角的平分线的性质
八年级数学 角平分线的性质
八年级数学角平分线的性质八年级数学-角平分线的性质角平分线的性质角平分线性质:角平分线上任意一点到角两边的距离相等。
到角两边距离相等的点在角的平分线上。
............................................角平分线的画法:........例1已知O是三条角平分线的交点△ ABC和OD⊥ 如果外径=5且△ ABC等于20,面积△ ABC等于s△ ABC=例2如图所示,abd三边上AB、BC和Ca的长度分别为20、30和40,三个角的平分线将δabd分为三个三角形,然后s?阿宝:什么?bco:s?曹等于___1例3.如图:在△abc中,∠bac=90°,∠abd=∠abc,bc⊥df,垂足为f,af交bd于e。
2求证:ae=ef.例4如图所示:in△ ABC,相邻外角的平分线∠ B和∠ C与D点相交。
验证:D点位于∠ A.例5.如图所示,已知△abc中,ad平分∠bac,e、f分别在bd、ad上.de=cd,ef=ac.求证:ef∥ab.例6△ ABC,AB>AC,ad是∠ BAC。
P是ad上的任意点。
验证:ab AC>Pb PC1例7如图所示,∠ a+∠ d=1800,等分∠ 美国广播公司和行政长官意见相同∠ BCD,E点在广告上(1)探讨线段ab、cd和bc之间的等量关系;(2)探讨线段be与ce之间的位置关系.例8如图所示,已知△ ABC,ad是BC边缘的中线,e是ad上的点,延伸段be在F处与AC相交,AF=EF。
验证:AC=be课堂练习:1.如图所示△ ABC,P是高于BC,PR的点⊥ R中的AB,PS⊥ AC在s中,AQ=PQ,PR=PS,则以下三个结论的正确性为()① as=AR;②pq∥应收账;③ △ BRP≌ △ CSPA。
① 和② B② 和③ C① 和③ D.所有配对2.如图,ab=ac,be⊥ac于e,cf⊥ab于f,be、cf交于点d,则①△abe≌△acf;②△bdf≌△cde;③点d在∠bac的平分线上,以上结论正确的是()A.①②③B①②c.①③D②③3.在△abc和△a'b'c'中,①ab=a'b';②bc=b'c';③ac=a'c;④∠a=∠a';⑤∠b=∠b';⑥∠c=∠c';则下列哪组条件不保证△abc≌△a'b'c'.()A.①②③B①②⑤C①⑤⑥D①②④4.如图,已知点p到be、bd、ac的距离恰好相等,则点p的位置:①在∠b的平分线上;②在∠dac的平分线上;③在∠eac的平分线上;④恰是∠b,∠dac,∠eac三个角的平分线的交点。
角平分线用法
角平分线用法
角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全相同的角。
角平分线具有以下性质和用法:
1. 角平分线上的点到角的两边的距离相等。
2. 角平分线将角分成两个相等的角。
3. 如果一个角的内角平分线与外角平分线相交,那么它们所形成的角等于该角的一半。
角平分线的主要用法包括:
1. 求解角度或边长:利用角平分线的性质,可以通过已知角和角平分线上的点到角两边的距离,求解出未知的角度或边长。
2. 证明几何关系:通过角平分线的性质,可以证明两个角相等、两条线段相等或平行等几何关系。
3. 构建等腰三角形:如果从角平分线上的一点向角的两边作垂线,可以构建出两个等腰三角形。
4. 求解三角形问题:在三角形中,如果已知一个角的平分线和该角的对边,可以利用角平分线的性质求解出其他边长或角度。
角平分线在几何证明和计算中有着广泛的应用,通过灵活运用角平分线的性质和用法,可以解决许多几何问题。
角的平分线的性质
角的平分线的性质一. 基础知识1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如图所示,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.2.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如图所示,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是已知角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据已知某点到角两边的距离相等,则常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据已知条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是已知条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质”和“判定”恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.6.运用角的平分线的性质和判定解决探究型问题在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上”的应用是寻找角的平分线的一种比较简单的方法.三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.【例6】如下图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.课堂练习一、填空题1.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为 .2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.6.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,则CF______FG,CE________CF.7.如图,已知AB、CD相交于点E,∠AEC及∠AED的平分线所在的直线为PQ与MN,则直线MN与PQ的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等.9.点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为_____________.10.在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32且BD∶CD=9∶7,则D到AB的距离为.二、选择题11.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点 12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD 13.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定21DAPOEBl 2l 1l 3DCAEB第12题 第13题 第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPM第15题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )EDCBAA .2 cmB .3 cmC .4 cmD .5 cm17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①B .②C .①和②D .①②③EDC BAF18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm 20.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等 三、解答与证明21. 如图,已知△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.22. 如图,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD .求证:AD 平分∠BAC .23. 如图,已知BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠FAC .DFCBAE24. 如图,已知AB =AC ,AD =AE ,DB 与CE 相交于O . (1)若DB ⊥AC 于D ,CE ⊥AB 于E ,试判断OE 与OD 的大小关系.并证明你的结论. (2)若没有第(1)中的条件,是否有这样的结论?试说明理由.DCBAOE25.如图,∠B =∠C =90°M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .重点题型讲解1.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.2.如图.AE、BD是△ABM的高.AE、BD交于点C,且AE=BE,BD平分∠ABM.(1)求证:BC=2AD;(2)求证:AB=AE+CE;(3)求证:DE平分∠MDB。
角平分线性质的原理
角平分线性质的原理角平分线是指将一个角分成两个大小相等的角的线段。
角平分线有以下几个重要的性质:性质一:角平分线上的所有点到角的两边的距离相等。
这个性质可以通过几何推理证明。
假设有一个角ABC,角平分线AD将角分成两个大小相等的角∠BAD和∠DAC。
我们需要证明,角平分线上的点到角的两边的距离相等,即AD = BD = CD。
证明如下:首先,连接AC。
假设∠BAD = ∠DAC = x。
由于∠BAD和∠DAC大小相等,因此四边形ABCD可以分成两个等腰三角形∆ABD和∆ACD。
根据等腰三角形的性质,AD = BD,AD = CD。
所以,角平分线上的点到角的两边的距离相等。
性质二:角平分线和角的另一条边相交的点是角的内切点。
内切点是指和角的另一条边相切于一个点的线。
角的角平分线正好满足这个条件,因此角平分线和角的另一条边相交的点是角的内切点。
证明如下:仍以角ABC为例,设∠BAD和∠DAC是由角平分线AD分出的两个大小相等的角。
连接AC并延长到点D,假设角∠ADC是由角平分线AD分出的较大的角。
根据性质一,AD = CD。
又根据角度和定理,∠A + ∠BAD + ∠DAC + ∠ADC = 180。
由于∠BAD = ∠DAC,所以∠A + 2∠BAD + ∠ADC = 180。
进一步化简得到∠A + ∠BAD + ∠BAD + ∠ADC = 180。
由于∠BAD + ∠ADC = 180(补角关系),所以∠A + ∠BAD + ∠BAD + 180 - ∠BAD = 180。
整理得到∠A + ∠BAD = 180,即∠BAD + ∠DAC = 180。
这说明∠BAD和∠DAC 构成的直线与延长线AC重合于点D,所以角平分线和角的另一条边相交于角的内切点。
性质三:角的内切线平分角的大小。
内切线是指从角的内切点到角的顶点的线段,它平分了角的大小。
证明如下:再以角ABC为例,连接内切点D和角的顶点A,假设角∠BAC的内切线为AD。
数学上册角的平分线的性质
计算角度
在已知三角形两个角的情况下,可以利用三角形内角和定理计算出第三个角的大小。
证明全等三角形
在证明两个三角形全等时,如果两个三角形有两组对应的角分别相等,并且其中一组等角的 对边相等,那么这两个三角形全等(AAS)。此时,可以通过作角的平分线来构造全等的条 件。
解决实际问题
在实际问题中,如测量、建筑等领域,经常需要利用三角形内角和定理和角的平分线性质 来解决相关问题。例如,在测量一个角度时,可以通过测量另外两个角度并利用三角形内 角和定理来计算出目标角度的大小。
04 角的平分线与三角形面积 关系
04 角的平分线与三角形面积 关系
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
三角形面积公式是计算三角形面积的 基础,适用于任何类型的三角形。
三角形面积公式
三角形面积公式:S = 1/2 * b * h, 其中b为底边长度,h为高。
应用二
利用角的平分线性质解决与三角形面积相关的问题。例如, 在三角形中作一条角平分线,可以将原三角形划分为两个面 积相等的小三角形,从而简化问题或找到新的解题思路。
05 角的平分线在几何变换中 性质
05 角的平分线在几何变换中 性质
平移、旋转、对称变换下性质
01
02
03
平移不变性
角的平分线在平移变换下 保持其性质不变,即平移 后的角平分线仍然是原角 的平分线。
三角形内角和定理
三角形内角和定理
三角形的三个内角之和等于180°。
证明方法
通过平行线的性质或外角定理等方式证明。
角的平分线与内角和关系
角的平分线定义
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平 分线。
角的平分线知识点
角的平分线考点扫描掌握角平分线的性质定理和它的逆定理;能够利用它们证明一些相应的问题;理解互逆命题和互逆定理的概念.名师精讲1.角平分线性质定理及其逆定理性质定理:角的平分线上任意点到这个角的两边的距离相等;逆定理:到一个角的两边距离相等的点.在这个角的平分线上.由此可知,角的平分线是到两边的距离相等的所有点的集合.注意:要分清角平分线性质定理和它的逆定理的题设和结论,这两个定理,一个是性质,一个是判定,它们是有区别的,这两个定理的题设和结论正好相反.2.逆命题的定义也可以叙述为:交换一个已知命题的题设和结论所得的新命题叫做已知命题的逆命题.每个命题都有它的逆命题,原命题和逆命题两者是相对的.要注意真命题的逆命题不一定是真命题,假命题的逆命题也不一定是假命题.3.根据一个已知命题表述出它的逆命题是本节的一个难点.这就要求在对原命题深刻理解的基础上,把原命题写成“如果……,那么……”的句式,然后把两部分的内容交换,就得到它的逆命题.说明:中考中单独测验角的平分线的性质的题目较少,往往把角平分线与其它知识组合成较复杂的题目.角平分线的使用一、平分线的应用几何题中,经常出现“已知角的平分线”这一条件。
这个条件一般有下面几个方面的应用:(1)利用“角的平分线上的点到这个角的两边距离相等”的性质,证明两条线段相等。
(2)利用角是轴对称图形,构造全等三角形。
(3)构造等腰三角形。
二、应用举例:1.利用角平分线的定义例1.如图,已知AB=AC,AD//BC,求证AD平分∠EAC。
证明:因AB=AC,故∠B=∠C。
又因AD//BC,故∠1=∠B,∠2=∠C,故∠1=∠2,即AD平分∠EAC。
2.利用等腰三角形三线合一例2.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF 平分∠DAE。
证明:连结EF并延长,交AD的延长线于G,则ΔFDG≌ΔFCE,故CE=DG,EF=GF,于是AG=AD+DG=DC+CE=AE。
角平分线的性质
PD⊥OB,垂足为点D,若PD=2,则点P到边OA的距离是( B )
A. 1 B. 2 C. 3 D. 4
变式训练
1. 如图1-12-16-3,在Rt△ACB中,∠C=90°,AD平分∠BAC,
若BC=16,BD=10,则点D到AB边的距离是( D )
A. 9 B. 8 C. 7 D. 6
典型例题
∴Rt△BED≌Rt△CFD(HL). ∴EB=FC.
如图,△ABC中,∠B =∠C,AD 是∠BAC 的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F 。
证明:EB =FC 。
A
E
F
B
D
C
变式训练
2. 如图1-12-16-5,BD是∠ABC的平分线,AB=BC,点P在BD 上,PM⊥AD,PN⊥CD,垂足分别为点M,N.试证明:PM=PN.
知识点2:运用角的平分线的性质进行证明 【例2】如图1-12-16-4,在△ABC中,AD是△ABC的角平分线,且 BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E,F. 求证:EB=FC.
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC, ∴DE=DF, ∠BED=∠CFD=90°. 在Rt△BED和Rt△CFD中,
图1
图2
图3
如 图 ,OC 是 ∠ AOB 的 平 分 线 , 点 P 在 OC 上 ,PD ⊥OA,PE⊥OB, 垂,足 分 别 是 D 、 E,PD=4cm, 则 PE=_____4_____cm.
A
C
P
D B
E
O
导学案P34
例1,变式1,例2
典型例题
知识点1:角的平分线的性质的直接运用 【例1】如图1-12-16-2,点P是∠AOB的平分线OC上的一点,
八年级数学角平分线的性质
√
互逆定理:
如果一个定理的逆命题经 过证明是真命题,那么它 也是一个定理。这两个定 理叫做互逆定理。其中一 个叫做另一个的逆定理。
例2:下列说法正确吗?如不正确试举反例
(1)每个命题都有逆命题; (2)一个定理的逆命题一定是真命题;
(3)每个定理都有逆定理;
(4)一个真命题的逆命题一定是真命题; (5)如果两个有理数相等,那么它们的 绝对值相等。此命题的逆命题为假命题
F M
B
E
C
练习:课本54页 第1题 小结:
1、理解原命题和逆命题之间的关 系。会写出一个命题的逆命题。 2、理解任意三角形内都有一点 到三边的距离相等。
作业:习题3.4第1、8、9题
; 211小说
;
他买五六级魔晶,那不知道要亏多少了. "行,这钱您收好,我走了,别送哈,以后有时间一定再来照顾你の生意."青年喜笑颜开,拿起五枚魔晶走出店门. 青年刚出店铺,店门口一名白衣少女快速の靠了过来,低声说道:"哥,买好了吗?" 不错,两人正是白重炙兄妹.见妹妹询问,白重炙点了点 头,像做贼一样,左右看了看,也低声说道:"好了,回去再说." 两人快速の走动,离开了牛栏街,从白家堡小门拐进自家小院. "嘿嘿,今天买了五枚魔晶,每枚比昨天还便宜了十晶币." 进了房间,白重炙把魔晶丢在桌子上,喝了口水笑着说道,似乎对于今天の战绩很满意. "哥哥,好厉害,快把 小白召唤出来,给它吃吧."夜轻语拿起一枚魔晶,开心笑了起来,对她来说,这世界没什么让她开心の事,只要哥哥开心她就什么都开心. "恩,小白出来吃饭了."白重炙点了点头,召唤战智小白. 一道白色气流从白重炙胸口溢出,慢慢凝结,最后变成巴掌大の战智小白.小白好像
角的平分线的性质
角的平分线的性质汇报人:2023-12-08目录CONTENCT •角的平分线定义与性质•构造方法与证明技巧•在三角形中应用•在四边形和多边形中应用•拓展:关于角平分线其他知识点01角的平分线定义与性质定义及基本性质定义角的平分线指的是将一个角平分为两个相等的小角的射线。
基本性质平分线将对应的角平分为两个相等的小角,且平分线上的每一点到该角两边的距离相等。
存在性与唯一性定理存在性定理对于任何一个角,都存在一条射线将其平分为两个相等的小角,即存在一条角的平分线。
唯一性定理对于任何一个角,它的平分线是唯一的,即不存在两条不同的射线都可以将该角平分为两个相等的小角。
几何意义角的平分线在几何学中有着非常重要的意义,它可以用于构造等边三角形、等腰三角形等图形,并且是解决一些几何问题的关键。
应用场景在实际问题中,角的平分线常常被用于设计、建筑、工程等领域。
例如,在建筑工程中,可以利用角的平分线来确定某些结构的位置和方向;在机械设计中,可以利用角的平分线来设计齿轮、联轴器等零部件的位置和尺寸。
几何意义及应用场景02构造方法与证明技巧首先利用尺规作图作出给定角的平分线,再通过该平分线构造等腰三角形或利用其他相关性质进行证明。
尺规作图法利用了角的平分线性质,即平分线上的点到角两边距离相等,从而实现了对给定角的精确平分。
尺规作图法原理分析作图步骤三角形内心与外心相关性质三角形的内心到三角形三边的距离相等,且与三角形三顶点连线将三角形划分为三个面积相等的部分。
内心与三角形任意两顶点连线的夹角等于与该顶点相对的角的一半。
外心性质三角形的外心到三角形三个顶点的距离相等,且与三角形三边的中垂线交于一点。
外心与三角形任意两顶点连线的夹角等于与该顶点相对的角的外角的一半。
例题一思路梳理例题二思路梳理典型例题解析及思路梳理已知三角形ABC中,AD是角BAC的平分线,求证:AB/AC=BD/CD。
利用角的平分线性质,构造等腰三角形或利用相似三角形进行证明。
角平分线的性质及应用
利用角平分线定理求角度
总结词
通过利用角平分线定理,我们可以求解一些与角度相关的几何问题。
详细描述
在几何问题中,有时候我们需要求解某个角度的大小。利用角平分线定理,我们可以将问题转化为求 解两个相等的线段之间的夹角。例如,如果一个角的平分线将相对边分为两段相等的线段,那么这个 角被平分线分为两个相等的部分,因此可以利用这个性质来求解角度。
总结词
角平分线定理是几何学中的重要定理之一,它可以用于证明 各种几何命题,如三角形中的角平分线性质、平行线性质等 。
详细描述
角平分线定理指出,角平分线将相对边分为两段相等的线段 。利用这个定理,我们可以证明一些与角平分线相关的几何 命题。例如,如果一个角的平分线与另一个角的两边相交, 那么这两个交点到角平分线的距离相等。
利用角平分线定理证明三角恒等式
总结词
通过构造角平分线,可以将复杂的三角恒等式证明问题转化为简单的几何问题,从而证 明三角恒等式。
详细描述
在证明三角恒等式时,我们可以根据题目的特点,构造角平分线,将问题转化为几何问 题。然后利用角平分线定理和三角形的性质,推导出恒等式。这种方法可以简化证明过
程,使证明更加直观和简单。
利用角平分线定理求距离
总结词
通过利用角平分线定理,我们可以求解 一些与距离相关的几何问题。
VS
详细描述
在几何问题中,有时候我们需要求解两个 点之间的距离。利用角平分线定理,我们 可以将问题转化为求解两个相等的线段之 间的距离。例如,如果一个角的平分线将 相对边分为两段相等的线段,那么这两个 相等的线段之间的距离就是所求的距离。 因此,可以利用这个性质来求解距离。
详细描述
这是角平分线的一个非常重要的性质。在几何学中,我们可以通过这个性质来证明一些与角平分线相关的命题。 例如,如果我们从一个固定点向一个角的两边画线,那么这些线中最短的一条必定是角的平分线。这个性质在解 决几何问题时非常有用,因为它可以帮助我们找到最短的路径或线段。
12.3 角的平分线的性质
距离与点 O 到 CD 的距离之和是 .
第 3页(共 15页)
15.如图, ABC 中, DF 平分 BDE , EF 平分 DEC , 求证: AF 平分 BAC .
二、作图—尺规作图的定义
16.下列作图语句的叙述正确的是 ( )
A.以点 O 为圆心画弧 C.延长线段 BC 到点 D ,使 CD BC
第 1页(共 15页)
12.3 角的平分线的性质
一、角平分线的性质 1.(2020 春•扶风县期末)如图,在 ABC 中,AD 是角平分线,DE AB 于点 E ,ABC 的面积为 15,AB 6 , DE 3 ,则 AC 的长是 ( )
第 1 题图
第 2 题图
第 3 题图
A.8
B.6
C.5
D.4
2.(2019 秋•长清区期末)如图,RtABC 中,C 90 ,AD 平分 BAC ,交 BC 于点 D ,AB 10 ,SABD 15 ,
则 CD 的长为 ( )
A.3
B.4
C.5
D.6
3.(2019 秋•博兴县期中)如图所示,在 ABC 中,AC BC ,AE 为 BAC 的平分线,DE AB ,AB 7cm ,
DC 2 ,则 ABD 的面积为 .
11.(2019 秋•广丰区期末)平面上有三条直线两两相交且不共点,那么平面上到此三条直线距离相等的点
的个数是 .
12.(2018 秋•黔南州期末)如图,已知 ABC 的周长是 21,OB ,OC 分别平分 ABC 和 ACB ,OD BC
于 D ,且 OD 4 , ABC 的面积是
ABC 内角平分线的交点满足条件;
如图:点 P 是 ABC 两条外角平分线的交点,
角的平分线的性质
角的平分线的性质角的平分线是指将一个角分为相等的两个角的直线。
在几何学中,角的平分线具有以下性质:1. 两个角的平分线相交于角的顶点,并且相交点与角的两边形成的四个角是相等的。
也就是说,如果有一个角ABC,其中CD是角ABC的平分线,那么角ACD与角BCD将是相等的。
2. 平分线将一个角分为两个相等的角度,这意味着平分线将角的总度数分成相等的两部分。
例如,对于一个直角(90度)来说,它的平分线将把它分成两个45度的角。
3. 如果两个角的平分线相等,那么这两个角也是相等的。
也就是说,如果AD和BD是角ABC的两个平分线,并且AD=BD,那么角ACD与角BCD将是相等的。
4. 在一个三角形中,如果一个边上的角被其对边的平分线分成两个相等的角,那么这个边一定是这个三角形的底边。
换句话说,如果在三角形ABC中,AD是角BAC的平分线,并且角DAB=角DAC,那么线段BC是三角形ABC的底边。
这些是角的平分线的一些主要性质。
角的平分线在几何学中具有重要的应用。
它们帮助我们研究和理解角度的关系,以及解决与角度相关的问题。
在证明几何定理和推导几何公式时,角的平分线也经常被使用。
除了以上性质外,角的平分线还有其他一些重要的应用和性质,例如,垂直平分线、角平分线与三角形的外接圆和内切圆的关联等。
这些性质和应用使得角的平分线成为几何学中一个重要的概念。
总结起来,角的平分线是将一个角分为相等的两个角的直线。
角的平分线具有多种性质,包括:相交于角的顶点,相交点与角的两边形成的四个角是相等的,平分线将角的总度数分成相等的两部分等等。
这些性质和应用使角的平分线在几何学中具有重要的地位。
角平分线的性质与判定
利用相似三角形的性质和角平分线的 性质进行证明。
角平分线在三角形中的性质
性质
在三角形中,角平分线与对边相交形成的线段之比等于相邻 两边之比。
应用
利用角平分线的性质定理和三角形中的其他性质,可以证明 三角形中的一些重要结论,如“直角三角形中,斜边上的中 线等于斜边的一半”。
02
CATALOGUE
判定方法
角平分线的判定方法一
利用角平分线的定义。在角的内部作一条射线,使得角的两边长度相等,则这 条射线是角的平分线。
角平分线的判定方法二
利用等腰三角形的性质。在角的内部作一条射线,使得与角的两边分别相交并 形成两个等腰三角形,则这条射线是角的平分线。
判定在三角形中的运用
在三角形中,角平分线将三角形分为两个面积相等的部分。这是因为角平分线将 三角形划分为两个等腰三角形,而等腰三角形的面积等于底乘高的一半,由于两 个等腰三角形的底相等且高相等,所以它们的面积相等。
04
CATALOGUE
角平分线的作法
作法步骤Biblioteka 010203第一步
在角的顶点上,以角的两 边为邻边,作一个等腰三 角形。
第二步
从等腰三角形的顶点向底 边作垂线,将底边分为两 等份。
第三步
连接角的顶点和垂足,这 条连线就是角平分线。
作法在三角形中的运用
在三角形中,可以利用角平分线作法 来找到角的平分线,从而进一步研究 三角形的性质和判定。
THANKS
感谢观看
角平分线的判定
判定定理
角平分线的判定定理
从角的顶点出发,将角平分线引到角的两边,使得角的两边长度相等,则这条射 线就是角的平分线。
证明角平分线判定定理
在角的内部作一条射线,并使角的两边长度相等。然后,通过角的顶点和射线的 端点作一条直线,这条直线将与角的两边相交于两点。由于角的两边长度相等, 所以这两点与射线端点的距离相等,从而证明了射线是角的平分线。
12.3 角的平分线的性质
角平分线的性质相关知识链接1.角的平分线定义:一般地,从一个角的顶点出发,把这个角平分成两个相等的角的射线,叫做这个角的平分线。
2.点到直线的距离:直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
知识点1 作已知角的平分线作已知角的平分线的方法很多,主要有折叠法和尺规作图法。
尺规作图法是常用的方法。
角平分线画法:(1)在射线OA、OB上,分别截取OM、ON,使得OM=ON(2)分别以M、N为圆心,大于MN一半的长为半径做弧。
两弧在∠AOB的内部交于C(3)作射线OC,则射线OC即为∠AOB的角平分线。
知识点2 角的平分线及性质内容:角平分线上的点到角的两边的距离相等书写格式:如图所示,∵OC是∠AOB的平分线,P是OC上一点,PE⊥OA于点E,PF⊥OB于点F,∴PE=PF知识点3 证明几何命题的一般步骤一般情况下,我们要证明一个几何命题时,可以按照以下的步骤进行:(1)明确命题中的一支和求证;(2)根据题意,画出图形,并用符号表示一支和求证(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程。
知识点4 角的平分线的判定内容:角的内部到角的两边的距离相等的点在角的平分线上。
书写格式:如图所示,∵PE⊥OA于点E,PF⊥OB于点F,且PE=PF,∴点P在∠AOB的平分线上。
常见题型:角的平分线的性质的应用角的平分线的判定和应用角的平分线的性质在生活中的应用角的平分线的性质在开放探究题型中的应用⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎩⎨⎧⎩⎨⎧的平分线上两边距离相等的点在角判定:角的内部到角的等点到角的两边的距离相性质:角的平分线上的角的平分线)(只适用于直角三角形直角三角形等不能证明两个三角形全,注意:)角角边()角边角()边角边()边边边(一般三角形全等三角形的判定对应角相等对应边相等全等三角形的性质表示符号“≌”角形能够完全重合的两个三全等三角形的两个图形全等形:能够完全重合HL AAS ASA SAS SSS AAA SSA AAS ASA SAS SSS ,,,。
三角函数的角平分线性质
三角函数的角平分线性质三角函数是数学中重要的概念,它们描述了角度与直角三角形边长之间的关系。
在三角函数中,角平分线是一条将角度一分为二的线段。
本文将讨论角平分线的性质以及与三角函数之间的关系。
一、角平分线的定义角平分线是指从一个角的顶点出发,将该角划分为两个相等的角度的线段。
任意一个角都存在着唯一的角平分线。
在直角坐标系中,角平分线可以通过寻找两个角度为原角一半的直线来确定。
二、角平分线的性质1. 角平分线将原角分为两个相等的角度。
2. 角平分线上的点到角两边的距离相等。
3. 角平分线垂直于角的角平分线将角两边的长度成比例地划分为相等的线段。
4. 在三角形中,角平分线和对边的交点将对边一分为二,且两条对边的比例相等。
三、角平分线与三角函数的关系角平分线与三角函数之间存在着密切的联系。
特别是在特殊角度上,可以通过使用三角函数求解角平分线的长度。
1. 正弦函数与角平分线正弦函数是三角函数中的一种。
对于角A的平分线上的点P,可以得到以下公式:sin(A/2) = (PQ / AB)其中,AB代表角A的对边的长度,PQ代表角平分线的长度。
2. 余弦函数与角平分线余弦函数也是三角函数中的一种。
对于角A的平分线上的点P,可以得到以下公式:cos(A/2) = (AP / AB)同样,AB代表角A的对边的长度,AP代表平分线上的点P到角A 的顶点的距离。
3. 正切函数与角平分线正切函数在角平分线求解中也有应用。
对于角A的平分线上的点P,可以得到以下公式:tan(A/2) = (PQ / AP)其中,AP和PQ分别代表角平分线上的点P到角A的顶点的距离。
四、示例应用现在我们来看一个具体的例子,以求解角A的平分线上的点P的距离为例。
已知角A的对边AB的长度为8,角A的相邻边AC的长度为6,我们需要求解角A的平分线上点P的到顶点A的距离AP。
首先,我们可以使用余弦函数来求解角A的平分线上的点P的距离AP:cos(A/2) = (AP / AB)cos(A/2) = (AP / 8)根据余弦函数的性质,我们可以得到以下方程:AP = 8 * cos(A/2)通过计算,我们可以得到AP的具体数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的平分线的性质一. 根底知识1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如下列图,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.2.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如下列图,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据某点到角两边的距离相等,那么常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质〞和“判定〞恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.6.运用角的平分线的性质和判定解决探究型问题在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上〞的应用是寻找角的平分线的一种比较简单的方法.三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.【例6】如以下列图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现方案修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.课堂练习一、填空题1.:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,那么∠AOC的度数为.2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,那么BC=_____cm.第4题第5题第6题第7题6.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,那么CF______FG,CE________CF.7.如图,AB、CD相交于点E,∠AEC及∠AED的平分线所在的直线为PQ与MN,那么直线MN与PQ的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等.9.点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,那么∠BOC的度数为_____________.10.在△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32且BD∶CD=9∶7,那么D到AB的距离为.二、选择题11.三角形中到三边距离相等的点是〔 〕A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,以下结论错误的选项是〔 〕A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD13.如图,直线l 1,l 2,l 3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可供选择的地址有〔 〕A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,那么△DEB 的周长为〔 〕 A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题第13题第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,那么以下结论中不正确的选项是〔 〕A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPM第15题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )EDCBAA .2 cmB .3 cmC .4 cmD .5 cm17.如图,AB =AC ,AE =AF ,BE 与CF 交于点D ,那么对于以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的选项是〔〕A .①B .②C .①和②D .①②③EDC BAF18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,那么以下结论正确的选项是〔〕A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,那么点O 到三边AB 、AC 、BC 的距离为〔〕A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm20.两个三角形有两个角对应相等,正确说法是〔〕A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等三、解答与证明21.如图,△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.22.如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,假设BD =CD .求证:AD 平分∠BAC .DCBAO 第18题23.如图,BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠FAC .DF CBAE24.如图,AB =AC ,AD =AE ,DB 与CE 相交于O . (1)假设DB ⊥AC 于D ,CE ⊥AB 于E ,试判断OE 与OD 的大小关系.并证明你的结论. (2)假设没有第〔1〕中的条件,是否有这样的结论"试说明理由.DCBAOE25.如图,∠B =∠C =90°M 是BC的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .重点题型讲解1.如图.在△ABC 中,∠A 、∠B 的角平分线交于点O ,过O 作OP ⊥BC 于P ,OQ ⊥AC 于Q ,OR ⊥AB于R,AB=7,BC=8,AC=9.〔1〕求BP、CQ、AR的长.〔2〕假设BO的延长线交AC于E,CO的延长线交AB于F,假设∠A=60゜,求证:OE=OF.2.如图.AE、BD是△ABM的高.AE、BD交于点C,且AE=BE,BD平分∠ABM.〔1〕求证:BC=2AD;〔2〕求证:AB=AE+CE;〔3〕求证:DE平分∠MDB3.如图,点M〔2,2〕,将一个90°的角尺的直角顶点放在点M处,角尺的两边分别交x轴、y轴正半轴于A、B,AP平分∠OAB,交OM于点P,PN⊥x轴于N,把角尺绕点M旋转时:〔1〕求证:OM平分∠AOB;〔2〕求OA+OB的值4.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.〔1〕求证:△ACD≌△BCE;〔2〕求证:CH平分∠AHE;〔3〕求∠CHE的度数.〔用含α的式子表示〕家庭作业1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.4、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,那么BC =_____cm .5、三角形的三条角平分线相交于一点,并且这一点到________________相等。
6、点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,那么∠BOC 的度数为_____________.7、在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,假设BC =32,且BD ∶CD =9∶7,那么D 到AB 的距离为.8、三角形中到三边距离相等的点是〔 〕A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点9、如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,以下结论错误的选项是〔 〕A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD10、如图,直线l 1,l 2,l 3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可供选择的地址有〔 〕A 、1处B 、2处C 、3处D 、4处11、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,那么△DEB 的周长为〔 〕A 、4㎝B 、6㎝C 、10㎝D 、不能确定21DAPOEBl 2l 1l 3第9题第10题第11题12、如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,那么以下结论中不正确的选项是〔 〕A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQT第3题第4题DC EBN TQPMEDCB AEDC BAF第12题第13题第14题13、如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm14、如图,AB =AC ,AE =AF ,BE 与CF 交于点D ,那么对于以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的选项是〔〕A .①B .②C .①和②D .①②③15、△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,那么点O 到三边AB 、AC 、BC 的距离为〔〕 A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ; C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm16、在Rt △ABC 中,∠C =90°,DE 是AB 的垂直平分线, 且∠BAD ∶∠BAC =1∶3,求∠B 的度数.17、:如图△ABC 中,AB=AC ,∠C=30°, AB ⊥AD ,AD=4cm ,求BC 的长.18、如图11.3—4,在△ABC 中∠C=900,AC=BC ,AD 平分.交BC 于点D ,DE ⊥BE 求证:〔1〕DE+BD=AC〔2〕假设AB=6cm ,求△DBE 的周长19、如图11.3—6,:AB=AC,BD=CD,求证:DE=DF20、如图11.3—3,在,交BC于D,假设BC=10cm,BD=6cm,求点D到AB的距离.21、如图ll.3—7,BN是的平分线,P在BN上,D、E分别在AB、BC上,都不是直角,求证:PD=PE22.如图11.3—10,0为的平分线的交点,0E_kAC于E,假设0E=2求0到AB与0到CD的距离之和.23.如图11.3一ll,于F,BE、CF相交于点D假设BD=CD 求证:。