高中数学 3.2.1 几类不同增长的函数模型(1) 导学案 新人教A版必修1
高中新人教A版必修1数学课件 3.2.1 几类不同增长的函数模型1
• 【答案】 D
第六页,编辑于星期一:点 四十五分。
• 4.已知变量x,y满足y=1-3x,当x增加1 个单位时,y的变化情况是________. • 【解析】 ∵[1-3(x+1)]-(1-3x)=-3 , • ∴当x增加1个单位时,y减少3个单位. • 【答案】 减少3个单位
第七页,编辑于星期一:点 四十五分。
• 1.在区间(0,+∞)上,函数y=ax(a>1),y= logax(a>1)和y=xn(n>0)都是____增_函_数___,但___增_长__速_度___不同 ,且不在同一个“档次”上.
• 2.在区间(0,+∞)上随着x的增大,y=ax(a>1)的增
长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度
•
(3)指数函数y=ax(a>1)模型,其增长迅速.
•
2.函数模型选取的择优意识
•
解题过程中究竟选用哪种增长的函数模型,要根据题目的具体要求进行
抽象和概括,灵活地选取和建立数学模型.
第二十四页,编辑于星期一:点 四十五分。
• 3.要注意化归思想和数形结合思想的运 用.
第二十五页,编辑于星期一:点 四十五分。
,而y=logax(a>1)的增长速度则会_________. 越来越慢
•
3.存在一个x0,使得当x>x0时,有______lo_ga_x<_x_n<_ax.
第三页,编辑于星期一:点 四十五分。
• 1.判断:(正确的打“√”,错误的打“×”) • (1)函数y=x3比y=2x增长的速度更快些.( ) • (2)当x>100时,函数y=10x-1比y=lg x增长的速度 快.( ) • (3)能用指数型函数f(x)=abx+c(a,b,c为常数,a >0,b>1)表达的函数模型,称为指数型的函数模型 ,也常称为“爆炸型”函数.( ) • 【答案】 (1)× (2)√ (3)√
2014年高中数学(入门答疑+思维启+状元随笔)3.2.1几类不同增长的函数模型同步课堂讲义课件 新人教A版必修1
指数函数y=ax(a>1),对数函数y= logax(a>1)和幂函数y=xn(n>0)增长速 度的比较 1.在区间(0,+∞)上,函数 y=ax(a>1),y= 增函数 ,但 logax(a>1)和 y=xn(n>0)都是___________ 增长速度 不同,且不在同一个“档次”上. ____________ 2.在区间(0,+∞)上随着 x 的增大,y=ax(a>1) 越来越快 ,会超过并远远大于 y= 增长速度_____________ xn(n>0)的增长速度,而 y=logax(a>1)的增长速度 越来越慢 . 则会_____________ n< a x log x < x a 3.存在一个 x0,使得当 x>x0 时,有____________.
2.某企业生产一种机器的固定成本 (即固定投入) 为 0.5 万元, 但每生产 100 台时, 又需可变成本 (即 另增加投入)0.25 万元,市场对此商品的年需求量 为 500 台,销售收入(单位:万元)函数为: 1 2 R(x)=5x- x (0≤x≤5),其中 x 是产品生产的数 2 量(单位:百台) (1)把利润表示为产量的函数. (2)年产量为多少时,企业所获得的利润最大?
(1)由题意知: g(x)= f(x)- f(x- 1) 1 1 = · x(x+ 1)(35-2x)- (x- 1)x[35-2(x-1)] 150 150 1 = x[(x+ 1)(35-2x)- (x-1)(37- 2x)] 150 1 1 = x(72- 6x)= x(12-x). 150 25 1 ∴g(x)= x(12- x)(x∈ N 且 x≤12). 25
x 1 2 (2)g(x)= (12-x)=- (x - 12x+36-36) 25 25 1 1 36 2 2 =- [(x- 6) -36]=- (x- 6) + , 25 25 25 36 ∴当 x= 6 时,g(x)有最大值 . 25 36 即第六个月需求量最大,为 万件. 25
几类不同增长的函数模型
人教A版必修一·新课标·数学
(3)由04.≤75xx≤-50.5x2-0.5≥0 或x1>25-0.25x≥0 得 0.1≤x≤5 或 5<x≤48,即 0.1≤x≤48. ∴产品年产量在 10 台到 4800 台时工厂不亏本.
人教A版必修一·新课标·数学
类型三
指数函数、对数函数模型应用题
●想一想:当0<a<1,n<0时,y=ax,y=xn,y=logax为减函 数,其“衰减”速度如何?你能借助图象,类比分析吗?
提示:如下图所示:
对于函数y=ax(0<a<1),y=xn(n<0),y=logax(0<a<1)尽管都是 减函数,但它们的衰减速度不同,而且不在同一“档次”上,随着x 的增大,y=ax(0<a<1)的衰减速度越来越慢,会远远小于y=xn(n<0)的 衰减速度,而y=logax(0<a<1)的衰减速度则越来越快,因此总会存在 一个x0,当x>x0时,就有logax<xn<ax.
人教A版必修一·新课标·数学
温馨提示:这是一道二次函数的应用题,同时考查了正比例函 数(一次函数).本题中“最大养殖量”、“空闲量”、“空闲率”这 些临时定义,使本题理解难度加大,因此,要通过多遍审题和分析关 系理解好这些词汇,再找未知量之间的关系.
在函数模型中,二次函数模型占有重要的地位,因为根据实际 问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的 单调性等方法来求函数的最值,从而解决实际问题中的最大、最小等 问题.
人教A版必修一·新课标·数学
热点提示 学习本节内容时,应充分利用计算器或计算机等工具作出一些 特殊的指数函数、对数函数的图象,利用图象的形象直观得到这几类 函数图象的增长规律,进而归纳总结出一般规律.熟练掌握这一规律 后,还应注意灵活地运用它在实际问题中建立函数模型.
人教版A版高中数学必修一_第3章_321几类不同增长的函数模型(有答案)
人教版A版高中数学必修一第3章 3.2.1几类不同增长的函数模型3一、单选题1. 甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.乙比甲跑的路程多B.甲比乙先出发C.甲比乙先到达终点D.甲、乙两人的速度相同2. y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y2>y1>y3B.y1>y2>y3C.y2>y3>y1D.y1>y3>y23. 有一组实验数据如表所示:下列所给函数模型较适合的是()A. B.C. D.4. 若,则下列结论正确的是()A. B. C. D.5. 如果某林区的森林蓄积量每年平均比上一年增长10.4%,那么经过年可增长到原来的倍,则函数的图象大致为() A. B. C. D.参考答案与试题解析人教版A版高中数学必修一第3章 3.2.1几类不同增长的函数模型3一、单选题1.【答案】此题暂无答案【考点】在实三问葡中建湖三量函数模型函数根气居调与导数的关系【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】对数函数表础象与性质函表的透象对数值于小的侧较【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】归都读理相验周数极差、使差与标香差【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】幂函射空图象指数表数层图象对数函数表础象与性质【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】函表的透象【解析】此题暂无解析【解答】此题暂无解答。
【数学】2010-2011学年同步精品学案(人教A版必修1):第3章 函数的应用 §31 几类不同增长的函数模型 新
3.2.1几类不同增长的函数模型学习目标1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.自学导引函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的增减性增函数增函数增函数图象的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随n值而不同xan(1)对于指数函数y=a x和幂函数y=x n(n>0)在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内,a x会小于x n,但由于y=a x的增长快于y=x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.(2)对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,尽管在x的一定范围内,log a x可能会大于x n,但由于y=log a x的增长慢于y=x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.一、一次函数模型例1为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜.解(1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2得k 1=15,k 2=12.∴y 1=15+29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623时,y 1>y 2,即如意卡便宜;当x >9623时,y 1<y 2,即便民卡便宜.点评 由图象给出的函数关系的应用问题,要先确定函数类型,然后,通过待定系数法列方程求解.变式迁移1 商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.顾客只能任选其一.某顾客需购茶壶4个,茶杯若干个(不少于4个),若购买茶杯数为x 个,付款数为y (元),试分别建立两种优惠办法中y 与x 之间的函数关系式,并讨论两种办法哪一种更省钱.解 由优惠办法(1)可得函数关系式为 y 1=20×4+(x -4)×5=5x +60 (x ≥4); 由优惠办法(2)得:y 2=4×20×0.92+x ×5×0.92=4.6x +73.6 (x ≥4) 当购买34只茶杯时,两办法付款相同; 当4≤x <34时,y 1<y 2,优惠办法(1)省钱; 当x >34时,y 1>y 2,优惠办法(2)省钱.二、指数函数模型例2 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg 2=0.301 0,lg 3=0.477 1)分析 每次过滤杂质含量降为原来的23,过滤n 次后杂质含量为2100·⎝⎛⎭⎫23n,结合按市场要求杂质含量不能超过0.1%,即可建立数学模型.解 依题意,得2100·⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120.则n (lg2-lg3)≤-(1+lg2),故n ≥1+lg2lg3-lg2≈7.4,考虑到n ∈N ,即至少要过滤8次才能达到市场要求.点评 一般地,形如y =a x(a >0且a ≠1)的函数叫做指数函数,而在生产、生活实际中,以函数y =b ·a x +k 作为模型的应用问题很常见,称这类函数为指数函数模型.以指数函数、对数函数为模型的实际应用问题通常与增长率、衰减率有关,在现实生活和科学技术领域,诸如人口普查中的人口增长、细胞分裂次数的推算、考古中根据碳-14的衰减推算年代以及药物在人体内残留时间的推算等问题都属于这一模型.变式迁移2 2004年全国人口普查时,我国人口数为13亿,如果从2004年开始按1%的人口年增长率来控制人口增长,那么,大约经过多少年我国人口数达到18亿?解 设大约经过n 年,我国人口由2004年的13亿增加到18亿,则13×(1+1%)n =18.∴1.01n=1813,即n =log 1.011813=lg1813lg1.01=lg18-lg13lg1.01≈1.255 3-1.113 90.004 3=32.883 7≈33(年)即从2004年开始,大约经过33年,我国人口总数可达18亿.三、对数函数模型的应用例3 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 分析 由题目可获取以下主要信息: ①已知飞行速度是耗氧量的函数;②第(1)问知v ,求Q ;第(2)问知Q ,求v . 解答本题的关键是给变量赋值.解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15 (m/s).即当一只燕子的耗氧量是80个单位时, 它的飞行速度为15 m/s.点评 直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,利用对数运算性质求解.变式迁移3 在不考虑空气阻力的条件下,火箭的最大速度v (m/s)和燃料的质量M (kg)、火箭(除燃料外)的质量m (kg)的关系v =2 000ln ⎝⎛⎭⎫1+M m .当燃料质量是火箭质量的多少倍时,火箭的最大速度可达12 km/s?解 由12 000=2 000ln⎝⎛⎭⎫1+M m ,即6=ln ⎝⎛⎭⎫1+M m , 1+M m =e 6,利用计算器算得Mm≈402.即当燃料质量约是火箭质量的402倍时,火箭的最大速度可达12 km/s.1.根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性,来确定适合题意的函数模型.2.常见的函数模型及增长特点(1)直线y =kx +b (k >0)模型,其增长特点是直线上升; (2)对数y =log a x (a >1)模型,其增长缓慢; (3)指数y =a x (a >1)模型,其增长迅速.一、选择题1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为( )答案 D2.能使不等式log 2 x <x 2<2x 成立的x 的取值范围是( )A .(0,+∞)B .(2,+∞)C .(-∞,2)D .(0,2)∪(4,+∞) 答案 D3.下列函数中随x 的增大而增长速度最快的是( )A .y =1100e xB .y =100ln xC .y =x 100D .y =100·2x 答案 A4.已知镭每经过100年衰变后剩留质量是原来质量的95.76%,设质量为1的镭经过x 年后剩留质量为y ,则x 与y 之间的关系为( )A .y =0.957 6xB .y =0.957 6x100C .y =1-0.042 4x 100D .y =⎝⎛⎭⎫0.957 6100x答案 B5.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4 096个需经过( )A .12小时B .4小时C .3小时D .2小时 答案 C解析 设共分裂了x 次,则有2x =4 096, ∴2x =212,又∵每次为15分钟,∴共15×12=180分钟,即3个小时. 二、填空题6.国家规定的个人稿酬纳税办法是:不超过800元不纳税,超过800元不超过4 000元的按超过800元的14%纳税,超过4 000元的按全部稿酬的11%纳税,某人出版了一本书,共纳税420元,他的稿费为________元.答案 3 800解析 ∵3 000×14%=420元, 所以他的稿费应为3 800元.7.某工厂一年中十二月份的产量是一月份的a 倍,那么该工厂这一年中的月平均增长率是________.答案11a-1解析设这一年中月平均增长率为x,1月份的产量为M,则M(1+x)11=a·M,∴x=11a-1.8其中x,呈幂函数型变化的变量是______.答案y3y2y1三、解答题9.某公司预投资100万元,有两种投资可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元) 分析这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利计算5年后的本息和分别是多少,再通过比较作答.解本金100万元,年利率10%,按单利计算,5年后的本息和是100×(1+10%×5)=150(万元).本金100万元,年利率9%,按每年复利一次计算,5年后的本息和是100×(1+9%)5=153.86(万元).由此可见,按年利率9%每年复利一次计算的比年利率10%单利计算的更有利,5年后多得利息3.86万元.10.某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定的质量,则需购买行李票,行李费用y(元)是行李质量x(kg)的一次函数,其图象如图所示.(1)根据图象数据,求y 与x 之间的函数关系式;(2)问旅客最多可免费携带行李的质量是多少?分析 因为所求函数关系是一次函数,所以可先设出解析式,再通过图象利用待定系数法求出;免费携带,即y 的值为0,最多可免费携带行李的质量,应是函数图象与x 轴交点的横坐标.解 (1)设y 与x 之间的函数关系式为y=kx+b.由图象可知,当x=60时,y=6;当x=80时,y=10.∴⎩⎨⎧=+=+1080660b k b k 解得k=51,b=-6.∴y 与x 之间的函数关系式为y=51x-6 (x ≥30).(2)根据题意,当y=0时,x=30.∴旅客最多可免费携带行李的质量为30 kg.。
湖南省邵阳市隆回县第二中学高中数学 3.2.1几类不同增长的函数模型(2)导学案 新人教A版必修1
课题:3.2.1几类不同增长的函数模型(2)【学习目标】1. 增强应用数学的意识,学会将实际问题抽象为数学问题,运用数学知识解决实际问题。
2. 初步体会常数函数、一次函数、二次函数、指数函数和对数函数的增长差异。
【自主学习】1.利用计算器或计算机完成2x y =,2y x =,2log y x =的图象,通过观察图形试完成以下问题: ①请在图上标出使不等式22log 2x x x <<,22log 2x x x <<成立的自变量x 的取值范围。
②比较2x y =,2y x =的图象,说明两增长的差异③比较,2y x =,2log y x =的图象,说明两者增长的差异。
【合作探究】通过上述问题试分别说明①(1)x y a a =>,(0)n y x n =>;②(0)n y x n =>,log (1)a y x a =>图象增长的特征,并对(1)x y a a =>,(0)n y x n =>,log (1)a y x a =>三者图象的增长情况做一个简单说明。
【目标检测】1 .向高为H 的水瓶中注水,注满为止,如果注水量V 与深h 的函数关系的图象如右图所示,那么水瓶的形状是( ).2.2()f x x =,()2x g x =,2()log h x x =,当(4,)x ∈+∞时,三个函数增长速度比较,下列选项中正确的是( ).A. ()f x >()g x >()h xB. ()g x >()f x >()h xC. ()g x >()h x >()f xD. ()f x >()h x >()g x3.某人有资金2000元,拟投入在复利方式下年报酬为8%的投资项目,大约经过多少年后能使现有资金翻一番?(下列数据供参考:lg2=0.3010,lg5.4=0.7324,lg5.5=0.7404,lg5.6=0.7482).B 级:选做题1.某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价为5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯x 个,付款数为y (元),试分别建立两种优惠办法中y 与x 的函数关系,并讨论顾客选择哪种优惠方法更合算.2. 某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是____件(即生产多少件以上自产合算)。
高中数学第三章函数的应用第2节函数模型及其应用(1)教案新人教A版必修1
第二节函数模型及其应用第一课时整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排2课时教学过程第1课时作者:林大华导入新课思路1.(事例导入)一张纸的厚度大约为0.01 cm,一块砖的厚度大约为10 cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m.也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图象表示上述函数.,⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型与对数函数相关.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年… ④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性. ⑦让学生自己比较并体会.⑧其他与对数函数有关的函数模型. 讨论结果:①y =x .②y =x 2.③y =(1+5%)x.图1 图2 图3⑤它们分别属于:y =kx +b (直线型),y =ax 2+bx +c (a ≠0,抛物线型),y =ka x+b (指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x 的增大y =(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y =log a x +b ,我们把它叫做对数型函数. 应用示例例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x 天所得回报是y 元,则方案一可以用函数y =40(x ∈N *)进行描述;方案二可以用函数y =10x (x ∈N *)进行描述;方案三可以用函数y =0.4×2x -1(x ∈N *)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.图4由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.天,应选择方案二;投资11天(含11天)以上,则应选择方案三.针对上例可以思考下面问题:①选择哪种方案是依据一天的回报数还是累积回报数. ②课本把两种回报数都列表给出的意义何在? ③由此得出怎样的结论.答案:①选择哪种方案依据的是累积回报数. ②让我们体会每天回报数的增长变化.③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.图5根据图中两函数图象的交点所对应的横坐标为250,元时,由图象可知,y1所对应的自变量的值大于+50=200,∴x=375;在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1 000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1 000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).图6观察函数的图象,在区间[10,1 000]上,模型y =0.25x ,y =1.002x的图象都有一部分在直线y =5的上方,只有模型y =log 7x +1的图象始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y =0.25x ,它在区间[10,1 000]上递增,而且当x =20时,y =5,因此,当x >20时,y >5,所以该模型不符合要求;对于模型y =1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上递增,因此当x >x 0时,y >5,所以该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000].利用计算器或计算机作出函数f (x )的图象(图7),由函数图象可知它是递减的,因此图7f (x )<f (10)≈-0.316 7<0,即log 7x +1<0.25x .所以当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不超过利润的25%. 变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x %(x >0),销售数量就减少kx %(其中k 为正实数).目前,该商品定价为a 元,统计其销售数量为b 个.(1)当k =12时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加....时k 的取值范围. 解:依题意,价格上涨x %后,销售总金额为y =a (1+x %)·b (1-kx %)=ab10 000[-kx 2+100(1-k )x +10 000].(1)取k =12,y =ab 10 000(-12x 2+50x +10 000),所以x =50,即商品价格上涨50%,y 最大为98ab .(2)因为y =ab10 000[-kx 2+100(1-k )x +10 000],此二次函数的开口向下,对称轴为x =501-kk,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x 在{x |x >0}的一个子集内增大时,y 也增大.所以501-k k>0,解得0<k <1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.477 1)解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ;光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ;光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ;光线经过x 块玻璃后强度为0.9xk .∴y =0.9x k (x ∈N *).(2)由题意:0.9x k <k 3.∴0.9x<13.两边取对数,x lg0.9<lg 13.∵lg0.9<0,∴x >lg 13lg0.9.∵lg 13lg0.9=lg31-2lg3≈10.4,∴x min =11. ∴通过11块玻璃以后,光线强度减弱到原来的13以下.拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图8解:①说法正确. ∵关系为指数函数,∴可设y =a x (a >0且a ≠1).∴由图知2=a 1. ∴a =2,即底数为2.②∵25=32>30,∴说法正确. ③∵指数函数增长速度越来越快, ∴说法不正确.④t1=1,t2=log23,t3=log26,∴说法正确.⑤∵指数函数增长速度越来越快,∴说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.作业课本习题3.2A组1、2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.。
3.2.1几类不同增长的函数模型课件人教新课标1
0.8
0.4
3 40 0 30 10
1.6
0.8
4 40 0 40 10
3.2
1.6
5 40 0 50 10
6.4
3.2
6 40 0 60 10
12.8
6.4
7 40 0 70 10
25.6
12.8
8 40 0 80 10
51.2
25.6
9 40 0 90 10
102.451.2…… … … ……
…
种投资方案;投资8~10天,应选择第二种投
资方案;投资11天(含11天)以上,应选择
第三种投资方案。
解决实际问题的步骤:
实际问题
读
抽
懂
象
问
概
题
括
数学问题
演推 算理
实际问题的解 还 原 说 明
数学问题的解
例2、某公司为了实现1000万元利润的目标,准备 制定一个激励门的嘉奖方案:在销售利润到达10万 元时,按销售利润进行嘉奖,且资金y(单位:万元) 随着销售利润x (单位:万元)的增加而增加,但资 金数不超过5万元,同时奖金不超过利润的25%。 现有三个嘉奖模型:y=0.25x,y=log7x+1, y=1.002x,其中哪个模型能符合公司的要求呢?
O
R
圆的周长随着圆的半径的增大而增大:
L=2*π*R (一次函数) 圆的面积随着圆的半径的增大而增大:
S=π*R2 (二次函数)
回顾: 某种细胞分裂时,由1个分裂成两 个,两 个分裂成4个……,一个这样的细胞分裂x次后,得 到的细胞个数y与x的函数关系是 y = 2x 。
第一次 第二次 第三次 第四次
第x次 2x个
3-2-1 几类不同增长的函数模型
第 9页
第三章
3.2 3.2.1
高考调研
思考题 1 求是:
新课标A版 ·数学 ·必修1
小明在教练指导下进行跑步训练,训练的计划要
(1)起跑后匀加速, 10 秒后达到每秒 5 米的速度, 然后匀速跑 2 分钟; (2)开始匀减速,到 5 分钟时减到每秒 4 米的速度,再保持匀 速跑 4 分钟. 请按上面的要求,解决下面问题. (1)画出小明跑步的速度与时间的图像; (2)写出小明跑步训练时,速度关于时间的函数.
Hale Waihona Puke 第14页第三章3.2 3.2.1
高考调研
新课标A版 ·数学 ·必修1
思考题 2
有甲、乙两种商品,经营销售这两种产品所能获
得的利润依次是 P 和 Q(万元),它们与投入资金 x(万元)的关系有 x 3 经验方程式:P= ,Q= x.今有 3 万元资金投入经营甲、乙两 5 5 种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应 为多少?能获得的最大利润是多少?
高考调研
新课标A版 ·数学 ·必修1
解析
设至少应过滤x次才能使产品达到市场要求,则第一
1 次过滤后杂质剩余量为2%(1-3), 1 1 第二次过滤后杂质剩余量为2%(1- )(1- ) 3 3 12 =2%(1-3) , 第x次过滤后杂质剩余量为
第19页
第三章
3.2 3.2.1
高考调研
新课标A版 ·数学 ·必修1
高考调研
新课标A版 ·数学 ·必修1
化简得 y=1.6x+800,(其中 250≤x≤400), ∵此一次函数(y=kx+b,k≠0)的 k=1.6>0, ∴y 是一个单调增函数,再由 250≤x≤400 知当 x=400 时, y 取得最大值,此时 y=1.6×400+800=1 440(元). 所以买进 400 份赢利最大,获利 1 440 元.
2022年高中数学3-2-1几类不同增长的函数模型习题含解析新人教A版必修
几类不同增长的函数模型班级:__________姓名:__________设计人__________日期__________寒假作业【基础过关】1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过年可能增长到原来的倍,则函数的图象大致为A. B. C. D.2.当x越来越大时,下列函数中,增长速度最快的是( )A.y=100xB.y=log100xC.y=x100D.y=100x3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来的价格相比,变化情况是 ( )A.增加7.84%B.减少7.84%C.减少9.5%D.不增不减4.已知函数y1=2x,y2=x2,y3=log2x,则当2<x<4时,有( )A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y15.假设某商品靠广告销售的收入与广告费之间满足关系,那么广告效应D,当 时,取得最大广告效应,此时收入 .6.四个变量,,,随变量变化的数据如下表:05101520253051305051130200531304505594.4781785.2337335305580105130155 52.31071.42951.14071.0461 1.0151 1.005关于呈指数型函数变化的变量是 .7.试比较函数y=x200,y=e x,y=lg x的增长差异.8.有一种树木栽植五年后可成材.在栽植后五年内,年增长20%,如果不砍伐,从第六年到第十年,年增长10%,现有两种砍伐方案:甲方案:栽植五年后不砍伐,等到十年后砍伐.乙方案:栽植五年后砍伐重栽,再过五年再砍伐一次.请计算后回答:十年后哪一个方案可以得到较多的木材?(不考虑最初的树苗成本,只按成材的树木计算)【能力提升】已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=a·e-nt,那么桶2中的水就是y2=a-a·e-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有 L?答案【基础过关】1.D【解析】由已知可推断函数模型为指数函数.2.D【解析】由于指数函数的增长是爆炸式增长,则当x越来越大时,函数y=100x的增长速度最快.3.B【解析】设该商品原价为a,则四年后的价格为a(1+20%)2(1-20%)2=0.921 6a,所以(1-0.921 6)a=0.078 4a=7.84%a,即四年后的价格比原来的价格减少了7.84%.4.B【解析】在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.5. 【解析】,∴,即时,D最大.此时.6.【解析】由于指数函数的增长呈“爆炸式”,结合表中数据可知,关于x呈指数型函数变化的变量是.7.增长最慢的是y=lg x,由图象(图略)可知随着x的增大,它几乎平行于x轴.当x较小时,y=x200要比y=e x增长得快;当x较大(如x>1 000)时,y=e x要比y=x200增长得快. 8.设最初栽植量为a,甲方案在10年后木材产量为y1=a(1+20%)5(1+10%)5=a(1.1×1.2)5≈4a.乙方案在10年后木材产量为y2=2a(1+20%)5=2a·1.25≈4.98a.∴y1-y2=4a-4.98a<0,则y1<y2.因此,十年后乙方案可以得到较多的木材.【能力提升】由题意,得a·e-5n=a-a·e-5n,即e-5n= ①.设再过t min桶1中的水只有 L,则a·e-n(t+5)=a,即e-n(t+5)= ②.将①式两边平方得e-10n= ③,比较②,③得-n(t+5)=-10n,∴t=5.即再过5 min桶1中的水只有 L.。
3.2.1几类不同增长的函数模型
课堂讲义
预习导学
第三章 函数的应用
2.三种函数的增长速度比较
(1)在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1)和
增函数 ,但__________ 增长速度 不同,且不在同 y=xn(n>0)都是_________
一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y= ax(a>1)增长速度越来越快,会超过并远远大于y=xn(n>0) 的增长速度,而y=logax(a>1)的增长速度则会________ 越来越慢. (3)存在一个x0,使得当x>x0时,有logax<xn<ax.
预习导学 课堂讲义
课堂讲义
第三章 函数的应用
规律方法
1. 此类问题求解的关键是首先利用待定系数法
求出相关函数模型,也就是借助数据信息,得到相关方程, 进而求出待定参数. 2. 理解“模型能更好反映该公司年销量 y 与年份 x 的关系” 的含义,在此基础上利用既定值来检验模型的优劣.
预习导学
课堂讲义
预习导学 课堂讲义
课堂讲义
解
第三章 函数的应用
建立年销量 y 与年份 x 的函数,可知函数必过点(1,8),
(2,18),(3,30). (1)构造二次函数模型 f(x)=ax2+bx+c(a≠0), 将点坐标代入, a+b+c=8, 可得4a+2b+c=18, 9a+3b+c=30,
第三章 函数的应用
曲线 C1 对应的函数为 g(x)=0.3x-1, 曲线 C2 对应的函数为 f(x)=lg x, (2)当 x∈(0,x1)时,g(x)>f(x); 当 x∈(x1,x2)时,g(x)<f(x); 当 x∈(x2,+∞)时,g(x)>f(x). 函数 g(x)=0.3x-1 呈直线增长, 函数 f(x)随着 x 的逐渐增大, 其函数值变化的越来越慢,为“蜗牛式”增长.
【成才之路】2014-2015学年高中数学 3.2.1 几类不同增长的函数模型课件 新人教A版必修1
[解析 ]
2x.
(1)C1 对应的函数g(x) =x3 ,C2 对应的函数为 f(x) =
(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10), ∴1<x1<2,9<x2<10, ∴x1<6<x2,2 013>x2.
从图象上可以看出,当x1<x<x2时,f(x)<g(x),
a
< xn . 个x0,当x>x0时,就会有logax_____
(3)指数函数、对数函数和幂函数. 在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1) 增 函数,但它们增长的速度不同,而且 和 y = xn(n > 0) 都是 _____ 不在同一个“档次”上,随着 x 的增大, y = ax(a > 1) 的增长速 快 ,会超过并远远大于 y = xn(n > 0) 的增长速度, 度越来越 _____ 而 y = logax(a > 1) 的增长速度则会越来越慢,因此总存在一个 logax <xn<_____. ax x0,当x>x0时,就会有_______
产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质 量好、款式新颖,前几个月的销售情况良好.为了推销员在推
销产品时,接受订单不至于过多或过少,需要估计以后几个月
的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了 生产流程.厂里也暂时不准备增加设备和工人.假如你是厂 长,就月份 x ,产量为 y 给出三种函数模型: y =ax+ b, y = ax2 +bx +c ,y= abx+ c,你将利用哪一种模型去估算以后几个月
3a+b=1.3, 得 2a+b=1.2. a=0.1, 解得 b=1.
人教A版必修一3.2.1几类不同增长的函数模型
上升
上升
上升
增函数
增长速度
越来越慢 (3)存在一个x0,使得当x>x0时,有 logax<. xn<ax 。
D
Hale Waihona Puke A3.一根弹簧,挂重100 N的重物时,伸长20 cm,当挂重150 N的重物时,若弹簧未达到 最大弹性限度,则弹簧伸长( D ) (A)3 cm (B)5 cm (C)25 cm (D)30 cm
(1)计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?
探究要点一:几种函数模型 一次函数型模型:f(x)=kx+b(k、b为常数,k≠0); 二次函数型模型:f(x)=ax2+bx+c(a、b、c为常数,a≠0); 指数函数型模型:f(x)=abx+c(a、b、c为常数,a≠0,b>0,b≠1); 对数函数型模型:f(x)=mlogax+n(m、n、a为常数,a>0,a≠1); 幂函数型模型:f(x)=axn+b(a、b、n为常数,a≠0,n≠1). 探究要点二:几类函数模型的增长差异
4.已知放射性物质镭经过100年剩留原来的95.76%,则经过200年剩留原来的___________. 解析:设每年的衰减率为x,则(1-x) 100=95.76%, 令(1-x)200=y,将第一个式子两边平方 , 得(1-x)200=y=(95.76%) 2≈0.9170=91.70%. 答案:91.70%
规律方法:指数函数、对数函数的应用是高考的一个重点内容,常与增长率相结合进行考 查.在实际问题中,有关人口增长、银行利率、细胞分裂等增长问题可以用指数函数模型 表示,通常可以表示为y=N·(1+p)x(其中N为原来的基础数,p为增长率,x为时间)的 形式.另外,指数方程常利用对数进行计算,指数、对数在很多问题中可转化应用.
高中数学第三章函数的应用3.2.2.1一次函数、二次函数、幂函数模型的应用举例课件新人教A版必修1
(3)求出总运费最低的调运方案及最低的费用.
【解析】由甲、乙两地调运至A,B两地的机器台数及费
用列表如下:
调出地 调至地 台数 每台运 费 运费合 计 甲地 乙地
A地 10-x 400
B地 12-(10-x) 800
A地 x 300
B地 6-x 500 500·(6-x)
所以甲厂应该选取6千克/小时的生产速度,最大利润为
457500元.
【补偿训练】某工厂在甲、乙两地的两个分厂各生产
某种机器12台和6台,现销售给A地10台,B地8台.已知从 甲地调运1台至A地、B地的运费分别为400元和800元,
从乙地调运1台至A地、B地的运费分别为300元和500元.
(1)设从乙地调运x台至A地,求总运费y关于x的函数关
①当x=20×60=1200,即x>500时,
应付y=30+0.15×(1200-500)=135(元). ②90元已超过30元,所以上网时间超过500分钟,由
30+0.15(x-500)=90可得,上网时间为900分钟.
③令60=30+0.15(x-500),解得x=700.
故当一个月经常上网(一个月使用量超过700分钟)时选 择电脑上网,而当短时间上网(一个月使用量不超过700
x的取值范围. (2)要使生产900千克该产品获得的利润最大,问:甲厂
应该选取何种生产速度?并求最大利润.
【解析】(1)根据题意200 (5x 1 3 ) ≥3000⇒5x-14- 3
x x
≥0, 又1≤x≤10,可解得3≤x≤10.
3 900 (2)设利润为y元,则y= ·100 (5x 1 ) =9× x x 1 1 2 61 4 10 [3( ) ] ,故x=6时,ymax=457500. x 6 12
几类不同增长的函数模型
(3)当鱼群的年增长量达到最大值时,求k的取值范围.
思路分析:由题意写出函数关系式,利用配方法求得最大值, 列不等式求k的范围.
人教A版必修一· 新课标· 数学
m- x 解:(1)由题意得 y= kx( ) m x = kx(1- )(0≤x<m). m k k m km (2)y=- x2+ kx=- (x- )2+ . 2 4 m m m km ∴当 x= 时, y 最大= , 2 4 即鱼群年增长量的最大值为 km t. 4
∴y=f(x)=13(1+1%)x是增函数,
即只要递增率为正数时,随着时间的推移,人口的总数总在增 长.
人教A版必修一· 新课标· 数学
温馨提示:在实际问题中,常常遇到有关平均增长率的问题, 如果原来产值的基础为N,平均增长率为p,则对于时间x的产值y, 可以用下面的公式y=N(1+p)x表示,解决平均增长率的问题,要用 到这个函数式.
=13(1+1%)3(亿). ∴经过年数与(1+1%)的指数相同, ∴经过x年人口数:13(1+1%)x(亿). ∴y=f(x)=13(1+1%)x.
人教A版必修一· 新课标· 数学
(2)理论上指数函数定义域为R. ∵此问题以年作为单位时间,∴N*是此函数的定义域. (3)y=f(x)=13(1+1%)x是指数函数, ∵1+1%>1,13>0,
在函数模型中,二次函数模型占有重要的地位,因为根据实际 问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的
单调性等方法来求函数的最值,从而解决实际问题中的最大、最小等
问题.
人教A版必修一· 新课标· 数学
2 某工厂生产一种机器的固定成本(即固定投入) 为 0.5 万元, 但 每生产 100 台,需要追加可变成本(即另增加投入)0.25 万元.市场对 x2 此产品的年需求量为 500 台,销售收入的函数为 R(x) = 5x - ( 万 2 元)(0≤x≤ 5),其中 x 是年产量(单位:百台) . (1)把利润表示为年产量的函数; (2)年产量是多少时,工厂所得利润最大? (3)年产量是多少时,工厂才不亏本?
【金版学案】13-2014学年度高中数学 3.2.1 几类不同增长的函数模型(一)同步辅导与检测课件 新人教A版必修1
1 3 425 , b=- , c= . 200 2 2 1 2 3 425 所以 Q 与 t 的关系为: Q= t - t+ . 200 2 2 3 - 2 (2)当 t=- = 150 天时,西红柿种植成本最低为 1 2200 1 3 425 Q= · 1502- ×150+ = 100(元 /100 kg). 200 2 2 解得: a=
10000<n<20000时,符合题意. 答案:D
二次函数模型的应用 某地西红柿从2月1日起开始上市,通过
市场调查,得到西红柿种植成本为Q(单位:元/100 kg)
与上市时间t(单位:天)的数据如下表: 时间t 种植成本Q 50 150 110 108 250 150
(1)根据上表数据,从下列函数中选取一个描述西红 柿种植成本Q与上市时间t的变化关系.
一次函数模型的应用 为了发展电信事业方便用户,电信公司对移 动电话采用不同的收费方式,其中所使用的“便民卡” 与“如意卡”在某市范围内每月(30天)的通话时间x(分) 与通话费y(元)的关系如下图所示.
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
函数的应用
3.2 3.2.1
函数模型及其应用
几类不同增长的函数模型(一)
1.复习已学习一次函数、二次函数、反比例与 正比例函数及分段函数的应用. 2.能根据数据正确选择最适合的函数模型研究 相应简单应用问题.
3.利用计算工具,比较指数函数、对数函数以
及幂函数增长差异.
4.结合实例体会直线上升、指数爆炸、对数增
高一数学教案321几类不同增长的函数模型(人教A版
3.2.1几类不同增长的函数模型教案【教学目标】1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【教学重难点】教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
【教学过程】(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
材料:澳大利亚兔子数“爆炸”1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的,感知指数函数变化剧烈。
(三)典型例题例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?(1)请你分析比较三种方案每天回报的大小情况思考:各方案每天回报的变化情况可用什么函数模型来反映(2)你会选择哪种投资方案?思考:选择投资方案的依据是什么?反思:①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.解析:我们可以先建立三种投资方案所对应的模型,在通过比较他们的增长情况,为选择方案的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2.1几类不同增长的函数模型(1)
1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.
9598
阅读:澳大利亚兔子数“爆炸”
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
二、新课导学
※典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
反思:
①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?
② 根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
0.25y x =;7log 1y x =+; 1.002x y =.
问:其中哪个模型能符合公司的要求?
反思:
① 此例涉及了哪几类函数模型?本例实质如何?
② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?
※ 动手试试
练1. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y 与净化时间t (月)的近似函数关系:t y a =(t ≥0,a >0且a ≠1).有以下叙述
① 第4个月时,剩留量就会低于15
;
② 每月减少的有害物质量都相等;
③ 若剩留量为111,,248
所经过的时间分别是123,,t t t ,则123t t t +=. 其中所有正确的叙述是 .
练2. 经市场调查分析知,某地明年从年初开始的前n 个月,对某种商品需求总量()f n (万件)近似地满足关系
()()()()113521,2,3,,12150
f n n n n n =+-= . 写出明年第n 个月这种商品需求量()
g n (万件)与月份n 的函数关系式.
三、总结提升
※ 学习小结
1. 两类实际问题:投资回报、设计奖励方案;
2. 几种函数模型:一次函数、对数函数、指数函数;
3. 应用建模(函数模型);
※ 知识拓展
解决应用题的一般程序:
① 审题:弄清题意,分清条件和结论,理顺数量关系;
② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③ 解模:求解数学模型,得出数学结论;
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ).
A .12x y += B. y =21x - C. y =2x D. y =2x
2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x
的关系,可选用t (月)
().
A. 一次函数
B. 二次函数
C. 指数型函数
D. 对数型函数
3. 一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为().
A. y=20-2x(x≤10)
B. y=20-2x(x<10)
C. y=20-2x (5≤x≤10)
D. y=20-2x(5<x<10)
4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成 .
5. 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有台计算机被感染. (用式子表示)
某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利. 求此个体户给这批服装定的新标价与原标价之间的函数关系.。