2016年秋季学期新版新人教版七年级数学上册1.5有理数的乘方同步练习1

合集下载

人教版七年级上册数学 1.5 有理数的乘方 同步练习(含答案)

人教版七年级上册数学 1.5 有理数的乘方 同步练习(含答案)

1.5 有理数的乘方同步练习一.选择题1.一台计算机在104秒内做了1016次运算,则该计算机平均每秒能做()次运算.A.10﹣12B.10﹣4C.104D.10122.用科学记数法表示2689300人为()A.268.93×104人B.2.6893×107人C.2.6893×106人D.0.26893×107人3.下列各组数中,数值相等的是()A.﹣22和(﹣2)2B.﹣和(﹣)2C.(﹣2)2和22D.﹣(﹣)2和﹣4.下列说法中正确的是()A.一个数的平方不能是负数B.一个数的平方只能是正数C.一个数的平方一定大于这个数D.一个数的平方一定不小于这个数5.(﹣2)3的值等于()A.﹣6 B.6 C.8 D.﹣86.﹣12020=()A.1 B.﹣1 C.2020 D.﹣20207.下列各个数字属于准确数的是()A.我国目前共有34个省、市、自治区及特别行政区B.半径5厘米的圆的周长是31.5厘米C.一只没洗于净的手,约带有各种细菌3.9亿个D.据国家统计局数据,2019年年底上海市常住人口达到了2428.14万人8.计算(﹣18)÷(﹣6)2的结果等于()A.2 B.﹣2 C.D.﹣9.计算(﹣2)200+(﹣2)201的结果是()A.﹣2 B.﹣2200C.1 D.220010.一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.二.填空题11.截止5月19日,全球累计确诊新冠肺炎病例达到478万多例,请对478万用科学记数法表示为.12.计算:﹣22+(﹣2)2﹣(﹣1)3=.13.某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.14.近似数2.3456精确到百分位是.15.三个数a=266,b=344,c=622中,最小的一个是.三.解答题16.计算:﹣14+|2﹣(﹣3)2|+(﹣).17.已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)×m+(cd)2018的值.18.观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)参考答案1.D.2.C.3.C.4.A.5.D6.B7.A8.D9.B.10.C11.4.78×106.12.113.64,22t+614.2.35.15.622.16.解:原式=﹣1+|2﹣9|﹣=﹣1+7﹣=5.17.解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,当m=﹣3时,m2+(cd+a+b)×m+(cd)2018=(﹣3)2+(1+0)×(﹣3)+12018=9+1×(﹣3)+1=9+(﹣3)+1=7;当m=3时,∴m2+(cd+a+b)×m+(cd)2018=1318.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.。

新人教版七年级数学上册同步试题1.5有理数的乘方 同步练习含答案.doc

新人教版七年级数学上册同步试题1.5有理数的乘方 同步练习含答案.doc

1 1.5 有理数的乘方 同步练习1、①我市有58万人;②他家有5口人;③现在9点半钟;④你身高158cm ;⑤我校有20个班;⑥他体重58千克.其中的数据为准确数的是 ( )A 、①③⑤B 、②④⑥C 、①⑥D 、②⑤2、对下列各式计算结果的符号判断正确的一个是 ( )A 、()()0331222<-⨯⎪⎭⎫ ⎝⎛-⨯- B 、()015522<+-- C 、()021311>+⎪⎭⎫ ⎝⎛-+- D 、()()0218899>-⨯- 3、(08连云港市)据《连云港日报》报道,至2008年5月1日零时,田湾核电站1、2号两台机组今年共累计发电42.96亿千瓦时.“42.96亿”用科学记数法可表示为( )A .74.29610⨯B .84.29610⨯C .94.29610⨯D .104.29610⨯4、如果a +b <0,并且ab >0,那么 ( )A 、a <0,b <0B 、a >0,b >0C 、a <0,b >0D 、a >0,b <05、把21-与6作和、差、积、商、幂的运算结果中,可以为正数的有 ( ) A 、4个 B 、3个 C 、2个 D 、1个6、数轴上的两点M 、N 分别表示-5和-2,那么M 、N 两点间的距离是 ( )A 、-5+(-2)B 、-5-(-2)C 、|-5+(-2)|D 、|-2-(-5)|7、对于非零有理数a :0+a=a,1×a =a ,1+a=a ,0×a=a,a ×0=a ,a÷1=a,0÷a=a ,a ÷0=a ,a 1=a ,a÷a=1中总是成立的有 ( )A 、5个B 、6个C 、7个D 、8个8、在数-5.745,-5.75,-5.738,-5.805,-5.794,-5.845这6个数中精确到十分位得-5.8的数共有( )A 、2个B 、3个C 、4个D 、5个9、下列说法错识的是 ( )A 、相反数等于它自身的数有1个B 、倒数等于它自身的数有2个C 、平方数等于它自身的数有3个D 、立方数等于它自身的数有3个10、503、404、305的大小关系为( )(A )、503<404<305; (B )、305<503<404;(C )、305<404<503; (D )、404<305<503; 二、填空题11、计算-3+1= ;=⎪⎭⎫ ⎝⎛-÷215 ;=-42 . 12、“负3的6次幂”写作 .25-读作 ,平方得9的数是 .13、-2的倒数是 , 311-的倒数的相反数是 ,有理数 的倒数等于它的绝对值的相反数.14、根据语句列式计算: ⑴-6加上-3与2的积: ;⑵-2与3的和除以-3: ;⑶-3与2的平方的差: .15、用科学记数法表示:109000= ;89900000≈ (保留2个有效数字).16、按四舍五入法则取近似值:70.60的有效数字为 个,2.096≈ (精确到百分位);15.046≈ (精确到0.1).17、在括号填上适当的数,使等式成立:2 ⑴⨯=÷-78787( ); ⑵8-21+23-10=(23-21)+( ); ⑶+-=⨯-69232353( ). 18、用“<”或“>”填空: 1083 1442 19、“24点”游戏的规则如下:任取4张扑克牌(牌点数是1至13之间的自然数),将这4个牌点数进行必要的加、减、乘、除、乘方混合运算(每个数都用且只用1次),使其结果为24,请你写出2、3、4、12四个牌点数湊成24的一个算式20.如果|x|=|y|,那么x 与y 的关系是________;如果-|x|=|-x|那么x=_______.三、解答题21、直接写出计算结果. ⑴=-7352 ; ⑵=++--2128216529 ; ⑶=⨯-72213 ; ⑷=⎪⎭⎫ ⎝⎛-÷-75213 ; ⑸()()=-⨯-÷÷-4323 . 22、利用运算律作简便运算,写出计算结果. ⑴10725.37.841+--;⑵⎪⎭⎫ ⎝⎛-⨯13111109. 23、计算题.(每小题7分,共21分) ⑴()321322328325+⨯-÷--;⑵()()⎥⎦⎤⎢⎣⎡-+-÷⎪⎭⎫ ⎝⎛-⨯-52175.02154. ⑶某数加上-5,再乘以-2,然后减去-4,再除以2,最后平方得25,求某数.24、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,100.7,103,95.5,按下列要求计算:⑴观察这8个数,估计这8只猪的平均质量约为 千克;⑵计算每只猪与你估计质量的偏差(实际质量-估计质量)分别为:⑶计算偏差的平均数(精确到十分位)所以这8只猪的平均质量约为 .25、一种圆柱体工件的底面半径是12cm ,体积为9950cm 3,它的高应做成多少?(π取3.14,结果精确到0.1)列式后可用计算器计算26. 议一议,观察下面一列数,探求其规律:-1,21,-31,41,-51,61…… (1)填出第7,8,9三个数; , , .(2)第2008个数是什么?如果这一列数无限排列下去,与哪个数越来越接近?答案一、选择题1、D ;2、A ;3、C ;4、A ;5、C ;6、D ;7、B ;8、C ;9、C10、(B );提示:1010550243)3(3==,1010440256)4(4==,1010330125)5(5==;二、填空题 11、-2;-10;-16. 12、()53-;5的平方的相反数;±3. 13、 1;43;21--.3 14、(1)-6+(-3)×2; (2)(-2+3)÷(-3);(3)()2223--. 15、1.09×510;9.0×710.16、4;2.10;15.0. 17、(1)71-;(2)8-10;(3)-5. 18、> 提示:3636310827)3(3==,3636414416)2(2==,因为3627>3616,所以1083>1442;19、答案不惟一,例如:24123)42(=⨯÷+,2412423=++,2412423=⨯÷都行 20.相等或互为相反数, 0三、解答题 215)5(;9.4)4(;1)3(;65)2(;733)1(----. 22、(1)-11; (2)138997- 23、(1)314-; (2)24 (3)5,-5①[5×2+(-4)]÷(-2)-(-5)=-2②[-5×2+(-4)]÷(-2)-(-5)=-1224(1)100(2)4-1.5-4-8.2+2.5+7+3-4.5=1.7平均偏差=-1.7÷8≈-0.2100-0.2=99.825、9950÷(3.14×122)≈22(cm)或设高为h 3.14×122h=9950 26. (1)-71,81,-91;(2)20081,0.。

人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)

人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)

人教版七年级数学(上)第一章《有理数》1.5有理数的乘方同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.计算(-1)5×23÷(-3)2÷的结果是 ( )。

A. -26B. -24C. 10D. 122.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸变成2根,第二次捏合,再拉伸变成4根,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第n次捏合后可拉出细面条的数量是()。

A. 2nB. 2nC. 2n-1D. 2+n3.下列说法错误的是 ( )。

A. 近似数16.8与16.80表示的意义不同B. 近似数0.290 0是精确到0.0001的近似数C. 3.850×104是精确到十位的近似数D. 49 564精确到万位是4.9×1044.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是( )。

A. 2B. 4C. 8D. 65.已知是由四舍五入得到的近似数,则的可能取值范围是()。

A. B.C. D.6.下列计算正确的是()。

A. B. C. D.7.近似数1.30是由数a四舍五入得到的,那么数a的取值范围是()。

A. 1.25≤a<1.35B. 1.25<a<1.35C. 1.295<a<1.305D. 1.295≤a<1.3058.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()。

A. 1个B. 2个C. 3个D. 0个9.如果一个近似数是1.60,则它的精确值x的取值范围是()。

A. 1.594<x<1.605B. 1.595≤x<1.605C. 1.595<x≤1.604D. 1.601<x<1.60510.如图是一个计算程序,若输入a的值为-1,则输出的结果应为()。

人教版数学七年级上同步训练:1.5-有理数的乘方【含答案】

人教版数学七年级上同步训练:1.5-有理数的乘方【含答案】

七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。

二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。

一般地,记作a n。

乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a 的n次方,从结果的角度读作a的n次幂。

注:(1)一个数可以看作这个数本身的一次方。

(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。

(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。

2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。

3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。

(2)同级运算,从左到右进行。

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。

注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。

指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。

5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。

与实际有一点偏差但又非常接近的数称为近似数。

人教版七年级数学上册1.5 《有理数乘方》 同步练习(含答案)

人教版七年级数学上册1.5 《有理数乘方》 同步练习(含答案)

人教版七年级数学上册1.5 《有理数乘方》同步练习一、选择题:1、对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等2、中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023、太阳的半径约为69.6万km,则近似数“69.6万”是精确到()A.十分位B.十位C.千位D.万位4、本学期我县义务教育阶段在校学生人数约为13.5万,数13.5万用科学计数法表示为()A.13.5×104 (B) 1.35×105 (C) 0.135×106 (D) 135×1035、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.0001)6、有理数,,, ,-(-1),中,其中等于1的个数是().A.3个B.4个C.5个D.6个7、得()A.1B.-1C.D.20128、下列式子中,正确的是( )A. B. C. D.9、小明同学发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数a2﹣b﹣1,例如把(3,﹣5)放入其中,就会得到32﹣(﹣5)﹣1=13,现将有理数对(﹣4,﹣2)放入其中,则会得到()A.11B.13C.17D.2310、如果,那么代数式的值为()A.5B.-5C.1D.-111、根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.4B.﹣2C.8D.312、为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是()A.32015-1B.32014-1C.D.二、填空题:13、去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 .14、比较大小:3223.15、 _______16、一种细胞每过20分钟便由1个分裂成2个.经过2小时,这种细胞由1个分裂成了个.17、用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+1.例如1☆4=42+1=17.则m☆(m☆2)=18、观察下列各式:猜想 .三、计算题:19、 20、21、 22、23、. 24、四、解答题:25、若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求:20181﹣(a+b)+m2﹣(cd)2018+n(a+b+c+d)的值.26、观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.27、若|a+2|+(b﹣3)2=0,求a b+3(a﹣b)的值.28、观察下列三行数:-2,4,-8,16,-32,64,……-1,3,-7,17,-31,65,……-,1,-2,4,-8,16……(1)第①行数按什么规律排列?(2)第②、③与第①行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和.29、求1+2+22+23…+22014的值,可令S=1+2+22+23…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,仿照以上推理,计算出1+5+52+53+…+52017的值。

人教版七年级数学上册1.5有理数的乘方同步练习(解析版)

人教版七年级数学上册1.5有理数的乘方同步练习(解析版)

新人教版七年级数学上册同步练习1.5有理数的乘方一、单选题1、下列各式中,计算正确的是( )A 、x+y=xyB 、a 2+a 2=a 4C 、|﹣3|=3D 、(﹣1)3=32、计算﹣42的结果等于( )A 、﹣8B 、﹣16C 、16D 、8 3、12500000这个数用科学记数法表示为( )A 、1.25×105B 、1.25×104C 、1.25×107D 、1.25×1084、下列各对数中,数值相等的是( )A 、23和32B 、(﹣2)2和﹣22C 、2和|﹣2|D 、(32)2和3225、用四舍五人法按要求把2.05446取近似值,其中错误的是( )A 、2.1(精确到0.1)B 、2.05(精确到百分位)C 、2.054(精确到0.001)D 、2.0544(精确到万分位)6、在|﹣1|,﹣|0|,(﹣2)3 , ﹣|﹣2|,﹣(﹣2)这5个数中,负数共有( )A 、2个B 、3个C 、4个D 、5个7、用四舍五入法将0.0257精确到0.001结果是( )A 、0.03B 、0.026C 、0.025D 、0.02578、由四舍五入法得到的近似数8.8×103, 下列说法中正确的是( )A 、精确到十分位B 、精确到个位C 、精确到百位D 、精确到千位二、填空题9、计算:(﹣1)2015+(﹣1)2016=________.10、一个数的立方等于它本身,这个数是________.11、一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是________.12、近似数2.30万精确到________位,用科学记数法表为________.13、在不久前刚刚结束的“双十一”里,拥有天猫和淘宝的阿里全天交易额达到3500000万元,则数据3500000用科学记数法表示为________.14、对于x、y定义新运算x*y=ax+by﹣3(其中a、b是常数),已知1*2=9,﹣3*3=6,则3*(﹣4)=________.三、解答题15、计算:(﹣3)2+15×(﹣)+(﹣2)3.16、在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100平方米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)17、体育委员给王磊、赵立两位的身高都记为1.7×102cm,可有的同学说王磊比赵立高9cm,这种情况可能吗?请说明你的理由.18、阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1仿照此法计算:1+2+22+23+ (2100)参考答案与试题解析一、单选题1、C解:A 、原式不能合并,错误; B 、原式=2a 2 , 错误;C 、原式=3,正确;D 、原式=﹣1,错误,故选C2、B解:﹣42=﹣16 故选:B4、C解:A 、23=8,32=9,不相等,故本选项错误; B 、(﹣2)2=4,﹣22=﹣4,不相等,故本选项错误;C 、2和|﹣2|=2相等,故本选项正确;D 、(32)2=94,322=34,不相等,故本选项错误.故选C .5、D解:A 、2.05446精确到0.1为:2.1,故正确;B 、2.05446精确到百分位为:2.05,故正确;C 、2.05446精确到0.001为:2.054,故正确;D 、2.05446精确到万分位为:2.0545,故错误;故选:D .6、A解:|﹣1|=2是正数, ﹣|0|=0既不是正数也不是负数,(﹣2)3=﹣8是负数,﹣|﹣2|=﹣2是负数,﹣(﹣2)=2是正数,负数共有(﹣2)3,﹣|﹣2|共2个.故选A.7、B解:0.0257≈0.026(精确到0.001).故选B.8、C解:近似数8.8×103精确到百位.故选C.二、填空题9、0解:原式=﹣1+1=0.故答案为:0.10、0或±1解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.11、210m解:根据题意得:450+20×60﹣12×120=450+1200﹣1440=210(m),则直升机的高度是210m.故答案为:210m.12、百;2.3×104解:近似数2.30万精确到百位,用科学记数法表示为2.3×104.故答案为:百,2.3×104.13、3.5×106解:将3500000用科学记数法表示为:3.5×106.故答案为:3.5×106.14、﹣14解:根据题中的新定义得:,即,解得:,则原式=2×3﹣4×5=6﹣20=﹣14.故答案为:﹣14三、解答题15、解:原式=9+5﹣6﹣8=14﹣14=0.16、解:帐篷数:2.5×107÷40=6.25×105;这些帐篷的占地面积:6.25×105×100=6.25×107;需要广场的个数:6.25×107÷5000=1.25×10417、解:有这种可能.理由:∵1.65×102≈1.7×102,1.74×102≈1.7×102,∴1.74×10 2﹣1.65×102=9(cm).故有可能.18、解:(1)设S=1+2+22+23+24+ (2100)将等式两边同时乘以2得:2S=2+22+23+24+…+210+2101,将下式减去上式得:2S﹣S=2101﹣1,即S=2101﹣1,则1+2+22+23+24+…+2100=2101﹣1.。

七年级数学上册 第一章 有理数 1.5 有理数的乘方同步练习 (新版)新人教版

七年级数学上册 第一章 有理数 1.5 有理数的乘方同步练习 (新版)新人教版

1.5有理数的乘方同步练习一、选择题1.计算的结果是A. B. 4 C. 12 D.2.已知,则的值等于A. 1B. 0C.D.3.若,则A. B. C. D.4.对于下列各式,其中错误的是A. B. C. D.5.下列说法:一定是负数;一定是正数;倒数等于它本身的数是;绝对值等于它本身的数是1;平方等于它本身的数是其中正确的个数是A. 1个B. 2个C. 3个D. 4个6.若a是负数,则下列各式不正确的是A. B. C. D.7.若有理数x,y满足,则的值等于A. B. 1 C. D. 28.已知数a,b,c的大小关系如图所示,则下列各式:;;;;,其中正确的有个.A. 1B. 2C. 3D. 49.比较,,的大小,正确的是A. B. C. D.10.若m,n满足,则的平方根是A. B. C. 4 D. 2二、填空题11.已知,则______,______.12.定义一种新运算:,如,则______.13.定义一种新的运算:,如:,则 ______ .14.求的值,可令,则,因此仿照以上推理,计算出 ______ .15.已知,则______.三、计算题16.计算:17.先化简,后求值.,其中.18.已知a,b均为有理数,现我们定义一种新的运算,规定:,例如:.求:的值;的值.【答案】1. D2. C3. C4. C5. A6. A7. B8. C9. A10. B11. 2;312. 1413. 214.15. 1116. 解:原式.17. 解:,,,原式,当,,原式.18. 解:。

数学人教新版七年级上册同步训练:(1.5.1乘方)【含答案】

数学人教新版七年级上册同步训练:(1.5.1乘方)【含答案】

数学人教新版七年级上册实用资料1.5 有理数的乘方1.5.1 乘方5分钟训练(预习类训练,可用于课前) 1.填空题(1)求几个相同因数的积的运算,叫做_______,即nn a a a a •⋅⋅⋅•=1442443个=a n在a n中,a 叫做_______,n 叫做______,a n叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________; (3)乘方(-2)5的意义是____________________,结果为________;(4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______. 思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂 (2)正数 负数 正数 (3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数 指数 负二的四次幂 负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么? (1)(-113)(-113)(-113)(-113); (2)(-0.1)×(-0.1)×(-0.1).思路解析:根据幂的意义写出. 答案:(1)(-113)4,底数是-113,指数是4; (2)(-0.1)3,底数是-0.1,指数是3.10分钟训练(强化类训练,可用于课中)1.把下列各式写成幂的形式,并指出底数、指数各是什么? (1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2); (2)12×12×12×12×12×12;(3)2n b b b b ••⋅⋅⋅64748个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5; (2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==6447448个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)22 3 =49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n 为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.快乐时光成功的秘诀一位演员巡回演出回来,他对朋友说:“我获得了极大的成功,我在露天广场上演出时,观众的掌声经久不息.”“你真走运,”他的朋友说,“下个星期再演出时就要困难一些了.”“为什么?”演员问.“天气预报说下周要降温,这样蚊子会少多了.”那人回答. 30分钟训练(巩固类训练,可用于课后)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系. 解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b-4)2≥0.又因为(a+12)2+(2b-4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334. 6.若n 为自然数,求(-1)2n-(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1. 答案:-6. 7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值.思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法. 答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长? 思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.。

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上《1.5有理数的乘方》同步练习(含答案)

人教版数学七年级上册 同步练习第一章 有理数1.5 有理数的乘方第1课时 乘方的意义及运算1.比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝ ⎛⎭⎪⎫342中底数是________,指数是____,读作____________; (3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____.7.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出8.计算:(1)(-5)4;(2)-54;(3)⎝ ⎛⎭⎪⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝ ⎛⎭⎪⎫-13;(3)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (4)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232.11.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:_____________________________________________________________;(2)按照规律,第n个数为____.参考答案1.D 2.B3.(1)7 3 7的3次方 (2)34 2 34的2次方 (3)-5 4 -5的4次方 (4)8 1 4.(1)64 (2)-32 (3)-16 5.( (-) 6 ) ∧ 4 =6.4 7.208.(1)625 (2)-625 (3)-6427 (4)-85(5)-1 9.(1)-1 728 (2)-34 012 224 (3)90 392.079 68(4)2 687.385 610.(1)36 (2)3 (3)10 (4)911.C 12.25 60013.(1)利用计算器算得快;(2)他拉12次后得到的面条的总长度是3 276.8 m .14.(1)-64,128,-256 (2)(-1)n +12n 或-(-2)n第2课时 有理数的混合运算1.算式-23+49×⎝ ⎛⎭⎪⎫-232的运算顺序是( ) A .乘方、乘法、加法 B .乘法、乘方、加法C .加法、乘方、乘法D .加法、乘法、乘方2.下列计算中正确的是( )A .-14×(-1)3=1B .-(-3)2=9C.13÷⎝ ⎛⎭⎪⎫-133=9 D .-32÷⎝ ⎛⎭⎪⎫-13=-27 3.计算(-1)5×23÷(-3)2÷⎝ ⎛⎭⎪⎫133的结果是( ) A .-26 B .-24 C .10 D .124.[2017·重庆A 卷]计算:|-3|+(-1)2=__4__.5.计算:(1)||-4+23+3×(-5); (2)⎝ ⎛⎭⎪⎫122÷⎣⎢⎡⎦⎥⎤()-4-⎝ ⎛⎭⎪⎫-34.6.计算:(1)(-2)2×⎝ ⎛⎭⎪⎫1-34; (2)42÷(-4)-54÷(-5)3;(3)-(-2)5-3÷(-1)3+0×(-2.1)7;(4)-32×⎣⎢⎡⎦⎥⎤-32×⎝ ⎛⎭⎪⎫-232-2.7.按照如图所示的操作步骤,若输入的值为3,则输出的值为____.8.刘谦的魔术表演风靡全国,小明也学习刘谦发明了一个魔术盒,当任意有理数对(a ,b )进入其中时,会得到一个新的有理数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-2,-3)放入其中,得到的有理数是_ .9.有一种“24点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J,Q,K分别表示11,12,13,A表示1).小明、小聪两人抽到的4张牌如图所示,这两组牌都能算出“24点”吗?怎样算?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?10.[2016·滨州]观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 016个式子为____.参考答案1.A 2.A 3.B4.4 5.(1)-3(2)-1136.(1)1(2)1(3)35(4)97.558.09.小明、小聪抽到的牌都能算出24点,如(3+4+5)×2=24,11×2+10÷5=24.如果允许包含乘方运算,可列算式如52-4+3=24,52-11+10=24.10.(32 016-2)×32 016+1=(32 016-1)2第3课时科学记数法1.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82 600 000人次,数据82 600 000用科学记数法表示为() A.0.826×106B.8.26×107C.82.6×106D.8.26×1082.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为()A.0.126 3×108B.1.263×107C.12.63×106D.126.3×1053.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204 000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.用科学记数法表示下列各数:(1)2 730=____;(2)7 531 000=____;(3)-8 300.12=____.6.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16 000立方米,把16 000立方米用科学记数法表示为____立方米.7.用科学记数法表示下列横线上的数.(1)地球的半径约为6__400__000 m;(2)青藏铁路建成后,从青海西宁到西藏拉萨的铁路全长约1__956__000 m;(3)长江每年流入大海的淡水约是10__000亿立方米;(4)太平洋西部的马里亚纳海沟在海平面下约11__000 m 处;(5)地球上已发现的生物约1__700__000种.8.地球上的水的总储量约为1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.010 7×1018m3,因此我们要节约用水.请将0.010 7×1018m3用科学记数法表示是()A.1.07×1016m3B.0.107×1017m3C.10.7×1015m3D.1.07×1017m39.某市2015年底机动车的数量是2×106辆,2016年新增3×105辆,用科学记数法表示该市2016年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆10.写出下列用科学记数法表示的数的原数:(1)长城长约6.3×103 km;(2)太阳和地球的距离大约是1.5×108 km;(3)一双没有洗过的手上大约有8×104万个细菌.11.生物学指出:生态系统中,输入每一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1,2,…,6),要使H6获得10 kJ的能量,则H1需要提供的能量大约为多少千焦?参考答案1.B 2.B 3.C 4.C5.(1)2.73×103(2)7.531×106(3)-8.300 12×1036.1.6×1047.(1)6.4×106(2)1.956×106(3)1×1012(4)1.1×104(5)1.7×1068.A9.C10.(1)6 300(2)150 000 000(3)800 000 00011.H1需要提供的能量大约为1×106kJ.第4课时近似数1.下列数据中为准确数的是()A.上海科技馆的建筑面积约为98 000 m2B.“小巨人”姚明身高2.26 mC.我国的神舟十号飞船有3个舱D.截至去年年底,中国国内的生产总值(GDP)达676 708亿元2.用四舍五入法按要求对0.050 49取近似数,其中错误的是() A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)3.G20峰会,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人,则近似数9.17×105精确到了()A.百分位B.个位C.千位D.十万位4.小亮用天平称得一个罐头的质量为2.026 kg,用四舍五入法将2.026精确到0.01的近似值为()A.2 B.2.0C.2.02 D.2.035.下列说法错误的是()A.近似数16.8与16.80表示的意义不同B.近似数0.290 0是精确到0.000 1的近似数C.3.850×104是精确到十位的近似数D.49 564精确到万位是4.9×1046.(1)用四舍五入法,精确到0.1,对5.649取近似数的结果是__5.6__;(2)用四舍五入法,对1 999.508取近似数(精确到个位),得到的近似数是____;(3)用四舍五入法,求36.547精确到百分位的近似数是____.7.圆周率π=3.141 592 6…,取近似数3.142,是精确到__ __位.8.下列由四舍五入法得到的数各精确到哪一位?(1)0.023 3;(2)3.10;(3)4.50万;(4)3.04×104.9.用四舍五入法按括号里的要求对下列各数取近似数.(1)0.001 49(精确到0.001);(2)203 500(精确到千位);(3)49 500(精确到千位).10.我国以2010年11月1日零时为标准计时点进行了第六次全国人口普查,普查得到全国总人口为1 370 536 875人,该数用科学记数法(精确到千万位)表示为()A.13.7 亿B.13.7×108C.1.37×109D.1.4×10911.用四舍五入法,按要求对下列各数取近似数,并用科学记数法表示:(1)太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12 200 000 000 km;(精确到100 000 000 km)(2)光年是天文学中的距离单位,1光年大约是9 500 000 000 000 km;(精确到100 000 000 000 km)(3)某市全年的路灯照明用电约需4 200万千瓦时.(精确到百万位)12.某次小明乘出租车时看到车内放有一张计价说明,如图1-5-4所示,但后面的几个字已受损.(1)小明乘车行驶4 km的时候,计价器显示的价格为8.6元.问超过部分每千米收费多少元?(2)如果小明这次乘出租车时付了12.2元,求他乘坐路程的范围(计价器每1 km跳价一次,不足1 km按1 km计价).参考答案1.C 2.C 3.C 4.D 5.D6.(1)5.6(2)2 000(3)36.557.千分8.(1)万分位(2)百分位(3)百位(4)百位9.(1)0.001(2)2.04×105(3)5.0×10410.C11.(1)1.22×1010km(2)9.5×1012km(3)4.2×107千瓦时12.(1)1.8元(2)大于5 km且小于或等于6 km。

人教版七年级数学上册课后同步练习1.5 有理数的乘方(含答案)

人教版七年级数学上册课后同步练习1.5 有理数的乘方(含答案)

课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.71 2.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A. 2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D.4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米). 答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C.8答案:C 点拨:A.-16<4<-8,错误;B .-8<-16<4,错误;C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确.11答案:D12答案:3.30×10513答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫-⎪⎝⎭ =9-(-8)×278⎛⎫-⎪⎝⎭ =9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54)=-49+18+54=23.点拨:先算乘方,再算乘除,最后算加减.15解:因为|a +1|+(b -2)2=0,所以a +1=0,b -2=0,即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2.点拨:利用|a +1|与(b -2)2的非负性.16解:∵|x -1|≥0,(y +3)2≥0,又∵|x -1|+(y +3)2=0,∴|x -1|=0,(y +3)2=0.∴x =1,y =-3.∴(xy)2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052=(2 004×2 005+1)2.(2)n2+[n×(n+1)]2+(n+1)2=[n×(n+1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.。

人教版七年级数学上册课后同步练习1.5 有理数的乘方

人教版七年级数学上册课后同步练习1.5 有理数的乘方

课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.71 2.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A. 2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D.4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米). 答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C.8答案:C 点拨:A.-16<4<-8,错误;B .-8<-16<4,错误;C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确.11答案:D12答案:3.30×10513答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫-⎪⎝⎭ =9-(-8)×278⎛⎫-⎪⎝⎭ =9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54)=-49+18+54=23.点拨:先算乘方,再算乘除,最后算加减.15解:因为|a +1|+(b -2)2=0,所以a +1=0,b -2=0,即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2.点拨:利用|a +1|与(b -2)2的非负性.16解:∵|x -1|≥0,(y +3)2≥0,又∵|x -1|+(y +3)2=0,∴|x -1|=0,(y +3)2=0.∴x =1,y =-3.∴(xy)2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052=(2 004×2 005+1)2.(2)n2+[n×(n+1)]2+(n+1)2=[n×(n+1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.。

人教版七数上 1.5 有理数的乘方同步课时训练含答案

人教版七数上 1.5 有理数的乘方同步课时训练含答案

(
1 4
)(
1 4
)(
1 4
)(
1 4
)=________.
(2) - × - × - × -
13. 有一组数:(1,1,1),(2,4,8),(3,9,27),(4,16,64),…,则第 100 组
数中的三个数的和为
.
14. (-2.7)3,(-2.7)4,(-2.7)5 的大小关系用“<”号连接可表示为________________.
剪 7 次后剩下的彩带长(不计损耗)为 7 米.
二、填空题 11. 【答案】3×108 [解析] 将 300000000 用科学记数法表示为 3×108.
12. 【答案】(1)(-2.3)5 (2)(-14)4 13. 【答案】1010100 [解析] 各组的三个数中第一个数是从 1 开始的连续正整数, 第二个数是第一个数的平方,第三个数是第一个数的立方,故第 100 组数为(100, 1002,1003),所以这三个数的和为 100+1002+1003=1010100.
有理数的乘方 同步课时训练
一、选择题 1. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之 一.今年 4 月 29 日成都地铁安全运输乘客约 181 万乘次,又一次刷新客流记录, 这也是今年以来第四次客流记录的刷新,用科学记数法表示 181 万为( ) A. 18.1×105 B. 1.81×106 C. 1.81×107 D. 181×104
数的圈 n 次方等于

(3)计算:24÷23+(-8)×2③.
人教版 七年级数学上册 1.5 有理数的乘方 同步
一、选择题 1. 【答案】B
课时训练-答案

新人教版七年级上1.5有理数的乘方课堂同步达标题含答案

新人教版七年级上1.5有理数的乘方课堂同步达标题含答案

初中一年级人教版数学上册第一章有理数1.5《有理数的乘方》课堂同步达标题(含有答案)一、选择题(本题共有5个小题,每小题都有A 、B 、C 、D 四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题4分,共20分)1.如果一个有理数的平方等于(-2)2,那么这个有理数等于 ( )A .-2B .2C .4D .2或-22.一个数的立方是它本身,那么这个数是 ( )A .0B .0或1C .-1或1D .0或1或-13.两个有理数互为相反数,那么它们的n 次幂的值 ( )A .相等B .不相等C .绝对值相等D .没有任何关系4.下列各对数中,数值相等的是 ( )A .-32 与 -23B .-23 与 (-2)3C .-32 与 (-3)2D .(-3×2)2与-3×225. (-1)2001+(-1)2004÷1-+(-1)2006的值等于 ( ) A.0 B.1 C.-1 D.2二、填空题(每个空3分,共30分)6.求n 个相同的因数a 的积的运算,叫做乘方,记作n a ,读作__________.当n a 看作a 的n 次方的结果时,也可读作_________.7.负数的奇次幂是______数;负数的偶次幂是_______数。

8.把一个大于10的数表示成a n 10⨯的形式(其中a 大于或等于1且小于10,n 是正整数),这样表示数的方法叫__________.9.宇宙现在的年龄约为200亿年,长江长约6300km ,圆周率约为3.14,这里的数都是___数。

10.若032>b a -,则b 011.平方等于641的数是 ,立方等于641的数是 ; 12. 523⎪⎭⎫ ⎝⎛-的底数是 。

三、解答题(本题有5道题,每题10分,共50分)13. 水星和太阳的平均距离约为57900000km. 用科学记数法把这个数表示出来。

14. 求()34255414-÷-⎪⎭⎫ ⎝⎛-÷得值 15. 已知,求代数式的值. 16. 你知道1003的个位数字是几吗?17. 数学生活实践.如果今天是星期天,你知道再这1002天是星期几吗?大家都知道,一个星期有7天,要解决这个问题,我们只需知道1002被7除的余数是多少,假设余数是1,因为今天是星期天,那么再过这么多天就是星期一;假设余数是2,那么再过这么多天就是星期二;假设余数是3,那么再过这么多天就是星期三……因此,我们就用下面的实践来解决这个问题。

人教版七年级上册《1.5有理数的乘方》同步练习含答案.doc

人教版七年级上册《1.5有理数的乘方》同步练习含答案.doc

1.5 有理数的乘方1.5.1乘方1、 填空:(1)2)3(-的底数是 ,指数是 ,结果是 ;(2)2)3(--的底数是 ,指数是 ,结果是 ;(3)33-的底数是 ,指数是 ,结果是 。

2、填空:(1)=-3)2( ;=-3)21( ;=-3)312( ;=30 ;(2)=-n 2)1( ;=-+12)1(n ;=-n 2)10( ;=-+12)10(n 。

(3)=-21 ;=-341 ;=-432 ;=--3)32( .3、计算:(1)8)3(4)2(323+-⨯--⨯ (2)2)2(2)1(3210÷-+⨯-4、 计算:(1)22)2(3---; (2)])3(2[61124--⨯--;(3)]2)33()4[()10(222⨯+--+-;(4)])2(2[31)5.01()1(24--⨯⨯---;(5)94)211(42415.0322⨯-----+-;(6))2()3(]2)4[(3)2(223-÷--+-⨯--;(7)20022003)2()2(-+-; (8)201020114)25.0(⨯-.5、对任意实数a ,下列各式一定不成立的是( )A 、22)(a a -=B 、33)(a a -=C 、a a -=D 、02≥a 6、若92=x ,则x 得值是 ;若83-=a ,则a 得值是 .7、若a,b 互为相反数,c,d 互为倒数,且0≠a ,则=-++209208207)()()(b a cd b a . 8、61-+x 的最小值是 ,此时2011x = 。

9、已知有理数z y x ,,,且2)12(7123++++-z y x =0,求z y x ++的相反数的倒数。

参考答案1、(1)27,3,3)3(;9,2,3)2(;9,2,3----.2、(1).278,49,641,1)3(;10,10,1,1)2(;0,27343,81,8122--------+n n 3、(1)-52 (2)04、(1)-13;(2)61;(3)92; (4)311;(5)216-; (6)-56.5;(7)20022-; (8)41-. 5、B . 6、2,3-=±=a x7、2 8、 6-, 1-9、32-.1.5.2 科学记数法1、 用科学记数法表示下列各数:(1)1万= ; 1亿= ;(2)80000000= ; 76500000-= .2、下列用科学记数法写出的数,原来分别是什么数?8561005.7,102.3,101⨯-⨯⨯3、月球轨道呈椭圆形,近地点平均距离为363300千米,远地点平均距离为405500千米 , 用科学记数法表示 : 近地点平均距离为 ,远地点平均距离为__________.4、据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学积记数法表示为 万元.5、4月16日,国家统计局发布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4834用科学记数法表示为 .6、改革开放30年以来,成都的城市化推进一直保持快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已经达到4410000人,这这个常住人口数有如下几种表示方法:①51041.4⨯人;②61041.4⨯人;③5101.44⨯人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5 有理数的乘方
1.5.1乘方
1、 填空:
(1)2)3(-的底数是 ,指数是 ,结果是 ;
(2)2)3(--的底数是 ,指数是 ,结果是 ;
(3)33-的底数是 ,指数是 ,结果是 。

2、填空:
(1)=-3)2( ;=-3)21
( ;=-3
)31
2( ;=30 ; (2)=-n 2)1( ;=-+12)1(n ;=-n 2)10( ;=-+12)10(n 。

(3)=-2
1 ;=-341 ;=-43
2 ;=--3)32( . 3、计算:
(1)8)3(4)2(323+-⨯--⨯ (2)2)2(2)1(3210÷-+⨯-
4、 计算:
(1)22)2(3---; (2)])3(2[6
1124--⨯--;
(3)]2)33()4[()10(222⨯+--+-;
(4)])2(2[31)5.01()1(24--⨯⨯
---;
(5)9
4)211(42415.0322⨯-----+
-;
(6))2()3(]2)4[(3)2(223-÷--+-⨯--;
(7)20022003)2()2(-+-; (8)201020114)25.0(⨯-.
5、对任意实数a ,下列各式一定不成立的是( )
A 、22)(a a -=
B 、33)(a a -=
C 、a a -=
D 、02≥a
6、若92=x ,则x 得值是 ;若83-=a ,则a 得值是 .
7、若a,b 互为相反数,c,d 互为倒数,且0≠a ,则=-++2
09208207)()()(b a cd b a .
8、61-+x 的最小值是 ,此时2011x = 。

9、已知有理数z y x ,,,且2)12(7123++++-z y x =0,求z y x ++的相反数的倒数。

参考答案
1、(1)27,3,3)3(;9,2,3)2(;9,2,3----.
2、(1).27
8,49,641,1)3(;10,10,1,1)2(;0,27343,81
,8122--------+n n 3、(1)-52 (2)0
4、(1)-13;(2)61;(3)92; (4)311;(5)2
16-; (6)-56.5;(7)20022-; (8)4
1-. 5、B . 6、2,3-=±=a x
7、2 8、 6-, 1-
9、3
2-
.
1.5.2 科学记数法
1、 用科学记数法表示下列各数:
(1)1万= ; 1亿= ;
(2)80000000= ; 76500000-= .
2、下列用科学记数法写出的数,原来分别是什么数?
8561005.7,102.3,101⨯-⨯⨯
3、月球轨道呈椭圆形,近地点平均距离为363300千米,远地点平均距离为405500千米 , 用科学记数法表示 : 近地点平均距离为 ,远地点平均距离为__________.
4、据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学积记数法表示为 万元.
5、4月16日,国家统计局发布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4834用科学记数法表示为 .
6、改革开放30年以来,成都的城市化推进一直保持快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已经达到4410000人,这这个常住人口数有如下几种表示方法:①51041.4⨯人;②61041.4⨯人;③5101.44⨯人。

其中用科学记数法表示正确的序号为 .
7、山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .
8、3)5(-×40000用科学记数法表示为( )
A.125×105
B.-125×105
C.-500×105
D.-5×10
6 9、《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )
A 、101026.7⨯元
B 、9106.72⨯元
C 、1110726.0⨯元
D 、111026.7⨯元
10、2013年我国的国民生产总值约为130800亿元,那么130800用科学记数法表示正确的是( )
A 、210308.1⨯
B 、41008.13⨯
C 、410308.1⨯
D 、5
10308.1⨯
11、地球绕太阳转动每小时经过的路程约为1.1×105km ,声音在空气中每小时传播 1.2×
103km ,地球绕太阳转动的速度与声音传播的速度哪个快?
参考答案
1、(1)77841065.7,108)2(;10,10⨯-⨯
2、705000000,320000,1000000-
3、5
510055.4,10633.3⨯⨯
4、101048.7⨯;
5、310834.4⨯;
6、②;
7、1010393.7⨯;
8、D .63105500000040000)5(⨯-=-=⨯-
9、A ;10、D ;
11、地球绕太阳转动的速度快.
1.5.3近似数
1、按要求对05019.0分别取近似值,下面结果错误的是( )
A 、1.0(精确到1.0)
B 、05.0(精确到001.0)
C 、050.0(精确到001.0)
D 、0502.0(精确到0001.0)
2、由四舍五入得到的近似数01020.0,它的有效数字的个数为(

A 、5个
B 、4个
C 、3个
D 、2个
3、下列说法正确的是( )
A 、近似数32与32.0的精确度相同
B 、近似数32与32.0的有效数字相同
C 、近似数5万与近似数5000的精确度相同
D 、近似数0108.0有3个有效数字
4、已知5.13亿是由四舍五入取得的近似数,它精确到( )
A 、十分位
B 、千万位
C 、亿位
D 、十亿位
5、598.2精确到十分位是( )
A 、2.59
B 、2.600
C 、2.60
D 、2.6
6、(1)025.0有 个有效数字,它们分别是 ;
(2)320.1有 个有效数字,它们分别是 ;
(3)61050.3⨯有 个有效数字,它们分别是 .
7、50名学生和40kg 大米中, 是精确数, 是近似数.
8、把47155精确到百位可表示为 .
9、按照括号内的要求,用四舍五入法对下列各数取近似数:
(1)0238.0(精确到001.0);(2)605.2(保留2个有效数字);
(3)605.2(保留3个有效数字);
(4)20543(保留3个有效数字).
10、下列由四舍五入法得到的近似数,各精确到哪一位?有几个有效数字?
;
4.132)1( (2)0572.0; (3)31008.5。

相关文档
最新文档