO的中点H,连接EH,由已知易知,平面EFG∥平面ABCD,又平面ACE∩平面EFG=EQ,平面ACE∩平面ABCD=AC,所以CH∥EQ,又CH=EQ=2 2,所以四边形EQCH为平行四边形,所以EH∥CQ,又CQ⊂平面CFG,EH⊄平面CFG,所以EH∥平面CFG,所以在AC上存在一点H,使得EH∥平面CFG,且CH=2 2.1.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.2.(2019·通辽模拟)已知直线l,m与平面α,β,l⊂α,m⊂β,则下列命题中正确的是() A.若l∥m,则必有α∥βB.若l⊥m,则必有α⊥βC .若l ⊥β,则必有α⊥βD .若α⊥β,则必有m ⊥α 答案 C解析 对于选项A ,平面α和平面β还有可能相交,所以选项A 错误; 对于选项B ,平面α和平面β还有可能相交或平行,所以选项B 错误; 对于选项C ,因为l ⊂α,l ⊥β,所以α⊥β.所以选项C 正确; 对于选项D ,直线m 可能和平面α不垂直,所以选项D 错误.3.如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE 答案 C解析 因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .4.(2019·大连适应性检测)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则( ) A .MN ∥C 1D 1 B .MN ⊥BC 1 C .MN ⊥平面ACD 1 D .MN ⊥平面ACC 1答案 D解析 对于选项A ,因为M ,N 分别是BC 1,CD 1的中点,所以点N ∈平面CDD 1C 1,点M ∉平面CDD 1C 1,所以直线MN 是与平面CDD 1C 1相交的直线,又因为直线C 1D 1在平面CDD 1C 1内,故直线MN 与直线C 1D 1不可能平行,故选项A 错; 对于选项B ,正方体中易知NB ≠NC 1,因为点M 是BC 1的中点,所以直线MN 与直线BC 1不垂直,故选项B 不对;对于选项C ,假设MN ⊥平面ACD 1,可得MN ⊥CD 1,因为N 是CD 1的中点, 所以MC =MD 1,这与MC ≠MD 1矛盾,故假设不成立,所以选项C 不对; 对于选项D ,分别取B 1C 1,C 1D 1的中点P ,Q ,连接PM ,QN ,PQ . 因为点M 是BC 1的中点, 所以PM ∥CC 1且PM =12CC 1.同理QN ∥CC 1且QN =12CC 1.所以PM ∥QN 且PM =QN , 所以四边形PQNM 为平行四边形. 所以PQ ∥MN .在正方体中,CC 1⊥PQ ,PQ ⊥AC ,因为AC ∩CC 1=C ,AC ⊂平面ACC 1,CC 1⊂平面ACC 1, 所以PQ ⊥平面ACC 1.因为PQ ∥MN ,所以MN ⊥平面ACC 1. 故选项D 正确.5.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12 B.π3 C.π4 D.π6答案 B解析 如图,取正三角形ABC 的中心O ,连接OP , 则∠P AO 是P A 与平面ABC 所成的角. 因为底面边长为3, 所以AD =3×32=32,AO =23AD =23×32=1.三棱柱的体积为 34×(3)2AA 1=94, 解得AA 1=3, 即OP =AA 1=3, 所以tan ∠P AO =OPOA=3,因为直线与平面所成角的范围是⎣⎡⎦⎤0,π2, 所以∠P AO =π3.6.如图,已知P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________.答案 4解析 ∵P A ⊥平面ABC ,AB ,AC ,BC ⊂平面ABC ,∴P A ⊥AB ,P A ⊥AC ,P A ⊥BC ,则△P AB ,△P AC 为直角三角形.由BC ⊥AC ,且AC ∩P A =A ,得BC ⊥平面P AC ,从而BC ⊥PC ,因此△ABC ,△PBC 也是直角三角形.7.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在直线______上.答案 AB解析 ∵AC ⊥AB ,AC ⊥BC 1,AB ∩BC 1=B , ∴AC ⊥平面ABC 1.又∵AC ⊂平面ABC ,∴平面ABC 1⊥平面ABC . ∴C 1在平面ABC 上的射影H 必在两平面交线AB 上.8.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足_______时,平面MBD ⊥平面PCD .(只要填写一个你认为正确的条件即可)答案 DM ⊥PC (或BM ⊥PC 等)解析 ∵P A ⊥底面ABCD ,∴BD ⊥P A ,连接AC ,则BD ⊥AC ,且P A ∩AC =A ,∴BD ⊥平面P AC ,∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD , 而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为________.答案 13解析 连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22, 又AA 1=1,所以AC 1=3, 所以sin ∠AC 1A 1=AA 1AC 1=13.10.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.答案255解析 点P 到直线CC 1的距离等于点P 在平面ABCD 上的射影到点C 的距离,设点P 在平面ABCD 上的射影为P ′,显然点P 到直线CC 1的距离的最小值为P ′C 的长度的最小值.当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+12=255.11.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,点E 在棱PC 上(异于点P ,C ),平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若AF ⊥EF ,求证:平面P AD ⊥平面ABCD . 证明 (1)因为四边形ABCD 是矩形, 所以AB ∥CD .又AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC ,又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF , 所以AB ∥EF .(2)因为四边形ABCD 是矩形, 所以AB ⊥AD .因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF . 又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面P AD , 所以AB ⊥平面P AD , 又AB ⊂平面ABCD , 所以平面P AD ⊥平面ABCD .12.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值. (1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32.所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形, 所以BM =32,所以BMMD =3,又因为PN =14PB ,所以BM MD =BN NP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC , 所以BD ⊥平面P AC . 由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角. 在Rt △P AD 中,PD =2, 所以sin ∠DPM =DM DP =122=14,所以直线MN 与平面P AC 所成角的正弦值为14.13.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点.现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H .那么,在这个空间图形中必有()A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF答案 B解析 根据折叠前、后AH ⊥HE ,AH ⊥HF 不变, ∴AH ⊥平面EFH ,B 正确;∵过A 只有一条直线与平面EFH 垂直,∴A 不正确; ∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,AG ,GH ⊂平面HAG , ∴EF ⊥平面HAG , 又EF ⊂平面AEF ,∴平面HAG ⊥平面AEF ,过点H 作直线垂直于平面AEF ,一定在平面HAG 内,∴C 不正确; 由条件证不出HG ⊥平面AEF ,∴D 不正确.故选B.14.(2018·全国Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A .8 B .6 2 C .8 2 D .8 3 答案 C解析 如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角, ∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中, AC 1=2sin 30°=4,在Rt △ACC 1中,CC 1=AC 21-AC 2=42-(22+22)=22,∴V 长方体=AB ×BC ×CC 1=2×2×22=8 2. 故选C.15.如图,在直角梯形ABCD 中,BC ⊥DC ,AE ⊥DC ,且E 为CD 的中点,M ,N 分别是AD ,BE 的中点,将三角形ADE 沿AE 折起,则下列说法正确的是________.(写出所有正确说法的序号)①不论D 折至何位置(不在平面ABC 内),都有MN ∥平面DEC ; ②不论D 折至何位置(不在平面ABC 内),都有MN ⊥AE ; ③不论D 折至何位置(不在平面ABC 内),都有MN ∥AB ; ④在折起过程中,一定不会有EC ⊥AD . 答案 ①②解析 由已知,在未折叠的原梯形中, 易知四边形ABCE 为矩形, 所以AB =EC ,所以AB =DE , 又AB ∥DE ,所以四边形ABED 为平行四边形, 所以BE =AD ,折叠后如图所示.①过点M 作MP ∥DE ,交AE 于点P ,连接NP .因为M ,N 分别是AD ,BE 的中点, 所以点P 为AE 的中点,故NP ∥EC . 又MP ∩NP =P ,DE ∩CE =E , 所以平面MNP ∥平面DEC , 故MN ∥平面DEC ,①正确; ②由已知,AE ⊥ED ,AE ⊥EC , 所以AE ⊥MP ,AE ⊥NP ,又MP ∩NP =P ,所以AE ⊥平面MNP , 又MN ⊂平面MNP ,所以MN ⊥AE ,②正确; ③假设MN ∥AB ,则MN 与AB 确定平面MNBA , 从而BE ⊂平面MNBA ,AD ⊂平面MNBA , 与BE 和AD 是异面直线矛盾,③错误; ④当EC ⊥ED 时,EC ⊥AD .因为EC ⊥EA ,EC ⊥ED ,EA ∩ED =E , 所以EC ⊥平面AED ,AD ⊂平面AED , 所以EC ⊥AD ,④不正确.16.在如图所示的五面体ABCDEF 中,四边形ABCD 为菱形,且∠DAB =60°,EA =ED =AB =2EF =2,EF ∥AB ,M 为BC 的中点.(1)求证:FM ∥平面BDE ;(2)若平面ADE ⊥平面ABCD ,求点F 到平面BDE 的距离. (1)证明 取BD 的中点O ,连接OM ,OE ,因为O ,M 分别为BD ,BC 的中点, 所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB , 又EF ∥AB ,所以CD ∥EF , 又AB =CD =2EF , 所以EF =12CD ,所以OM ∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形, 所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE , 所以MF ∥平面BDE .(2)解 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 取AD 的中点H ,连接EH ,BH ,因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°, 所以EH ⊥AD ,BH ⊥AD . 因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE , 所以EH ⊥平面ABCD ,所以EH ⊥BH , 易得EH =BH =3,所以BE =6, 所以S △BDE =12×6×22-⎝⎛⎭⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V 三棱锥E -BDM =V 三棱锥M -BDE , 得13×3×32=13×h ×152, 解得h =155, 即点F 到平面BDE 的距离为155.。
2024年高考数学总复习第八章《立体几何与空间向量》8
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。
高三数学一轮 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系
关闭
(1)× (2)× (3)√ (4)√ (5)×
答案
-12-
知识梳理 双基自测
12345
2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则 下列直线与直线EF相交的是( )
A.直线AA1 B.直线A1B1 C.直线A1D1 D.直线B1C1
关闭
只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面 关闭
-11-
知识梳理 双基自测
12345
1.下列结论正确的打“√”,错误的打“×”. (1)两个不重合的平面只能把空间分成四个部分.( ) (2)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.
() (3)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平 行直线.( ) (4)如果两个不重合的平面α,β有一条公共直线a,那么就说平面α,β 相交,并记作α∩β=a.( ) (5)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线
D直线,故选D
解析 答案
-13-
知识梳理 双基自测
12345
3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为 所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的 是( )
关闭
易知选项B中,AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面
MNQ;选项C中,AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面
C.√33
D.13
思考如何求两条异面直线所成的角?
考点1
考点2
考点3
-23-
解析:(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平 面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.
2023年人教版高考数学总复习第一部分考点指导第八章立体几何第五节空间向量的运算及其坐标表示
3.空间向量有关运算
(1)坐标运算:设a=x1,y1,z1 ,b=x2,y2,z2 , 则a+b= (x1 x2,y1 y2,z1 z2 ) ; a-b= (x1 x2,y1 y2,z1 z2 ) ; λa= (x1, y1,z1) .
(2)数量积运算:a·b= x1x2+y1y2+z1z2 = |a||b|cos〈a,b〉.
B.共面 C.共线 D.不共线
②对空间中四点 A,B,C,P,若A→P =81 A→B +18 A→C ,则 P,A,B,C 四点( )
A.不共面
B.共面 C.共线 D.不共线
பைடு நூலகம்
③对空间中四点 A,B,C,P,若空间任意一点 O 都有O→P =43 O→A +81 O→B +
1 8
O→ C
,则 P,A,B,C 四点(
(2)已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共
面,则实数λ等于(
A.672
B.673
) C.674
D.675
【解析】选D.由a,b,c三向量共面,设a=mb+nc,
则(2,-1,3)=m(-1,4,-2)+n(7,5,λ),
2=-m+7n
即 -1=4m+5n ,解得λ=675 . 3=-2m+nλ
=12
O→ A
+23
1 (2
O→ B
+12
O→ C
-21
O→ A
)=61
O→ A
+13
O→ B
+13
O→ C
,
所以x=16 ,y=13 ,z=13 .
答案:16 ,31 ,13
2.如图,在长方体ABCD-A1B1C1D1中,O为AC的中点. ①化简 A1O -12 A→B -21 A→D =________. ②用A→B ,A→D , AA1 表示 OC1 ,则 OC1 =________.
高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理
高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。
空间向量与空间角、距离问题课件-2025届高三数学一轮复习
A. B. C. D.
解析 取线段的中点,连接,则,设直三棱柱 的棱长为2, 以点为原点,,,的方向分别为轴、轴、 轴的正方向建立如图所示的空间直角坐标系,
则,,, , 所以,,, , 所以 .故选C.
用向量法求异面直线所成的角的一般步骤1. 建立空间直角坐标系;2. 用坐标表示两异面直线的方向向量;3. 利用向量的夹角公式求出向量夹角的余弦值;4. 注意两异面直线所成角的范围是, ,即两异面直线所成角的余弦值等于两向量 夹角的余弦值的绝对值.
因为 平面, 平面,所以,又, 平面, 平面,所以 平面,又 平面,所以 .
(2)如图2,以点为原点建立空间直角坐标系,,则, ,,则,, , 设平面的一个法向量为 , 则令,则,,所以 ,则,所以与平面所成角的正弦值为 .
利用空间向量求线面角的解题步骤
平面与平面所成的角
二、空间向量与距离
直线外一点 到直线 的距离
如图,直线的单位方向向量为,设,则向量在直线 上的投影向量⑭________,则点到直线 的距离为 ⑮_______________
平面外一点 到平面 的距离
如图,已知平面 的法向量为,为平面 内的定点,是平面 外一点,过点作平面 的垂线,交平面 于点,是直线 的方向向量,则点到平面 的距离⑯______ ⑰_______
B
A. B. C. D.
解析 建立如图所示的空间直角坐标系,则,,,, ,,,所以,,.设平面 的一个法向量为,则令,得 ,故点到平面的距离 .故选B.
4.(人教A版选修①P43 · T10改编)设,分别是正方体的棱 和的中点,则直线与平面 所成角的正弦值为________.
解析 建立如图所示的空间直角坐标系,设 ,则,,,, ,则,, .设平面的一个法向量为 ,故令,则,,所以 ,所以与平面所成角的正弦值为 .
2023年《师说》高考数学一轮复习 课件第8章 立体几何与空间向量
台体(棱台
和圆台)
S表面积=S侧+S上+S下
球
2
4πR
S=________
体积
S底·h
V=________
【微点拨】
(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与
平面几何知识来解决.
(2)求几何体的体积时,要注意利用分割、补形与等积法.
(3)柱体、锥体、台体体积之间的关系:
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积
的关系:S直观图=
2
S原图形.
4
[巩固训练2]
如图是一个水平放置的直观图、它是一个底角为45;腰和上底均为1,
2+ 2
下底为 2+1的等腰梯形,那么原平面图形的面积为________.
解析:∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,
“对棱相等”模型是指三棱锥的相对的两条棱相等,应用数学建模
素养,构建长方体,将该三棱锥放入该长方体中,使三棱锥的顶点与
长方体的顶点重合,将该三棱锥的外接球转化为该长方体的外接球,
从而求出该外接球的半径,如图.
2
,
3
[典例2] 在平行四边形ABCD中,AB=2 2,BC=3,且cos A=
沿BD将△BDC折起,使点C到达点E处,且满足AE=AD,则三棱锥E
a
3.设正方体的棱长为a,则它的内切球半径r= ,外接球半径R=
2
3
a.
2
4.设长方体的长、宽、高分别为a,b,c,则它的外接球半径R=
a2 +b2 +c2
.
2
5.设正四面体的棱长为a,则它的高为
接球半径R=
人教版高考总复习一轮数学精品课件 主题三 几何与代数 第八章 第2课时 求空间角与距离
证明在等腰梯形中, = 4, = = 2,则∠ = 60∘ ,
则 = 2 3,所以2 + 2 = 2 , ⊥ .又 = 4, = 2,由
2 + 2 = 16 = 2 ,得到 ⊥ .
.设直线和所成的角为
6
6
6
3
3
2 6
,则cos = |cos⟨,⟩| =
1
2
3
3
×
2
2
=
2
.
3
规律方法
用向量法求异面直线所成角的一般步骤
(1)选择三条两两垂直的直线建立空间直角坐标系;
(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;
(3)利用向量的夹角公式求出向量夹角的余弦值;
用公式 cos⟨,⟩ =
得结论
⋅
π
2
利用sin = |cos⟨,⟩|,直线和平面所成角的范围是[0, ],即可得出直线和平面所
成的角
[对点训练3]如图,在四棱锥 − 中,底面四边形
满足 = = 2, = = 5,∠ = 90∘ ,棱上的点
= − = −
1
,
2
=
1
(
2
+ ).
设向量与的夹角为,则直线和所成角的余弦值等于 cos .
⋅ =
1
2
1
−
8
+
1
2
1
1
−
4
8
1
2
1
2
1
4
1
2
1
4
+ ⋅ ( − ) = 2 − ⋅ + ⋅ − ⋅ =
高考数学一轮复习利用空间向量求空间角与距离
1 + 1
2
3 31 +
· = 0,
则൝
即ቐ
· = 0,
4 31 = 0,
= 0,
令z1=2,则m=(0,-3,2).
目录
所以|cos<n,m>|=
·
||·||
4 3
= .
13
设二面角C-AE-B的大小为θ,则sin θ= 1−
11
即二面角C-AE-B的正弦值为 .
13
因为AP=PB,所以PD⊥AB.
因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC,
因为AB⊂平面ABC,所以PO⊥AB.
又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.
因为OD⊂平面POD,所以AB⊥OD,
又AB⊥AC,所以OD∥AC,因为OD⊄平面PAC,AC⊂平面APC,所以OD∥
||
|AP·|
| |
;
(3)两异面直线间的距离:即两条异面直线公垂线段的长度.
目录
=
1.判断正误.(正确的画“√”,错误的画“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.
(
)
答案:(1)×
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.
(
)
答案:(2)×
目录
弦值.
解 (2)连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以
PO⊥OA,PO⊥OB,
所以OA=OB= 2 −2 = 52 −32 =4.
1
易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OAsin 30°=4× =2,
3
2
利用空间向量解决立体几何问题
利用空间向量解决立体几何问题夏巨星(湖北省十堰市东风高级中学ꎬ湖北十堰442000)摘㊀要:立体几何大题是高考的必考考点ꎬ通常需要借助于空间向量进行求解.本文给出了基本题型㊁最值问题和存在型问题三种题型的示例ꎬ展现了不同题型的问题形式㊁解答过程和所体现的不同数学思想.关键词:空间向量ꎻ立体几何ꎻ转化与化归思想ꎻ函数思想ꎻ方程思想中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)10-0048-03收稿日期:2023-01-05作者简介:夏巨星(1982.11-)ꎬ男ꎬ湖北省武穴人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀利用空间向量解决立体几何问题是历年高考的热点ꎬ主要考查空间直角坐标系的建立㊁空间向量的坐标运算能力和分析解决问题的能力.立体几何问题可以分为三种题型:基本题型㊁最值问题㊁存在型问题.我们采用三种数学思想 转化思想 函数思想 和 方程思想 去求解对应的三种题型.1基本题型 转化与化归思想问题形式㊀一般为证明点线面的空间位置关系㊁求空间角㊁求空间距离.求解思路㊀利用转化与化归思想ꎬ将空间点线面位置关系转化为空间两向量的数量关系(线性表示或数量积表示)ꎬ将空间角与空间距离的计算转化为空间两向量的运算.例1㊀(2021年天津卷17)如图1ꎬ在棱长为2的正方体ABCD-A1B1C1D1中ꎬE为棱BC的中点ꎬF为棱CD的中点.(1)求证:D1Fʊ平面A1EC1ꎻ(2)求直线AC1与平面A1EC1所成角的正弦值.(3)求二面角A-A1C1-E的正弦值.转化与化归思想的应用(1)将线面平行问题转化为直线的方向向量与平面的法向量垂直ꎬ利用向量的数量积运算即可得证ꎻ图1(2)将线面所成角的正弦值转化为直线的方向向量和平面的法向量所成角的余弦值的绝对值ꎬ利用向量的数量积运算即可得解ꎻ(3)将二面角的余弦值转化为两个平面法向量的夹角余弦值ꎬ再结合同角三角函数的平方关系即可解得二面角的正弦值.解析㊀(1)以A为原点ꎬABꎬADꎬAA1所在直线分别为xꎬyꎬz轴ꎬ建立如图2所示空间直角坐标系ꎬ则A0ꎬ0ꎬ0()ꎬA10ꎬ0ꎬ2()ꎬB2ꎬ0ꎬ0()ꎬC2ꎬ2ꎬ0()ꎬD0ꎬ2ꎬ0()ꎬC12ꎬ2ꎬ2()ꎬD10ꎬ2ꎬ2().因为E为棱BC的中点ꎬF为棱CD的中点ꎬ所以E2ꎬ1ꎬ0()ꎬF1ꎬ2ꎬ0().所以D1Fң=1ꎬ0ꎬ-2()ꎬA1C1ң=2ꎬ2ꎬ0()ꎬA1Eң=2ꎬ1ꎬ-2().设平面A1EC1的一个法向量为m=x1ꎬy1ꎬz1()ꎬ则m A1C1ң=2x1+2y1=0ꎬm A1Eң=2x1+y1-2z1=0.{84令x1=2ꎬ则m=2ꎬ-2ꎬ1().因为D1Fңm=2-2=0ꎬ所以D1Fңʅm.因为D1F⊄平面A1EC1ꎬ所以D1Fʊ平面A1EC1.(2)由(1)得ꎬAC1ң=2ꎬ2ꎬ2().设直线AC1与平面A1EC1所成角为θꎬ则sinθ=cos‹mꎬAC1ң›=m AC1ңm AC1ң=23ˑ23=39.(3)由正方体的特征可得ꎬ平面AA1C1的一个法向量为DBң=2ꎬ-2ꎬ0().则cos‹DBңꎬm›=DBңmDBң m=83ˑ22=223.所以二面角A-A1C1-E的正弦值为1-cos2‹DBңꎬm›=13.图22最值问题 函数思想问题形式㊀当动点(或线段)满足什么条件时ꎬ正弦值(或余弦值)取得最大值(或最小值).求解思路㊀根据问题构造函数ꎬ利用函数的思想求解最值.构造函数时要注意函数的定义域ꎬ应当在定义域的约束下求最值ꎬ利用基本不等式求最值时要注意满足等号成立的条件.例2㊀(2021年全国甲卷(理)19)如图3ꎬ已知直三棱柱ABC-A1B1C1中ꎬ侧面AA1B1B为正方形ꎬAB=BC=2ꎬEꎬF分别为AC和CC1的中点ꎬD为棱A1B1上的点.(1)证明:BFʅDEꎻ图3(2)当B1D为何值时ꎬ面BB1C1C与面DFE所成的二面角的正弦值最小?函数思想的应用㊀由面BB1C1C与面DFE所成的二面角的余弦值公式ꎬ得到关于变量B1D长度的函数ꎬ再结合二次函数和反比例函数性质ꎬ求解当B1D为何值时ꎬ余弦值取得最大ꎬ即正弦值最小.解析㊀(1)因为三棱柱ABC-A1B1C1是直三棱柱ꎬ所以BB1ʅ底面ABC.所以BB1ʅAB.因为A1B1ʊABꎬBFʅA1B1ꎬ所以BFʅAB.又因为BB1ɘBF=Bꎬ所以ABʅ平面BCC1B1.所以BAꎬBCꎬBB1两两垂直.以B为坐标原点ꎬ分别以BAꎬBCꎬBB1所在直线为xꎬyꎬz轴建立空间直角坐标系ꎬ如图4.图4所以B0ꎬ0ꎬ0()ꎬA2ꎬ0ꎬ0()ꎬC0ꎬ2ꎬ0()ꎬB10ꎬ0ꎬ2()ꎬA12ꎬ0ꎬ2()ꎬC10ꎬ2ꎬ2()ꎬE1ꎬ1ꎬ0()ꎬF0ꎬ2ꎬ1().由题设Daꎬ0ꎬ2()(0ɤaɤ2).因为BFң=0ꎬ2ꎬ1()ꎬDEң=1-aꎬ1ꎬ-2()ꎬ所以BFң DEң=0ˑ1-a()+2ˑ1+1ˑ-2()=0ꎬ所以BFʅDE.(2)设平面DFE的法向量为m=xꎬyꎬz()ꎬ因为EFң=-1ꎬ1ꎬ1()ꎬDEң=1-aꎬ1ꎬ-2()ꎬ所以m EFң=0ꎬm DEң=0.{即-x+y+z=0ꎬ1-a()x+y-2z=0.{94令z=2-aꎬ则m=3ꎬ1+aꎬ2-a().因为平面BCC1B1的法向量为BAң=2ꎬ0ꎬ0()ꎬ设平面BCC1B1与平面DEF的二面角的平面角为θꎬ则cosθ=m BAңm BAң=62ˑ2a2-2a+14=32a2-2a+14.当a=12时ꎬ2a2-2a+4取最小值为272ꎬ此时cosθ取最大值为3272=63.故sinθ()min=1-63æèçöø÷2=33ꎬ此时B1D=12.3存在型问题 方程思想问题形式㊀已知夹角(或正弦值㊁余弦值)ꎬ求线段长度(或动点位置).求解思路㊀根据已知条件利用空间向量关系建立方程(组)ꎬ求方程(组)的解ꎬ从而解决问题.例3㊀如图5ꎬ在多面体ABCDEF中ꎬAEʅ平面ABCDꎬAEFC是平行四边形ꎬ且ADʊBCꎬABʅADꎬAD=AE=2ꎬAB=BC=1.图5(1)求证:CDʅEFꎻ(2)求平面ADE与平面DEB夹角的余弦值ꎻ(3)若点P在棱CF上ꎬ直线PB与平面BDE所成角的正弦值为33ꎬ求线段CP的长.方程思想的应用㊀由点P在棱CF上设置变量ꎬ根据直线PB与平面BDE所成角的正弦值为33建立方程ꎬ通过解方程求解变量.解析㊀(1)因为AEʅ平面ABCDꎬABʅADꎬ以点A为坐标原点ꎬADꎬABꎬAE所在直线分别为xꎬyꎬz轴建立如图6所示的空间直角坐标系ꎬ则B(0ꎬ1ꎬ0)ꎬC(1ꎬ1ꎬ0)ꎬD(2ꎬ0ꎬ0)ꎬE(0ꎬ0ꎬ2)ꎬF(1ꎬ1ꎬ2).图6所以CDң=(1ꎬ-1ꎬ0)ꎬEFң=(1ꎬ1ꎬ0).所以CDң EFң=1-1=0.所以CDʅEF.(2)设平面BDE的法向量为n=(xꎬyꎬz)ꎬ因为DBң=(-2ꎬ1ꎬ0)ꎬDEң=(-2ꎬ0ꎬ2)ꎬ则n DBң=-2x+y=0ꎬn DEң=-2x+2z=0.{取x=1ꎬ可得n=(1ꎬ2ꎬ1).易知平面ADE的一个法向量为m=(0ꎬ1ꎬ0)ꎬ则cos‹mꎬn›=m nm n=21ˑ6=63.故平面ADE与平面DEB夹角的余弦值为63.(3)设点P(1ꎬ1ꎬt)ꎬ其中0ɤtɤ2ꎬBPң=(1ꎬ0ꎬt)ꎬ由题意可得cos‹BPңꎬn›=BPң nBPңn=t+1t2+1ˑ6=33.解得t=1ꎬ因此线段CP的长为1.在解决立体几何问题时ꎬ要善于借助空间向量这个工具ꎬ根据图形的几何特征建立合适的空间直角坐标系ꎬ将问题转化为空间向量的坐标运算.要求学生能够做到根据问题的形式ꎬ分析出为何种题型ꎬ选择恰当的解题思路ꎬ在解题的过程中不断积累和掌握数学思想方法ꎬ提高数学素养.参考文献:[1]徐涛. 空间向量与立体几何 的若干教学建议[J].中学数学教学参考ꎬ2021(06):62-64.[责任编辑:李㊀璟]05。
高考数学一轮复习第八章立体几何8.5.2利用空间向量求空间角与距离对点训练理
2017高考数学一轮复习 第八章 立体几何 8.5.2 利用空间向量求空间角与距离对点训练 理1.如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α答案 B解析 若CD ⊥AB ,则∠A ′DB 为二面角A ′-CD -B 的平面角,即∠A ′DB =α. 若CD 与AB 不垂直,在△ABC 中,过A 作CD 的垂线交线段CD 或CD 的延长线于点O ,交BC 于E ,连接A ′O ,则∠A ′OE 为二面角A ′-CD -B 的平面角,即∠A ′OE =α,∵AO =A ′O ,∴∠A ′AO =α2.又A ′D =AD ,∴∠A ′AD =12∠A ′DB .而∠A ′AO 是直线A ′A 与平面ABC 所成的角,由线面角的性质知∠A ′AO <∠A ′AD ,则有α<∠A ′DB .综上有∠A ′DB ≥α,故选B.2.如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎢⎡⎦⎥⎤33,1 B.⎣⎢⎡⎦⎥⎤63,1 C.⎣⎢⎡⎦⎥⎤63,223D.⎣⎢⎡⎦⎥⎤223,1 答案 B解析 由正方体的性质易求得sin ∠C 1OA 1=223,sin ∠COA 1=63,注意到∠C 1OA 1是锐角,∠COA 1是钝角,且223>63.故sin α的取值范围是⎣⎢⎡⎦⎥⎤63,1.3.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF与平面α所成角的正弦值. 解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.解 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝ ⎛⎭⎪⎫1,12,1,N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量.MN →=(0,-52,0).由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0).设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量,则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y 2+2z 2=0,2x 2=0.不妨设z 2=1,可得n 2=(0,-2,1).因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010,所以,二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E (0,λ,2),从而NE →=(-1,λ+2,1).又n =(0,0,1)为平面ABCD 的一个法向量,由已知,得cos 〈NE →,n 〉=NE →·n|NE →|·|n |=1-2+λ+2+12=13,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=7-2.所以,线段A 1E 的长为7-2.5.如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解 以{AB →,AD →,AP →}为正交基底建立如下图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.6.如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.解 (1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO . 又因为AB =BC ,所以△BOA ≌△BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →的方向为x 轴正方向,|OB →|为单位长,建立如图所示的空间直角坐标系O -xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形. 又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0, AB 1→=⎝ ⎛⎭⎪⎫0,33,-33,A 1B 1→=AB →=⎝ ⎛⎭⎪⎫1,0,-33,B 1C 1→=BC →=⎝ ⎛⎭⎪⎫-1,-33,0.设n =(x ,y ,z )是平面AA 1B 1的法向量, 则⎩⎪⎨⎪⎧ n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0.同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17.所以二面角A -A 1B 1-C 1的余弦值为17.7.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.解 (1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12,则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63, 即直线AD 与平面MBC 所成角的正弦值为63. 8.如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.解 (1)证明:如图1,因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1, 所以CC 1⊥BD . 而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . (2)解法一:如图1,过O 1作O 1H ⊥OB 1于H ,连接HC 1. 由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1.又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 1是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1,进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1-OB 1-D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1 ·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H=237197=25719.即二面角C 1-OB 1-D 的余弦值为25719.解法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图2,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系O -xyz .不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为:O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB 1→=0,n 2·OC 1→=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=2319=25719.故二面角C 1-OB 1-D 的余弦值为25719.9.三棱锥A -BCD 及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.解(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC 中点.(2)解法一:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A -NP -M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD . 因为OC ⊂平面BCD ,所以AO ⊥OC , 因此在等腰Rt △AOC 中,AC = 6. 作BR ⊥AC 于R ,在△ABC 中,AB =BC , 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,因此NQ =BR 2=104.同理,可得MQ =104.所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105. 故二面角A -NP -M 的余弦值是105. 解法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图,以O 为坐标原点,以OB →,OC →,OA →的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0.于是AB →=(1,0,-3),BC →=(-1,3,0),MN →=(1,0,0),NP →=⎝ ⎛⎭⎪⎫0,32,-32.设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥AB →,n 1⊥BC →,即⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,有 ⎩⎨⎧x 1,y 1,z 1,0,-3=0,x 1,y 1,z 1-1,3,=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2⊥MN →,n 2⊥NP →,即⎩⎪⎨⎪⎧n 2·MN →=0,n 2·NP →=0,有⎩⎪⎨⎪⎧x 2,y 2,z 2,0,=0,x 2,y 2,z 2⎝⎛⎭⎪⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0.取z 2=1,所以n 2=(0,1,1). 设二面角A -NP -M的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=⎪⎪⎪⎪⎪⎪3,1,,1,5×2=105.故二面角A -NP -M 的余弦值是105. 10.如图,四棱锥P -ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .(1)求证:AB ⊥PD ;(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD 的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.解 (1)证明:ABCD 为矩形,故AB ⊥AD ;又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG ,在Rt △BPC 中,PG =233,GC =263,BG =63,设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P -ABCD 的体积为V =13·6·m ·43-m 2=m 3·8-6m 2. 因为m 8-6m 2=8m 2-6m 4 =-6⎝⎛⎭⎪⎫m 2-232+83,故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大.此时,建立如图所示的坐标系,各点的坐标为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝⎛ 63,⎭⎪⎫263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝ ⎛⎭⎪⎫0,0,63. 故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD →=⎝ ⎛⎭⎪⎫-63,0,0, 设平面BPC 的法向量n 1=(x ,y,1), 则由n 1⊥PC →,n 1⊥BC →得⎩⎪⎨⎪⎧63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的法向量n 2=⎝ ⎛⎭⎪⎫0,12,1,从而平面BPC 与平面DPC 夹角θ的余弦值为 cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 11.四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.解 (1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形. 又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC . ∴AD ⊥BC .∴EF ⊥FG .∴四边形EFGH 是矩形.(2)解法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0).∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 解法二:如图,以D 为坐标原点建立空间直角坐标系, 则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别是BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0.得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0).∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 12.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.解 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)向量BD →=(-1,2,0),PB →=(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n ·BE→|n |·|BE →|=26×2=33. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝ ⎛⎭⎪⎫-12,12,32. 设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0).则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM . 因为PA ⊥底面ABCD ,故PA ⊥CD ,而CD ⊥DA ,从而CD ⊥平面PAD ,因为AM ⊂平面PAD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM .由(1)知CD ⊥平面PAD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM . 又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE , 所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM , 可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角. 依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2. 故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE=12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△PAC 中,过点F 作FH ∥PA 交AC 于点H .因为PA ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH . 在底面ABCD 内,可得CH =3HA ,从而CF =3FP . 在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP . 由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥PA ,AB ⊥AD ,得AB ⊥平面PAD ,故AB ⊥AG . 所以∠PAG 为二面角F -AB -P 的平面角.在△PAG 中,PA =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠PAG =31010. 所以二面角F -AB -P 的余弦值为31010.。
近年高考数学一轮复习第8章立体几何第8课时空间向量的应用(二)空间的角与距离练习理(2021年整理)
2019高考数学一轮复习第8章立体几何第8课时空间向量的应用(二) 空间的角与距离练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第8章立体几何第8课时空间向量的应用(二) 空间的角与距离练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第8章立体几何第8课时空间向量的应用(二) 空间的角与距离练习理的全部内容。
第8课时空间向量的应用(二) 空间的角与距离1.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<错误!,错误!>的值等于()A.错误!B.错误!C。
错误! D.错误!答案B解析分别以DA,DC,DD1为x,y,z轴建系,令AD=1,∴错误!=(1,1,1),错误!=(1,-错误!,0).∴cos〈错误!,错误!>=错误!=错误!。
∴sin<错误!,错误!〉=错误!。
2.已知直四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为( )A。
错误! B.错误!C。
错误!D。
错误!答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA1=2AB=2,则B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2).∴错误!=(0,-1,1),错误!=(0,-1,2).∴cos<错误!,错误!>=错误!=错误!。
3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于()A.120°B.60°C.30°D.150°答案C解析设直线l与平面α所成的角为θ,则sinθ=|cos120°|=错误!,又0°≤θ≤90°。
2020年高考山东版高考理科数学 8.5 空间向量在立体几何中的应用
8.5 空间向量在立体几何中的应用挖命题【考情探究】分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.破考点【考点集训】考点一空间向量、空间角与距离1.(2018福建四地七校4月联考,10)在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G,则A1B与平面ABD 所成角的余弦值为( )A. B. C. D.答案B2.(2017江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.解析在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{,,}为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,∠BAD=120°,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos<,>==--=-,因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即---不妨取x=3,则y=,z=2,所以m=(3,,2)为平面BA1D的一个法向量,从而cos<,m>===.设二面角B-A1D-A的大小为θ,则|cos θ|=.因为θ∈[0,π],所以sin θ=-=.因此二面角B-A1D-A的正弦值为.考点二空间向量的应用1.(2017广西贺州模拟,20)如图,三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(1)求证:MN∥平面BCC1B1;(2)求证:MN⊥平面A1B1C.证明(1)如图,连接BC1,AC1,则A1C与AC1交于点N,且N为AC1的中点.在△ABC1中,∵M,N分别是AB,AC1的中点,∴MN∥BC1.又∵MN⊄平面BCC1B1,BC1⊂平面BCC1B1,∴MN∥平面BCC1B1.(2)如图,连接B1C,以B1为原点建立空间直角坐标系B1-xyz.则B1(0,0,0),C(0,2,2),A1(-2,0,0),M(-1,0,2),N(-1,1,1),∴=(0,2,2),=(2,0,0),=(0,-1,1).设平面A1B1C的法向量为n=(x,y,z),则即令z=1,则x=0,y=-1,故平面A1B1C的一个法向量为n=(0,-1,1).此时有n=,故MN⊥平面A1B1C.2.(2018辽宁本溪调研,19)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3,试证明平面AMC⊥平面BMC.证明(1)如图所示,以O为坐标原点,以射线OP为z轴的正半轴建立空间直角坐标系O-xyz,则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是=(0,3,4),=(-8,0,0),∴=(0,3,4)(-8,0,0)=0,∴⊥,即AP⊥BC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,∴==.又=(-4,-5,0),∴=+=--,则=(0,3,4)--=0,∴⊥,即AP⊥BM.又根据(1)的结论知AP⊥BC,且BM∩BC=B,∴AP⊥平面BMC,∴AM⊥平面BMC.又AM⊂平面AMC,故平面AMC⊥平面BMC.3.(2016天津,17,13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G 为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.解析依题意,OF⊥平面ABCD,如图,以O为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则即-不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则即不妨设x=1,可得n2=(1,-1,1).-因此有cos<,n2>==-,于是sin<,n2>=.所以,二面角O-EF-C的正弦值为.(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以==-,进而有H-,从而=,因此cos<,n2>==-.所以,直线BH和平面CEF所成角的正弦值为.炼技法【方法集训】方法1 利用空间向量解决平行、垂直问题的方法1.(2017甘肃兰州模拟,17)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.证明如图所示,建立空间直角坐标系,设正方体的棱长为2,则D(0,0,0),B(2,2,0),A1(2,0,2),M(0,2,1),N(1,2,2),=(1,0,1),=(2,2,0),=(2,0,2).设n=(x,y,z)是平面A1BD的一个法向量,则即解得--令x=1,则y=-1,z=-1,所以n=(1,-1,-1).因为n=1+0-1=0,所以⊥n.又因为MN⊄平面A1BD,所以MN∥平面A1BD.2.(2018河南驻马店联考,19)正三棱柱ABC-A1B1C1的所有棱长都为4,D为CC1的中点.(1)求证:AB1⊥平面A1BD;(2)求二面角A-A1D-B的余弦值.解析(1)证明:如图,取BC的中点O,连接AO.因为△ABC为正三角形,所以AO⊥BC.因为在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,所以AO⊥平面BCC1B1.取B1C1的中点O1,以O为原点,,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系,则B(2,0,0),D(-2,2,0),A1(0,4,2),A(0,0,2),B1(2,4,0).所以=(2,4,-2),=(-4,2,0),=(-2,4,2).因为=-8+8+0=0,=-4+16-12=0,所以⊥,⊥.又BD∩BA1=B,所以AB1⊥平面A1BD.(2)设平面A1AD的法向量为n=(x,y,z),=(-2,2,-2),=(0,4,0),因为n⊥,n⊥,所以所以--解得-令z=1,得n=(-,0,1)为平面A1AD的一个法向量,由(1)知AB1⊥平面A1BD,所以AB1为平面A1BD的一个法向量,cos(n,)==-=-,由图可以看出,二面角A-A1D-B是锐角,所以二面角A-A1D-B的余弦值为.3.(2018广东茂名模拟,18)如图,在矩形ABCD中,CD=2,BC=1,E,F是平面ABCD同一侧的两点,EA∥FC,AE⊥AB,EA=2,DE=,FC=1.(1)证明:平面CDF⊥平面ADE;(2)求二面角E-BD-F的正弦值.解析(1)证明:∵四边形ABCD是矩形,∴CD⊥AD.∵AE⊥AB,CD∥AB,∴CD⊥AE.又AD∩AE=A,∴CD⊥平面ADE.∵CD⊂平面CDF,∴平面CDF⊥平面ADE.(2)∵AD=BC=1,EA=2,DE=,∴DE2=AD2+AE2,∴AE⊥AD.又AE⊥AB,AB∩AD=A,∴AE⊥平面ABCD.以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),B(1,2,0),F(0,2,1),E(1,0,2).∴=(1,2,0),=(0,2,1),设平面BDF的法向量为m=(x,y,z),∴令x=2,得m=(2,-1,2).同理可求得平面BDE的一个法向量为n=(2,-1,-1),∴cos<m,n>===,∴sin<m,n>=.故二面角E-BD-F的正弦值为.方法2 利用向量法求空间角与距离1.(2017福建漳州八校3月联考,8)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F分别是AB,AD 的中点,则点B到平面GEF的距离为( )A. B. C. D.答案C2.(2018云南玉溪模拟,19)如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2.(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.解析(1)证明:建立如图所示的空间直角坐标系,则A(0,0,0)、D(0,2,0)、P(0,0,2).在Rt△BAD中,AD=2,BD=2,∴AB=2,∴B(2,0,0)、C(2,2,0),∴=(0,0,2),=(2,2,0),=(-2,2,0),∴=0,=0,∴BD⊥AP,BD⊥AC.又∵AP∩AC=A,∴BD⊥平面PAC.(2)由(1)得=(0,2,-2),=(-2,0,0).设平面PCD的法向量为n1=(x,y,z),则即--令y=1,得平面PCD的一个法向量为n1=(0,1,1).∵PA⊥平面ABCD,∴=(0,0,2)为平面ABCD的一个法向量. 设二面角P-CD-B的大小为θ,易知θ为锐角,依题意可得cos θ==,∴二面角P-CD-B的大小是45°.(3)由(1)得=(2,0,-2),=(0,2,-2),设平面PBD的法向量为n2=(x,y,z),则即--令z=1,可得平面PBD的一个法向量为n2=(1,1,1).∵=(2,2,-2),∴点C到平面PBD的距离d===.方法3 利用空间向量解决空间中的存在性问题1.(2018衡水中学、郑州一中联考,18)如图,已知直四棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,且∠ABC=60°,2AB=BC=2,AA1=3.(1)求证:平面A1CD⊥平面A1AC;(2)在线段AA1上是否存在一点E,使二面角B-EC-A的大小为?若存在,求出AE的长,若不存在,请说明理由.解析(1)证明:因为∠ABC=60°,2AB=BC=2,所以AB=1,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB BCcos 60°=3,所以AB2+AC2=BC2,所以AB⊥AC.由平行四边形的性质得CD⊥AC,又CD⊥CC1,AC∩CC1=C,所以CD⊥平面A1AC,又CD⊂平面A1CD,所以平面A1CD⊥平面A1AC.(2)由(1)知AB⊥AC,以A为原点,AB,AC,AA1所在直线分别为x,y,z轴建立空间直角坐标系,假设在线段AA1上存在一点E使二面角B-EC-A的大小为,设AE=t(由题意可知0<t≤3),则E(0,0,t),C(0,,0),D(-1,,0),B(1,0,0),设n=(x,y,z)为平面EBC的法向量,因为=(1,-,0),=(0,,-t),所以--令y=,则x=3,z=,故n=.由(1)知平面EAC的一个法向量为=(-1,0,0),所以cos =,即=⇒t=(满足0<t≤3),所以在线段AA1上存在一点E使二面角B-EC-A的大小为,此时AE=.2.(2018江西南昌二中1月模拟,18)如图,△ABC的外接圆☉O的半径为,CD⊥☉O所在的平面,BE∥CD,CD=4,BC=2,且BE=1,tan∠AEB=2.(1)求证:平面ADC⊥平面BCDE.(2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为?若存在,确定点M的位置,若不存在,请说明理由.解析(1)证明:∵CD⊥平面ABC,BE∥CD,∴BE⊥平面ABC,∴BE⊥AB.∵BE=1,tan∠AEB==2,∴AB=2.∵☉O的半径为,∴AB是直径,∴AC⊥BC.又∵CD⊥平面ABC,∴CD⊥BC,∵AC∩CD=C,故BC⊥平面ADC.∵BC⊂平面BCDE,∴平面ADC⊥平面BCDE.(2)建立如图所示的空间直角坐标系C-xyz,则C(0,0,0),A(4,0,0),B(0,2,0),D(0,0,4),E(0,2,1),=(0,2,-3),易知平面ACD的一个法向量为=(0,2,0),假设满足题意的点M存在,设M(a,b,c),则=(a,b,c-4),再设=λ,λ∈(0,1],∴--⇒-即M(0,2λ,4-3λ),从而=(-4,2λ,4-3λ).设直线AM与平面ACD所成的角为θ,则sin θ=|cos<,>|==.-解得λ=-或λ=,其中λ=-∉(0,1],舍去,又λ=∈(0,1],故满足条件的点M存在,且点M为DE的靠近E的三等分点.过专题【五年高考】A组山东省卷、课标卷题组考点一空间向量、空间角与距离1.(2018课标Ⅰ,12,5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A. B. C. D.答案A2.(2018课标Ⅱ理,20,12分)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.解析(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系O-xyz.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2),=(0,2,2).取平面PAC的法向量=(2,0,0). 设M(a,2-a,0)(0<a≤2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由n=0,n=0得可取n=((a-4),a,-a),-.所以cos<,n>=--由已知可得|cos<,n>|=.所以=.解得a=-4(舍去)或a=.-所以n=--.又=(0,2,-2),所以cos<,n>=.所以PC与平面PAM所成角的正弦值为.3.(2018课标Ⅲ,19,12分)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.解析本题考查面面垂直的判定、二面角的计算、空间向量的应用.(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0).设n=(x,y,z)是平面MAB的法向量,则-即可取n=(1,0,2).是平面MCD的法向量,因此cos<n,>==,sin<n,>=.所以面MAB与面MCD所成二面角的正弦值是.解后反思一、面面垂直的判定在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若图中不存在这样的直线,则可通过作辅助线来解决.二、利用向量求二面角问题的常见类型及解题方法1.求空间中二面角的大小,可根据题意建立空间直角坐标系,再分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.2.给出二面角的大小求解或证明相关问题,可利用求解二面角的方法列出相关的关系式,再根据实际问题求解.4.(2017山东,17,12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.解析(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)解法一:取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=-=2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.解法二:以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的法向量.-由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.易知所求角为锐二面角,因此所求的角为60°.5.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH∥平面ABC;(2)已知EF=FB=AC=2,AB=BC.求二面角F-BC-A的余弦值.解析(1)证明:设FC中点为I,连接GI,HI.在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.(2)连接OO',则OO'⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2,0,0),所以=(-2,-2,0),过点F作FM垂直OB于点M.所以FM=-=3,可得F(0,,3). 故=(0,-,3).设m=(x,y,z)是平面BCF的法向量.由可得---进而可得平面BCF的一个法向量m=-.因为平面ABC的一个法向量n=(0,0,1),所以cos<m,n>==.又易知二面角F-BC-A为锐二面角,所以二面角F-BC-A的余弦值为.考点二空间向量的应用1.(2017课标Ⅲ,16,5分)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)答案②③2.(2017课标Ⅱ,19,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.解析本题考查了线面平行的证明和线面角、二面角的计算.(1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EF∥AD,EF=AD.由∠BAD=∠ABC=90°得BC∥AD,又BC=AD,所以EF BC,四边形BCEF是平行四边形,CE∥BF,又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.(2)由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).设M(x,y,z)(0<x<1),则=(x-1,y,z),=(x,y-1,z-).因为BM与底面ABCD所成的角为45°,而n=(0,0,1)是底面ABCD的法向量,所以|cos<,n>|=sin 45°,-=,即(x-1)2+y2-z2=0.①又M在棱PC上,设=λ,则x=λ,y=1,z=-λ.②由①,②解得-(舍去),或-所以M-,从而=-.设m=(x0,y0,z0)是平面ABM的法向量,则-即所以可取m=(0,-,2).于是cos<m,n>==.易知所求二面角为锐角.因此二面角M-AB-D的余弦值为.方法总结本题涉及直线与平面所成的角和二面角,它们是高考热点和难点,解决此类题时常利用向量法,解题关键是求平面的法向量,再由向量的夹角公式求解.解题关键由线面角为45°求点M的坐标是解题的关键.3.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=-=6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即-所以可取n=(0,4,3).又=(-10,4,8),故|cos<n,>|==.所以AF与平面EHGF所成角的正弦值为.思路分析(1)正方形是矩形且所有边都相等,利用面面平行的性质定理,结合长方体各棱长度作截面;(2)以D 为坐标原点,,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,分别求出平面α的法向量与直线AF的方向向量,从而利用向量法求得直线AF与平面α所成角的正弦值.方法技巧利用向量求线面角的方法:(1)分别求出斜线和它在平面内的射影的方向向量,进而求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量的夹角或其补角(求锐角),取该角的余角就是斜线与平面所成的角.4.(2014山东,17,12分)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.解析(1)证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC,又M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,所以C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.(2)连接AC,MC,由(1)知CD∥AM且CD=AM,所以四边形AMCD为平行四边形.可得BC=AD=MC,又∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=,因此CA⊥CB.以C为坐标原点,建立如图所示的空间直角坐标系C-xyz. 所以A(,0,0),B(0,1,0),D1(0,0,),因此M,所以=--,==-.设平面C1D1M的法向量n=(x,y,z),由得--可得平面C1D1M的一个法向量n=(1,,1).又=(0,0,)为平面ABCD的一个法向量,cos<,n>==,所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.B组其他自主命题省(区、市)卷题组考点一空间向量、空间角与距离1.(2018江苏,22,10分)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.解析本题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力. 如图,在正三棱柱ABC-A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以{,,}为基底,建立空间直角坐标系O-xyz.因为AB=AA1=2,所以A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).(1)因为P为A1B1的中点,所以P-.从而=--,=(0,2,2).故|cos<,>|==-=.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以Q,因此=,=(0,2,2),=(0,0,2).设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取n=(,-1,1).设直线CC1与平面AQC1所成角为θ,则sin θ=|cos<,n>|===,所以直线CC1与平面AQC1所成角的正弦值为.2.(2018天津,17,13分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(1)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(2)求二面角E-BC-F的正弦值;(3)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.解析本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M,N(1,0,2).(1)证明:依题意=(0,2,0),=(2,0,2).设n0=(x0,y0,z0)为平面CDE的法向量,则即不妨令z0=-1,可得n0=(1,0,-1).又=-,可得n0=0,又因为直线MN⊄平面CDE,所以MN∥平面CDE.(2)依题意,可得=(-1,0,0),=(1,-2,2),=(0,-1,2).设n=(x1,y1,z1)为平面BCE的法向量,则即--不妨令z1=1,可得n=(0,1,1).设m=(x2,y2,z2)为平面BCF的法向量,则即--不妨令z2=1,可得m=(0,2,1).因此有cos<m,n>==,于是sin<m,n>=.所以二面角E-BC-F的正弦值为.(3)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得=(-1,-2,h).易知,=(0,2,0)为平面ADGE的一个法向量,故|cos<,>|==,由题意,可得=sin 60°=,解得h=∈[0,2].所以线段DP的长为.方法归纳利用空间向量解决立体几何问题的一般步骤(1)审清题意并建系.利用条件分析问题,建立恰当的空间直角坐标系;(2)确定相关点的坐标.结合建系过程与图形,准确地写出相关点的坐标;(3)确定直线的方向向量和平面的法向量.利用点的坐标求出相关直线的方向向量和平面的法向量,若已知某直线垂直某平面,可直接取该直线的方向向量为该平面的法向量;(4)转化为向量运算.将空间位置关系转化为向量关系,空间角转化为向量的夹角问题去论证、求解;(5)问题还原.结合条件与图形,作出结论(注意角的范围).考点二空间向量的应用1.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析本题考查面面垂直的性质定理,线面平行的性质定理,二面角,直线与平面所成的角等知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力.(1)设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为四边形ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为四边形ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即--令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).所以cos<n,p>==.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M-,C(2,4,0),=-.设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|==.所以直线MC与平面BDP所成角的正弦值为.2.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0). 因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m=0,m=0,即--令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos<,m>==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos<,>==.设1+2λ=t,t∈[1,3],则cos2 <,>=-=-≤.当且仅当t=,即λ=时,|cos<,>|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最小值.又因为BP==,所以BQ=BP=.评析本题主要考查空间向量、二面角和异面直线所成的角等基础知识,考查运用空间向量解决问题的能力.C组教师专用题组1.(2014课标Ⅱ,11,5分)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )A. B. C. D.答案C2.(2015福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析(1)证明:证法一:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形,得AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.证法二:如图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD. 又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.(2)如图,在平面BEC内,过B点作BQ∥EC.因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ.以B为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系, 则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得--取z=2,得n=(2,-1,2).从而cos<n,>===,所以平面AEF与平面BEC所成锐二面角的余弦值为.评析本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.3.(2014北京,17,14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F 为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解析(1)证明:在正方形AMDE中,因为B是AM的中点,所以AB∥DE.又因为AB⊄平面PDE,所以AB∥平面PDE.因为AB⊂平面ABF,且平面ABF∩平面PDE=FG,所以AB∥FG.(2)因为PA⊥底面ABCDE,所以PA⊥AB,PA⊥AE.如图建立空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).设平面ABF的法向量为n=(x,y,z),则即令z=1,则y=-1.所以n=(0,-1,1).设直线BC与平面ABF所成角为α,则sin α=|cos<n,>|==.因此直线BC与平面ABF所成角的大小为.设点H的坐标为(u,v,w).因为点H在棱PC上,所以可设=λ(0<λ<1),即(u,v,w-2)=λ(2,1,-2).所以u=2λ,v=λ,w=2-2λ.因为n是平面ABF的法向量,所以n=0,即(0,-1,1) (2λ,λ,2-2λ)=0.解得λ=,所以点H的坐标为.所以PH=-=2.评析本题考查了空间直线与平面平行,线面角,空间向量等知识;考查空间推理论证能力,推理计算能力;建立恰当坐标系,利用空间向量准确求解是解题的关键.4.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.解析(1)证明:因为BQ∥AA1,BC∥AD,BC∩BQ=B,AD∩AA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以===,即Q为BB1的中点.(2)如图1,连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V 上和V下,设BC=a,则AD=2a.图1=×2a h d=ahd,-V Q-ABCD=d h=ahd,所以V下=-+V Q-ABCD=ahd,又-=ahd,所以V上=--V下=ahd-ahd=ahd,=.故上下(3)解法一:如图1,连接AC,在△ADC中,作AE⊥DC,垂足为E,连接A1E.因为DE⊥AA1,且AA1∩AE=A,所以DE⊥平面AEA1,于是DE⊥A1E.所以∠AEA1为平面α与底面ABCD所成二面角的平面角.因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.又因为梯形ABCD的面积为6,DC=2,所以S△ADC=4,AE=4.于是tan∠AEA1==1,∠AEA1=.故平面α与底面ABCD所成二面角的大小为.解法二:如图2,以D为原点,,的方向分别为x轴和z轴正方向建立空间直角坐标系.图2设∠CDA=θ.由(2)知||=a.因为S四边形ABCD=2sin θ=6,所以a=.从而C(2cos θ,2sinθ,0),A1,所以=(2cos θ,2sinθ,0),=.设平面A1DC的法向量为n=(x,y,1),由得x=-sin θ,y=cosθ,所以n=(-sin θ,cosθ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos<n,m>==,易知平面α与底面ABCD所成二面角的平面角为锐角,故平面α与底面ABCD所成二面角的大小为.评析本题考查了空间直线、平面间的平行、垂直,柱、锥体积,二面角等知识;考查综合推理,转化与化归的意识,运用向量推理计算的能力;准确把握空间结构进行推理证明是解题的关键.【三年模拟】一、选择题(每小题5分,共5分)1.(2019届四川成都外国语学校高三上期中,6)如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成的角为45°,顶点B在平面α的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于( )A. B. C. D.答案A二、填空题(每小题5分,共15分)2.(2019届江苏溧水中学调研)在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是.答案(0,-1,0)3.(2018广东珠海四校4月模拟,14)已知正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点E为CC1的中点,则点D1到平面BDE的距离为.答案4.(2018江苏邗江中学周练)如图,直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点,则异面直线C1D与A1C所成角的余弦值为.答案三、解答题(共20分)5.(2019届江西南昌二中高三第四次考试,20)如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED∥PA,且PA=2ED=2.(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求二面角P-CE-D的余弦值.解析(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF.因为O,F分别为AC,PC的中点,所以OF∥PA,且OF=PA.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考数学一轮复习 第八章 立体几何 8.5.2 利用空间向量求空间角与距离对点训练 理1.如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α答案 B解析 若CD ⊥AB ,则∠A ′DB 为二面角A ′-CD -B 的平面角,即∠A ′DB =α. 若CD 与AB 不垂直,在△ABC 中,过A 作CD 的垂线交线段CD 或CD 的延长线于点O ,交BC 于E ,连接A ′O ,则∠A ′OE 为二面角A ′-CD -B 的平面角,即∠A ′OE =α,∵AO =A ′O ,∴∠A ′AO =α2.又A ′D =AD ,∴∠A ′AD =12∠A ′DB .而∠A ′AO 是直线A ′A 与平面ABC 所成的角,由线面角的性质知∠A ′AO <∠A ′AD ,则有α<∠A ′DB .综上有∠A ′DB ≥α,故选B.2.如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎢⎡⎦⎥⎤33,1 B.⎣⎢⎡⎦⎥⎤63,1 C.⎣⎢⎡⎦⎥⎤63,223D.⎣⎢⎡⎦⎥⎤223,1 答案 B解析 由正方体的性质易求得sin ∠C 1OA 1=223,sin ∠COA 1=63,注意到∠C 1OA 1是锐角,∠COA 1是钝角,且223>63.故sin α的取值范围是⎣⎢⎡⎦⎥⎤63,1.3.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF与平面α所成角的正弦值. 解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.解 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝ ⎛⎭⎪⎫1,12,1,N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量.MN →=(0,-52,0).由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0).设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量,则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y 2+2z 2=0,2x 2=0.不妨设z 2=1,可得n 2=(0,-2,1).因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010,所以,二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E (0,λ,2),从而NE →=(-1,λ+2,1).又n =(0,0,1)为平面ABCD 的一个法向量,由已知,得cos 〈NE →,n 〉=NE →·n|NE →|·|n |=1-2+λ+2+12=13,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=7-2.所以,线段A 1E 的长为7-2.5.如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解 以{AB →,AD →,AP →}为正交基底建立如下图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.6.如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.解 (1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO . 又因为AB =BC ,所以△BOA ≌△BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →的方向为x 轴正方向,|OB →|为单位长,建立如图所示的空间直角坐标系O -xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形. 又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0, AB 1→=⎝ ⎛⎭⎪⎫0,33,-33,A 1B 1→=AB →=⎝ ⎛⎭⎪⎫1,0,-33,B 1C 1→=BC →=⎝ ⎛⎭⎪⎫-1,-33,0.设n =(x ,y ,z )是平面AA 1B 1的法向量, 则⎩⎪⎨⎪⎧ n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0.同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17.所以二面角A -A 1B 1-C 1的余弦值为17.7.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.解 (1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12,则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63, 即直线AD 与平面MBC 所成角的正弦值为63. 8.如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.解 (1)证明:如图1,因为四边形ACC 1A 1为矩形,所以CC 1⊥AC .同理DD 1⊥BD . 因为CC 1∥DD 1, 所以CC 1⊥BD . 而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C .故O 1O ⊥底面ABCD . (2)解法一:如图1,过O 1作O 1H ⊥OB 1于H ,连接HC 1. 由(1)知,O 1O ⊥底面ABCD ,所以O 1O ⊥底面A 1B 1C 1D 1,于是O 1O ⊥A 1C 1.又因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形A 1B 1C 1D 1是菱形,因此A 1C 1⊥B 1D 1,从而A 1C 1⊥平面BDD 1B 1,所以A 1C 1⊥OB 1,于是OB 1⊥平面O 1HC 1,进而OB 1⊥C 1H .故∠C 1HO 1是二面角C 1-OB 1-D 的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1 ·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H=237197=25719.即二面角C 1-OB 1-D 的余弦值为25719.解法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图2,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系O -xyz .不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为:O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB 1→=0,n 2·OC 1→=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=2319=25719.故二面角C 1-OB 1-D 的余弦值为25719.9.三棱锥A -BCD 及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.解(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC 中点.(2)解法一:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A -NP -M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD . 因为OC ⊂平面BCD ,所以AO ⊥OC , 因此在等腰Rt △AOC 中,AC = 6. 作BR ⊥AC 于R ,在△ABC 中,AB =BC , 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,因此NQ =BR 2=104.同理,可得MQ =104.所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105. 故二面角A -NP -M 的余弦值是105. 解法二:由俯视图及(1)可知,AO⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图,以O 为坐标原点,以OB →,OC →,OA →的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0.于是AB →=(1,0,-3),BC →=(-1,3,0),MN →=(1,0,0),NP →=⎝ ⎛⎭⎪⎫0,32,-32.设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥AB →,n 1⊥BC →,即⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,有 ⎩⎨⎧x 1,y 1,z 1,0,-3=0,x 1,y 1,z 1-1,3,=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2⊥MN →,n 2⊥NP →,即⎩⎪⎨⎪⎧n 2·MN →=0,n 2·NP →=0,有⎩⎪⎨⎪⎧x 2,y 2,z 2,0,=0,x 2,y 2,z 2⎝⎛⎭⎪⎫0,32,-32=0,从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0.取z 2=1,所以n 2=(0,1,1). 设二面角A -NP -M的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=⎪⎪⎪⎪⎪⎪3,1,,1,5×2=105.故二面角A -NP -M 的余弦值是105. 10.如图,四棱锥P -ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .(1)求证:AB ⊥PD ;(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD 的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值.解 (1)证明:ABCD 为矩形,故AB ⊥AD ;又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG ,在Rt △BPC 中,PG =233,GC =263,BG =63,设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P -ABCD 的体积为V =13·6·m ·43-m 2=m 3·8-6m 2. 因为m 8-6m 2=8m 2-6m 4 =-6⎝⎛⎭⎪⎫m 2-232+83,故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大.此时,建立如图所示的坐标系,各点的坐标为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝⎛ 63,⎭⎪⎫263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝ ⎛⎭⎪⎫0,0,63. 故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD →=⎝ ⎛⎭⎪⎫-63,0,0, 设平面BPC 的法向量n 1=(x ,y,1), 则由n 1⊥PC →,n 1⊥BC →得⎩⎪⎨⎪⎧63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的法向量n 2=⎝ ⎛⎭⎪⎫0,12,1,从而平面BPC 与平面DPC 夹角θ的余弦值为 cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 11.四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.解 (1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG . ∴四边形EFGH 是平行四边形. 又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC . ∴AD ⊥BC .∴EF ⊥FG .∴四边形EFGH 是矩形.(2)解法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0).∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 解法二:如图,以D 为坐标原点建立空间直角坐标系, 则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别是BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0.得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0).∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 12.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB=1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.解 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC .(2)向量BD →=(-1,2,0),PB →=(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n ·BE→|n |·|BE →|=26×2=33. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝ ⎛⎭⎪⎫-12,12,32. 设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0).则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM . 因为PA ⊥底面ABCD ,故PA ⊥CD ,而CD ⊥DA ,从而CD ⊥平面PAD ,因为AM ⊂平面PAD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM .由(1)知CD ⊥平面PAD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM . 又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE , 所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM , 可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角. 依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2. 故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE=12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△PAC 中,过点F 作FH ∥PA 交AC 于点H .因为PA ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH . 在底面ABCD 内,可得CH =3HA ,从而CF =3FP . 在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面. 由AB ⊥PA ,AB ⊥AD ,得AB ⊥平面PAD ,故AB ⊥AG . 所以∠PAG 为二面角F -AB -P 的平面角.在△PAG 中,PA =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠PAG =31010. 所以二面角F -AB -P 的余弦值为31010.。