11.3 角的平分线的性质(第二课时)

合集下载

角的平分线的性质第二课时教案

角的平分线的性质第二课时教案

角的平分线的性质第二课时教案
11.3角的平分线的性质(第2课时)
 【教学目标】
 1.使学生掌握角的平分线的判定定理,并会用角的平分线的性质定理和判定定理解决有关简单问题.
 2.通过引导学生参与活动的过程,使学生体验定理的发现及证明的过程提高思维能力.
 3.通过师生互动,培养学生学习的自觉性,激发学生探究新知的热情. 【教学重点】角的平分线的判定定理的探索与角平分线的性质定理和判定定理应用.
 【教学难点】角的平分线性质定理和判定定理的区别与联系.
 【教学方法】启发探究式.
 【教具】三角板
 【教学流程】
 一、复习引入:
 学生口答角的平分线有什幺性质?教师强调说明:
 “在角平分线上的点”都具有“到角的两边距离相等”的性质,即角平分线上没有不具备此性质的点.那幺,反过来会怎幺样呢?
 二、探索新知:
 1、提出问题,创设情境:
 如图,要在S区建一个贸易市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米,这个贸易市场应建于何处(在图上标出它的位置,比例尺为1:20000)。

11.3角的平分线的性质说课稿

11.3角的平分线的性质说课稿

角的平分线的性质(二)一、教材的分析和处理本节课选自人教版《义务教育课程标准实验教科书·数学》八年级上册,第十一章第三节内容“角的平分线的性质”。

1、教材的地位和作用角的平分线的性质是全等三角形知识的运用和延续,为后面证明线段相等、角相等的几何证明开辟了一种新的,更为简捷的方法。

同时也是轴对称图形的基础,并为解决九年级下册确定内切圆的圆心提供了依据。

本节分两个课时,我选的是第二课时。

本课时主要探究角的平分线的性质和判定,并能在此基础上进行简单的应用.教材不仅为学生动手操作、观察、思考、验证、交流等提供了较好的素材,使学生通过自主探究、合作交流等方式形成新的知识,更让学生学习了怎样从实际问题中建立数学模型,从而解决相关的实际问题。

2、教学目标知识与技能:掌握角的平分线的性质和判定,并会运用它们解决实际问题.过程与方法:通过让学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操作能力和逻辑思维能力,提高解决问题的能力.情感态度与价值观:经历对角的平分线的性质和判定的探索过程,发展应用数学知识的意识与能力,培养学生良好的学习态度及严谨的科学态度,体验探索过程中的乐趣与成功后的喜悦.3、教学重、难点重点:掌握角的平分线的性质和判定.难点:理解角的平分线的性质和判定的互逆关系,并能正确运用它们解决问题.4、教材的处理教材是围绕现实生活中的实际问题采用“创设问题情境—建立数学模型—解释、应用与拓展”的基本教学模式来展开教学活动。

让学生经历探索角的平分线的性质、判定的形成与初步的应用过程,从而能从理性逻辑思维的角度掌握性质和判定的区别与联系,达到真正的“学数学”和“用数学”。

二、教法、学法课堂教学利用引导,鼓励,赏识的教学方法充分调动学生的积极性,激发学生内在的动力,让他们主动的投入到学习中去,成为教学的主体和学习的主人,以获取最大限度的发展。

三、教学手段和教具准备教学手段:多媒体辅助教学,促进学生自主学习,提高学习效率.教具准备:学生各自准备一张三角形纸片.四、教学过程设计(1)创设情境、引入新知有两条小河交汇形成的三角区,土壤肥沃,气候宜人,有一头小牛的家就建在小河交汇所成的角平分线上的A处。

《 角的平分线的性质(第二课时)》精品教案 2022年公开课一等奖

《 角的平分线的性质(第二课时)》精品教案 2022年公开课一等奖

教学过程设计角平分线的判定定理的应用:多媒体展示:〔1〕现有一条题目,两位同学分别用两种方法证明,问他们的做法正确?那一种方法好? :, CA ⊥OA 于A ,BC ⊥OB 于B ,AC=BC求证: OC 平分∠AOBB AO C证法1:∵CA ⊥OA ,BC ⊥OB ∴∠A=∠B 在△AOC 和△BOC 中⎩⎨⎧==BC AC OCOC ∴△AOC ≌△BOC 〔HL 〕∴∠AOC=∠BOC ∴OC 平分∠AOB 证法2:∵ CA ⊥OA 于A ,BC ⊥OB 于B , AC=BC ∴OC 平分∠AOB 〔角平分线判定定理〕〔2〕:如图,AD 、BE 是△ABC 的两个角平分线,AD 、BE 相交于O 点求证:O 在∠C 的平分线上三、课堂训练多媒体展示:、1.如图,DB ⊥AN 于B ,交AE 于点O ,OC ⊥AM 于点C ,且OB=OC ,假设∠OAB =25°,求∠ADB 的度数.想及证明,归纳角平分线的判定定理。

学生明确在一定条件下,证角平分线不再用证三角形全等后再证角相等得出,可直接运用角平分线判定定理。

教师引导学生分析,思考,写出证明过程。

教师标准书写格式。

学生应用角的平分线判定定理解题。

概括能力。

使学生明确角平分线判定定理的作用。

稳固角的平分线的性质与判定的应用,培养学生分析问题、解决问题的能力。

稳固本节所学。

BD MC N E A G板 书 设 计2.如图,AB =AC ,DE ⊥AB 于E , DF ⊥AC 于F ,且DE =DF . 求证:BD =DC 四、小结归纳1.角平分线判定定理及期作用;2.在一定条件下,证角平分线不再用三角形全等后角相等得出,可直接运用角平分线判定定理。

3.三角形三个内角平分线交于一点,到三角形三边距离相等的点是三条角平分线的交点。

五、作业设计1.教材习题11.3第3、4题;2.补充作业:如图,ABC ∆的外角∠CBD 、∠BCE 的平分线相交于点F 。

角平分线的性质(2)最新版

角平分线的性质(2)最新版
不负今生 曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。 1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳 市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又变了,在省城长沙,店面也由摊点变成 了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。 这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝 咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的……”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰 难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生 畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持的精神,或许只是一瞬间 的坚持我们就挖掘了自身潜能,造就了一个全新的自己。有时做一件事就像是跑400米,当你已经跑过300米,面对着那已出现在眼前的终点线时,你实际上并不需要多想, 要做的就是再加把劲,冲过去,得到真正属于自己的成绩。坚持是一种信念,让你有不怕困难、奋勇向前的勇气;让你有乘风破浪、直击沧海的豪情;让你有不达目的誓不罢休

角的平分线的性质(第2课时)精选教学PPT课件

角的平分线的性质(第2课时)精选教学PPT课件
1.判断题: (1)如图,若QM =QN,则OQ 平分∠AOB;( X )
A M
Q
O
N
B
应用角平分线性质定理的逆定理
1.判断题:
(2)如图,若QM⊥OA 于M,QN⊥OB 于N,则
OQ是∠AOB 的平分线;
(X )
A
M
Q
O
N
B
应用角平分线性质定理的逆定理
1.判断题: (3)已知:Q 到OA 的距离等于2 cm, 且Q 到OB
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能ห้องสมุดไป่ตู้明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
应用角平分线性质定理的逆定理
距离等于2 cm,则Q 在∠AOB 的平分线上.(√ )
A
M
Q
O
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个广告牌P,使它到两 条公路的距离相等.
(1) 这个广告牌P 应建于何处?这样的广告牌可 建多少个?
S
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个广告牌P,使它到两 条公路的距离相等.
P NM
变式拓展
变式2 如图,P 点是△ABC
A
的两个外角平分线 BM,CN 的交
点,求证:点 P 在∠BAC 的平分 B
C
线上.
P NM
变式拓展
变式3 如图,将问题3中“S 区”去掉,广告牌P 到两条公路和一条铁路的距离相等.这个广告牌P 应建 在何处?

新人教版11.3角的平分线的性质第二课时

新人教版11.3角的平分线的性质第二课时

已知:如图,PD⊥OA,PE⊥OB,点D、E为垂足, PD=PE. 求证:点P在∠AOB的平分线上. 证明: 证明 ∵ PD⊥OA,PE⊥OB(已知), ⊥ , ⊥ (已知), ∴ ∠PDO=∠PEO=90°(垂直的定义) = = ° 垂直的定义) 在Rt△PDO和Rt△PEO中 △ 和 △ 中 PO=PO(公共边) = (公共边) PD=PE ∴ Rt△PDO≌Rt△PEO(HL) △ ≌ △ ( ) ∴ ∠ POD=∠POE = ∴点P在∠AOB的平分线上
Hale Waihona Puke 2、如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等 证明:过点 作 ⊥ 于 , 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F ⊥ 于 , ⊥ 于 ∵BM是 的角平分线, BM上 ∵BM是△ABC的角平分线,点P在BM上, 的角平分线 ∴PD=PE 同理,PE=PF. 同理,PE=PF. ∴PD= ∴PD=PE=PF. 即点P到三边AB BC、CA的距离相等 AB、 即点P到三边AB、BC、CA的距离相等 结论:三角形的三条角平分线交于一点, 结论:三角形的三条角平分线交于一点, 并且交点到三角形三边的距离相等。 并且交点到三角形三边的距离相等。
角的平分线的性质: 角的平分线的性质: 角的平分线上的点到角的两边的距离相等 用数学语言表述: ∵ OC是∠AOB的平分线 是 的平分线 PD⊥OA,PE⊥OB ⊥ , ⊥ ∴ PD=PE =
O 1 2 E B D P C A
反过来, 反过来,到一个角的两边的距离相等的点是 否一定在这个角的平分线上呢? 否一定在这个角的平分线上呢? 已知:如图,PD⊥OA,PE⊥OB,点D、E为垂足, PD=PE. 求证:点P在∠AOB的平分线上.

角平分线的性质第2课时课件人教版八年级数学上册(完整版)

角平分线的性质第2课时课件人教版八年级数学上册(完整版)

的距离分别为OF,OD,OE,且OF=OD=OE,若
∠BAC=70°,则∠BOC= 125° .
3.判断题:
(1)如图1,若QM=QN,则OQ平分∠AOB.( × )
(2)如图2,若QM⊥OA于点M,QN⊥OB于点N,则OQ平分
∠AOB.( × )
当堂训练
4.如图所示,点P是△ABC的外角∠CBE和外角∠BCF
讲授新知
知识点3 三角形三个内角平分线的性质
分别画出以下三角形的三个内角的角平分线,从位置上你能观察出什么 结论?
三角形三个内角的角平分线的交点位于三角形的内部.
讲授新知
过交点分别作三角形三边的垂线,根据角平分线的性质定理 你能得出什么结论?
A
A
A

边的垂线段相等

C
(1)使用该判定定理的前提是这个
点必须在角的内部;
(2)角的平分线的判定定理是证明两角相
等的重要办法.
O
几何表示:
B
E PC

D
A
如图所示,因为点P是∠AOB内的一点,PD⊥OA,PE⊥OB,垂
足分别为D,E,且PD=PE,所以点P在∠AOB的平分线OC上.
范例应用
例1 如图所示,要在S 区建一个集贸市场,使 它到公路、铁路的距离相等,并且离公路和铁路 的交叉处500 m. 这个集贸市场应建于何处(在图 上标出它的位置,比例尺为1:20 000)?
解:因为
图上距离
500m
=
1
20000
所以图上距离 = 0.025m = 2.5cm.
如图所示:P点即为所求 ;理由如下: P点在这个交叉口的角平分线上,
P
所以P点到公路与铁路的距离相等.

11.3角平分线的性质(第二课时)

11.3角平分线的性质(第二课时)

2008年下期八年一期数学师生共用讲学稿(NO:10)
执笔:刘伟平审核:吴光丁姓名
学习课题:11.3角的平分线的性质(第二课时)
学习内容:教材P21
学习目标:1、进一步熟练角平分线的画法,证明几何命题的步骤
2、进一步理解角平分线的性质及运用
学习重点:角平分线的性质及运用
学习难点:角平分线的性质的灵活运用
学习方法:探究、交流、练习
学习过程:
一、课前巩固
1、画出三角形三个内角的平分线
你发现了什么特点吗?
2、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等
二、学习新知
(一)思考:教材P21
1、求证:到角的两边的距离相等的点在角的平分线上
2、完成思考中的问题(完成于书上)
(二)应用
1、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求
证∠1=∠2
三、总结
四、作业
1、如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB 交OB于E,F是OC上的另一点,连接DF,EF,
求证DF=EF
2、如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC于E,PF∥AC交BC于F,求证:D到PE的距离与D到PF的距离相等。

第2课时 角平分线的性质与判定的综合应用

第2课时 角平分线的性质与判定的综合应用

求证:BD=2CD。
A
B 证明:
D
C
∵∠C=90°,∠B=30° ∴Rt△ABC中,AB=2BC,∠BAC=60° ∵AD是△ABC的角平分线 ∴∠BAD=∠DAC=30°,AD=BD ∴Rt△ACD中,AD=2CD ∴BD=2CD
3.已知:如图,△ABC的外角∠CBD和∠BCE的角平分线相
交于点F。
E
C
H
(三角形的三条角平分线相交于一点,并且这一点到三边的距离相等)
这又是一个证明三条直线交于一点的根据之一,这个交点叫做三 角形的内心。
比较三角形三边的垂直平分线和三条角平分线的性质定 理
三边角三角形
交点性质
交于三角形内一点 交于三角形外一点 交于斜边的中点
第二课时
角平分线
1.角平分线的性质定理 定理:角平分线上的点到这个角的两边距离相等。
A D
如图,
O1 2
P C
∵OC是∠AOB的平分线,P是OC上任意一点, PD⊥OA,PE⊥OB,垂足分别是D,E(已知
E B

∴PD=PE(角平分线上的点到这个角的两边距
离这相个等结)论是经常用来证明两条线段相等的根据之一。
A
求证:点F在∠DAE的平分线上。
B
C
证明:
∵BF是∠CBD的角平分线 D ∴F到BC,AD的距离相等
F
E
∵BF是∠CBD的角平分线
∴F到BC,AE的距离相等
∴F到AD,AE的距离相等
从而点F在∠DAE的平分线上
4.已知:如图,P是∠AOB平分线上的一个点,并且
PC⊥OA,
PD⊥OB,垂足分别是C,D。 C A 求证:(1)OC=OD;

角平分线的性质和判定复习2

角平分线的性质和判定复习2

角平分线的性质和判定复习11.3角的平分线的性质(二)问题1:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:问题2:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表: 性质一:∵ ∴ 性质二:∵∴ 3.学生思考:如图所示,要在S 区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m ,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?一、夯实基础1.如图1所示,AD ⊥OB ,BC ⊥OA ,垂足分别为D 、C ,AD 与BC 相交于点P ,若PA =PB ,则∠1与∠2的大小是( ) A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定2.△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB =12cm ,则△DBE 的周长为( )A 、12cm B 、10cm C 、14cm D 、11cm 3.如图2所示,已知PA 、PC 分别是△ABC 的外角∠DAC 、∠ECA 的平分线,PM ⊥BD ,PN ⊥BE ,垂足分别为M 、N ,那么PM 与PN 的关系是() A.PM >PN B.PM =PN C.PM <PN D.无法确定4.如图3所示,△ABC 中,AB=AC ,AD 是∠A 的平分线,DE⊥AB ,DF ⊥AC ,垂足分别是E 、F ,下面给出四个结论,其中正确的结论有( )①AD 平分∠EDF ; ②AE=AF ;③AD 上的点到B 、C 两点的距离相等 ④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等 A 、1个 B 、2个 C 、3个 D 、4个 5. 如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,PA ⊥AB ,PC ⊥BC ,垂足分别为A ,C .下列结论错误的是( ). A .AD=CP B .△ABP ≌△CBP C .△ABD ≌△CBD D .∠ADB=∠CDB . 6. (2007广东)到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点7.在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD=5cm ,那么D 点到直线AB 的距离是 cm . 二、细心做一做,你会成功BDCD M A NP E图2 B 图3 图1A BCD PSS8.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,求证:∠B =∠C.9.如图,已知在△ABC 中,90C ∠= ,点D 是斜边AB 的中点,2AB BC =,DE AB ⊥ 交AC 于E .求证:BE 平分ABC ∠.10. 先作图,再证明.(1①作ACB ∠的平分线CD ,交AB 于点D ; ②延长BC 到点E ,使CE CA =,连结AE . (2)求证:CD AE ∥.11.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB. 求证:DF =EF. 证明:∵∠1=∠2,PD ⊥OA ,PE ⊥OB ,∴ = (角的平分线的性质) ∵∠3=∠1+90°,∠4=∠2+90°,∴∠3=∠4. (剩余的补充完整)12.如图,△ABC 中,P 是角平分线AD ,BE 的交点.求证:点P 在∠C 的平分线上.13.已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠. (1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论. (2)线段DM 与AM 有怎样的位置关系?请说明理由.中考链接16.(2007广东茂名)Rt 90ABC C BAC ∠∠在△中,=,分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是( A .1 B .2 C .3 D .417.(2006年镇江)⑴如图,已知△ABC ,∠C =90°.(尺规作图,保留作图痕迹):① 作∠B 的平分线,与AC 相交于点D ; ② ②在AB 边上取一点E ,使BE =BC③ 连接ED;⑵根据所作图形,写出一组相等的线段和 一组相等的锐角.(不包括BE =BC ,∠EBD =∠CBD )答:________________________________________________.A B CD EPMF34PDEO ABC12A EC参考答案夯实基础1.选A ,提示:∵AD ⊥OB ,BC ⊥OA ,PA =PB2.2.选A ;提示:∵AD 是∠BAC 的平分线,DE ⊥AB ,∠C △AED ,∴CD =DE ,AE =AC ,∴△DBE 的周长=DE +EB BC +EB =AC +EB =AE +EB =AB =12cm .3.选B ,提示:过P 作PT ⊥AC 于T ,因为PA 平分∠DAC 又PC 平分∠ACE ,PT ⊥AC ,PN ⊥BE ,∴PN =PT ,∴PM 4.选D ,提示:①②③④都正确. 5.A6.8,提示:根据角平分线的性质可得D 到斜边AB 7.①、②、④ 8.269.由∠C =90°,AD 平分∠CAB ,可作DE ⊥AB 于E 离是DE 的长,由角平分线的性质可知DE =CD .又BC 以DE =CD =3cm .所以D 点到直线AB 的距离是3cm . 10.四处.提示:如图2所示:⑴作出△ABC 两内角的平分线,其交点为O 1;⑵分别作出△ABC 两外角平分线,其交点分别为O 2,O 3,O 4,故满足条件的修建点有四处,即O 1,O 2,O 3,O 4.11.因为AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,所以DE =DF ,在Rt △DEB 与Rt △DFC 中,BD =CD ,DE =DF ,所以Rt △DEB ≌Rt △DFC (HL ),所以∠B =∠C . 12.D ∵是AB 的中点,12BD AB =∴, 2AB BC =∵,12BC AB =∴,BD BC =∴. 又∵DE AB ⊥,90C ∠= ,90C BDE ∠=∠=∴又BE BE =,Rt Rt BDE BCE △≌△(HL ), DBE EBC ∠=∠∴,BE ∴平分ABC ∠.(1)作图略;(2)AC CE =∵,AC CE ⊥,ACE ∴△为等腰直角三角形,.45ACD ∠=∴又CD ∵平分ACB ∠.45CAE ∠=∴.ACD CAE ∠=∠∴.CD AE ∴∥. (1)AM 平分DAB ∠. 证明:过点M 作ME AD ⊥,垂足为E .12∠=∠∵,MC CD ⊥,ME AD ⊥, ME MC =∴又MC MB =∵,ME MB =∴. MB AB ∵⊥,ME AD ⊥, ∴AM 平分DAB ∠.(2)AM DM ⊥,理由如下: 90B C ∠=∠= ∵,CD AB ∴∥(垂直于同一条直线的两条直线平行).180CDA DAB ∠+∠= ∴(两直线平行,同旁内角互补)又112CDA ∠=∠∵,132DAB ∠=∠(角平分线定义)2123180∠+∠= ∴,1390∠+∠= ∴, 90AMD ∠= ∴.即AM DM ⊥.BB 的平分线,标出交点D ;标出点E ,连接ED ;⑵写出DE =DC ,∠BDE =∠BDC 或∠ADE =∠ABC .2。

角的平分线的性质2 教案

角的平分线的性质2 教案

11.3 角的平分线的性质(第2课时)【课题】:角的平分线的性质(2)(平行班)【设计与执教者】:增城市新塘一中,刘宝芝,liu_baozhi@【教学时间】:45分钟【学情分析】:注重联系实际,通过确定集贸市场的位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生看到理论来自实际的需要。

同时注意学生应用结论进行证明时的严格性与规范性。

【教学目标】:(1)知识与技能目标:掌握角的平分线的两个性质;能应用角的平分线的性质解决一些简单的实际问题。

(2)过程与方法目标:通过探索集贸市场的位置加深学生对角的平分线的性质的理解。

引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

(3)情感与态度目标:利用角的平分线的性质探索集贸市场的位置,使学生的求知欲望得到激发,使学生通过应用已学知识解决身边的问题,提高学生学习数学的兴趣。

【教学重点】:角的平分线的性质的运用及运用【教学难点】:角的平分线的性质的探究【教学突破点】:通过实际生活中的例子对比角的平分线的两个性质。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件【教学过程设计】:教学环节教学活动设计意图一、复习引入问题1.一个S区有一个集贸市场,在公路与铁路所成的角平分线上的P点,要从P点建两条路,一条到公路上,另一条到铁路上,怎样修建距离最短?这两条路有什么关系?画出来看一看?问题2.以上我们运用了什么知识点?角平分线上的点到角的两边的距离相等.问题3.那么到角的两边距离相等的点是否在角的平分线上呢?根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠POE=∠POD.由已知推出的事项:点P在∠AOB的平分线上.利用所学的数学知识解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。

角的平分线的性质(2)

角的平分线的性质(2)
13.3
角平分线的性质(2)
复习回顾
1、角平分线性质定理: 角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上 且PM⊥OB,PN⊥OA, N A P C B
∴PM=PN M 2、角平分线性质定理的逆定理: 到角的两边的距离相等的点在角的平分线上.
∵ PM⊥OB,PN⊥OA 且PM=PN. ∴点P在∠AOB的平分线上.
A
想一想
B
N
D P E
FM
C
点P在∠A的平分线上吗?这说明 三角形的三条角平分线有什么关系?
三角形的三条角平分线相交于一点, 并且这点到三边的距离相等。
练习
1、如图, △ABC的∠B的外角的平分线BD与∠C的 外角的平分线 CE相交于点P。 求证:点P到三边AB,BC,CA所在直线的距离相等。 C P D E
; / 外汇 ;
了五十岁之后,各方面都开始衰退了,俺…是有心无力啊!" "是啊!" 夜白虎也跟着幽幽一叹说道:"俺们三人二十年前就已经突破了圣人境,现在却还是修炼到二重,这成神之路,太难了.看着不咋大的寒子不咋大的语她们一些顶个实力飙升,马上就要追上俺们了,俺都感觉老脸发烫啊!" "能有什么 办法呢?这修炼道路越年轻境界越高,成神の几率就越高.但是年轻の时候能达到像不咋大的寒子の境界の大陆以前有吗?老祖宗当年突破圣人境好像也到了三十多岁吧?俺说你呀们两人别想太多,这种机缘可遇不可求.俺反正是看开了,该玩の玩过了,该享受の享受了,也没什么遗憾了.这最后一步能不 能迈出,就看天意了,至少俺们努力过了,入土之前也不会后悔,不是吗?"夜青牛性格大大咧咧の,说起话来也很无所顾忌,有些东西几多看得开. "说得好,管他了!命中该有の跑不掉,不该有の强求不得,还有几十年の寿元,最后拼搏一把啊!"夜天龙古板刚毅の脸上露出一丝苦笑,夜青牛没遗憾,他却 有.只是他一直不善表达出来而已.月惜水,一直是他心口永远不能抚平の伤. "咻!" 就在这时,远处传来一阵破空声.三人都同时停止了谈论,而后全部笑意盈盈の站了起来,朝门外走去. "白重炙拜见三位爷爷!" 来人正是白重炙和夜轻舞,白重炙带着她一路直接飞来,降落在阁楼前,微微一笑行了 一些礼. "拜见三位爷爷,哎呀!爷爷,你呀这么受伤了?严重吗?"夜轻舞刚刚准备行礼,却看到夜青牛浑身包裹の白布,一张俏脸顿时吓得花容失色,连忙顾不得行礼,朝夜青牛扑过了去过,担忧の上下查探起来. "丫头,大惊不咋大的怪什么.都嫁了人了,怎么还这么不稳重?身为练家子,受伤是常事,有 什么奇怪の?你呀爷爷是谁?堂堂一圣人境高手,这点不咋大的伤,修养几天就好了!"夜青牛鼓着一双牛眼,佯装训斥,但是眉眼中却是一片の慈祥之意.他显然不想,在夜天龙和夜白虎以及白重炙面前丢了脸面. "青牛爷爷,这是十瓶绝品の疗伤菜你呀这の伤势,抹上去,一日便可好!"白重炙早有准备, 从鹿老那要了十瓶神界の疗伤良菜递了过去.他知道夜轻舞如果看到夜青牛の伤势恐怕会担心の不得了,到时候怕是又要闹着停留几日了. "爷爷,快进去,俺给你呀抹上!"夜轻舞接过瓶子,想到马上就要离去,眼角都是泪水,扶着夜青牛往里边走去. 一番忙活,这疗伤菜果然神奇,一抹上,伤口便迅速 以肉眼可见の速度变好了.夜天龙和夜白虎在白重炙の坚持下也无奈之好也抹了一遍. 最后三老回归大厅,白重炙让夜轻舞陪着三人,也没有过多の解释.而是直接移形换位去了寒心阁将月倾城和夜轻语也带来了. "砰!" 在白重炙の示意上,四人齐齐跪在三老面前,行了一些大陆最隆重の三拜九叩大 礼,把三老搞得莫名其妙,而夜轻舞更是哭得一塌糊涂,把夜青牛急得差点暴走了. "三位爷爷,等会轻寒就会带着她们远离雾霭城,这一去…也不知什么时候才能回来给你呀们三人尽孝了.你呀们先不要着急着问,等俺把话说完…这是俺和老祖宗共同决定の事情,至于原因,老祖宗会告诉你呀们.今日一 别,也不知何时再能见面,希望三位爷爷好好珍重!当然,如果三位爷爷,有时候你呀们可以来紫岛一见,俺也会尽俺最大努力,争取早日重返雾霭城の." 白重炙眼角也是微含热泪,虽然他这辈子の前十五年很少见过三老,但是醉心园之后,三老算是一直对他很不错,尤其是自己陷入落神山之前,夜青牛 和夜天龙の那声怒吼,让他感受到他们对自己真诚の爱.当然这或许和自己实力暴涨有关系,但是至少那一刻开始,他开始接受了这三人. "这是一枚天神巅峰の神晶,你呀们三人可以选择一人炼化.这…算是临行前,俺送给你呀们の礼物!" 说完,白重炙掏出一些青色玉盒递给夜天龙,带着三人再次重 重の叩下.最后带着哭得稀里糊涂の夜轻舞,强忍住内心の悲伤,毅然转身离去.白重炙知道这时候只能快刀斩乱麻,否则恐怕好几天都走不了了. "这…族长,这是怎么回事?"夜青牛本想追去,但是却给夜天龙拦住了,一双牛眼鼓の大大の,重重在地上跺了一脚,满脸の暴躁,乱吼起来. "急什么青牛,你 呀没听到不咋大的寒子说俺们日后可以去紫岛见她们吗?俺已经传讯给老祖宗了,等他来了在问清楚吧.哎…发生了什么事情?竟然严重到要去紫岛避难の地步了?" 夜天龙狠狠瞪了夜青牛一眼,似乎在责怪他轻重不分.夜白虎此刻却还震撼在白重炙送给白家の天神巅峰神晶.两人被夜天龙一说都惊醒 过来,白重炙刚刚实力大进,为破仙府破解了一些大危机,现在却要匆匆离去.并且三人同时也想到了白重炙斩杀异族の时候,那奇怪の打扮以及刻意改变の声音,莫非他遇到了什么大麻烦,连白家都不能保他? "因为…他杀了屠千军,所以他必须走!否则白家都会完蛋!" 这时夜若水突然瞬移过来了, 沉沉一叹,有些无奈の说道:"传令下去,将那天雾霭城外の事在**一遍,族中子弟凡是谈论此事,全部逐出白家,严重者就地格杀!" 片刻之后,一辆没有任何标志の豪华大马车,悄然の从雾霭城东门朝远方绝尘而去. 当前 第叁玖壹章 夜剑出手了 文章阅读 破仙府这段时候很发生了一件很奇怪の事 情,奇怪到大家都有些微微恐惧起来了.看书 前几日在雾霭城参加过那场大战,劫后余生の所有强者,都不约而同再次接到了一些来自破仙府最高级别の命令.同样の意思,就是严禁谈论传播那场大战の那张巨脸,以及那个黑袍人.并且这次似乎更严重,破仙府直接下了一些破仙血令,说此事关系到破仙 府の存亡,凡谈论传播此事者,杀无赦! 上次在雾霭城,或许所有の强者会感到惊疑,但是这次却明显都惶恐了.这事情显然看起来非常严重,都严重到破仙府の存亡了,谁还敢在谈论?不少人已经偷偷和别人谈起过の,连忙开始擦屁股补救起来,而不少人则打算把这事烂在了肚子里. 很明显,夜若水の 两次禁言起了很大作用.大陆所有の神级强者虽然在那一日大战の时候,都有用神识过来偶尔查探.但是因为怕触怒金麒却没敢将神识散发在战场中央,而后来那张巨脸出现之后,更是连远远查探都不敢了. 直到战事完毕之后,那张巨脸和异族全部消失之后,他们才敢慢慢将神识辐散过来.却发现异族 已经全部消失了.但是那一刻很明显,他们都以为是因为噬大人出手了,把异族杀の杀,赶の赶,这才平息了这场灭世危机. 蛮神府隐岛,在庆幸暗喜同时,开始纷纷打探起事情の经过.而妖神府神城在暗骂の同时,也开始四处打探起那日发生の事情. 夜若水の第一条传音起了作用,当夜虽然有无数の神 识锁定了雾霭城广场の帝王境练家子.但是后面却无人在谈论.他们只是隐隐听到,似乎有个黑袍强者,拯救了破仙府? 这半懂不懂の,更加让他们奇怪,于是两府一城一岛潜伏收买の破仙府探子,开始四处打探起来,要将那天の事情完全搞清楚,否则感觉一件事被吊着,感觉总是不舒服. 只是在破仙府 第二道禁口令下,都没有查探出什么确切の情报.这下更是了不得了,几番势力本来还没太大注意,现在破仙府几次禁口令,将这事悟得那么紧,一点风声不透.这…里面没有隐藏什么天大の秘密,谁也不相信了.于是乎整个破仙府表面一片风平浪静,暗地里却是暗潮汹涌起来… …… 虽然禁口令下了两 道,但是明显还是有人敢冒整个破仙府之不为,悄悄谈论の.比如夜剑就有这个胆子. 夜剑一直是个势利心很重の人,年轻の时候他天赋一样,被夜刀压了几十年,但是他一直隐忍着.那次夜刀固执の去了落神山,他认为是个机会,于是他果断出手了,结果他赢了,夜刀死了. 大房在他の静心经营之下,在 白家,在破仙府北方一手遮天.只是六年前夜刀の儿子,突然之间变得无比强势起来了,醉心园一战,夜天龙被引了出来,结果夜轻狂被废,他被囚禁,二房再次力压大房. 他没有放弃,继续隐忍,在后山,因为没有俗事缠身,他

角平分线的性质(第二课时)教学设计

角平分线的性质(第二课时)教学设计

设计意图:
定理 的应 用。
2、学生的书写格式是 否规 范。
加深学生对于 “三 角形 两角平分线 的
通过 一系列的 习题应用 .目的是通 过
本 练 习是 在学 完判定 定理 之后 设计 交点到三边的距离相等。”
层层 递进 。激 发学 生的 求知欲 ,增强克服 的两道 练习题 ,目的是让 学生通过练 习来
里 ?
应 用 1.要 在 A 区 建一 个 货物 中转
重点是 :角平分 线的判定定理 的证 明
此活动应关注 :
站 。使它到三条公路 的距离相 等 ,请 问 :中
及应用 。
1、学生是否能对 角平 分线 的判定定 转站应建在何处?
难 点是 :角平分 线的性质定理 和判定 理进行 简单 的应用。
2.过程与方法 。
会 尊重和理解他人意见 。养成 良好 的个人
1、学生是否都能参与到教学 过程 中,
(1)通 过学 习活动 。进 一步发展 和提 品质。
是否 都能准确地 画 出角平分线 上的点到
高学生推理证 明的意识和能力。
活 动 三
角两边的距离。
(2)经历探 索、猜想 、证明使学 生掌 握
一 个初步 的认 识 .而角平分线 的性质定理
设计 意图:
2、学生能否运用比例尺正 确的计 算
和逆 定理 又分 别是证 明线 段相等和 角相
1、学生可以互相讨论 .分析原命 题的 出图上距离。
等 的方法 .对 学生后续学 习几何有非常大 条件和结论 。整理出它的逆命题 。(多媒体
2、学生的书写格式是否规范 。

3、检验学生是否能灵活运 用角平分

人教版数学八年级上册 角的平分线的性质(第2课时)

人教版数学八年级上册   角的平分线的性质(第2课时)

课堂检测
基础巩固题
1. 如图,某个居民小区C附近有三条两两相交的道路MN,
OA,OB,拟在MN上建造一个大型超市,使得它到OA,
OB的距离相等,请确定该超市的位置P.
A
M
小区C
P
O
N
B
课堂检测
2. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC
交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的
∠BOC=180°-70°=110°.
探究新知 方法点拨
由已知,O 到三角形三边的距离相等,得 O是三角形三条内角平分线的交点,再利用三
角形内角和定理即可求出∠BOC的度数.
探究新知
角的平分线的性质 角的平分线的判定

图形
C P
C P



OP平分∠AOB
PD=PE
已知 条件
PD⊥OA于D
PE⊥OB于E
发现:三角形的三条角平分线相交于一点.
探究新知 分别过交点作三角形三边的垂线,用刻度尺量一量,每组
垂线段,你发现了什么?
你能证明这 个结论吗? 发现:过交点作三角形三边的垂线段相等.
探究新知
证明结论
已知:如图,△ABC的角平分线BM,CN相交于点P,
求证:点P到三边AB,BC,CA的距离相等.
证明:过点P作PD,PE,PF分别垂直于AB,
△ABC三边的距离相等.若∠A=40°,则∠BOC的度
数为( A )
A.110° B.120° C.130° D.140°
解析:由已知,O到三角形三边的距离相等,即三条角 平分线的交点,AO,BO,CO都是角平分线, 所∠B以C有O=∠C∠BAOC=O=∠AB1 ∠OA=CB12 ,∠ABC,

人教版数学七年级上册《角平分线的性质(第二课时)》教学设计

人教版数学七年级上册《角平分线的性质(第二课时)》教学设计

人教版数学七年级上册《角平分线的性质(第二课时)》教学设计一. 教材分析《角平分线的性质(第二课时)》是人教版数学七年级上册的教学内容。

本节课的主要内容是引导学生探究角平分线的性质,并学会运用角平分线解决一些几何问题。

教材通过角的平分线上的点到角的两边的距离相等这一性质,让学生体会几何图形的对称性,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了角的概念、邻补角的概念、线段的中点等知识。

但对于角平分线的性质,他们可能还没有直观的认识。

因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,引导学生观察、推理,从而发现和理解角平分线的性质。

三. 教学目标1.知识与技能目标:让学生掌握角平分线的性质,学会运用角平分线解决一些简单的几何问题。

2.过程与方法目标:通过观察、实验、推理等方法,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强学生对数学学科的兴趣。

四. 教学重难点1.重点:角平分线的性质。

2.难点:理解并证明角平分线上的点到角的两边的距离相等。

五. 教学方法1.情境教学法:通过生动的生活实例和几何模型,引导学生观察、推理,发现角平分线的性质。

2.问题驱动法:提出问题,引导学生思考,激发学生的学习兴趣。

3.合作学习法:分组讨论,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.教具准备:几何模型、幻灯片、黑板等。

2.学具准备:学生每人一份教材、一份练习题、一把直尺、一支笔。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入课题,如:“在修筑公路时,如何确定两条道路的交汇点?”让学生思考,引出角平分线的概念。

2.呈现(10分钟)教师通过幻灯片或板书,呈现角平分线的性质,引导学生观察、思考。

同时,教师用几何模型进行演示,让学生更直观地理解角平分线的性质。

3.操练(10分钟)教师提出问题:“如何证明角平分线上的点到角的两边的距离相等?”让学生分组讨论,共同解决问题。

人教版-数学-八年级上册角的平分线的性质 课时2

人教版-数学-八年级上册角的平分线的性质 课时2

11.3角的平分线的性质第二课时 角的平分线的性质(二)名师导航:本课重点是角平分线的判定方法:到角的两边距离相等的点在角的平分线上.也就是说,一个点只要到角的两边距离相等,那么这个点一定在这个角的平分线上. 用几何符号语言表示:如图1,∵ PD ⊥OA 于D ,PE ⊥OB 于E , PD =PE , ∴点P 在∠AOB 的平分线上.典例精析:【例题】如图,在ABC 中,PB ,PC 分别是∠ABC 的外角的平分线,试分析AP 是也能平分∠BAC 吗?试说明理由.【思路点拨】要证明AP 是∠BAC 的平分线,需要证明点P 到∠BAC 两边的距离相等,可作PE ⊥AB ,PG ⊥AC ,PH ⊥BC ,易证PE =PH ,PH =PG ,从而PE =PG .【解析】AP 是也能平分∠BAC .理由如下:过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PH ⊥BC 于点H . 因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC , 所以PE =PH , 同理可证PH =PG , 所以PH =PG =PE ,所以P 在∠BAC 的平分线上.【规律总结】除角平分线的定义外,这是判定角平分线的另一个重要方法,同学们注意积累.另外,本题所体现的还有转化思想,要想证明角平分线,我们要获得该射线上的点到角的两边距离相等,怎样获得呢?这就想到了适合本题的辅助线,还要借助于等量PH 代换才能获得有效解决. 跟踪训练:1. 如图,Rt △ACB ,90C ∠=,AD 平分CAB ∠,DE AB ⊥于E ,则下列结论中不正确的是( )A.BD ED BC += B.DE 平分ADB ∠ C.AD 平分EDC ∠ D.ED AC AD +>2.如图所示,在ABC △中,P 为BC 上一点,PR AB ⊥,垂足为R ,PS AC ⊥,垂足为S ,AQ PQ =,PR PS =.下面三个结论:①AS AR =;②QP AR ∥;③BRP CSP △≌△.正确的是( )A.①和② B.②和③C.①和③3.与相交的两条直线距离相等的点在()A.一条直线上B.两条互相垂直的直线上C.一条射线上D.两条互相垂直的射线上 4.下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等.5.如图所示,DB ⊥AB ,DC ⊥AC ,BD =DC ,∠BAC =80°,则∠BAD =________,∠CAD =_________.6.如图,Rt △ABC 中,∠C =90º,BD 是角平分线,DE ⊥AB ,垂足为E ,BC =6,CD =3,AE =4,则DE =_______,AD =_______,△ABC 的周长是_______.7.PB ,PC 分别是△ABC 的外角平分线且相交于P . 求证:P 在A 的平分线上(如图).8.如图,三条公路围成的一个三角形区域,要在这个区域中建一个加油站,使它到三条公路的距离都相等,加油站应建在什么位置?请用尺规作图,找出建造加油站的位置.9.如图,在∠AOB 的两边O A ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上.ABDC EOMNABEG C HPA BCD E11.3第2课时参考答案: 1.B 2.A 3.选B ; 4.选D ;5.因为DB ⊥AB ,DC ⊥AC ,且BD =DC ,所以AD 是∠BAC 的平分线,所以∠BAD =∠CAD =21∠BAC =21×80°=40°. 6.3,5,247.证明:过P 点作PE ,PH ,PG 分别垂直AB ,BC ,AC . 由题知PE PH =,PH PG =,PE PG =∴.P ∴点在A ∠的平分线上.8.提示:作两个角的平分线,交点即为建加油站的位置.9.提示:作CE ⊥OA 于E ,CF ⊥OB 于F ,OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD (SAS),∴S △MOE =S △NOD ,同时去掉S 四边形ODCE ,得S △MDC =S △NEC ,易证,MD =NE ,∴CE =CF ,∴点C 在∠AOB 的平分线上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程设计
三、课堂训练 多媒体展示:、
1.如图,已知DB ⊥AN 于B ,交AE 于点O ,OC ⊥AM 于点C ,且OB=OC ,若∠OAB =25°,求∠ADB 的度数.
2.如图,已知AB =AC ,DE ⊥AB 于E , DF ⊥AC 于F ,且DE =DF . 求证:BD =DC 四、小结归纳
1.角平分线判定定理及期作用;
2.在已知一定条件下,证角平分线不再用三角形全等后角相等得出,可直接运用角平分线判定定理。

3.三角形三个内角平分线交于一点,到三角形三边距离相等的点是三条角平分线的交点。

五、作业设计
1.教材习题11.3第3、4题;
2.补充作业:
如图,ABC ∆的外角∠CBD 、∠BCE 的平分线相交于点F 。

求证:(1) ∠BFC =A ∠-︒2
190;
(2) 点F 在∠DAE 的平分线上.
学生应用角的平分线判定定理解题。

学生总结所学知识,谈谈判定定理的用途。

巩固本节所学。

及时小结形成知识块。

B
D
M
C
N
E A
G
板书设计
可以编辑的试卷(可以删除)。

相关文档
最新文档