重庆一中2014年初2014级初三数学模拟试题(含答案)

合集下载

重庆市重庆一中2014届九年级上学期半期考试 数学

重庆市重庆一中2014届九年级上学期半期考试 数学

俯视图左视图主视图重庆一中初2014级13—14学年度上期半期考试数 学 试 题 2013.11考生注意:本试题共26小题,满分150分,考试时间120分钟一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在下列方框内. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.sin 60︒的值为( ).A .3B .22C .1D .122.下列图形中,是轴对称图形但不是中心对称图形的是( ).A B C D 3.计算324x x ÷的结果是( ).A . 23xB .24x C .4x D .4 4.若右图是某几何体的三视图,则这个几何体是( ).A .三棱柱B .圆柱C .正方体D .三棱锥5.由二次函数26(2)1y x =-+,可知( ). A .图象的开口向下 B .图象的对称轴为直线2x =- C .函数的最小值为1 D .当2x <时,y 随x 的增大而增大6.已知ABC ∆∽DEF ∆,若ABC ∆与DEF ∆的周长比为2:3,则ABC ∆与DEF ∆的面积之比为( ). A .2:3 B .3:2 C .3:4 D .4:97.设A1(2)y-,,B2(1)y-,,C3(2)y,是抛物线22(1)y x k=--+(k为常数)上的三点,则1y,2y,3y的大小关系为().A.231y y y>>B.213y y y>>C.132y y y>>D.231y y y>>8.抛物线21y x=-先向左平移2个单位,再向上平移3个单位得到的抛物线的表达式是().A.22y x=+B.246y x x=-+C.246y x x=++D.222y x x=++9.重庆一中最近对初2014级全体学生举行了半期跳绳测试,下面是某组(6名)同学的测试成绩(单位:个/分钟):176,180,184,180,170,180,则该组数据的众数、中位数分别为().A.180,180 B.180,182 C.180,176 D.180,17810.已知A∠是锐角,且3sin5A=,那么锐角A的取值范围是().A.030A︒<∠<︒B.3045A︒<∠<︒C.4560A︒<∠<︒D.6090A︒<∠<︒11.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是().A.18 B.19 C.20 D.2112.如图,直线y kx c=+与抛物线2y ax bx c=++的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线1x=,且OA OD=.直线y kx c=+与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是().①0abc>; ②30a b+>; ③10k-<<; ④k a b>+; ⑤0ac k+>A.1 B.2 C.3 D.4二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在下列方框内.题号13 14 15 16 17 18x=1DCBAoyx第12题Q PN Oyx第18题第16题答案13.据统计2013年重庆一中在校学生约11000人,将数11000用科学记数法表示为____.14.二次函数2241y x x =+-的图象的对称轴是直线x = .15.如图,△ABC 的顶点都在方格纸的格点上,则tanA=_______.16.如图是二次函数2y ax bx c =++的部分图象,由图象可知20ax bx c ++>时x 的取值范围是________________.17.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-=有两个不相等的实数根,且以x 为自变量的二次函数22(1)21y x a x a =-+-+的图象不经过点(1-,6)的概率是_____________.18.已知抛物线2122y x x=-+的图象如图所示,点N 为抛物线的顶点,直线ON 上有两个动点P 和Q ,且满足22PQ =,在直线ON 下方的抛物线上存在点M ,使PQM∆为等腰直角三角形,则点M 的坐标为____________________________.三.解答题:(本大题2个小题,第19题7分,20题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:0114cos 452(5)()84π-︒--+-+-.第15题20.如图,在Rt ABC ∆中,90C ∠=︒,3tan 4CAB ∠=,8AC =,延长CB 到D 使得12BD AB=,连接AD ,求ACD ∆的周长.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:2319()369x x x xx x x +---÷--+,其中x 是不等式173>+x 的负整数解.22.某商场经营某种品牌的童装,购进时的单价是50元.根据市场调查,在一段时间内,销售单价是80元时,销售量是280件.而销售单价每降低1元,就可多售出20件. (1)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于75元,且商场要完成不少于340件的销售 任务,则商场销售该品牌童装获得的最大利润是多少元?DCBA第20题23.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计我校11000名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.图1 图224.如图,平行四边形ABCD 中,点E 为AB 边上一点,连接DE ,点F 为DE 的中点,且CF ⊥DE ,点M 为线段CF 上一点,使DM=BE ,CM=BC. (1)若AB=13,CF=12,求DE 的长度;(2)求证:13DCM DMF∠=∠.五.解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.MFEDCBA第24题25.如图,在平面直角坐标系中,直线122y x =+与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线为2y x bx c =-++,点E 为第二象限内抛物线上一动点,连接AE,BE. (1)求抛物线的解析式;(2)当ABE ∆面积最大时,求点E 的坐标,并求出此时ABE ∆的面积; (3)当EAB OAB ∠=∠时,求点E 的坐标.26.已知:矩形ABCD 中,M 为BC 边上一点, AB=BM=10,MC=14,如图1,正方形EFGH 的顶点E 和点B 重合,点F 、G 、H 分别在边AB 、AM 、BC 上.如图2,P 为对角线AC 上一动点,正方形EFGH 从图1的位置出发,以每秒1个单位的速度沿BC 向点C 匀速移动;同时,点P 从C 点出发,以每秒1个单位的速度沿CA 向点A 匀速移动.当点F 到达线段AC 上时,正方形EFGH 和点P 同时停止运动.设运动时间为t 秒,解答下列问题:(1)在整个运动过程中,当点F 落在线段AM 上和点G 落在线段AC 上时,分别求出对应t 的值; (2)在整个运动过程中,设正方形EFGH 与AMC ∆重叠部分面积为S,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围;(3)在整个运动过程中,是否存在点P,使DPG ∆是以DG 为腰的等腰三角形?若存在,求出t 的值;若xyOEBA第25题xyOEBA备用图不存在,说明理由. H GFE ()MDCB A 图1A BC图2重庆一中初2014级13—14学年度上期半期考试数学答案2013.11一、选择题。

2014年重庆数学中考试卷+答案

2014年重庆数学中考试卷+答案

2014年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.实数-17的相反数是( )A.17B.C.-17D.-2.计算2x6÷x4的结果是( )A.x2B.2x2C.2x4D.2x103.在中,a的取值范围是( )A.a≥0B.a≤0C.a>0D.a<04.五边形的内角和是( )A. 80°B.360°C.5 0°D.600°5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-℃、5 ℃、6 ℃、-8 ℃ 当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏=1的解是( )6.关于x的方程-A.x=4B.x=3C.x=2D.x=17.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“ 0米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是( )A.甲B.乙C.丙D.丁8.如图,直线AB∥CD 直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE 交直线AB 于点G.若∠ = ° 则∠ 的大小是( )A.56°B. 8°C. 6°D. 0°9.如图 △ABC的顶点A、B、C均在☉O上,若∠ABC+∠AOC=90° 则∠AOC的大小是( )A.30°B. 5°C.60°D. 0°10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个 … 按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.4012.如图,反比例函数y=-6在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为( )A.8B.10C.12D.24第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分)的解是.13.方程组 3514.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563 000辆,将563 000这个数用科学记数法表示为.15.如图,菱形ABCD中 ∠A=60° BD= 则菱形ABCD的周长为.16.如图 △OAB中 OA=OB= ∠A=30° AB与☉O相切于点C,则图中阴影部分的面积为.(结果保留π)17.从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数y=2x+a 的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率-为.18.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连结BE.过点C作CF⊥BE 垂足是F,连结OF,则OF的长为.三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19.计算:+(-3)2-2 0140×|-4|+6-.20.如图 △ABC中 AD⊥BC 垂足是D,若BC= AD= tan∠BAD=3,求sin C的值.四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.先化简,再求值:÷-x --+,其中x的值为方程2x=5x-1的解.22.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)该镇今年1~5月新注册小型企业一共有家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0),则每户平均集资的资金在150 a%,求a的值.元的基础上减少了 0924.如图 △ABC中 ∠BAC=90° AB=AC AD⊥BC 垂足是D,AE平分∠BAD 交BC于点E.在△ABC外有一点F,使FA⊥AE FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连结MC,交AD于点N,连结ME.求证:①ME⊥BC;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P 在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.26.已知:如图① 在矩形ABCD中,AB=5,AD= 0AE⊥BD 垂足是E.点F是点E关于AB的对称3点,连结AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度),当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图② 将△ABF绕点B顺时针旋转一个角α(0°<α< 80°) 记旋转中的△ABF为△A'BF' 在旋转过程中,设A'F'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.答案全解全析:一、选择题1.A 根据相反数的定义知,-17的相反数为-(-17)=17.故选A.2.B 2x6÷x4=2x2,故选B.3.A 二次根式的被开方数为非负数,即a≥0 故选A.4.C 五边形的内角和为(5- )× 80°=5 0° 故选C.5.D 根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小得-8<- <5<6 ∴气温最低的是宁夏,故选D.6.B 去分母,得x-1=2,解得x=3.经检验,x=3是原分式方程的根,故选B.7.D 方差是描述一组数据波动大小的量,方差越大,数据的波动就越大,甲、乙、丙、丁的成绩的方差最小的是丁,则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是丁.故选D.8.B ∵AB∥CD ∠ = ° ∴∠EFD= °.∵FG⊥EF ∴∠EFG=90° 则∠ = 80°-∠EFD-∠EFG= 8° ∴选B.9.C 根据圆周角定理知 ∠ABC=∠AOC ∵∠ABC+∠AOC=90° ∴∠AOC=60°.故选C.10.C 接到通知后,小华立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变;过了一会儿,小华继续录入并加快了录入速度,函数图象上升,且比开始时上升得快.综合这些信息可知答案为C.11.B 第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个 … 按此规律,第n个图形中面积为1的正方形有 +3+ +…+(n+ )=(3)个,则第(6)个图形中面积为1的正方形的个数为6(63)=27.故选B.评析本题考查了图形的变化规律.探索规律的问题是近几年数学中考的一个“热门”题型.解决这类问题的基本思路是通过观察、分析若干特殊情形,归纳总结出一般性结论,然后验证结论的正确性.12.C 由题意知A(-1,6),B(-3,2),设直线AB的解析式为y=kx+b(k≠0)则- 6-3解得8∴y= x+8 当y=0时,x=-4,即CO=4,∴△AOC的面积为×6× = .故选C.二、填空题13.答案3解析把x=3代入x+y=5得y=2,所以方程组35的解是3.14.答案 5.63× 05解析563 000是一个6位整数,所以563 000用科学记数法可表示为5.63× 05.评析科学记数法是将一个数写成a× 0n的形式,其中 ≤|a|< 0 n为整数.15.答案28解析∵菱形ABCD中 ∠A=60° ∴△ABD为等边三角形.∵BD= ∴AB= 则菱形ABCD的周长为 × = 8.16.答案43-3π解析设OA,OB分别与☉O交于D,E两点 ∵AB与☉O相切于点C ∴OC⊥AB.∵OA=OB= ∠A=30° ∴∠B=∠A=30° OC= .∴∠AOB= 0° AB= 3.则题图中阴影部分的面积=S△AOB-S扇形ODE=× 3× - 0π360=43-3π.17.答案3解析一次函数y=2x+a的图象与x轴、y轴的交点坐标分别为- 0、(0,a).一次函数的图象与x轴、y轴围成的三角形的面积为,即a2=,解得a=± .使关于x的不等式组-有解的a值为1.所以所求概率为3.18.答案655解析如图,在BE上截取BG=CF,连结OG,∵CF⊥BE ∴∠EBC+∠BCF=90°.又∵∠ECF+∠BCF=90°∴∠EBC=∠ECF∵∠OBC=∠OCD= 5° ∴∠OBG=∠OCF.在△OBG与△OCF中,∠∠∴△OBG≌△OCF(SAS)∴OG=OF ∠BOG=∠COF ∴OG⊥OF.∵BC=DC=6 DE= EC ∴EC=∴BE=C=6=2∵BC2=BF BE∴62=BF 0,解得BF=9 05,∴EF=BE-BF= 05,∵CF2=BF EF∴CF=3 05,∴GF=BF-BG=BF-CF=6 05.在等腰直角△OGF 中,OF 2=GF 2, ∴OF=6 55. 三、解答题19.解析 原式=2+9- × +6(5分) =13.(7分)20.解析 ∵AD⊥BC ∴tan∠BAD=,(1分)∵tan∠BAD=3,AD=12, ∴3=,(2分)∴BD=9.(3分)∴CD=BC -BD=14-9=5,(4分)∴在Rt△ADC 中,AC= C = 5 =13,(6分) ∴sin C= =3.(7分)四、解答题21.解析 原式=÷( - )- - +(1分)=÷- x( - )+(2分)= ( - )( - ) +(4分)= - +(6分)=( )( - )+- ( )( - )=-.(7分)解方程2x=5x-1得x=3,(9分) 当x= 3时,原式=33- =-3.(10分)22.解析 (1)16.(2分)补图如下:今年1~5月各月新注册小型企业数量折线统计图(5分)(2)用A 1,A 2表示餐饮企业,B 1,B 2表示非餐饮企业,画树状图如下:(8分)(8分) 由树状图或列表可知,共有12种等可能情况,其中所抽取的企业恰好都是餐饮企业的有2种..(10分)所以,所抽取的企业恰好都是餐饮企业的概率为P==623.解析(1)设用于购买书桌、书架等设施的资金为x元,由题意,得30 000-x≥3x (3分)解得 x≤ 500.答:最多花7 500元资金购买书桌、书架等设施.(5分)a%=20 000.(8分)(2)由题意,得 00( +a%) 50- 09x=2,整理得,10x2+x-3=0,设x=a%,则3(1+x)- 09解得x1=-0.6(舍),x2=0.5,(9分)∴a%=0.5 ∴a=50.( 0分)24.证明如图.( )∵∠BAC=90° AF⊥AE∴∠ +∠EAC=90° ∠ +∠EAC=90°∴∠ =∠ .( 分)又∵AB=AC∴∠B=∠ACB= 5°.∵FC⊥BC∴∠FCA=90°-∠ACB=90°- 5°= 5°∴∠B=∠FCA ( 分)∴△ABE≌△ACF(ASA).(3分)∴BE=CF.( 分)( )①过E作EG⊥AB于点G.∵∠B= 5° ∴△GBE是等腰直角三角形,∴BG=EG ∠3= 5°.(5分)∵AD⊥BC AE平分∠BAD ∴EG=ED ∴BG=ED.∵BM= ED ∴BM= BG 即G是BM的中点.(6分)∴EG是BM的垂直平分线 ∴EB=EM ∴∠ =∠3= 5°∴∠MEB=∠ +∠3= 5°+ 5°=90° 即ME⊥BC.( 分)②∵AD⊥BC ∴ME∥AD ∴∠5=∠6.∵∠ =∠5 ∴∠ =∠6 ∴AM=EM.∵MC=MC ∴Rt△AMC≌Rt△EMC(HL) (8分)∴∠ =∠8.∵∠BAC=90° AB=AC ∴∠ACB= 5° ∠BAD=∠CAD= 5°∴∠5=∠ = .5° AD=CD.∵∠ADE=∠CDN=90° ∴△ADE≌△CDN(ASA) (9分)∴DE=DN.( 0分)评析本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质定理,构造出等腰直角三角形和全等三角形是解题的关键.五、解答题25.解析(1)对y=-x2-2x+3,令x=0,得y=3,则C(0,3).(1分)令y=0,得-x2-2x+3=0,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(3分)(2)由x=--(- )=-1得抛物线的对称轴为直线x=-1.(4分) 设点M(x,0),P(x,-x2-2x+3),其中-3<x<-1.易知P、Q关于直线x=-1对称,设Q的横坐标为a,则a-(-1)=-1-x ∴a=-2-x,∴Q(-2-x,-x2-2x+3).(5分)∴MP=-x2-2x+3,PQ=-2-x-x=-2-2x,∴周长d=2(-2-2x-x2-2x+3)=-2x2-8x+2.当x=--8(- )=-2时,d取最大值,(6分)此时,M(- 0) ∴AM=-2-(-3)=1.设直线AC解析式为y=kx+b(k≠0) 则30-3解得3∴直线AC的解析式为y=x+3.将x=-2代入y=x+3得y=1,∴E(- ) ∴EM= .( 分)∴S△AEM=AM ME=× × =.(8分)(3)由(2)知,当矩形PMNQ的周长最大时,x=-2,此时点Q(0,3),与点C重合 ∴OQ=3.将x=-1代入y=-x2-2x+3,得y=4,∴D(-1,4).如图,过D作DK⊥y轴于K,则DK=1,OK=4.∴QK=OK-OQ=4-3=1,∴△DKQ是等腰直角三角形,DQ=,(9分)∴FG= =4.(10分)设F(m,-m2-2m+3),G(m,m+3),则FG=(m+3)-(-m2-2m+3)=m2+3m,∵FG= ∴m2+3m=4,解得m1=-4,m2=1.当m=-4时,-m2-2m+3=-(-4)2- ×(-4)+3=-5,当m=1时,-m2-2m+3=-12- × +3=0∴F(-4,-5)或(1,0).(12分)评析本题考查了矩形的性质,一元二次方程的解法,二次函数图象与坐标轴的交点及最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.26.解析(1)AB=5,AD= 03,由勾股定理得BD=A=5 03= 53.(1分)∵ AB AD=S △ABD =BD AE∴ ×5× 03= × 53AE,解得AE=4,(3分)∴BE= -A = 5 - =3.(4分)(2)当点F 在线段AB 上时,m=3;(6分) 当点F 在线段AD 上时,m= 63.(8分)(3)存在.理由如下:①当DP=DQ 时,若点Q 在线段BD 的延长线上,如图①图① 有∠Q=∠则∠ =∠ +∠Q= ∠Q.∵∠3=∠ +∠Q ∠3=∠∴∠ +∠Q= ∠Q ∴∠ =∠Q∴A'Q=A'B=5 ∴F'Q= +5=9.在Rt△BF'Q 中,92+32= 53 DQ , ∴ 53+DQ=±3 ,∴DQ=3 0- 53或DQ=-3 0- 53(舍).(9分)若点Q 在线段BD 上,如图②图②有∠ =∠ =∠ .∵∠ =∠3 ∴∠3=∠∵∠3=∠5+∠A' ∠A'=∠CBD ∴∠3=∠5+∠CBD=∠A'BQ∴∠ =∠A'BQ∴A'Q=A'B=5∴F'Q=5-4=1,∴BQ= 3 = 0.∴DQ= 53- 0.(10分)②当QP=QD 时,如图③ 有∠P=∠图③ ∵∠A'=∠ ∠ =∠3 ∴∠ =∠P∴∠ =∠A' ∴QB=QA'设QB=QA'=x,在Rt△BF'Q 中,32+(4-x)2=x 2, 解得x= 58,∴DQ= 53- 58= 5 .(11分)图④③当PD=PQ 时,如图④ 有∠ =∠ =∠3 ∵∠ =∠A' ∴∠3=∠A' ∴BQ=A'B=5 ∴DQ= 53-5= 03.综上,当△DPQ 是等腰三角形时, DQ 的值为3 0- 53, 53- 0, 5 , 03.(12分)。

2014年重庆市中考数学试卷含答案-答案在前

2014年重庆市中考数学试卷含答案-答案在前

重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B .【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义,OA OB =3,43AOB S AB OC ∴=△242=3π.所以【考点】等腰三角形的性质、三角形及扇形面积的计算 22ax a ,由①得a 只能等于【考点】一次函数图象与坐标轴的交点、解不等式组、三角形的面积计算等交BE 于点M ,DC BC =62210BC CE BE ⨯=CF BE ⊥︒,OCF ∴∠+∠又OBM ∠+OBM ∴∠COF ,根据“ASA ≌△O C F,BM CF =3101055-等腰R 2MF OF =【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=14CD BC BD ∴==-∴在Rt ADC ∆中,AC =2(1)(x 1)x x -+-1111x +-+补图如下:(2)用1A ,2A 表示餐饮企业,1B ,2B 表示非餐饮企业,画树状图如下:10%)150(19-则3(1)(1x +30x +-=0.6(舍),24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =,∴∠B FCA ∠=∠ABF ∴≅△△BE CF ∴=(2)①过E 45B ∠=BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC∠=∠,∴∠15=MC MC∴∠=∠,78∠=90BAC∴∠=ACB57∴∠=∠∠=ADE∴=DE DN【解析】【考点】全等三角形的判定和性质、等腰直角三角形的性质、角乎分线的性质等25.【答案】11AM ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =2222543BE AB AE ∴=-=-=(2)当点F 在线段AB 上时,3m =; 16若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=在Rt BF ∆25DQ ∴+若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'5F Q ∴=253DQ ∴='1A ∠=∠4A ∴∠=∠设QB QA =在Rt BF ∆253DQ ∴=③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=综上,当△11 / 11数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴为2b x a =-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( )A .17B .117C .17-D .117-2.计算642x x ÷的结果是( ) A .2xB .22xC .42xD .102x3.,a 的取值范围是( )A .0a ≥B .0a ≤C .0a >D .0a < 4.五边形的内角和是( )A .°180B .°360 C .°540 D .°600 5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( )A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.。

重庆一中初2014级13-14学年(上)12月月考——数学

重庆一中初2014级13-14学年(上)12月月考——数学

重庆一中初2014级13—14学年度上期第二次定时作业数 学 试 卷 2013.12(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、1.2-的倒数是( ) A .2- B .2 C .12 D .12- 2. 计算:224x x -+的结果是( )A .23x -B .23xC .25xD .25x - 3.下列四个图形中,是中心对称图形的是( )A B C D4.下列说法正确的是( )A .若甲组数据的方差2S 甲=0.31,乙组数据的方差2S 乙=0.29,则甲组数据比乙组数据大B .从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比是奇数的可能性大C .数据3,5,4,1,﹣2的中位数是3D .一组数据3,2,0,1,2,5的极差是25.把一块直尺与一块三角板如图放置,若∠1=38°,则∠2的度数为( ) A .118° B .122° C .128° D .132°6.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8, PB=2,则⊙O 的半径为( )A .3B .8C . 10D . 5 7.下列事件中是必然事件的为( )A .有两边及一角对应相等的三角形全等B .方程210x x -+=有两个不等实根 C .面积之比为1:4的两个相似三角形的周长之比也是1:4D .圆的切线垂直于过切点的半径8.已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如图所示,对称轴是直线13x =.则下列结论中,正确的是( )A .0a <B . 1c <-C .0a b c -+<D . 230a b +=9.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=35,BE=4则tan ∠DBE 的值是( ) A .43 B .34 C .2 D .1210.如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是( )ABCD .11.如图,在平面直角坐标系xOy 中,已知直线:1l y x =--, 双曲线1y x=.在直线l 上取点1(2,3)A -,过点A 1作轴的垂线交 双曲线于点B 1,过点B 1作y 轴的垂线交直线l 于点A 2,继续操作: 过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交直 线l 于点A 3,过A 3作x 轴的垂线交双曲线于点B 3,…,这样依 次得到双曲线上的点B 1,B 2,B 3,…B n ,….记点B n 的纵坐标为n b ,则2014b 的值是( )A . 32-B .23-C . 3-D .1212.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是( ) A .2 B .3 C . 72D . 4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在下列方框内.13.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为 亿元.14.分解因式 22x x -= .15.如图,在⊙O 中,已知∠OAB=23°,则∠C 的 度数为 度.16.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、 BD ,且AE 、BD 交于点F ,S △DEF :S △ABF = 4:25, 则DE :EC = .17.小丽自己动手做了一个质地均匀的正方体,该正方体六个面完全相同,分别标有整数0,1,2,3,4,5,且每个面和它所相对面的数字之和均相等,小丽向上抛该正方体,落地后正方体正面朝上数字作为a ,它所对的面的数字作为b ,则函数24y ax bx =++与x 轴只有 一个交点的概率为 .18. 某区的民用电,按白天时段和晚间时段规定了不同的单价。

2014年重庆市中考数学复习试卷【有解析】

2014年重庆市中考数学复习试卷【有解析】

CA 21B2014年重庆市中考数学复习试卷【一中模】一.选择题:(本大题10个小题,每小题4分,共40分) 1.在10,0,-3,-6四个数中,最大的数是( )A. 10B. 0C. -3D. -6 2.计算a a 23-的结果为( )A.1B.a C. 3aD. 2a3.下列图形中,是轴对称图形的是( )A. B. C. D.4.如图,△ABC 是等边三角形,则=∠+∠21( )A. 60°B.90°C. 120°D.180°5.为了了解2011年参加重庆市市初中联招考试的63279名考生的数学平均成绩,有关部门抽取了其中的3200份试卷,对成绩作了分析,抽样估计全市平均分为96.9分,根据以上信息,以下说法正确的是( )A.以上通过普查(全面调查)的方式获取了全市的平均分B.被抽取的3200名学生的数学成绩是总体的一个样本C.63279名学生是总体D.每名学生是总体的一个个体6.如图,A D 、是O ⊙上的两个点,BC 是直径,若D 35∠=°, 则OAC ∠等于( ) A .65° B .35° C .70° D .55°7.下列说法中正确..的是( ) A .随机事件发生的可能性是50% B .一组数据2,2,3,6的众数和中位数都是2C .为了解某市5万名学生中考数学成绩,可以从中抽取10名学生作为样本D .若甲组数据的方差20.31S =甲,乙组数据的方差20.02S =乙, 则乙组数据比甲组数据稳定 8.⊙O 的半径为5cm ,点P 与圆心O 的距离为4cm ,则点P 和⊙O 的位置关系为( ) A.点P 在圆上 B. 点P 在圆内 C. 点P 在圆外 D.无法判断9.不等式组⎩⎨⎧≤-->0242x x 的解集为( )A. 2->xB. 22<<-xC.2≤xD. 22≤<-x10.4月20日,重庆一中部分老师乘车前往巴川中学交流学习,车刚离开重庆一中时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约五十分钟后,汽车顺利到达铜梁收费站.经停车交费后,汽车进入通畅的城市道路,一会就顺利到达了巴川中学,在以上描述中,汽车行驶的路程s (千米)与所经历的时间t (小时)之间的大致函数图像是( )sotsotsottosA. B. C. D.11.如下图,由小正方形依次排出以下图形,那么第9个图形中共有( )个小正方形A.36B. 81C. 45D.10212.如图,对称轴为直线l 的抛物线c bx ax y ++=2与坐标轴交于点A 、12==OC OA .则下列结论:①当0<x 时,y 随x 的增大而增大;②0124>++b a ;③58<b ;④02<+b a ,其中正确的结论有( )A. 1B. 2C. 3D.4 二.填空题:(本大题6个小题,每小题4分,共24分)13.2011年重庆市人均GDP 达到28000元,将数字28000用科学记数法表示为 。

2014年重庆一中中考数学模拟试卷

2014年重庆一中中考数学模拟试卷

2014年重庆一中中考数学模拟试卷一、选择题:1.(4分)(2014•重庆校级模拟)﹣1+2的值为()A.0 B.1 C.2 D.32.(4分)(2014•鞍山二模)下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球3.(4分)(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2015•重庆模拟)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°5.(4分)(2014•重庆校级模拟)我市渝中区于4月19日进行了初三体考中考考试,王老师为了了解他所教的甲、乙两个班学生中考体考成绩哪一班比较整齐,通常需要知道两个班成绩的()A.平均数B.方差 C.众数 D.中位数6.(4分)(2014•重庆校级模拟)如图,AC是电杆的一根拉线,测得BC=4米,∠ACB=60°,则AB的长为()A.8米B.4米C.6米D.2米7.(4分)(2015•兰州一模)如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.28°B.31°C.38°D.62°8.(4分)(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB 交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.209.(4分)(2012•广州)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>110.(4分)(2014•荆州模拟)如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.2111.(4分)(2013•北碚区模拟)如图,一艘旅游船从码头A驶向景点C,途经景点B、D,它先从码头A沿以D为圆心的弧AB行驶到景点B,然后从B沿直径BC行驶到⊙D上的景点C.假如旅游船在整个行驶过程中保持匀速,则下面各图中能反映旅游船与景点D的距离随时间变化的图象大致是()A.B.C.D.12.(4分)(2015•包头一模)如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c 与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是()①abc>0;②3a+b>0;③﹣1<k<0;④k>a+b;⑤ac+k>0.A.1 B.2 C.3 D.4二、填空题:13.(4分)(2014•洪山区一模)2011年4月6日,两江国际计算中心暨中国国际电子商务中心重庆数据产业园在水土高新技术产业园开建,总建筑面积2070000平方米,该数用科学记数法表示为平方米.14.(4分)(2013•北碚区模拟)在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是.15.(4分)(2008•三明)如图,AB∥CD,AD与BC相交于点O,OA=4,OD=6,则△AOB 与△DOC的周长比是.16.(4分)(2007•河池)若⊙O和⊙O′相切,它们的半径分别为5和3,则圆心距OO′为.17.(4分)(2014•重庆校级模拟)从﹣1,1,2三个数中任取一个数作为a,从﹣2,2,3中任取一个数作为b,使得抛物线y=ax2+bx+1的顶点在第一象限的概率是.18.(4分)(2009•武汉)如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.(7分)(2014•重庆校级模拟)计算:4cos45°﹣|﹣2|+(﹣π)0+()﹣1﹣.20.(7分)(2014•重庆校级模拟)如图,在△ABC中,已知∠C=90°,sinA=,D为边AC 上一点,∠BDC=45°,DC=6.求△ABC的面积.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)(2014•重庆校级模拟)先化简,再求值:(﹣)÷,其中x 是不等式3x+7>1的负整数解.22.(10分)(2014•重庆校级模拟)自去年底“中国式过马路”引发热议后,全国部分城市对行人闯红灯的行为开始严管严查甚至严罚,但在交警执法过程中,出现了行人反抗,甚至对交警拳打脚蹋的现象对这一新的处罚措施,公众态度如何?为此,我校一课外活动小组在班上随机调查了部分同学,并将对此措施的态度分为“非常赞同”、“赞同”、“不太赞同”、“不赞同”四个选项,分别记作A、B.C,D根据调查结果绘制成如下两幅不完整的统计圈(1)本次被调查的同学共有人,并将扇形统计图和条形统计图补充完整;(2)该数学兴趣小组决定从“非常赞同”和“赞同”的同学中各选一人代表本班参加学校的交通法规知识竞答.若“非常赞同”的同学和“赞同”的同学中都备有1名女生请用列表法或画树状图的方法,求出所选两名同学恰好是一男一女的概率.23.(10分)(2011•北京)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?24.(10分)(2014•重庆校级模拟)如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.25.(12分)(2012•呼和浩特)如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.26.(12分)(2014•重庆校级模拟)如图①,在梯形ABCD中,AB∥CD,∠B=90°,AB=6,CD=3,BC=.△EFG是边长为3的等边三角形,且与梯形ABCD位于直线AB同侧,点E与点A重合,EF与AB在同一直线上.△EFG以每秒1个单位的速度沿直线AB向右平移,当点E与点B重合时运动停止.设△EFG的运动时间为t(秒).(1)当△EFG的边EG经过点D时,求t的值;(2)在平移过程中,设△EFG与梯形ABCD重叠部分的面积为S,请直接写出S与t的函数关系式及其对应的自变量t的取值范围;(3)如图②,当△EFG的平移运动停止后(此时点B与点E重合),将△EFG绕点F进行旋转,在旋转过程中,设EG所在直线与射线AD相交于点M,与射线FB相交于点N,当△AMN为等腰三角形时,求AN的长度.2014年重庆一中中考数学模拟试卷参考答案一、选择题:1.B;2.C;3.A;4.D;5.B;6.B;7.A;8.C;9.D;10.C;11.B; 12.D;二、填空题:13.2.07×106;14.186;15.2:3;16.8或2;17.; 18.12;三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.;20.;四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.;22.10;23.;24.;五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡(卷)中对应的位置上.25.;26.;。

重庆一中初2014级13—14学年度初三上期数学期末考试 - 综合测试

重庆一中初2014级13—14学年度初三上期数学期末考试 - 综合测试

B重庆一中初2014级13—14学期考试参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、选择题: 1.在3-, 21-,0,2四个数中,最小的数是 ( ) A .3- B .21- C .0 D .22.下面的图形中,既是轴对称图形又是中心对称图形的是 ( )3.下列运算正确的是( )A .326a a a ⋅= B .336()x x =C .5510x x x +=D . 624a a a ÷=4.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于 ( )A.30° B.40° C .60° D.70°5.下列调查中,适合采用全面调查(普查)方式的是( )A .了解一批节能灯泡的使用寿命B .了解某班同学“立定跳远”的成绩C .了解全国每天丢弃的塑料袋的数量D .了解浙江卫视“中国好声音”栏目的收视率6.如图,⊙O 是△ACD 的外接圆,AB 是⊙O 的直径,︒=∠50BAD , 则C ∠的度数是( )A . 30°B . 40°C . 50°D . 60°7. 一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是( )A C D E(4题图)(6题图)(11题图)8.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43 B .45C .54D .349.如图,双曲线)0(>=x xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .过D 作DE ⊥OA 交OA 于点E , 若△OBC 的面积为3,则k 的值是 ( ).A .1B .2C .31D .310.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴…,依此规律,第8个图案需( )根火柴.A .87B .89C .91D .93 11.如图所示,二次函数2y ax bx c =++(0a ≠)的图象的对称轴是直线1=x ,且经过点(0,2).有下列结论:①0>ac ;②24b ac -③b c a -<+2;④41-<a ; ⑤5-=x 和7=x 其中正确的结论有 ( )A .1个B .2个C .3个D .4个12. 如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿 AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长 交边BC 于点G .若CG BG 5=,则ADAB的值是 ( ) A .56 B .79 C .35 D .36二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卷相应位置的横线上. 13.在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12500000,这个数用科学记数法表示为___________.(9题图)(12题图)14.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF =___________.15则这个队队员年龄的中位数是_______________岁.16.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是___________(用含π的式子表示).17.在不透明的口袋中,有五个分别标有数字2-、1-、1、2、3的完全相同的小球,现从口袋中任取一个小球,将该小球上的数字作为点C 的横坐标,并将该数字加 1作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)能构成直角三角形 的概率是 .18.某服装厂生产某种冬装,9月份销售每件冬装的利润是出厂价的25﹪(每件冬装的利润=出厂价—成本),10份将每件冬装的出厂价降低10﹪,(每件冬装的成本不变),销售量则比9月份增加80﹪,那么该厂10份销售这种冬装的利润总额比9月的利润总额增长___﹪.三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19. 计算:2302014)31(8)2()1(4---+-⨯-+-π20.如图,点A 、B 、D 、E 在同一直线上,DE AB =,AC ∥EF ,∠C =∠F ,求证:EF AC =.(14题图)四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.先化简,再求值:)1121(1222+--÷++-a a a a a a -,其中a 是方程032=+-x x 的解.22. 某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:各个兴趣小组人数统计图 各个兴趣小组总人数占调查人数百分比统计图(1)九(1)班的学生人数为 ,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.23.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元。

重庆一中2014届初三数学二模试题附答案

重庆一中2014届初三数学二模试题附答案

CBA重庆一中2014届初三数学二模试题(附答案)一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡上相应的位置涂黑. 1. 在实数3-,2、0、1-中,最小的数是( )A .2B .0C .3-D .1- 2.函数1-=x xy 的自变量取值范围是( ) A .0≠x B .1≠x C .1≥x D . 0≥x3.下列式子中,一定成立的是( )A .2a a a =⋅B .23325a a a +=C .321a a ÷= D .()22ab ab =4.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.如图,在△ABC 中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE 的 度数是( )A .50°B .60°C .70°D .80°6.下列说法正确的是( )A .调查全国青少年儿童的睡眠时间适宜采用全面调查(普查)方式;B .了解全班同学本周末参加社区活动的时间适宜采用抽样调查方式;C .已知一组数据:2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是2;D .打开电视机,正在播放广告这一事件是不确定事件. 7.已知△ABC 中,∠C=90°,AC=5,BC=12,以C 点为圆心,1360为半径的⊙C 与直线AB 的位置关系是( )A .相交B .相切C .相离D .内含 8.不等式21xx ->-的最大整数解为( ) A .2- B .3- C .4- D .5-9.如图所示,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第八个图形中共有( )个三角形.A .29B .30C .31D .3210.五月某市连降大雨,某部队前往救援.乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离s (千米)与时间t (小时)之间函数关系的大致图象是( )11.如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若9=EH 厘米,12=EF 厘米,则边AD 的长是( ).A .12厘米B . 15厘米C .20厘米D .21厘米12.Rt△ABC 在平面坐标系中摆放如图,顶点A 在x 轴上,∠ACB=90°, CB∥x 轴,双曲线)0(≠=k xky 经过C 点及AB 中点D ,5=∆BCD S , 则k 的值为( )A .5B .8C .-10D .-15二、填空题:(本大题6个小题,每小题4分,共24分)13.2014年4月份,我国进出口总值22000亿元人民币,这个数用科学记数法可表示为 亿元. 14.若2,522==+xy y x ,则2)(y x -= .15.如图, Rt△ABC 中,∠ACB =90°,直线l 经过C 点,AE ⊥l 交直线l 于E 点,BF ⊥l 交直线l 于点F ,若94=∆∆CBF ACE S S ,则=BC AC.E则图中阴影部分的面积为 .17.已知一个口袋中装有六个完全相同的小球,小球上分别标有0,3,6,9,12,15六个数,搅匀后一次从中摸出一个小球,将小球上的数记为a ,则使得一次函数a x a y +-=)5(经过一、二、四象限且关于x 的分式方程6646-+=-x xx ax 的解为整数的概率是______________. 18.如图,边长为2正方形ABCD 中,BD 为对角线,AE∥BD,且DE=DB ,DE 与AB 交于F 点,则EF= .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:91)2()31(32201402-2--+-⨯+---)(π20.在Rt △ABC 中,∠C =90°,点D 为BC 边上一点,CD =1,且cos ∠AD C=31,BD =2AD ,求∠A BC 的正切.(第16题)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:)3(21222y x y x y xy x x y x ---÷-++,其中x ,y 满足⎩⎨⎧=-=+023y x y x .22. 为了了解初二学生参加体育活动的情况,某校对部分初二学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1—1.5小时C.0.5—1小时D.0.5小时以下 根据调查结果绘制了两幅不完整的统计图如下:请你根据以上信息解答下列问题:(1)本次调查的学生人数为 人,图(2)中选项C 的圆心角度数为 度,并将图(1)中选项B 的部分补充完整;(2)选择D 选项的人中有3人来自一班,2人来自二班,学校准备从这5人中任选两人参加学校组织的师生趣味运动会,请你用列表法或画树状图的方法,求出所选的两人均来自同一个班的概率.23.小王到某中式快餐店用餐,该快餐店的招牌餐是卤肉套饭和红烧肉套饭,其中每份红烧肉套饭比卤肉套饭贵了3元钱,小王发现若用150元买卤肉套饭数量是用90元买到的红烧肉套饭数量的两倍.(1)请帮小王计算一份卤肉套饭和一份红烧肉套饭售价各多少元?(2)该快餐店决定将成本为10元的卤肉套饭与成本为11.5元的红烧肉套饭采取送餐上门的销售形式,将每份卤肉套饭和红烧肉套饭在原售价基础上分别涨价20%和25%,这样一来,快餐店平均每天要多支出20元的交通成本(每月按30天算)和每份0.5元的打包成本.而该店每月只外送500份套餐,问:至多送出多少份卤肉套饭可产生不低于3600元的利润?24.△ACB 中,AC=BC,∠ACB=90°,E 点和F 点分别在AC 和BC 边上,且CE=CF ,AF 与BE 交于G 点, (1)求证:∠C AF =∠EBC ;(2)若∠A GE=45°,延长CG 交BA 于H 点,求证:AE=2HG.五.解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 25.抛物线23212-+=x x y 与x 轴交于A 、B 两点,抛物线顶点为M 点,过M 点作M D⊥x 轴于D 点,x 轴上有一点C (-2,0),(1)直接写出A 、B 两点坐标:A ( , ),B ( , ),并求出直线CM ..的解析式; (2)抛物线上有一点P ,设P 点横坐标为m ,且13-<<-m ,若PMD PCM S S ∆∆=43,则求出P 点的坐标;(3)抛物线上有一点Q ,若∠QMC 与∠CMD 互余或相等,则求出MQ 的直线解析式.26.如图一,Rt△EFG 中,∠F=90°,∠EGF=30°,EG=2,菱形ABCD 中,AC 、BD 交于O 点,AB=6,∠BAD=60°,G 、A 、E 、B 点在同一条直线上,E 点和A 点重合,将△EFG 沿AC 方向以每秒2个单位的速度平移,运动时间记为t ,当G 点到达BD 边上时停止运动,(1)填空:菱形ABCD 的面积为 ,t= 时,G 点刚好落在BD 边上;(2)将△EFG 与△AOD 的重叠部分面积记为S ,请直接写出S 与t 的函数关系式,并写出相应自变量取值范围;(3)如图2,当△EFG 停止移动时,将△EFG 绕点E 顺时针方向旋转︒α(3600<<α),直线FG 与直线BC 、直线AC 分别交于M 点、N 点,当△CMN 为直角三角形时,直接写出MN 的长度.初2014级13—14学年度下期第二次定时作业数学参考答案21. 解:原式=)3()(212222yx y x y x y y x x x y x ----÷-++=)4()(2122yx x y y x x y x --÷-++ =)2)(2()2)(2(2x y x y y x y x x x y y x x y -+-⋅-+-+-=2242x y y-………………6分解方程组⎩⎨⎧=-=+023y x y x 得:⎩⎨⎧==21y x 带入上式得:原式=1541242222=-⨯⨯.………………10分22.(1) 200 , 54 ,选项B 数据为100;………………4分(2)设来自一班的三个学生为1A ,2A ,3A ,来自二班的两个学生为1B ,2B ,列表如下:由表格可知:共有20种等可能结果,满足条件的有8种,则所选的两人均来自同一个班的概率为52208==P .(表格见下页,树状图略)………………10分24. 证明:(1)△AC F 与△BCE 中,AC=BC,∠AC F =∠BCE=90°,CE=CF ,∴△AC F ≌△BCE ,∴∠C AF =∠EBC ;………………5分(2)取EB 中点M ,连结HM ,由(1)得:∠1=∠2,又△ACB 为等腰直角三角形, ∴∠C A B=∠AB C ,故∠3=∠4, ∴AG=GB ,△AC G ≌△BCG 则∠ACG=∠BCG=45°,∴H 点为AB 边中点,即HM 平行且等于AE 21,∴∠5=∠8,又∠A GE=45° ∴∠5=45°+∠1,又∠7=45°+∠2, ∴∠7=∠8,HM=HG ,则AE=2HG. ………………10分(2)法二:取AE 中点M ,连结HM ,证明HG=EM 法三:取AF 中点M ,连结HM ,证明HG=HMC BF(3)①若∠QMC 与∠CMD 相等,则Q 点位于对称轴左侧,作D 点关于CM 的对称点D ',CD=1, 554='D D , 作E D '⊥x 轴,54='E D ,58=DE ,D '(54,513--),11。

重庆一中初2014级初三下中考二模数学试题(word有答案)

重庆一中初2014级初三下中考二模数学试题(word有答案)

重庆一中初2014级13-14学年度下期第二次定时作业数 学 试 卷 2014.3(本试题共五个大题,26个小题,满分150分,时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.1. 在2,0,31,5.2-这四个数中,是正整数的是( )A. -2.5 B .31c .0 D.22. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )3. 计算23)3(a -的结果正确的是( ) A.56a - B. 69a - C. 59a D.69a4. 如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数是( )A .70°B .65° C.60° D .50°(第4题图)(第7题图) (第9题图) 5.函数23-=x y 的自变量x 的取值范围是( )A .2>xB .2≠xC .2≥xD .2≠x 且0≠xF1 A E BC GD 2 B A OC B C A CB A6. 下列说法正确的是( )A .两名同学5次平均分相同,则方差较大的同学成绩更稳定B .一组数据3,4,4,6,8,5的众数为4C .必然事件的概率是100%,随机事件的概率是50%D .为防止H7N9流感,对确诊患者的密切接触者采用抽样调查的方法7. 如图,AC 是电杆AB 的一根拉线,现测得BC=6米,∠ABC=90°,∠ACB=52°,则拉线AC 的长为( )米.A.︒52sin 6B.︒52tan 6C.︒52cos 6D.︒⋅52cos 68. 若一个代数式222--a a 的值为3,则a a 632-的值为( )A .9B .3C .15D .59. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切 于C 点,AB=12cm ,AO=8cm ,则OC 长为( )cm A .5 B .4 C .52 D . 7210. 2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财受重大损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离s (千米)与时间t (小时)之间函数关系的大致图象是( )11.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是( )A .18B .19C .21D .2212.如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0), 双曲线x ky =(0>x )经过C 点,且OB ·AC =160,则k 的值为( )A .40B .48C .64D .80二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卷A .B .C .D .……图案① 图案④ 图案③ 图案② 图案⑤OO O S (千米) t (小时) O S (千米) S (千米) S (千米) t (小时) t (小时) t (小时) ((第12题图)A O y xB C相应位置的横线上.13. 五一小长假期间,重庆阴雨天气对市民出游热情虽有一定影响,但全市旅游市场秩序井然有序,旅游接待稳中有升. 全市旅行社共组接团6369个,共组接团191000人. 则数据191000用科学记数法表示为( ) .14. △ABC 与△DEF 是位似比为1:3的位似图形,若4=∆ABC S ,则△DEF 的面积为 ( ) .15. 第十二届全国人大代表选举的基本原则是:城乡同比选举,实现人人平等、地区平等、民族平等. 据新华网2月28日公布,全国5个少数民族自治区的人大代表如下:这五个地区代表人数的中位数是___________.16. 将Rt △ABC 绕顶点B 旋转至如图位置,其中∠C=90°,AB=4,BC=2,点C 、B 、A '在同一条直线上,则阴影部分的面积是 .(左) (右)17. 如图,每个小方格都是边长为1个单位长度的小正方形,将左边8⨯1的矩形随机沿方格竖线剪成三个小矩形(含正方形),三个面积相等的算作同一种剪法(如:面积为1、3、4和面积为3、4、1算同一种剪法),且长宽均为正整数,能恰好拼在右图虚线部分使其成为一个4⨯4的正方形的概率为 ( ) .18. 一换硬币游戏这样规定:有三部自动换币机,其中第一部总是将一枚硬币换成两枚硬币,第二部总是将一枚硬币换成四枚硬币,而第三部总是将一枚硬币换成十枚硬币. 若某人进行了13次换币后,将1枚硬币换成84枚,则他在第三部自动换币机上换了( ) 次.三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19. 计算:︒+--+-⨯-+--60tan )31(64)2()1(42302013π选区 广西 西藏 新疆 宁夏 内蒙 人数(人) 90 20 60 21 58 A'C'C B A (第16题图) (第17题图)20. 如图,在10⨯10正方形网格中作图:(1)作出△ABC 关于直线l 的轴对称图形△A1B1C1;(2)作出△ABC 绕点O 顺时针旋转90°的图形△A2B2C2.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:22816121(2)224x x x x xx x -+÷---+++,其中x 为不等式组20512(1)x x x -<⎧⎨+-⎩>的整数解.22. 为调动学生学习积极性,某中学初一(1)班对学生的学习表现实行每学月评分制,现对初一上期1—5学月的评分情况进行了统计,其中学生小明5次得分情况如下表所示:时间 第1学月 第2学月 第3学月 第4学月 第5学月 得分 8分 9分 9分 9分 10分O lACBA第22题图学生小刚的得分情况制成了如下不完整的折线统计图:(1)若小刚和小明这5次得分的平均成绩相等,求出小刚第3学月的得分.(2)在图中直接补全折线统计图; (3)据统计,小明和小刚这5学月的总成绩都排在了班级的前4名,现准备从该班的前四名中任选两名同学参加学校的表彰大会,请用列表或画树状图的方法,求选取的两名同学恰好是小明和小刚两人的概率.23.商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销售量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动,童装在4售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?24. 已知:如图,正方形ABCD 中,点E 是BA 延长线上一点,连接DE ,点F 在DE 上且DF=DC ,DG ⊥CF 于G. DH 平分∠ADE 交CF 于点H ,连接BH.(1)若DG=2,求DH 的长; (2)求证:BH+DH=2CH.GHFC D 910 68 4 1 2 2 3 4 5 (分)(学月)五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线y=x2+bx+c 与y 轴交于点C (0,﹣4),与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值.(3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.26. 如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=12,D 、E 分别为边AB 、AC 的中点,连结DE ,点P 从点A 出发,沿折线AE-ED-DB 运动,到点B 停止.点P 在折线AE-ED 上以每秒1个单位的速度运动,在DB 上以每秒5个单位的速度运动. 过点P 作PQ ⊥BC 于点Q , 以PQ 为边在PQ 右侧作正方形PQMN , 使点M 落在线段BC 上.设点P 的运动时间为t 秒(0t ).(第24题图) (第25题图)(1)在整个运动过程中,求正方形PQMN 的顶点N 落在AB 边上时对应的t 的值;(2)连结BE ,设正方形PQMN 与△BED 重叠部分图形的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)当正方形PQMN 顶点P 运动到与点E 重合时,将正方形PQMN 绕点Q 逆时针旋转60°得正方形 P1 Q M1 N1,问在直线DE 与直线AC 上是否存在点G 和点H ,使△GHP1是等腰直角三角形? 若 存在,请求出EG 的值;若不存在,请说明理由.(第26题图)重庆一中2014年第二次模拟试题答案一、选择题(每小题4分,共48分) DADB BBCC DACB二、填空题(每小题4分,共24分)A M (Q )C BD EP N A CBD EACBDE备用图备用图13. 51091.1⨯ 14.36 15. 58 16.32316-π17.53 18.819. 解:原式=39414+-+- …… 6分 20. =32+- ……………… 7分21. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ………(3分) =41)4)(4(2)2()4(2+--++⋅+-x x x x x x x …(4分)=41)4(4+-+-x x x x ……………………(5分) =)4(4+-x x .………………………(6分)由20512(1)x x x -<⎧⎨+-⎩>解得21<<-x .…(8分)∵x 是不等式组的整数解,∴x=1. x=0(舍)…………(9分) 当x=1时,原式=54-.……………………(10分)22. 解:10)10928()10839(=++⨯-++⨯∴小刚第3学月的得分为10分;………………………………………………(2分) 补全折线图如图所示 ………………………………………………(4分)(3)设小明和小刚分别为A 、B ,该班的前四名另两名同学为 C ,D ,画表格如下:共有12种等可能情况,其中恰好是小明和小刚两人有2种,所以选取的两名同学恰好是小明和小刚两人的概率P=61122=. …………………………………………(10分)23. (1)设销售单价为x 则200000.950200007000x x ⎛⎫+=+ ⎪⎝⎭解得x=200A B C DA (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,D ) D (D ,A ) (D ,B ) (D ,C ) lC B A OA1A2B2 B1C2C19 106 84 1 2 2 3 45 (分(学月)总件数20000÷200=100(件),一件利润8000÷100=80元 成本为200-80=120(元),0.8×200-120=40设销售最起码为y 件则40y ≥8000(1+25%)得到y ≥25024. (1)∵DG ⊥CF 且DF =CD∴∠FDG=21∠FDC.................1分∵DH 平分∠ADE∴∠FDH=21∠ADF.................2分∴∠HDG=∠FDG-∠FDH=21∠FDC-21∠ADF =21(∠FDC-∠ADF )=21∠ADC=45°....3分∴△DGH 为等腰直角三角形 ∵DG=2,∴DH =22 .................5分(2)过点C 作CM ⊥CH, 交HD 延长线于点M ∵∠1+∠DCH=∠2+∠DCH=900 ∴∠1=∠2又△DGH 为等腰直角三角形 ∴△MCH 为等腰直角三角形 ∴MC=HC又∵四边形ABCD 为正方形 ∴CD =CB∴△MCD ≌△HCB .................8分 ∴DM =BH又∵△MCH 为等腰直角三角形 ∴DM+DH=2CH∴BH+DH=2CH .................10分25. 解:(1)把点C (0,﹣4),B (2,0)分别代入y=x2+bx+c 中,得,GH FACB DEM1 2解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).26.(1)当点P 在AE 上时, 由△APN ∽△ACB 得BC PNAC AP = ∴1266tt -=∴t=2s ......2分 当点P 在ED 上时,PN=3 ,∴AE+EP=3+6-3=6 ∴t=6s ......3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<-+-≤<-≤<+-=)129(54983)96(88141541)63(8943)30(292381222t t t t t t t t t t t S .................8分(3)在直线DE 与直线AC 上存在点G 和点H ,使△GHP1是等腰直角三角形. 理由如下: 过P1作P1S ⊥AC 于S, P1R ⊥DE 于R, ∵∠P1QS=60°,P1Q=3,∴P1S=RE=323, QS 23=∴P1R=SE=23.当∠P1GH=90°时,可证△P1RG ≌△GEH ,则EG= P1R=23.......9分当∠P1HG=90°时, (如图3、4) 可证△P1SH ≌△HEG ,∴EH=P1S=323,EG=SH, ∴EG=EH+SE=323+23;或EG=EH-SE=323-23; ..........11分③当∠GP1H=90°时,∵P1S ≠ P1R , ∴△P1SH 与△P1RG 不可能全等 ∴P1H ≠ P1G ,∴不成立. .......12分综上,EG=23,323+23,323-23.R S GP1HE Q H G P1SR E Q R P 1S E H GQE P 1G SHR Q图1图2图3图4。

2014年九年级中考第一次模拟数学试题及答案

2014年九年级中考第一次模拟数学试题及答案

2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。

每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .D .4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数y =x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41 B .92 C .51D .112 8.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)(第4题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′与⊙O 外切时,圆心距为7厘米,则⊙O ′与⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 .17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。

【解析版】重庆一中2014-2015年九年级数学第二次月考试题

【解析版】重庆一中2014-2015年九年级数学第二次月考试题
9.如图,下列是由边长为 2 的等一定规律排列而成,第一个图形的周长为 6,第二个所组成图形的周长为 8,将若干的等边三角形按照这样的规律来摆放,则第 8 个 图形的周长( )
A. 18 B. 19 C. 20 D. 21
10.小明周六参加绘画兴趣班,从家去公交车站,先加速行驶一段时间后匀 速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加 速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情 况的图象是( )
A.
B.
C.
D.
11.如图,矩形 ABCD 中,E 为 CD 的中点,连接 AE 并延长交 BC 的延长线于点 F,连接 BD 交 AF 于 H,AD=10 ,且 tan∠EFC= ,那么 AH 的长为( )
A.
B. 5 C. 10 D. 5
重庆一中 学期九年级数学第二次月考
一、选择题:(本大题共 12 个4 分,共 48 分)每个小题都给出了代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案在答题卡中对应位置涂 黑. 1.|▱ 2|的相反数是( )
A.
B. ▱ 2 C. D. 2
2.下列运算正确的是( ) A. (a+b)2=a2+b2 B. (▱ a)2a3=a6 C. (▱ x)2÷x=▱ x D. (▱ 2x2)3=▱ 8x6
7.如图,▱ ABCD 的对角线 AC 与 BD 相交于点 O,AB⊥AC,若 AB=4,AC=6,则 BD 的 长是( )
A. 8 B. 9 C. 10 D. 11
8.如图,AB 为⊙O 的直径,PD 切⊙O 于点 C,交 AB 的延长线于 D,且 CO=CD,则
∠PCA=( ) A. 30° B. 45° C. 60° D. 67.5°

重庆一中初2014级13—14学年度上期第一次定时作业(答案)

重庆一中初2014级13—14学年度上期第一次定时作业(答案)

重庆一中初2014级13—14学年度上期定时作业数学试卷(答案)一、选择题:三.解答题19.原式=………… 5分=………… 7分由表格知共有6种等可能出现的结果数,其中能配成紫色的结果数有3种………… 7分21.解:原式====………… 6分解方程得当时原式无意义当时,原式=………… 10分22.解:过A作AD⊥BC交BC于点D,由题意,∠B=30°,∠BCA=75°-∠B =75°-30°=45°在Rt△CDA中,∴………… 6分在Rt△BDA中, ∠B=30°………… 9分∴AB两地之间的距离为………… 10分23.(1)25-35 ………… 2分(2)………… 4分(3)列表如下:由表格知共有20种等可能出现的结果数,其中一男一女的结果数有12种………… 10分24.解:(1)在………… 5分(2)延长HE至M,使EM=FH,连接CM在正方形ABCD中,CD=CB ,∵DF=BE∴CF=CE∵FG⊥AE 在四边形FHEC中∠CFH+∠CEH=180°∵∠CEM+∠CEH=180°∴∠CFH=∠CEM在△CHF和△CME中∴△CHF≌△CME∴CH=CM∠FCH=∠ECM∴∠FCE=∠FCH+ ∠HCE=∠ECM+∠HCE=90°即∠HCM=90°∴△HCM是等腰直角三角形∴∴………… 10分25.(1)………… 4分(2)过点P作PM⊥y轴交y轴于点M解得∴P(3,3) ∴PA=PM=3 ∠MPA=∠EPF=90°∴∠MPE=∠APF 在△PME和△PAF中∴△PME≌△PAF ∴AF=EM=4 ∴OF=OA+AF=4+3=7∴F(7,0) ………… 8分(3) 由题意得:A(3,0) M(8,0)设当整理得解得∴Q(1,9)当整理得解得∴Q(9,1) ………… 12分26.(1)………… 4分(2)………… 8分(3)要使△PQB为Rt△,只有∠PQB=90°或∠PBQ=90°………… 9分当∠PQB=90°时,DO//BQ ∠BQC=∠DOC=45°∴BC=CQ=2 ∴OQ=6-2=4∴………… 10分当∠PBQ=90°∴整理得解得∴当时△PQB为Rt△………… 12分。

重庆市重庆一中2014届九年级数学上学期10月月考试题 新人教版

重庆市重庆一中2014届九年级数学上学期10月月考试题 新人教版

重庆一中初2014级13—14学年度上期第一次定时作业数学试卷(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在表格中.1.的相反数是( )A. B. C. D.2.下列几何体中,俯视图为四边形的是( )3.下列调查适合作普查的是()A.对和甲型的流感患者同一车厢的乘客进行医学检查B.了解全国手机用户对废手机的处理情况C.了解全球人类男女比例情况D.了解重庆市中小学生压岁钱的使用情况4.下列图案中,不是中心对称图形的是()5.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A. B. C. D.6.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.7.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A. B. C. D.8.从2,-2,1,-1四个数中任取2个数求和,其和为0的概率是( )A.B.C.D.9.长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.B.C.D.10.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A. 42 B.40 C.38 D.3611.2013年“中国好声音”全国巡演重庆站在奥体中心举行,童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨匀速至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车匀速顺利回到家.其中表示童童从家出发后所用的时间,表示童童离家的距离.下面能反映与函数关系的大致图象是( )12.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为;②E点的坐标是(4,8);③sin∠COA=;④AC+OB=.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在下列方框内.13..14.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都相同),其中红球2个,蓝球1个,现从中任意摸出一个球是红球的概率为,则袋中黄球的个数为.15.生物工作者为了估计一片山林中猴子的数量,设计了如下方案:先捕捉100只猴子,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的猴子有5只.请你帮助工作人员估计这片山林中猴子的数量约为只.16.如图,在A时测得某树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度为米.17.有十张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3,4,5,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片上的数字乘以记为.则数字()使得关于的方程有解的概率为.18.如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在轴上与点N重合,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19.计算:20.用图中两个可自由转动的A,B转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.请用画树状图或列表的方法列出所有可能的结果,并求可配成紫色的概率.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.先化简,再求值:,其中为方程的解.22.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以40米/分的速度沿与地面成75°角的方向飞行,35分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(结果保留根号)23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(网购)”和“偶尔(网购)”统称为“参与网购”,其余叫从不网购,那么该企业职工“从不网购”的人数大约是多少人?(3)这次调查中,25岁以下的职工“从不(网购)”的共有5人,其中3男2女,在这5人中,打算随机选出2位进行采访,请你用列表法或画树状图的方法求出所选两人恰好是一男一女的概率.24.如图,正方形ABCD中,E、F分别为边BC、DC上的点,且BE=FD,连接AE,过点F作FH⊥AE,交AB于点G,连接CH.(1)若DF=2,, 求AE的值.(2)求证:EH+FH=CH五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图1,直线与双曲线交于点P,PA⊥轴于点A,S△PAO=.(1)求的值.(2)如图2,点E的坐标为,连接PE,过点P作PF⊥PE,交轴于点F,求点F的坐标.(3)如图3,将点A向右平移5个单位长度得点M,问:双曲线上是否存在点Q,使S△QPO=S△MPO?若存在,求Q点的坐标;若不存在,请说明理由.26.在矩形AOCB中,边AO=2,OC=6,∠AOC的角平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿射线OC方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)设△OPQ与梯形ODBC重叠部分面积为S,直接写出S与的关系式,并写出的取值范围;(3)求当t为何值时,△PQ B为直角三角形.重庆一中初2014级13—14学年度上期定时作业一、选择题:答案三.解答题19.原式=………… 5分=………… 7分由表格知共有6种等可能出现的结果数,其中能配成紫色的结果数有3种………… 7分21.解:原式====………… 6分解方程得当时原式无意义当时,原式=………… 10分22.解:过A作AD⊥BC交BC于点D,由题意,∠B=30°,∠BCA=75°-∠B =75°-30°=45°在Rt△CDA中,∴………… 6分在Rt△BDA中, ∠B=30°………… 9分∴AB两地之间的距离为………… 10分23.(1)25-35 ………… 2分(2)………… 4分(3)列表如下:由表格知共有20种等可能出现的结果数,其中一男一女的结果数有12种………… 10分24.解:(1)在………… 5分(2)延长HE至M,使EM=FH,连接CM在正方形ABCD中,CD=CB ,∵DF=BE∴CF=CE∵FG⊥AE 在四边形FHEC中∠CFH+∠CEH=180°∵∠CEM+∠CEH=180°∴∠CFH=∠CEM在△CHF和△CME中∴△CHF≌△CME∴CH=CM∠FCH=∠ECM∴∠FCE=∠FCH+ ∠HCE=∠ECM+∠HCE=90°即∠HCM=90°∴△HCM是等腰直角三角形∴∴………… 10分25.(1)………… 4分(2)过点P作PM⊥y轴交y轴于点M解得∴P(3,3) ∴PA=PM=3 ∠MPA=∠EPF=90°∴∠MPE=∠APF 在△PME和△PAF中∴△PME≌△PAF ∴AF=EM=4 ∴OF=OA+AF=4+3=7∴F(7,0) ………… 8分(3) 由题意得:A(3,0) M(8,0)设当整理得解得∴Q(1,9)当整理得解得∴Q(9,1) ………… 12分26.(1)………… 4分(2)………… 8分(3)要使△PQB为Rt△,只有∠PQB=90°或∠PBQ=90°………… 9分当∠PQB=90°时,DO//BQ ∠BQC=∠DOC=45°∴BC=CQ=2 ∴OQ=6-2=4∴………… 10分当∠PBQ=90°∴整理得解得∴当时△PQB为Rt△………… 12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O y x D
C B A O E
D C B A 初2014级13—14学年度下期第一次定时作业
数 学 试 卷2014.5.8
24.已知:如图,在△ABC 中,AB=AC ,延长BC 到D ,使BD=2BC ,连接AD ,过C 作CE ⊥BD 交AD 于点E ,连接BE 交AC 于点O.
(1)求证:∠CAD=∠ABE. (2)求证:OA=OC
五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.
25.已知如图,抛物线42
12-+=
x x y 交x 轴于A 、B 两点(A 点在B 点的左侧),交y 轴于点C ,抛物线的顶点为D.
(1)求△ACD 的面积;
(2)点M 在抛物线对称轴上,若△BCM 为直角三角形,求出点M 的坐标.
(3)点P 在抛物线上,连接AP ,若∠PAB=∠ACD ,求点P 的坐标.
26.如图,矩形ABCD 中,AB=CD=6,AD=BC=8,△GEF 中,∠EGF=90°,GE=GF=2,把△GEF 按图1位置摆放(点G 与点A 重合,其中E 、G 、A 、B 在同一直线上).∠BAC 的角平分线AN 交BC 于点M ,△GEF 按图1的起始位
图3图2图1N N N M M M G G (G )F F F E E E D
D D C C C B B B A
A A 置沿射线AN 方向以每秒5个单位长度匀速移动(始终保持GF ∥BC ,GE ∥DC ),设移动的时间为t 秒.当点E 移到BC 上时,△GEF 停止移动(如图3)
(1)求BM=__________;在移动的过程中,t=_________时,点F 在AC 上.
(2)在移动的过程中,设△GEF 和△ACM 重叠的面积为s ,请直接写出s 与t 之间的函数关系式以及自变量t 的取值范围.
(3)如图3,将△GEF 绕着点E 旋转,在旋转过程中,设直线GF 交直线AC 于点P ,直线GF 交直线BC 于点Q ,当△CPQ 为等腰三角形时,求PC 的长度.
初2014级13—14学年度下期第一次定时作业
数学试题参考答案及评分意见
24.证明:(1)(1)∵BD=2BC ∴ BC=DC
∵CE ⊥BD ∴ DE=BE
∴∠D=∠DBE ………………………………………………(2分)
∵AC=AB ∴∠ACB=∠ABC
∵∠ACB=∠D+∠CAD
∠ABC=∠DBE+∠ABE ……………………………………(4分)
F O E D C B A ∴∠CAD=∠ABE ……………………………………………(5分)
(2) 取DE 的中点为F,连接CF ……(6分)
∵CE ⊥BD ∴ DF=CF=EF
∵ BC=CD
∴ CF ∥BE 且CF=2
1BE ∴∠CFA=∠AEB ………………(7分) 在△CAF 和△ABE 中
∵∠CFA=∠AEB AC=BA
∠CAF=∠ABE ∴△CAF ≌△ABE(ASA) ………(9分)
∴AE=CF
∴AE=CF=DF=EF
∵CF ∥BE
∴AO=CO ………………………(10分)
(2)方法二:取AD 的中点为M,连接CM.
方法三:取AB 的中点为G ,连接CG.
方法四:过A 作A H ⊥BC 于H ,AH 交BE 于点K.
方法五:过A 作AN ∥BD 交BE 的延长线于点N.
26. 解:(1)3;5
6 ……………………………………………………………(4分) (2)①当560≤<t 时,S=224
25t ②当5856≤<t 时,S=6108
252-+-t t ③当35
8≤<t 时,S=2 ④当3<t ≤4时,S=321622+-t t ……………………………(8分)
(3)① 当CP=CQ 时,103241024±
=±=CP CP 或 ② 当PC=PQ 时,12
55125或=CP ③ 当PQ=CQ 时,15
1461546或=CP 综上所述,15
14615461255125103241024或或或或或±±=PC ……(12分) (说明:每对两个得1分,对1个、3个、5个、7个分别也得1分、2分、3分、4分)。

相关文档
最新文档