分式的概念和性质 巩固练习(提高)
分式计算复习专题课教案(提高版)
分式计算复习专题课教案(提高版)一、教学目标1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)掌握分式的加减、乘除运算方法;(3)能够运用分式解决实际问题。
2. 过程与方法:(1)通过复习,提高学生对分式计算的熟练程度;(2)培养学生运用分式解决实际问题的能力。
3. 情感态度与价值观:激发学生学习分式的兴趣,培养学生的耐心和自信心。
二、教学内容1. 分式的概念与基本性质;2. 分式的加减运算;3. 分式的乘除运算;4. 分式混合运算;5. 实际问题中的分式计算。
三、教学重点与难点1. 教学重点:(1)分式的概念与基本性质;(2)分式的加减、乘除运算方法;(3)运用分式解决实际问题。
2. 教学难点:(1)分式混合运算的计算方法;(2)将实际问题转化为分式计算问题。
四、教学过程1. 复习导入:(1)回顾分式的概念与基本性质;(2)复习分式的加减、乘除运算方法。
2. 课堂讲解:(1)讲解分式混合运算的计算方法;(2)讲解如何将实际问题转化为分式计算问题。
3. 例题解析:(1)分析并解答典型例题;(2)引导学生运用分式解决实际问题。
4. 课堂练习:(1)布置练习题;(2)学生独立完成,教师辅导。
(2)提出拓展问题,激发学生思考。
五、课后作业1. 巩固分式的概念与基本性质;2. 练习分式的加减、乘除运算;3. 尝试解决实际问题,运用分式计算。
教学评价:1. 课后收集学生的练习作业,评估掌握程度;2. 在下一节课开始时,进行课堂测验,检验学生的复习效果。
六、教学策略1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习分式计算;2. 利用多媒体教学资源,如PPT、视频等,帮助学生形象地理解分式的概念和运算方法;3. 创设互动式的课堂氛围,鼓励学生提问、讨论,提高学生的参与度。
七、教学评价1. 课后作业评价:检查学生对分式计算的掌握程度,以及能否运用分式解决实际问题;2. 课堂测验评价:在课程结束后,进行课堂测验,检验学生对分式计算的复习效果;3. 学生反馈评价:听取学生的意见和建议,不断调整教学方法和策略。
分式的概念和性质+答案
分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。
分式的运算练习题及答案
分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
分式练习题及答案
分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
中考专题复习《分式方程》巩固练习(真题)含答案
中考专题复习《分式方程》巩固练习(真题)含答案一、单选题1、下面是分式方程的是()A、B、C、D、2、(2016•海南)解分式方程,正确的结果是()A、x=0B、x=1C、x=2D、无解3、若(x+y)(1﹣x﹣y)+6=0,则x+y的值是()A、2B、3C、﹣2或3D、2或﹣34、(2016•十堰)用换元法解方程﹣=3时,设=y,则原方程可化为()A、y= ﹣3=0B、y﹣﹣3=0C、y﹣+3=0D、y﹣+3=05、关于x的分式方程的解为正数,则字母a的取值范围为()A、a≥1且a≠2B、a>1且a≠2C、a≥1D、a>16、(2016•贺州)若关于x的分式方程的解为非负数,则a的取值范围是()A、a≥1B、a>1C、a≥1且a≠4D、a>1且a≠47、已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为()A、2B、3C、﹣2D、3或﹣28、(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A、﹣3B、﹣2C、﹣D、9、(2016•青海)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A、﹣=4B、=4C、=4D、=410、(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A、1-B、2-C、1+或1-D、1+或﹣111、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=712、(2016•重庆)如果关于x的分式方程﹣3= 有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A、﹣3B、0C、3D、913、下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A、1个B、2个C、3个D、4个14、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是.( -+x)=1-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
15.1.2分式基本性质考点与练习
15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
分式与根式
分式与二次根式—知识讲解【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.要点诠释:约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质;2.;(0)||(0)a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:00)a b =≥≥,; 5. 商的算术平方根的性质:00)a b =≥>,. 6.若0a b >≥>.要点诠释: 0(0)a ≥≥2(0)a a =≥与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而.考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43==+(2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.【典型例题】类型一、分式的意义1.使代数式有意义的的取值范围是()A. B. C.且 D.一切实数【答案】C;【解析】解不等式组得且,故选C.【点评】代数式有意义,就是要使代数式中的分式的分母不为零;代数式中的二次根式的被开方数是非负数,即需中的x0;分母中的2x-10.举一反三:【变式】当x取何值时,分式12922---xxx有意义?值为零?【答案】当2120x x--≠时,分式12922---xxx有意义,即-34x x≠≠且时,分式12922---xxx有意义.当29=0x-且2120x x--≠时,分式12922---xxx值为零,解得=3x±,且-34x x≠≠,,即=3x时,分式12922---xxx值为零.类型二、分式的性质12-xxx≥x21≠x0≥x21≠x210xx≥⎧⎨-≠⎩≥x21≠x≥≠2.已知,求下列各式的值. (1); (2). 【答案与解析】(1)因为,所以. 即.所以. (2), 所以. 【点评】观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.举一反三:【变式】已知求的值. 【答案】 由得 所以即.所以.类型三、分式的运算3.(2015•眉山)计算:. 【答案与解析】14x x+=221x x +2421x x x ++14x x +=2214x x ⎛⎫+= ⎪⎝⎭221216x x ++=22114x x +=4242222222111114115x x x x x x x x x x ++=++=++=+=2421115x x x =++111,a b a b +=+b a a b +111,a b a b +=+1,a b ab a b+=+2(),a b ab +=22a b ab +=-221b a a b ab a b ab ab+-+===-解:=•= .【点评】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式.举一反三:【变式】(2015•宁德)化简:•.【答案】解:原式=:•=.类型四、分式方程及应用4.如果方程有增根, 那么增根是 . 【答案与解析】 因为增根是使分式的分母为零的根,由分母或可得.所以增根是.答案:【点评】使分母为0的根是增根.5.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.【答案与解析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x+25)天.11322x x x-+=--20x -=20x -=2x =2x =2x =根据题意得:. 方程两边同乘以x (x+25),得30(x+25)+30x=x (x+25),即x 2﹣35x ﹣750=0.解之,得x 1=50,x 2=﹣15.经检验,x 1=50,x 2=﹣15都是原方程的解.但x 2=﹣15不符合题意,应舍去.∴当x=50时,x+25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.(所需费用为:2500×50=125000(元).方案二:由甲乙两队合作完成.所需费用为:(2500+2000)×30=135000(元).【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间.(1)如果设甲工程队单独完成该工程需x 天,那么由“乙队单独完成此项工程的时间比甲队单独完成多用25天”,得出乙工程队单独完成该工程需(x+25)天.再根据“甲、乙两队合作完成工程需要30天”,可知等量关系为:甲工程队30天完成该工程的工作量+乙工程队30天完成该工程的工作量=1.(2)首先根据(1)中的结果,排除在60天内不能单独完成该工程的乙工程队,从而可知符合要求的施工方案有两种:方案一:由甲工程队单独完成;方案二:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.举一反三:【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.【答案】303015x x ++2(1)设原计划零售平均每天售出x 吨.根据题意,得, 解得x 1=2,x 2=﹣16.经检验,x=2是原方程的根,x=﹣16不符合题意,舍去.答:原计划零售平均每天售出2吨.(2). 实际获得的总利润是:2000×6×20+2200×4×20=416000(元).类型五、二次根式的定义及性质6.当x的值最小?最小值是多少?【答案与解析】,∴当9x +1=0,即3有最小值,最小值为3. 【点评】≥0(a ≥0).的最小值为0,因为3是常数,的最小值为3.类型六、二次根式的运算7.计算:1(46438)222-+÷; 【答案与解析】原式22)262264(÷+-= .232+=5)2(62006200=++-+x x ()天20226200=++913x +0,33≥19x =-03【点评】本题主要考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.分式与二次根式—巩固练习(基础)【巩固练习】一、选择题1. 下列各式与相等的是( ) A . B. C. 2xy y D. 2x y x+ 2.(2015•泰安)化简:(a+)(1﹣)的结果等于( )A .a ﹣2B .a+2C .D .3.若分式的值是0,则x 为( ) A .0 B.1 C.-1 D.±14.下列计算正确的是 ( )5.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .-=10B .-=10C .-=10D .-=10 6.函数中自变量x 的取值范围是( ) A. x ≤2 B. x =3 C. x <2且x ≠3 D. x ≤2且x ≠3x y22x y 22y x ++211x x -+13=====x 100005010000+x 5010000-x x 10000x 100005010000-x 5010000+x x1000013y x =-二、填空题7.(2014春•张家港市校级期末)下列分式中,不属于最简分式的,请在括号内写出化简后的结果,否则请在括号内打“√”.①② ③ ④ ⑤ .8.化简的结果是__________. 9.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.10中,是最简二次根式的有个. 11. 若最简二次根式是同类二次根式,则x 的值为 .12.(1化简的结果是 . (2)估计的运算结果应在 之间.(填整数)三、解答题13.(2015•南京)计算:(﹣)÷.14.(1)已知:12a +=,求5361a a a a +++的值. (22=+.15.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.212293m m +-+信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.16.已知.分式与二次根式—巩固练习(提高)【巩固练习】一、选择题1.(2015春•合水县期末)二次根式、、、、、中,最简二次根式有( )个.A .1 个B .2 个C .3 个D .4个2.分式有意义的条件是( ) A .x ≠2 B.x ≠1 C.x ≠1或x ≠2 D.x ≠1且x ≠23.使分式等于0的x 的值是( ) A.2 B.-2 C.±2 D.不存在4.计算201220131)1)的结果是( )5.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( )A .B . 45282x x y x ++=+,求(1)(2)(2)(1)x x x x +---224x x +-128002800304-=x x 28002800304-=x xC .D . 6.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是( )A .甲、乙的解法都正确B .甲的解法正确,乙的解法不正确C .乙的解法正确,甲的解法不正确D .甲、乙的解法都不正确二、填空题7.若a 2-6a+9与│b-1│互为相反数,则式子÷(a+b )的值为_______________.9. ;②;③;④其中正确的是 (填序号).10.当x =__________时,分式的值为0.11.(1,则的值为. (2)若5,3,x y xy +==+的值为 . 12.(2015•科左中旗校级一模)观察下列等式:①==﹣128002800305-=x x 2800280030-=5x xa b b a-===0,0).a b =>≥33x x -+2()x y =+x y -②==﹣③==﹣… 回答下列问题:(1)化简:= ;(n 为正整数) (2)利用上面所揭示的规律计算:+++…++= .三、解答题13.(1)已知,求的值. (2)已知和,求的值.14.(2015春•东莞期末)设a=,b=2,c=. (1)当a 有意义时,求x 的取值范围.(2)若a 、b 、c 为Rt △ABC 三边长,求x 的值.15.一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?13x x +=2421x x x -+2510x x -+=0x ≠441x x+16.阅读下列材料,然后回答问题.我们可以将其进一步化简.;(一);(二);(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:221.====(四);(1)请用不同的方法化简= ;= ;(2分式与二次根式—巩固练习(基础解析)【答案与解析】一、选择题1.【答案】C;==3=1===…【解析】化简2xy y = . 2.【答案】B ;【解析】•=•=a+2.故选B .3.【答案】B ; 【解析】分式的值为0,则解得.4.【答案】A ;【解析】根据具体选项,应先进行化简,再计算. AB,C 选项逆用平方差公式可求得,而D 选项.故选A. 5.【答案】B ;【解析】设每个甲型包装箱可装x 个鸡蛋,-=10. 故选B .6.【答案】A ; 【解析】2-x ≥0,∴x ≤2,3不在x ≤2的范围内.二、填空题7.【答案】×,√,×,×,√;【解析】①=;②是最简分式;③==;④=﹣1;x y 210,10,x x ⎧-=⎨+≠⎩1x ====2+(=4-5=-1=5010000-x x10000⑤是最简分式;只有②⑤是最简分式.故答案为:×,√,×,×,√.8.【答案】;【解析】找到最简公分母为(m+3)(m-3),再通分.]9.【答案】4.8;【解析】平均速度=总路程÷总时间,设从学校到家的路程为s,则. 10.【答案】3;.11.【答案】-1;【解析】根据题意得x+3=3x+5,解得x=-1.12.【答案】(1;(2)3和4;【解析】(1)(2三、解答题13.【答案与解析】解:(﹣)÷=[﹣]×=[﹣]×=×=.14.【答案与解析】23m-22424244.8325546s s ss s s s s====++===21232 4.=++因为,∴<(1)∵233,122a a +=+= ∴a 2=a +1 原式=5326a a a a ++=526(1)a a a a ++=546a a a +=46(1)a a a +=66a a=1 (2)∵10•=1052+==.15.【答案与解析】设甲班平均每人捐款x 元,则乙班平均每人捐款x 元. 根据题意, 得,解这个方程得. 经检验,是原方程解.答:甲班平均每人捐款5元.16.【答案与解析】由二次根式的定义及分式性质,得分式与二次根式—巩固练习(提高解析)【答案与解析】一、选择题1.【答案】C ;【解析】二次根式、、、、、中, 最简二次根式有、、共3个.故选:C . 2.【答案】D ;45300232245x x =+5x =5x =2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠22287,222y ++∴==+∴===【解析】分式有意义,则且.3.【答案】D ;【解析】令得,而当时,,所以该分式不存在值为0的情形.4.【答案】D ;【解析】本题可逆用公式(ab )m =a m b m 及平方差公式,将原式化为20121)1) 1.⎡⎤--=⎣⎦故选D.5.【答案】A ;【解析】设小玲步行的平均速度为x 米/分,则骑自行车的速度为4x 米/分,依题意,得. 故选A .6.【答案】A ;【解析】甲是分母有理化了,乙是 把3化为+了.二、填空题7.【答案】 ;【解析】由已知得且,解得,,再代入求值.故答案为:0.9.【答案】③④;【解析】提示:①,.10.【答案】3;【解析】由得±3.当时,,当时,,所以当时,分式的值为0.20x -≠10x -≠20x +=2x =-2x =-240x -=28002800304-=x x 232269(3)0a a a -+=-=10b -=3a =1b =0a ≥0b >30x -=x =3x =360x +=≠3x =-3330x +=-+=3x =11.【答案】(1)2; (2; 【解析】(1,知x =1,∴(x +y )2=0,∴y =-1,∴x-y =2.(2)12.【答案】;【解析】(1)=;故答案为:;20101-. (2)+++…++ =…+1.三、解答题13.【答案与解析】 (1)因为,所以用除所求分式的分子、分母.原式. (2)由 和 ,提, 所以14.【答案与解析】解:(1)∵a 有意义,∴8﹣x≥0,∴x≤8;(2)方法一:分三种情况:5,3,0,0,x y xy x y +==∴∴=+==>>原式0x ≠2x 22221111113361()21x x x x ====--++--2510x x -+=0x ≠15x x +=24242112x x x x ⎛⎫+=+- ⎪⎝⎭2222122(52)2527x x ⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--=①当a 2+b 2=c 2,即8﹣x+4=6,得x=6,②当a 2+c 2=b 2,即8﹣x+6=4,得x=10,③当b 2+c 2=a 2,即4+6=8﹣x ,得x=﹣2,又∵x≤8,∴x=6或﹣2;方法二:∵直角三角形中斜边为最长的边,c >b∴存在两种情况,①当a 2+b 2=c 2,即8﹣x+4=6,得x=6,②当b 2+c 2=a 2,即4+6=8﹣x ,得x=﹣2,∴x=6或﹣2.15.【答案与解析】(1)设甲公司单独完成此工程x 天,则乙公司单独完成此项工程1.5x 天,根据题意,得,解之得,x=20, 经检验知x=20是方程的解且符合题意,1.5x=30,答:甲乙两公司单独完成此工程各需要20天,30天.(2)设甲公司每天的施工费y 元,则乙公司每天的施工费(y-1500)元,根据题意,得12(y+y-1500)=102000, 解之得,y=5000.甲公司单独完成此工程所需施工费:20×5000=100000(元) ,乙公司单独完成此工程所需施工费:30×(5000-1500)=105000 (元),故甲公司的施工费较少.16.【答案与解析】(1(2112-1111.512x x +===22====+++…=121)2n ++=.。
培优拔高 整式与分式题型汇编-9.9
整式题型汇编【知识梳理】1、余式定理:多项式()x f 除以a x -所得的商式为()x Q ,余式为()a f ,即()()()()a f a x x Q x f +-=。
2、因式定理:如果多项式()x f 含有因式a x -,那么()0=a f ,反之亦然。
我们称a 为多项式()x f 的零点。
3、乘法公式:(1)立方和公式:()()3322b a b ab a b a +=+-+(2)立方差公式:()()3322b ab ab ab a -=++-(3)三数和平方公式:()()ac bc ab c b a c b a +++++=++22222(4)两数和立方公式:()3223333b ab b a a b a +++=+(5)两数差立方公式:()3223333b ab b a a b a -+-=-4、拆添项法:把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,前者称为拆项,后者称为添项。
拆项、添项的目的是使多项式能用分组分解法进行因式分解。
5、试根法:整系数多项式01a x a x a nn +++Λ,若sr是它的有理根(s r 、互素),那么s 整除n a ,r 整除0a 。
一些比较复杂的因式分解也可以利用试根法来解决(试根法使用于整系数多项式的因式分解)6、常见数学思想与方法:整体思想、降次法、消元法、待定系数法、赋值法等。
除了常规的因式分解法,还有拆添项法、双十字相乘法、待定系数法、试根法等。
【题型分析】例1:已知012=-+a a ,求2014223++a a 的值。
【解法一】(整体代入):由012=-+a a 得023=-+a a a所以201520151201420142222323=+-+=+++-+=++a a a a a a a a a【解法二】(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
由012=-+a a 得a a -=12,所以()201520151201420142120142201422222223=+-+=++=++⋅-=++⋅=++a a a a a a a a a a a a 【解法三】(降次、消元):12=+a a (消元、减项)()2015201412014201420142014222222323=+=++=+++=+++=++a a a a a a a a a a a说明:本题常用的方法是降次法,通过降次最后使2014223++a a 化为一个常数,但是用降次法,变形过程较为复杂且容易出错,而用零代换只要掌握变形的技巧,计算比较简便。
冀教版数学八年级上册-第十二章-分式和分式方程-巩固练习(含答案)
冀教版数学八年级上册-第十二章-分式与分式方程-巩固练习一、单选题1.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x米,则下面所列方程正确的是()A.B.C.D.2.关于x的分式方程=1,下列说法正确的是().A. 方程的解是x=a﹣3B. 当a>3时,方程的解是正数C. 当a<3时,方程的解为负数D. 以上答案都正确3.根据分式的基本性质,分式可变形为()A. B. - C. - D.4.己知关于x的分式方程=1的解是非正数,则a的取值范围是()A. a≤-lB. a≤-2C. a≤1且a≠-2D. a≤-1且a≠-25.计算(﹣)3的结果是()A. -B. -C. -D.6.下列等式中一定成立的是()A. B. (﹣x)2=﹣x2 C. (a+b)2=a2+b2 D. x﹣y﹣z=x﹣(y+z)7.甲,乙工程队分别承接600米,800米的道路修建工程,已知乙比甲每天多修建12米,结果甲比乙提早1天完成,问甲每天修建多少米?设甲每天修建x米,根据题意可列出方程是()A. =﹣1B. =+1C. =﹣1D. =+18.若分式方程有增根,则m的值为()A. -1B. 1C. 0D. 以上都不对9.计算:﹣的正确结果是()A. -B. 1-xC. 1D. -1二、填空题10.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=________ .11.若a2+5ab﹣b2=0,则的值为________.12.当x=________时,分式的值为零。
13.计算:÷ =________.14.分式的值为0,则________.15.方程的解是________16.已知a+b=3,ab=1,则+ 的值等于________.17.若分式的值为负数,则x的取值范围是________三、解答题18.某学校准备组织部分学生到当地社会实践基地参加活动,陈老师从社会实践基地带回来了两条信息:信息一:按原来报名参加的人数,共需要交费用320元.现在报名参加的人数增加到原来人数的2倍,可以享受优惠,此时只需交费用480元;信息二:享受优惠后,参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?19.化简:• .四、综合题20.某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.21.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?答案一、单选题1.【答案】C【解析】【分析】本题需先根据题意设出原计划每天修水渠x米,再根据已知条件列出方程即可求出答案.【解答】设原计划每天修水渠x米,根据题意得:.故选C.【点评】本题主要考查了如何由实际问题抽象出分式方程,在解题时要能根据题意找出等量关系列出方程是本题的关键.2.【答案】B【解析】【分析】先按照一般步骤解方程,用含有a的代数式表示x ,然后根据x的取值讨论a的范围,即可作出判断.【解答】方程两边都乘以x+3,去分母得:a=x+3,解得:x=a﹣3,∴当x+3≠0,把x=a﹣3代入得:a﹣3+3≠0,即a≠0,方程有解,故选项A错误;当x>0,即a﹣3>0,解得:a>3,则当a>3时,方程的解为正数,故选项B正确;当x<0,即a﹣3<0,解得:a<3,则a<3且a≠0时,方程的解为负数,故选项C错误;显然选项D错误.故选:B.3.【答案】C【解析】【解答】解:依题意得:,故答案为:C.【分析】根据分式的基本性质,分子、分母同乘以或除以不为0的数或式,分式的值不变;得到变形的分式.4.【答案】B【解析】【解答】去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠-1,∴a≤-1且a≠-2,∴a≤-1且a≠-2.故答案为:B.【分析】先解分式方程,求出方程的解,再根据方程有解,得出x+1≠0,且x≤0,建立关于a的不等式组,求解即可。
第二单元 分式及其运算知识点及单元练习
第二单元 分式及其运算知识点及单元练习知识回顾:1 分母为零时,分式无意义;分母不为零时,分式有意义。
分子为零,分母不为零时,分式的值为零。
2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。
用式子表示为:B A =M B M A ⋅⋅;B A =M B M A ÷÷(其中M 是不为零的整式)。
(1)x 取什么值时,分式3+x x 有意义﹖(2) 3分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个的符号,分式的值不变。
如B A =B A --=-BA -=-B A - 4. 约分:根据分式的基本性质,把一个分式的分子于分母的公因式约去,叫做分式的约分5. 最简分式: 约分后,分子于分母不再有公因式,我们把这样的式子叫做最简分式。
6、分式的通分:把几个异分母分式化成与原来分式相等的同分母分式,叫做分式的通分。
关键是确定几个分式的最简公分母。
各分母所有因式的最高次幂的积叫做最简公分母。
7. 分式的乘除法:(1)分式乘以分式,用分子的积做积的分子,分母的积做为积的分母。
(2)分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
8. 分式的乘方:是把分子、分母各自乘方。
9、分式的加减法:(1)同分母的分式相加减,分母不变,把分子相加减,即:cb ac b c a ±=± (2)异分母分式加减法:先通分变为同分母的分式,然后再加减。
10、分式方程的特征: ① 含分母 ② 分母里含有未知数。
11、解分式方程的基本思路:把分式方程转化为整式方程。
12.分式方程的解法一般步骤:第一步、去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
第二步、解整式方程。
第三步、验根,把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
巩固练习:一.填空题:1 计算: ① a b b b a a 222-+- ② 22222222yx x x y y y x y x ---+-+ 2. x__________时,分式7215--x x 无意义。
分式的概念及基本性质
千米/时,那么小船在逆水中航行
s
s千米所用s的
时间为_a___b_小时,顺水航行所用时间为a____b_
小时.
1100
ssxabab分式A一般地,用 A 、B 表示两个整式,A B就可以表示成
A
B
的形式.如果 B中含有字母,式子 B 就叫做分式.其
中 A 叫做分式的分子,B 叫做分式的分母.
1
1 积.
(3)
,
x2 y2 x2 xy
例6:不改变分式的值,把下列分式中的 分数化为整数.
(1)0.02x 0.5 0.3 0.09x
1a 1b
(2)
2 1
a
3 1
b
43
例7:下列各式正确的是(
)
A. z z B. z z x y x y x y x y
(1) 3 ; x
x (2)
;
x2
(3)
x2
2x 1;
x2 1
(4)
x6 x 3
.
解:((3(24)())1由由) x由分分2 分母母1母x得x1恒23成x 立00,,0得得x,2 xx1032... 当∴当当x xxx取0 一32且 时切时x,实,分数3分式时式时,3x,x原x原分2有分式意有式都义意有有.义意意.义义..
不含公因式
ab
分式的基本性质
16 x2 y3 (2)
20 xy4
的分式叫最 x 2 1 约分的方法: 简分式(.3)
x 2 2 x 1分子、分母同乘(
或除)公因式
例5:通分
11 (1) ,
a 2b ab2
1
1
(2)
,
初二数学分式练习题及概念
初二数学分式练习题及概念分式作为初中数学的一项重要内容,是初二学生需要掌握和熟练运用的知识点之一。
本文将为初二学生提供一些分式的练习题,并介绍相关概念,以帮助学生更好地理解和掌握分式的概念和运算。
一、练习题1. 计算下列各分式的值:a) $\frac{3}{4} + \frac{2}{3}$b) $\frac{5}{6} - \frac{1}{2}$c) $\frac{3}{5} \times \frac{4}{7}$d) $\frac{4}{9} \div \frac{2}{3}$2. 将下列各分式化简为最简形式:a) $\frac{12}{16}$b) $\frac{18}{24}$c) $\frac{20}{25}$d) $\frac{15}{35}$3. 计算下列各分式的和的倒数:a) $\frac{1}{2} + \frac{3}{4}$b) $\frac{3}{5} - \frac{2}{3}$c) $\frac{4}{7} \times \frac{2}{3}$d) $\frac{5}{6} \div \frac{6}{7}$4. 求下列适当分数的整数部分和小数部分:a) $\frac{7}{2}$b) $\frac{11}{3}$c) $\frac{23}{5}$d) $\frac{37}{10}$二、概念解析1. 分式的定义分式是指一个整体被分成几个相等的部分中的一部分或几部分。
通常由分子和分母两部分组成,分子表示整体中的一部分,分母表示整体被分成的部分数。
2. 分式的化简化简分式是将分式写成最简形式的过程。
可以通过约分、分子分母的公因式提取来实现。
最简形式的分式是分子和分母没有公因数的分式。
3. 分式的运算分式的运算包括加法、减法、乘法和除法四种基本运算。
具体运算的规则如下:a) 加法和减法:两个分式相加或相减,要求分母相等,然后将分子相加或相减后保留分母即可。
b) 乘法:两个分式相乘,将两个分式的分子相乘,分母相乘后得到新分式的分子和分母。
八年级数学下 第5章 分式与分式方程巩固练习(含答案解析)
第5章分式与分式方程巩固练习题一、选择题1.计算﹣的结果是()A、﹣B、C、D、2.分式的计算结果是()A、B、C、D、3.下列计算正确的是()A、B、C、D、4.已知两个分式:,,其中x≠±2,则A与B的关系是()A、相等B、互为倒数C、互为相反数D、A大于B二、解答题5.计算:(1)= ;(2)= 。
6.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答。
7.若,则的值为。
8.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号,通过对以上材料的阅读,计算= 。
9.已知(a≠b),求的值。
10.若,求A、B的值。
11.a、b为实数,且ab=1,设P=,,则P Q(选填“>”、“<”或“=”)。
12.设x、y为正整数,并计算它们的倒数和,接着将这两个正整数x、y分别加上1、2后,再计算它们的倒数和,请问经过这样操作之后,倒数和之差的最大值是。
13.已知x为整数,且为整数,求所有符合条件的x 值的和。
参考答案与试题解析一、选择题1.计算﹣的结果是()【考点】分式的加减法。
【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案。
【解答】解:﹣===﹣。
故选A。
【点评】此题考查了分式的加减运算法则。
题目比较简单,注意解题需细心。
2.分式的计算结果是()【考点】分式的加减法。
【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式。
【解答】解: ==。
故选:C。
【点评】本题考查了分式的加减运算,题目比较容易。
3.下列计算正确的是()【考点】分式的加减法。
【分析】本题考查了分式的加减运算。
解决本题首先应通分,最后要注意将结果化为最简分式。
八年级数学分式练习题
八年级下册第16章分式单元练习二班级 学号 姓名 成绩一、精心选一选(每小题3分,共24分)1.计算223)3(a a ÷-的结果是( )(A )49a - (B )46a (C )39a (D )49a 2.下列算式结果是-3的是( )(A )1)3(-- (B )0)3(- (C ))3(-- (D )|3|--3.如果x=300,则x x x x x x 13632+-+--的值为( ) A .0 B . 990101 C .110111 A .1001014.下列算式中,你认为正确的是( ) A .1-=---a b a b a b B 。
11=⨯÷ba ab C .3131aa -= D .b a b a b a b a +=--∙+1)(12225.计算⎪⎪⎭⎫⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅24382342y x y x y x 的结果是( )(A )x 3- (B )x 3 (C )x 12- (D )x 12 6.如果x >y >0,那么xyx y -++11的值是( ) (A )0 (B )正数 (C )负数 (D )不能确定 7.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( ) (A )2个 (B )3个 (C )4个 (D )5个 8.已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A -B 的值为( ) (A )7 (B )9 (C )13 (D )5二、细心填一填(每小题3分,共30分)9.计算:-16-= .10.用科学记数法表示:-0.00002004= .11.如果32=b a ,那么=+b a a ____ .12.计算:a b bb a a -+-= . 13.已知31=-a a ,那么221aa += .14.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u = 厘米.15.若54145=----xx x 有增根,则增根为___________. 16、若20)63(2)3(----x x 有意义,那么x 的取值范围是 。
分式方程巩固练习题(附答案)
16.(2015?黑龙江)关于x的分式方程
17.(2015?黄冈中学自主招生)若关于x的方程的解为正数,则a的﹣=0无解,则m=.﹣2=有增根,则m的值取值范围是.
18.(2013?呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.
①解分式方程一定会产生增根;
②方程
③方程
④x+
=1+=0的根为2;的最简公分母为2x(2x﹣4);是分式方程.
其中正确的个数是()
A.1个B.2个C.3个D.4个
2.(2015?枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()
A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1
3.(2015?齐齐哈尔)关于x的分式方程=
28.(2015?大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?
第5页(共21页)
篇三:分式方程练习题精选(含答案)
分式方程练习题精选
选择题:
x2
??1
1.以下是方程x?1x去分母的结果,其中正确的是
2
A.
17.若小李做m个零件需用1小时,则他做1个零件需小时,做30个零件需小时.
18.一项工作,若甲单独完成需x小时,则甲每小时完成工作的若甲、乙合作需8小时完成,则乙每小时完成工作的.
19.把a千克盐溶于b千克水中,那么m千克这种盐水中含盐千克.
20.当m=x的方程
三、计算与解答题:
21.解下列分式方程.(1)
11.若分式方程
12.如果方程2(x?a)2??的解为x=3,则a的值为.a(x?1)511?x有增根,那么增根是.?3?x?22?x
分式方程的解法及应用(提高)导学案+习题【含答案】
分式方程的解法及应用(提高)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】类型一、判别分式方程【高清课堂 分式方程的解法及应用 例1】1、下列各式中,哪些是分式方程?哪些不是分式方程?为什么? (1)21753997x x--=(2)352y y =- (3)31422y y ++- (4)221531x x x +=-- 【答案与解析】解:(1)虽然方程里含有分母,但是分母里没有未知数,所以不是分式方程; (2)具备分式方程的三个特征,是分式方程; (3)31422y y ++-没有等号,所以不是方程,它是一个代数式;(4)方程具备分式方程的三个特征,是分式方程. 特别提醒:(3)题是一个代数式,不是方程,容易判断错误; 【总结升华】整式方程与分式方程的区别在于分母里有没有未知数,有未知数的就是分式方程,没有未知数的就是整式方程. 类型二、解复杂分式方程的技巧2、解方程:1310414351x x x x -=-----. 【答案与解析】解:方程的左右两边分别通分,得3131(4)(3)(5)(1)x x x x x x ++=----,∴31310(4)(3)(5)(1)x x x x x x ++-=----,∴ 11(31)0(4)(3)(5)(1)x x x x x ⎡⎤+-=⎢⎥----⎣⎦, ∴ 310x +=,或110(4)(3)(5)(1)x x x x -=----,由310x +=,解得13x =-, 由110(4)(3)(5)(1)x x x x -=----,解得7x =.经检验:13x =-,7x =是原方程的根.【总结升华】若用常规方法,方程两边同乘(4)(3)(5)(1)x x x x ----,去分母后的整式方程的解很难求出来.注意方程左右两边的分式的分子、分母,可以采用先把方程的左右两边分别通分的方法来解. 举一反三: 【变式】解方程11114756x x x x +=+++++. 【答案】 解:移项得11114567x x x x -=-++++, 两边同时通分得(5)(4)(7)(6)(4)(5)(6)(7)x x x x x x x x +-++-+=++++,即11(4)(5)(6)(7)x x x x =++++,因为两个分式分子相同,分式值相等,则分式分母相等. 所以(4)(5)(6)(7)x x x x ++=++,229201342x x x x ++=++, 2292013420x x x x ++---=,4220x --=,∴ 112x =-.检验:当112x =-时,(4)(5)(6)(7)0x x x x ++++≠.∴ 112x =-是原方程的根.类型三、分式方程的增根【高清课堂 分式方程的解法及应用 例3】3、(1)若分式方程223242mx x x x +=--+有增根,求m 值; (2)若分式方程2221151k k x x x x x---=---有增根1x =-,求k 的值. 【思路点拨】(1)若分式方程产生增根,则(2)(2)0x x -+=,即2x =或2x =-,然后把2x =±代入由分式方程转化得的整式方程求出m 的值.(2)将分式方程转化成整式方程后,把1x =-代入解出k 的值. 【答案与解析】解:(1)方程两边同乘(2)(2)x x +-,得2(2)3(2)x mx x ++=-.∴ (1)10m x -=-.∴ 101x m=-. 由题意知增根为2x =或2x =-,∴ 1021m =-或1021m =--.∴ 4m =-或6m =.(2)方程两边同乘(1)(1)x x x +-,得(1)(1)(5)(1)k x x k x --+=-+. ∴ 34x k =-.∴ 43k x -=. ∵ 增根为1x =-,∴ 413k -=-.∴ 1k =.【总结升华】(1)在方程变形中,有时可能产生不适合原方程的根,这种根做作原方程的增根.在分式方程中,使最简公分母为零的根是原方程的增根;(2)这类问题的解法都是首先把它们化成整式方程,然后由条件中的增根,求得未知字母的值. 举一反三:【变式】已知关于x 的方程322133x axx x-++=---无解,求a 的值. 【答案】解:方程两边同乘(3)x -约去分母,得(32)(2)(3)x ax x --+=--,即(1)2a x +=-. ①∵ 30x -=,即3x =时原方程无解, ∴ (1)32a +⨯=-,∴ 53a =-. ②∵ 当10a +=时,整式方程(1)2a x +=-无解, ∴ 当1a =-时,原方程无解. 综上所述,当53a =-或1a =-时,原方程无解. 类型四、分式方程的应用【高清课堂 分式方程的解法及应用 例3】4、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【思路点拨】(1)题中的等量关系是甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(2)由工期不超过10天列出不等式组求出范围. 【答案与解析】解:(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设()20x -米.根据题意,得35025020x x =-.解得70x =. 经检验,70x =是原分式方程的解且符合题意.故甲、乙两工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y 米,则分配给乙工程队()1000y -米.由题意,得10,70100010,50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩ 解得500≤y ≤700.方案一:分配给甲工程队500米,分配给乙工程队500米.方案二:分配给甲工程队600米,分配给乙工程队400米. 方案三:分配给甲工程队700米,分配给乙工程队300米. 所以分配方案有3种.【总结升华】本题主要考查列分式方程解应用题,考查学生分析和解决问题的能力. 举一反三:【变式】一慢车和一快车同时从A 地到B 地,A ,B 两地相距276公里,慢车的速度是快车速度的三分之二,结果快车比慢车早到达2小时,求快车,慢车的速度. 【答案】解:(2)设快车速度为x /km h ,则慢车速度为23x /km h 依题意,得276276223x x =-, 去分母,得276×2=276×3-4x ,所以69x =,经检验知69x =是原方程的解,所以2463x =, 答:慢车、快车的速度分别为46 /km h 、69/km h .【巩固练习】 一.选择题1.下列关于x 的方程中,是分式方程的是( ) A .35435x x -+-= B .abb x b a a x +=- C .2(1)11x x -=-D .x n x n m n-=2.若分式方程2()8(1)5x a a x +=--的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-53. 已知111,1,a b b c =-=-用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C . a a c -=1 D .1a c a-=4.若关于x 的方程0111=----x xx m 有增根,则m 的值是( )A .3B .2C .1D .-15.将公式21111R R R +=(12R R R ,,均不为零,且2R R ≠)变形成求1R 的式子,正确的是( ) A .212RR R R R=-B .212RR R R R =+C .1212RR RR R R +=D .212RR R R R =-6.若关于x 的方程323-=--x mx x 有正数解,则( ). A.m >0且m ≠3 B.m <6且m ≠3 C.m <0 D.m >6二.填空题7.当m =______时,方程213m x -=的解为1. 8.已知分式方程 424-+=-x ax x 有增根,则a 的值为______. 9.关于x 的方程324+=-b xa 的解为______.10.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______. 11.某人上山,下山的路程都是s ,上山速度1v ,下山速度2v ,则这个人上山和下山的平均速度是______.12.若一个分数的分子、分母同时加1,得12;若分子、分母同时减2,则得13,这个分数是______.三.解答题13.已知关于x 的方程233x mx x -=--有一个正数解,求m 的取值范围.14. 甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?15. 从甲地到乙地有两条公路,一条是全长600千米的普通公路,另一条是全长480千米的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度每小时快45千米,由高速公路从甲地到乙地所需时间是由普通公路从甲地到乙地所需时间的一半.求该客车由普通公路从甲地到乙地的平均速度. 【答案与解析】 一.选择题1. 【答案】C ;【解析】分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. 2. 【答案】B ;【解析】原式化简为101088x a ax a +=-+,将15x =-代入解得5a =. 3. 【答案】D ; 【解析】11c b =-,11b a =-,11111a c a a-==--. 4. 【答案】B【解析】将1x =代入10m x --=,解得2m =. 5. 【答案】A ; 【解析】2122111R RR R R RR -=-=,所以212RR R R R=-. 6. 【答案】B【解析】原方程化简为()23x x m --=,6x m =-,03x x >≠且,解得m <6且m ≠3.二.填空题 7. 【答案】12; 【解析】将1x =代入213m x -=,解得12m =. 8. 【答案】4;【解析】原式化简得()24x x a =-+,将4x =代入,解得4a =. 9. 【答案】264a b x --=;【解析】原方程化简为264a b x --=,所以264a b x --=. 10.【答案】20sv+; 11.【答案】12122v v v v +;【解析】由题意上山和下山的平均速度为:12121222v v s s s v v v v =++.12.【答案】511; 【解析】设这个分数为a b ,1112a b +=+,2123a b -=-,解之得:511a b ==,,所以这个分数是511. 三.解答题 13.【解析】解:方程两边同乘(3)x -约去分母,得2(3)x x m --=.整理,得6x m =-.∵ 0,30,m x >⎧⎨-≠⎩ ∴ 60,630.m m ->⎧⎨--≠⎩解得6m <且3m ≠,∴ 当6m <且3m ≠时,原方程有一个正数解. 14.【解析】解:设乙工人每小时加工x 个零件,甲工人每小时加工52x 个零件, 由题意,得:150015001852x x =+ 整理得,55150015001822x ⨯=+⨯,解得50x =.经检验,是50x =原方程的根.51252x =.答:甲工人每小时加工125个零件,乙工人每小时加工50个零件. 15.【解析】解:设客车由普通公路从甲地到乙地的平均速度为x 千米/时,列方程得:600480245x x =⨯+. 解得:75x =.x 是原方程的解且符合题意.经检验75答:客车由普通公路从甲地到乙地的平均速度为75千米/时.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
分式的基本性质练习题
分式的基本性质练习题分式的基本性质练习题分式是数学中常见的一种表示形式,它可以帮助我们更好地理解和解决问题。
在学习分式的过程中,我们需要掌握一些基本的性质和运算规则。
下面,我将通过一些练习题来帮助大家巩固对分式的理解。
练习题一:简化分式1. 将分式$\frac{12}{18}$化简为最简形式。
解答:首先,我们可以将分子和分母同时除以它们的最大公约数,即12和18的最大公约数为6。
所以,$\frac{12}{18}$可以化简为$\frac{2}{3}$。
2. 将分式$\frac{24}{48}$化简为最简形式。
解答:同样地,我们可以将分子和分母同时除以它们的最大公约数,即24和48的最大公约数为24。
所以,$\frac{24}{48}$可以化简为$\frac{1}{2}$。
练习题二:分式的乘法和除法1. 计算$\frac{2}{3} \times \frac{4}{5}$。
解答:分式的乘法可以通过将分子相乘,分母相乘来完成。
所以,$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$。
2. 计算$\frac{3}{4} \div \frac{2}{5}$。
解答:分式的除法可以通过将除数取倒数,然后与被除数进行乘法来完成。
所以,$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。
练习题三:分式的加法和减法1. 计算$\frac{1}{3} + \frac{2}{5}$。
解答:分式的加法需要找到它们的公共分母,然后将分子相加。
所以,$\frac{1}{3} + \frac{2}{5} = \frac{5}{15} + \frac{6}{15} = \frac{11}{15}$。
2. 计算$\frac{3}{4} - \frac{1}{2}$。
分式的概念和性质(提高)巩固练习
【巩固练习】 一.选择题 1.(2015•南宁模拟)要使分式有意义,x 的取值范围为( ) A.x ≠﹣5 B.x >0 C.x ≠﹣5且x >0 D.x ≥02.(2016·富顺县校级模拟)把分式22x y xy y +-的x y 、均扩大为原来的10倍后,则分式的值( ) A .不变B .为原分式值的10倍C .为原分式值的110 D .为原分式值的1100 3.若分式532a b a b-+有意义,则a b 、满足的关系是( ) A .32a b ≠ B . 15a b ≠ C .a b 32-=/ D .23a b =-/ 4.若分式1212+-b b 的值是负数,则b 满足( ) A .b <0 B .b ≥1 C .b <1 D .b >15.下面四个等式:;22;22;22y x y x y x y x y x y x +-=+---=----=+-③②① ⋅-+=--22y x y x ④其中正确的有( ) A .0个 B .1个 C .2个 D .3个6.化简22222a b a ab b-++的正确结果是( ) A .a b a b +- B .a b a b -+ C .12ab D .12ab- 二.填空题7.使分式22(3)x x +有意义的条件为______. 8.(临清市期末)若,则= . 9.(2016春·龙岗区期末)要使分式211x x --的值等于零,则x 的取值是 . 10.填空:)()1(=++-n m n m =-----b a n m m n 212)2(;)(⋅-ba 221 11.填入适当的代数式,使等式成立.(1)22222()a ab b a b a b +-=⋅-+(2).a b b a b a-=-+)(11 12. 分式22112mm m -+-约分的结果是______. 三.解答题13.(2015春•泰兴市校级期中)(1)当x=﹣1时,求分式的值. (2)已知a 2﹣4a+4与|b ﹣1|互为相反数,求的值.14.已知112x y -=,求373232x xy y x xy y +---的值. 15.(1)阅读下面解题过程:已知22,15x x =+求241x x +的值. 解:∵22,15x x =+()0x ≠ 12,15x x=+∴即152x x +=⋅ 2422221114115117()2()22x x x x x x ====⋅+++--∴ (2)请借鉴(1)中的方法解答下面的题目:已知22,31x x x =-+求2421x x x ++的值.【答案与解析】一.选择题1. 【答案】D ;【解析】解:由题意得:x+5≠0,且x ≥0,解得:x ≥0,故选:D .2. 【答案】C ;【解析】()()()()2222101010210021022101010x y x y x y x y xy y xy y xy y x y y ++++===---⨯⨯-,则分式的值变为原分式的110. 3. 【答案】D ;【解析】由题意,320a b +≠,所以23a b =-/. 4. 【答案】D ;【解析】因为2210,b +>所以10,b -<即b >1.5. 【答案】C ;【解析】①④正确.6. 【答案】B ; 【解析】()()()222222a b a b a b a b a ab b a b a b +---==++++. 二.填空题7. 【答案】3x ≠-.8. 【答案】;【解析】解:设=k ,则a=2k ,b=3k ,c=4k .∴===.故答案为.9. 【答案】-1;【解析】21010x x ⎧-=⎨-≠⎩,所以1x =-. 10.【答案】(1)-;(2)+;11.【答案】(1)2a b +;(2)b a +;【解析】()()()()222222a b a b a ab b a b a b a b -++-=-+-;11a a b a b b b a b a b ab b+++==---. 12.【答案】11m m -+; 【解析】()()()22212111111m m m m m m m m--+-==-+-+. 三.解答题13.【解析】解:(1)===(2)a 2﹣4a+4=(a ﹣2)2≥0,|b ﹣1|≥0,∵a 2﹣4a+4与|b ﹣1|互为相反数,∴a﹣2=0,b ﹣1=0,∴a=2,b=1∴ ==14.【解析】解:方法一:∵ 112y x x y xy--==, 等式两边同乘以xy ,得2xy y x =-.∴ 2x y xy -=-.∴ 3733()72322()3x xy y x y xy x xy y x y xy +--+=----327122377xy xy xy xy xy xy -⨯+===--⨯--. 方法二:∵ 112x y -=, ∴ 1133377373327122232223711323x y x xy y y x x xy y y x x y ⎛⎫--++- ⎪+--⨯+⎝⎭====----⨯-⎛⎫----- ⎪⎝⎭. 15.【解析】解:∵22,31x x x =-+()0x ≠ ∴1213x x=+-,∴172x x +=∴222422211141145171112xx x xxx x====++⎛⎫⎛⎫+++--⎪ ⎪⎝⎭⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【 巩固练习】
一.选择题
1.若分式6922---a a a 的值为0,则a 的值为( ) A .3 B .-3 C .±3 D .a ≠-2
2.把分式y
x x -2中的x y 、都扩大m 倍(m ≠0),则分式的值( ) A .扩大m 倍
B .缩小m 倍
C .不变
D .不能确定 3.若分式532a b a b
-+有意义,则a b 、满足的关系是( ) A .32a b ≠ B . 15a b ≠ C .a b 3
2-=/ D .23a b =-/ 4.(2015•福州模拟)若分式
无意义,则x 的值为( ) A.0 B.1 C.﹣1 D.2
5.下面四个等式:;2
2;22;22y x y x y x y x y x y x +-=+---=----=+-③②① ⋅-+=--2
2y x y x ④其中正确的有( ) A .0个
B .1个
C .2个
D .3个 6.化简22
22
2a b a ab b -++的正确结果是( ) A .a b a b +- B .a b a b -+ C .12ab D .12ab
- 二.填空题
7.使分式22(3)
x x +有意义的条件为______. 8. (2014春•兴化市期末)
,﹣,的最简公分母是 . 9.当______时,分式
||44
x x --的值为零. 10.填空:)()1(=++-n m n m =-----b a n m m n 212)2(;)(⋅-b
a 221 11.填入适当的代数式,使等式成立. (1)22222()a a
b b a b a b +-=⋅-+(2).a b b a b a
-=-+
)(11
12. 分式22112m m m -+-约分的结果是______. 三.解答题 13.(2014春•泰州校级期中)当x 取什么数时,分式的值为0.
14.已知112x y
-=,求373232x xy y x xy y +---的值. 15.(1)阅读下面解题过程:已知22,15
x x =+求241x x +的值. 解:∵22,15
x x =+()0x ≠ 12,15x x
=+∴即152x x +=⋅ 2422221114115117
()2()22
x x x x x x ====⋅+++--∴ (2)请借鉴(1)中的方法解答下面的题目:
已知22,31
x x x =-+求2421x x x ++的值.
【答案与解析】
一.选择题
1. 【答案】B ;
【解析】由题意290a -=且260a a --≠,解得3a =-.
2. 【答案】C ;
【解析】222()mx m x x mx my m x y x y
⨯==---. 3. 【答案】D ;
【解析】由题意,320a b +≠,所以23
a b =-
/. 4. 【答案】C ;
【解析】解:由分式
无意义,得 x+1=0.
解得x=﹣1,
故选:C .
5. 【答案】C ;
【解析】①④正确.
6. 【答案】B ;
【解析】()()()222222a b a b a b a b a ab b a b a b +---==++++. 二.填空题
7. 【答案】3x ≠-.
8. 【答案】12x 3y 2z .
【解析】解:,﹣
,的分母分别是xy 2、4x 3、6xyz ,故最简公分母是12x 3y 2z ; 故答案为12x 3y 2z .
9. 【答案】4x =-;
【解析】||4040
x x -=⎧⎨-≠⎩,所以4x =-.
10.【答案】(1)-;(2)+;
11.【答案】(1)2a b +;(2)b a +;
【解析】()()()()222222a b a b a ab b a b a b a b -++-=-+-;11a a b
a b b b a b a b a
b b
++
+==---. 12.【答案】11m m -+; 【解析】()()()2
2212111111m m m m m m m m
--+-==-+-+. 三.解答题
13.【解析】解:由=0,得 ,解得x=1,x=﹣1(不符合题意要舍去),
当x=1时,
的值为零. 14.【解析】
解:方法一:∵ 112y x x y xy
--==, 等式两边同乘以xy ,得2xy y x =-.
∴ 2x y xy -=-.
∴ 3733()72322()3x xy y x y xy x xy y x y xy +--+=----327122377xy xy xy xy xy xy -⨯+===--⨯--. 方法二:∵ 112x y
-=, ∴ 1133377373327122232223711323x y x xy y y x x xy y y x x y ⎛⎫--++- ⎪+--⨯+⎝⎭====----⨯-⎛⎫----- ⎪⎝⎭
. 15.【解析】 解:∵22,31
x x x =-+()0x ≠ ∴1213x x
=+-,∴172x x += ∴222422211141145171112x x x x x x x ====++⎛⎫⎛⎫+++-- ⎪ ⎪⎝⎭⎝⎭
.。