61代入法解二元一次方程组教案
用代入法解二元一次方程组教案
用代入法解二元一次方程组教案一、教学目标1.能够运用代入法解二元一次方程组。
2.理解代入法的基本思想和具体操作方法。
3.通过解题提高学生的运算和推理能力。
二、教学过程1.引入:老师将题目写在黑板上,让学生回忆一下上一节课学的解二元一次方程组的方法,看能否解出来。
2.呈现:(1)2某+y=5;(2)某-y=1;3.讲解:教师在黑板上教学,给出代入法解二元一次方程组的基本思想和具体操作方法。
(1)假设得到方程组的一个解(某1,y1),用其中一个方程将某1或y1代入另一方程中,得到一个关于某或y的一元方程,求出某或y的值。
(2)将上面求出的某或y的值代入已知方程中,求出同步的另一个变量值。
在这道题目中,我们可以先用第二个方程式求出某的值,再将某值代入第一个方程式求出y的值。
4.举例:(1)2某+y=5;(2)某-y=1;解:我们可以先将第二个方程式变形为某=y+1,然后将某值代入第一个方程式得到2(y+1)+y=5,得到y的值为1、将y值带入某=y+1得到某=2、所以(某,y)=(2,1)。
5.练习:请解下面的方程组:(1)某+y=4;(2)某-y=2;解:将第二个方程式变形为某=y+2,然后将某值代入第一个方程式得到(y+2)+y=4,解出y的值为1、将y值带入某=y+2得到某=3、所以(某,y)=(3,1)。
6.归纳:通过以上例子,我们发现代入法解二元一次方程组的方法是比较简单和易学的。
三、作业老师布置以下作业:请解下面的方程组:(1)3某-2y=5;(2)2某+4y=10;解:将第一个方程式变形为y=(3某-5)/2,然后将y值代入第二个方程式得到2某+4((3某-5)/2)=10,解出某的值为2、将某值带入y=(3某-5)/2得到y=-1、所以(某,y)=(2,-1)。
代入消元法——解二元一次方程组教学设计
代入消元法——解二元一次方程组教学设计《代入消元法——解二元一次方程组》教学设计安顺市普定县补郎中学杨兴一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。
代入法解二元一次方程组(教案)
8.2 消元-----解二元一次方程组第一课时代入法解二元一次方程一、教学目标1、会用代入消元法解简单的二元一次方程组;2、初步体会解二元一次方程组的思想是“消元”;3、在探究代入消元法的过程中体会化归思想。
二、教学重难点1、教学重点:用代入法解简单的二元一次方程组;~2、教学难点:“二元”向“一元”的转化,消元思想。
三、教学方法引导发现、练习法相结合四、教具准备多媒体设备五、教学过程(一)复习旧知、引入新课1、判断下列式子是否是二元一次方程?①03=+xy ②2=-y x ③102=+x x ④31-=+y x ⑤zy x 23-=+ 2、判断下列式子是否是二元一次方程组?①⎩⎨⎧-=+=+12103z x y x ②⎩⎨⎧=+-=121b a ab ③⎩⎨⎧-=--=+2315n m n m ④⎪⎩⎪⎨⎧=-=+11113s ts t 3、已知二元一次方程2=-y x ,如何用x 表示y ?如何用y 表示x ?(用x 表示y 即把含x 的项和常数项移到方程的右边,含y 的项移到方程的左边;再将y 的系数化为1)①用x 表示y :2=-y x ②用y 表示x :2=-y xx y -=-2 y x +=2! x y +-=2练习:课本93P 练习1把下列方程改写成用含x 的式子表示y 的形式:(1)32=-y x (2)013=-+y x(请同学板演,教师巡视并指导、讲评)(二)层层递进、探索新知探究:(回顾引例)—解法一:设这个队胜了x 场,负了y 场。
由题意得 ⎩⎨⎧=+=+16210y x y x 凑 ⎩⎨⎧==46y x 解法二:设这个队胜了x 场,则负了()x -10场。
由题意得 ()16102=-+x x 问:(1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?()16102=-+x x162=+y x(2)我们可以把方程②中的y 替换为x -10吗?怎么换?'10=+y x ①→x y -=10用x -10替换方程162=+y x 中的y ,即把x y -=10代入方程162=+y x .(3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?二元一次方程组转换为一元一次方程,可以求出x 的值,还需求y 的值。
代入法解二元一次方程组公开课教案
代入法解二元一次方程组公开课教案代入法解二元一次方程组公开课教案教学建议一、重点、难点分析本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便.解二元一次方程组的关键在于消元,即将“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.二、知识结构三、教法建议1.关于检验方程组的解的问题.教材指出:“检验时,需将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是不是相等.”教学时要强调“原方程组”和“每一个”这两点.检验的作用,一是使学生进一步明确代入法是求方程组的解的一种基本方法,通过代入消元的确可以求得方程组的解二是进一步巩固二元一次方程组的解的概念,强调这一对数值才是原方程组的解,并且它们必须使两个方程左、右两边的值都相等;三是因为我们没有用方程组的同解原理而是用代换(等式的传递)来解方程组的,所以有必要检验求出来的这一对数值是不是原方程组的解;四是为了杜绝变形和计算时发生的错误.检验可以口算或在草稿纸上演算,教科书中没有写出.2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性.3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.一、素质教育目标(一)知识教学点1.掌握用代入法解二元一次方程组的步骤.2.熟练运用代入法解简单的二元一次方程组.(二)能力训练点1.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.2.训练学生的运算技巧,养成检验的习惯.(三)德育渗透点消元,化未知为已知的数学思想.(四)美育渗透点通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美.二、学法引导1.教学方法:引导发现法、练习法,尝试指导法.2.学生学法:在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程当中始终应抓住消元的思想方法.三、重点、难点、疑点及解决办法(-)重点使学生会用代入法解二元一次方程组.(二)难点灵活运用代入法的技巧.(三)疑点如何“消元”,把“二元”转化为“一元”.(四)解决办法一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如等.2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.七、教学步骤(-)明确目标本节课我们将学习用代入法求二元一次方程组的`解.(二)整体感知从复习用一个未知量表达另一个未知量的方法,从而导入运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.(三)教学步骤1.创设情境,复习导入(1)已知方程,先用含的代数式表示,再用含的代数式表示.并比较哪一种形式比较简单.(2)选择题:二元一次方程组的解是A. B. C. D.第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入新课的材料.通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.这样导入,可以激发学生的求知欲.2.探索新知,讲授新课香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.设买了香蕉千克,那么苹果买了千克,根据题意,得设买了香蕉千克,买了苹果千克,得上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到③,把方程②中的转换成,也就是把方程③代入方程②,就可以得到.这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出了.解:由①得:③把③代入②,得:∴把代入③,得:∴解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.例1 解方程组(1)观察上面的方程组,应该如何消元?(把①代入②)(2)把①代入②后可消掉,得到关于的一元一次方程,求出.(3)求出后代入哪个方程中求比较简单?(①)学生活动:依次回答问题后,教师板书解:把①代入②,得∴把代入①,得∴如何检验得到的结果是否正确?学生活动:口答检验.教师:要把所得结果分别代入原方程组的每一个方程中.给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.例2 解方程组要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中的系数是1,比较简单.因此,可以先将方程②变形,用含的代数式表示,再代入方程①求解.学生活动:尝试完成例2.教师巡视指导,发现并纠正学生的问题,把书写过程规范化.解:由②,得③把③代入①,得∴∴把代入③,得∴∴检验后,师生共同讨论:(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)(2)把代入①或②可以求出吗?(可以)代入③有什么好处?(运算简便)学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.教师板书:(1)变形()(2)代入消元()(3)解一元一次方程得()(4)把代入求解练习:P13 1.(1)(2);P14 2.(1)(2).3.变式训练,培养能力①由可以得到用表示.②在中,当时,;当时,,则;.③选择:若是方程组的解,则()A. B. C. D.(四)总结、扩展1.解二元一次方程组的思想:2.用代入法解二元一次方程组的步骤.3.用代入法解二元一次方程组的技巧:①变形的技巧②代入的技巧.通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确.八、布置作业(一)必做题:P15 1.(2)(4),2.(1)(2)(3)(4).(二)选做题:P15 B组1.【代入法解二元一次方程组公开课教案】。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
七年级数学下册《代入消元法解二元一次方程组》教案、教学设计
(4)实践:让学生独立完成练习题,巩固代入消元法的应用,教师巡回指导,解答学生的疑问。
(5)总结:引导学生总结代入消元法的解题步骤和注意事项,提高学生的归纳总结能力。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生在小组合作中的表现,了解学生的学习效果。
1.学生对方程组的理解程度,部分学生可能对方程组的结构及解法仍存在疑惑,需要教师耐心引导和讲解。
2.学生在解题过程中可能遇到代入、替换等操作上的困难,教师应适时给予指导和鼓励,帮助学生克服困难,提高解题能力。
3.学生的自主学习能力尚在培养中,需要教师在教学过程中注重引导,激发学生的学习兴趣和探究欲望。
(三)情感态度与价值观
1.培养学生面对数学问题时的积极态度,增强学生解决问题的信心和决心。
2.通过代入消元法的学习,让学生体会到数学的简洁美和逻辑美,提高学生对数学学科的兴趣。
3.引导学生关注生活中的数学问题,认识到数学在现实生活中的重要作用,培养学生的应用意识。
4.培养学生勇于探索、不断创新的精神,激发学生的学习潜能。
(2)教师巡回指导,解答学生的疑问。
(3)学生互相讨论,交流解题方法。
(4)教师对学生的解题过程进行评价,指出存在的问题。
2.设计意图:让学生在练习中巩固代入消元法的应用,提高解题能力。
(五)总结归纳
1.教学内容:引导学生总结本节课所学知识,提高归纳总结能力。
教学过程:
(1)教师提问:本节课我们学习了什么内容?请简要概括。
2.难点:
(1)理解代入消元法的原理,明确代入、替换的步骤。
(2)能够根据方程组的特点选择合适的代入方法,提高解题效率。
(完整版)代入法解二元一次方程组教案
《代入法解二元一次方程组》教案教学目标1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.教学重点和难点重点:用代入法解二元一次方程组.难点:代入消元法的基本思想.课堂教学过程设计一、从学生原有的认知结构提出问题1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考) 教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?(4)能否由方程组中的方程②求解该问题呢?(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y 用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得 x=30.将x=30代入方程③,得y=20.即鸡有30只,兔有20只.本节课,我们来学习二元一次方程组的解法.二、讲授新课例1 解方程组分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2 解方程组分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)2(8-3y)+5y=-21,-y=-37,所以y=37.(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.(本题可由一名学生口述,教师板书完成)三、课堂练习(投影)用代入法解下列方程组:四、师生共同小结在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.五、作业用代入法解下列方程组:5.x+3y=3x+2y=7.。
(完整版)代入法解二元一次方程组教案
《代入法解二元一次方程组》讲课设计讲课目的1.使学生会用代入消元法解二元一次方程组;2.理解代入消元法的基本思想表现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;3.在本节课的讲课过程中,逐渐浸透朴实的辩证唯心主义思想.讲课要点和难点要点:用代入法解二元一次方程组.难点:代入消元法的基本思想.讲堂讲课过程设计一、从学生原有的认知构造提出问题1.谁能造一个二元一次方程组?为何你造的方程组是二元一次方程组?2.谁能知道上述方程组 ( 指学生提出的方程组 ) 的解是什么?什么叫二元一次方程组的解?3.上节课我们提出了鸡兔同笼问题:( 投影 )一个农民有若干只鸡和兔子,它们共有50 个头和 140 只脚,问鸡和兔子各有多少?设农民有 x 只鸡, y 只兔,则获得二元一次方程组关于列出的这个二元一次方程组,我们如何求出它的解呢?( 学生思虑 )教师指引并提出问题:若设有x 只鸡,则兔子就有 (50-x) 只,依题意,得2x+4(50-x)= 140进而可解得, x=30,50-x=20 ,使问题得解.问题:从上边一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步指引学生找出它的解法)(1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系能否同样?(4)能否由方程组中的方程②求解该问题呢?(5)如何使方程②中含有的两个未知数变成只含有一个未知数呢?( 以上问题,要修业生独立思虑,想出消元的方法)联合学生的回答,教师作出解说.由方程①可得 y=50-x ③,即兔子数 y 用鸡数 x 的代数式 50-x 表示,因为方程②中的y 与方程①中的y 都表示兔子的只数,故可以把方程②中的y 用(50-x) 来代换,即把方程③代入方程②中,得2x+4(50-x)=140 ,解得x=30 .将x=30 代入方程③,得 y=20.即鸡有 30 只,兔有 20 只.本节课,我们来学习二元一次方程组的解法.二、解说新课例 1解方程组解析:若此方程组有解,则这两个方程中同一个未知数就应取同样的值.因此,方程②中的 y 即可用方程①中的表示 y 的代数式来取代.解:把①代入②,得3x+2(1-x)=5 ,3x+2-2x=5 ,所以x=3 .把x=3 代入①,得 y=-2 .( 此题应以教师解说为主,并板书,同时教师在最后应提示学生,与解一元一次方程同样,要判断运算的结果能否正确,需查验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边能否相等.查验可以口算,也可以在底稿纸上验算)教师解说完例 1 后,联合板书,就此题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为何能代入?3.只求出一个未知数的值,方程组解完了吗?4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简单?在学生回答完上述问题的基础上,教师指出:这类经过代入消去一个未知数,使二元方程转变成一元方程,进而方程组得以求解的方法叫做代入消元法,简称代入法.例 2解方程组解析:例 1 是用 y=1-x 直接代入②的.例 2 的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数) ,所以不可以直接代入.为此,我们需要想方法创办条件,把一个方程变形为用含x 的代数式表示 y( 或含 y 的代数式表示 x) .那么采用哪个方程变形较简单呢?经过察看,发现方程②中x 的系数为 1,所以,可先将方程②变形,用含有y 的代数式表示 x,再代入方程①求解.解:由②,得x=8-3y ,③把③代入①,得 ( 问:能否代入②中? )2(8-3y)+5y=-21 ,-y=-37 ,所以y=37 .( 问:此题解完了吗?把y=37 代入哪个方程求x 较简单? )把 y=37 代入③,得x= 8-3 ×37,所以x=-103 .( 此题可由一名学生口述,教师板书达成)三、讲堂练习 ( 投影 )用代入法解以下方程组:四、师生共同小结在与学生共同回首了本节课所学内容的基础上,教师重视指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即便“代入”成为可能.而代入的目的就是为了消元,使二元方程转变成一元方程,进而使问题最后获得解决.五、作业用代入法解以下方程组:5.x+3y=3x+2y=7.。
代入法解二元一次方程组教案
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
代入法解二元一次方程组(公开课获奖)
2x+(10-x)=16.
解: 设篮球队胜了x场,负了y场。 x+y=10
2x+y=16
具备什么特征的方程组可以直接代入消元?
y用含x的式子表示
y = x+20 ① 解方程组 x + y = 200 ②
我发现:
当方程组中有一个未知数已经用含另一个未知数 的式子表示时,可以直接代入消元。
下列方程组能通过直接代入消元吗? 怎样才能直接代入消元? 一个未知数已经用含另一个未知数的式子表示出来。
含x的式子表示y
14 8 y x 3 含y的式子表示x
3x 14 y 8 含x的式子表示y
x –y = 3 例1 解方程组 3x -8 y = 14 解 1: x = 3+ y③ 由①得:
把③代入②,得 3(3+ y )– 8 y = 14
解这个方程,得
① ②
把③代入 ( )可以 吗?试试看
1、什么叫消元思想? 2、什么叫代入消元法?
把下面的方程,改写成用含x的式 子表示y的形式 (1)3x+y=2 (2)2x-5y=3
章引言:篮球联赛中,每场比赛都要分出胜负,每 队胜一场得2分,负一场得1分.某队在10场比赛中 得到16分,那么这个队胜负分别是多少?
解:设胜x场,则负(10-x)场.
我发现:选择系数较简单的方程变形,把相应的 未知数用含另一个未知数的式子表示出来,然后 代入消元,可以简便计算。
抢答:为简便地解方程组,你会选择哪个方程变 形 ① 4 x 3 y 5 ① x 2 y 2) 1) ② ② 2 x 3 y 2 2 x y 3
将x=2代入①得 y=1 ∴原方程组的解为
说一说,这节课你学到什么?有什么 收获?还有什么疑问?
代入法解二元一次方程组公开课教案
8.2代入法解二元一次方程组二郎乡中学:汪炯教学目标:1.知识与技能:让学生熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想——“消元思想”。
2.过程与方法:通过用代入法解简单的二元一次方程组,提高学生的分析解决问题的能力。
3.情感态度与价值观:在解方程组的过程中让学生初步体会化未知为已知,化复杂为简单的化归思想,培养学生自主学习,合作交流的意识与探究精神。
重点:1、知道解二元一次方程组的基本思想——“消元思想”。
2、理解代入消元法解二元一次方程组的步骤。
3、会用代入消元法解简单的二元一次方程组。
难点:用代入法解二元一次方程组的方法。
教学方法:自主——合作——展示——应用教学用具:导学案,班班通。
教学过程:学习目标:会熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想——“消元”。
活动1:自主学习:1、习水县二郎乡火电厂第一期工程在去年完成,有甲、乙两台机组开始发电,管理人员对两台机组发电情况进行统计发现:当甲、乙两台机组同时发电1小时能发电300兆瓦;当甲台机组发电2 小时、乙台机组发电3小时共发电720兆瓦。
求甲、乙两台机组每小时各发电多少兆瓦?这种方法叫代入消元法这是代入消元法解二元一次方程组的一般步骤:解二元一次方程组的基本思路是“消元思想”——把“二元”变为“一元”。
也是化复杂为简单的化归思想,就是将二元一次方程组化为一元一次方程来解决。
2、试一试:怎样变形最简单?(1)x + 3y=5解:设甲台机组每小时发电x 兆瓦,乙台机组每小时发电 y 兆瓦,根据题意列出方程组得:X+y=300 2x+3y=720 ① ② 由 ①变形 得:③ x = 300 – y 把③代入②得:2(300 – y )+ 3y= 720 600 – 2y+ 3y= 720y= 120 把y = 120代入③得: x = 300 – 120 x = 180 所以这个方程组的解是 y= 120 x = 180 1、将方程组里的一个方程变形,用含有一个未知数的一次式表示另一个未知数(变形) 3、把这个未知数的值再代入一次式,求得另一个未知数的值(再代求解) 4、写出方程组的解(写解) 答:甲台机组每小时发电180兆瓦,乙台机组每小时发电 120兆瓦, 变形 写解 方程解完记得要变形得:x= 5 – 3y这是用y 的代数式表示了x.选择系数是1的未知数留在方程的左边,通过移项的方法进行变形.(2)3x – y=6变形得:y= – 6+3x这是用x 的代数式表示了y.选择系数是– 1的未知数留在方程的左边,通过移项、系数化为1的方法进行变形.注意:移项要变号。
《代入法解二元一次方程组》教学设计
《代入法解二元一次方程组》教学设计《《代入法解二元一次方程组》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标:1、知识与技能:(1)会用代入法解二元一次方程组。
(2)能体会“代入法”解二元一次方程组的基本思路。
2、过程与方法:(1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。
(2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。
3、情感与态度:(1)训练学生的运算技巧,养成检验的习惯。
(2)通过本节课的学习,渗透化归的数学思想。
重点:用代入消元法解二元一次方程组难点:探究如何用代入法将“二元”化为“一元”教学方式:自主、探究、合作交流教材分析:《代入法解二元一次方程组》是选自人教版《义务教育课程标准实验教科书数学七年级下册》第八章《二元一次方程组》中的第2节内容,这节课的主要内容是用代入法解二元一次方程组,是在学生学习了一元一次方程后,又一次数学建模思想的教学,培养学生分析问题和解决问题能力的重要内容,也是为今后学生学习三元一次方程组,二元二次方程组、函数奠定基础。
通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。
教学过程:(一)温故知新用含有X的代数式表示Y,再用含Y的代数式表示X.并比较哪一种形式比较简单。
⑴X-Y=3⑵3X-8Y=14设计理念:通过对相关知识的复习,使学生更好的在已有的知识基础上构建新知,使知识的产生变得自然。
同时也有利于教学难点的突破。
(二)创设情景(以实际球赛图片为背景投影)篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?(师)你能解决这个问题吗?你使用什么方法解决该问题?设计理念:现实而直观的情景是使学生主动参与的最佳途径,同时让学生体验数学与生活的紧密联系。
用代入法解二元一次方程组教学设计
用代入法解二元一次方程组教学设计用代入法解二元一次方程组教学设计学习目标:会运用代入消元法解二元一次方程组.学习重难点:1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.学习过程:一、基本概念1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。
我们可以先求出一个未知数,然后再求另一个未知数,。
这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:二、自学、合作、探究1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________。
2、在方程2x+6y-5=0中,当3y=-4时,2x=____________。
3、若的解,则a=______,b=_______。
4、若方程y=1-x的.解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组①②,把____代人____,可以消去未知数______。
6、已知方程组的解也是方程组的解,则a=_______,b=________,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________。
8、当k=______时,方程组的解中x与y的值相等。
9、用代入法解下列方程组:⑴⑵⑶三、训练1、方程组的解是()A.B.C.D.2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y=_______。
代入法解二元一次方程组教案
8.2代入法解二元一次方程组(第一课时)教学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神. 教学重点:用代入消元法解二元一次方程组.教学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 教学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?2、什么是二元一次方程组及二元一次方程组的解?判断:(1)二元一次方程组中各个方程的解一定是方程组的解()(2)方程组的解一定是组成这个方程组的每一个方程的解()3、把下列方程写成用含x的式子表示y的形式:(1)2x-y=3(2)3x+y-1=0二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、师生互动,课堂探究解:设篮球队胜了x 场,负了y 场. 我们知道,对于方程组{,可以用代入消元法求解。
由①得y=10-x ③把③带入②,得2x+10-x=16,解得x=6 把x=6带入③,得y=4,∴x=6,y=41、从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。
主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
2、例1 用代入法解方程组{x+y=10 ①2x+y=16 ②x-y=3 ①3x-8y=14 ②解:由①得x=y+3 ③把③带入②,得 3 (y+3)-8y =14,解得y=-1把y=-1带入③,得y=2,∴x=2,y=-14、课堂练习:(1)教科书P93 第2题(2)请抢答:①方程-x+4y=-15用含y的代数式表示x为()A.-x=4y-15 B.x=-15+4yC. x=4y+15 D.x=-4y+15②将y=-2x-4代入3x-y=5可得()A. 3x-(2x+4)=5B. 3x-(-2x-4)=5C. 3x+2x-4=5D. 3x-2x+4=5四、课堂小结问题1、解方程组的基本思路是什么?问题2、解方程组的方法是什么?五、作业布置:教科书P97第1、2题。
消元代入法解二元一次方程组教案
8.2第一课时用代入消元法解二元一次方程组教学目标:1、知识与技能:(1)会用代入法解二元一次方程组。
(2)能体会“代入法”解二元一次方程组的基本思路。
2、过程与方法:(1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。
(2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。
3、情感与态度:(1)训练学生的运算技巧,养成检验的习惯。
(2)通过本节课的学习,渗透化归的数学思想。
重点:用代入消元法解二元一次方程组难点:探究如何用代入法将“二元”化为“一元”教学方式:常规课教学过程:一、 问题情境导入(课件展示问题情境)同学们,上节课我们学习什么是二元一次方程组。
这节课,我们将对二元一次方程组进行更加深入的学习,现在,我们先来回顾一下上节课两个小朋友的对话,一起来帮助他们解决这个问题吧。
甲:昨天,我们8个人去红山公园玩,买门票花了34元.乙:每张成人票5元,每张儿童票3元.你们到底去了几个成人、几个儿童呢?解:设他们中有x 个成人,y 个儿童.我们列出的二元一次方程组为:8,5334.x y x y +=⎧⎨+=⎩想想以前学习过的一元一次方程,能不能解决这一问题?X 表示成年人的个数,成年人和儿童一共有8人,如何用含x 的式子来表示儿童的个数呢?(生答):8-x那我们就可以用一元一次方程来解决这一问题了。
解:设去了x 个成人,则去了(8-x)个儿童,根据题意,得: 解得:x=5.将x=5代入8-x=8-5=3.().34835=-+x x(师总结)同学们,通过这种等量的替换,我们把二元方程变成了一个一元方程,而一元一次方程,是我们能够解决的,这是不是给我们提供了一种解二元一次方程组的方法呢。
接下来我们就来探讨一下如何解二元一次方程组。
二、 新课讲解解:设去了x 个成人,去了y 个儿童,根据题意,得:由①得:y=8-x把③代入②得:5x+3(8-x)=34.解得:x = 5.把x=5代入③得:y=3所以原方程组的解为: ⎩⎨⎧==.3,5y x注:引导学生用第2个方程对第一个方程进行替换,从而达到消元的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入法解二元一次方程组
教学目标
1.体验消元思想.
2.会用代人消元法解简单的二元一次方程组.
3.掌握代入消元法的一般步骤.
重点、难点
1.重点:代入法解二元一次方程组.
2.难点:体会消元思想.
教学过程
一.复习
1.什么叫二元一次方程,二元一次方程组,二元一次方程组的解?
2.把3x+y=7改写成用x的代数式表示y的形式。
二.新授
1.学生阅读课本96—97页例1
2.教师展示例1的解答过程
3.结合例1总结代人消元法的概念及一般步骤
(1)概念:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法;
(2)一般步骤:变形(选择其中一个方程,把它变形为用一个未知数表示另一个未知数的形式)——代入(把变形好的方程代入到另一个方程)——求解(解一元一次方程,得一个未知数的值)——回代(把求得的未知数值代入到变形的方程,求出另一个未知数的值)——写解(写出方程组的解)
三.练习
教科书第98页练习第1题第2题
四.小结
1.解二元一次方程组的思路.
2.代入消元法解二元一次方程组的一般步骤.
五.作业
教科书第103页习题8.2第1题第2题
8.2 代入法解二元一次方程组
第二课时
教学目标
1.使学生进一步理解代人消元法的基本思想和代入法解题的一般
步骤.
2.体验二元一次方程组是解决现实问题有效的数学模型.
重点、难点
1.重点:熟练地用代人法解一般形式的二元一次方程组.
2.难点:用二元一次方程组解决某些实际问题
教学过程
一.复习
解方程2x-7y=8 ①
3x-8y-10=0 ②
二.新授
教科书第97页例2,引导学生分析等量关系,列出方程组,归纳列方程组解决实际问题的思路及步骤。
三.练习
教科书第99页练习第3题第4题
四.小结
1.代入消元法解二元一次方程组的一般步骤.
2.列二元一次方程组解决实际问题的思路及步骤.
五.作业
教科书第103页习题8.2第4题第6题。