26.1.2反比例函数的图象和性质(一)
26.1.2 反比例函数的图象和性质 第1课时 课件
注意: 两个
分支合起来 才是反比例 函数的图象.
y
6 5 4 3 2
1
-6-5-4-3-2-1O -1 -2 -3 -4 -5 -6
y 减y
12
小x
yx增6 大 x
1 2 3 4 5 6x
观察这两个函数图象, 回答问题:
(1) 每个函数图象分 别位于哪些象限? (2) 在每一个象限内, 随着x的增大,y 如何 变化?你能由它们的 解析式说明理由吗?
k 图象
反比例函数 y k (k≠0) x
k>0
k<0
图象位于第一、三象限 图象位于第二、四象限
性质 在每一个象限内,y 随 x 在每一个象限内,y 随x
的增大而减小
的增大而增大
1. 在同一直角坐标系中,函数 y = 2x 与 y 1 的图象大致是 ( D ) x
y
y
y
y
O
x
O
x
O
Ox
x
A
函数图象画法:描点法
列 表
描 点
连 线
例1:画出反比例函数
y6与 x
y
12 x
的图象.
画函数的图象步骤一般分为:列表→描点→连线. 需要注 意的是在反比例函数中自变量 x 不能为 0.
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
解:列表如下:
步骤一:列表
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
3
2 y6
1
x
y 12 x
步骤二:描点
描点:以表中各组对 应值作为点的坐标, 在直角坐标系内描绘 出相应的点.
-6-5-4-3-2-1O 1 2 3 4 5 6 x
反比例函数的图象和性质 课件PPT
而当 x 1或0 时 x,一2 次函数图象在反比例函数图
象的下方,即y1<y2
4.(益阳·中考)如图,反比例函 数 y= k 的图象位于第一、三象限,
x 其中第一象限内的图象经过点A(1,2),
请在第三象限内的图象上找一个你喜
欢的点P,你选择的P点坐标为_____.
【解析】∵
y=
2k+4
的x 图象在第一、三象限,
∴∴综2k上-k3+,<4k> 0需. 0满.由足于y2k=k-3+kx4-在30解x0>得0:-时2<,ky<随3x.的增大而增大,
答案:-2<k<3
6.设函数y=(m-2)xm-4.当m取何值时,它是反比例函数? 它的图象位于哪些象限内? 在每个象限内,当x的值增大时,对应的y值是随 着增大,还是随着减小?
反比例函数的图象又是什么?它又有什么性质呢?
画函数图象的一般步骤是什么? 列表、 描点、 连线.
例题
【例】画出反比例函数 解:
y=
6 x
和
y=-
6 x
的图象.
一、列表:
x
y
=
6
x
y=
6
x
注意:①列表时自变量取值要均 匀和对称②x≠0③选整数较好计
算和描点.
x
… -4 -3 -2 -1 1 2 3 4 …
且图象在第二、四象限内,则m的值是( )
(A)2
(B)-2
(C)±2
【解析】选B.由题意得:
m2
-5=-1 ,
m+1 0
解得m=-2.
(D) - 1
2
2.(绍兴·中考)已知(x1,y1),(x2,y2),(x3,y3)是反比例
26.1.2 反比例函数的图象和性质(1)
①m<0;
②在每个分支上,y 随 x 的增大而增大;
③若点 A(-1,a)、点 B(2,b)在图象上,则 a<b;
④若点 P(x,y)在图象上,则点 P1(-x,-y)也在图象上.
其中正确的个数是( B )
A.4
B.3
C.2
D.1
上一页 主分支分别位于第二、四象限,可得 m<0, 故正确;②在每个分支上 y 随 x 的增大而增大,正确;③若点 A(-1,a)、点 B(2, b)在图象上,则 a>b,错误;④若点 P(x,y)在图象上,则点 P1(-x,-y)也在图象 上,正确.
解析:∵四边形 ABCD 是矩形,点 A 的坐标为(2,1),∴点 D 的横坐标为 2, 点 B 的纵坐标为 1.当 x=2 时,y=62=3;当 y=1 时,x=6,则 AD=3-1=2,AB =6-2=4,则矩形 ABCD 的周长=2×(2+4)=12.
上一页 主页 下一页
15.如图,三个反比例函数图象的分支,其中 k1、k2、k3 的大小关系是 __k_1_<__k_3<__k_2___.
学透初 中
第二十六章 反比例函数
26.1 反比例函数 26.1.2 反比例函数的图象和性质(1)
目录页
01.抓基础 02.练考点
03.提能力 04.培素养
1.反比例函数图象的画法(描点法): (1) _列__表___; (2) _描__点___; (3) _连__线___:用平滑的曲线顺次连接各点,可得到反比例函数的图象. 2.反比例函数 y=kx(k≠0)的图象由_两___条曲线组成,它是_双__曲__线___,它具有以 下性质:
上一页 主页 下一页
反比例函数 y=kx(k≠0)的图象 3.【高频】反比例函数 y=-2x的图象是( C )
初中人教版数学九年级下册26.1.2核心素养【教学设计】《反比例函数的图象和性质》
《26.1.2反比例函数的图象和性质(1)》 教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
这些数学学科素养既相对独立,又互相交融,是一个有机的整体。
核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。
教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。
课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。
设计思路说明:“反比例函数的图象和性质”是在学习了一次函数,二次函数的有关内容以及反比例函数概念的基础上的进一步研究。
这节课从复习旧知入手,类比研究二次函数20y ax a =≠,图象和性质的过程,自然的过渡到反比例函数的图象。
在前面学习一次函数和二次函数的时候,学生已经经历过观察、分析图象特征,抽象、概括函数性质的过程,对研究函数性质的方法也有一定的了解。
因此,通过类比方法,探究反比例函数的图象性质,从方法上不会存在障碍。
但对于反比例函数的图象是两条曲线,函数图象的变化趋势只在每个象限内成立,学生在前面的学习中并未遇到,所以无论是总结还是应用变化趋势这条性质对学生来说都比较困难,第二个环节是师生共同完成6y x=的图象,教师在学生完成作图后找出典型的错误集体订正,这样设计有效的降低了学生画反比例函数图象这个难点,再由学生独立完成12y x= 的图象来巩固,第三个环节步归纳k >0时,函数的图象特征和性质;第四个环节就是完全类比k >0时的研究,我们研究k <0时的情况,同样遵循从特殊到一般的过程,再通过对图象的探究,归纳得出反比例函数的性质,并加以应用,发展学生的数学核心素养。
人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件
y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6
26.1.2反比例函数的图象与性质(1)
o
x
(6)求经过点A、B的一次函数的解析式;
(7)连OA、OB,设点C是直线AB与y轴的交点,
求三角形AOB的面积; (8)当x为何值时反比例函数的值大于一次函数的值; y 4 C
A(1,4)
(-4,-1) B
o1
x
提示: 利用图像比较大小简单明了。
2、在反比例函数 的图像上有两点 A(x1, y1)、B(x2, y2), 当x1< 0 <x2 时,有 y1 < y2, 则 m的取值范围是( C ) A. m < 0 B. m >0 C. m < 1 D. m > 1 2 2 y y
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4 -5 -6
0
1
2
3
4
5
6
x
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4
0
1
2
3
4
5
6
x
-5 -6
归纳:反比例函数的图象和性质 1.反比例函数的图象是双曲线. 2.图象性质见下表: y=
k x
K>0
K<0
图象
性质
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小.
跟踪练习6
考察函数
y
2 x
的图象,当x=-2时,y=
-1 ___
,当x<-2
时,y的取值范围是 -1<y<0 _____ ;当y﹥-1时,x的取值范围 或x>0 是 -2<x<0 _________ .
26.1.2反比例函数的图像和性质(1)
余庆县实验中学九年级(下)数学《三环五步》课堂教学教学设计(师生共用)上课时间 2017年 月 日(第 周 星期 ) 总第 课时课 题 26.1.2反比例函数的图像和性质(1)主 备 人 黄行龙 二次备课人黄行龙九年级( )班学生学习目标 1、进一步作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数三种表示方法的相互转换,对函数进行认识上的整合。
3、探索并掌握反比例函数的性质,体会分类讨论思想、数形结合思想的运用。
学习重点 掌握反比例函数的作图。
学习难点 反比例函数三种表示方法的相互转换。
使用要求 1.自学P3—4中的内容;2.独立完成学案,然后小组交流、展示。
小组评价评价人签名2017年 月 日学 习 过 程备 注一、 自主预习 探究问题1、正比例函数y =kx (k 是常数,k ≠0)性质:(1)图象形状 。
(2)所过象限 。
(3)增减性 。
2、二次函数 性质:(1)图象形状 。
(2)开口方向 。
(3)增减性 。
3、画函数图象的方法是 。
其一般步骤有(1) (2) (3) 。
二、自主学习 感受新知1、 阅读课本第4页至6页的部分,完成以下问题.(1)画出反比例函数x y 6=与xy 6—= 的图象.x … -6 -3 -2 -1 1 2 3 6 (x)y 6=... (x)y 6-= ……观察上述所作图像思考下列问题: (1)反比例函数xky =的图象是由 组成的.(通常称为 ) (2)当k =6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (3)当k =-6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (4)x y 6=和xy 6-=的图象关于 对称。
()2,,0y ax bx c a b c a =++≠是常数,学 习 过 程备 注2、归纳:反比例函数图象的特征及性质:(1)形状:反比例函数xky =(k ≠0)的图象是由两支 组成的,称为 。
26.1.2 反比例函数的图像与性质
x
y 6 x
…
…
-6 -1 1
-5
2
3 -3
3 2 -2
4 1.5
5
6 1 -1
…
…
-1.2
1.2
-2
2
-6
6
6
-6
1.2
-1.2
y
6 x
…
-1.5
…
描点并连线:
x … -6 -5
-1.2 1.2
-4
-1.5 1.5
-3
-2 2
-2
-3 3
-1
-6 6
6
1
6 -6
2
3 -3
3
2 -2
4
1.5 -1.5
6 函数关系式为 y x,y是x的 反比例 函数。
2、函数y=2xm+1是反比例函数,则m= -2 。
以前学过什么函数?图象是什么样子?怎样 得出来的?
通过描点法得来的,具体的基本步骤如下:
1、列表(列表前分析并确定自变量的取值范围); 2、描点; 3、连线(按自变量由小到大的顺序,用平滑的曲 线连接后标明解析式)。
断k与0之间的大小关系: (1)若其图象在第一、三象限内,则k > 0; (2)若每一个象限内,y随x的增大而增大,则k
<
0
且 x0 y0 2 ,则它的图象大致是( B )
y x y x y
k 若点 ( x0 , y0 ) 在函数 y (x<0)的图象上, x
y x x
O A.
O B.
O C.
反比例函数的图象是什么样子?又具有 怎样的性质呢?
人教版九年级数学第二十六章 反比例函数
26.1.2 反比例函数的图象与性质
26.1.2反比例函数的图像与性质
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
=
6 x
…
-1 -1.2 -1.5 -2 -3
-6
63
2 1.5 1.2 1 …y=6 x…
1
1.2 1.5
2
3 6 -6 -3 -2 -1.5 -1.2 -1 …
y
y
6
6
5 4
y
=
6 x
3
5
y =-
6 x
4
3
2
2
1
1
增 从左到右下降
减
性 y随x的增大而减小
反比例函数
回顾与思考
“预见性”,猜一猜
反比例函数的图象又会是什么样子呢?
你还记得作函数图象的一般步骤吗?
用图象法表示函数关系时,首先在自变量的 取值范围内取一些值,列表,描点,连线
(按自变量从小到大的顺序,用一条平滑的 曲线连接起来).
活动一、画反比例函数图像
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
-2
-3
提示:由于x≠0,
-3
-4
k≠0,所以y≠0,函数图象永 -4
-5
远不会与x轴、y轴相交,只是 -5
-6
无限靠近两坐标轴 。
-6
思考:这几个函数图象有什么共同点和不同点?
4 函数y=kx-k 与y k k 0
x
标系中的 图象可能是 D :
在同一个直角坐
y
y
y
y
ox (A)
26.1.2反比例函数的图象及性质第一课时
k >0
y
o
x
k <0
y
o
x
图像位置 一、三象限 二、四象限
性质
每个象限内,
每个象限内,
y 随 x 的增大而减小 y 随 x 的增大而增大
谢谢大家O(∩_∩)O~
x
3 2 1.5 1.2 1 …
y
10 5
-10 -5 O
-5 -10
思考 (1)图象形状是 双曲线
y=6
x (2)位置分布在 一、三 象限;
5 10 x
(3)增减性 在每个象限内,
y随着 x的增大而 减小 .
二类比探究,形成新知
问题4 反比例函数的图象都具有这样的特征呢? 自己动手画出反比例函数 y = 6 的图象. x 1.函数图象经过原点吗?为什么?
则它的图象在_一__、___三__象限,k >___0.
5.已知双曲线 y = m 1 ,当 x 0 时, y随着
x
x 的增大而增大,则 m 的取值范围 m<1 .
四、小结
谈谈你的收获:
你学到了什么?
你还有什么疑问?
……
小结:反比例函数 y = k (k 0, k为常数 ) 的性质: x
k 的符号
2.函数图象在哪几个象限?
与
y
=
6 x
图象有什么不同?
3.函数图象的变化趋势?
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y=6 …
x
1
1.2 1.5 2
3
6 -6
-3 -2 -1.5 -1.2 -1 …
y
6
思考
5
4
(1)图象形状是 双曲线
26.1.2反比例函数的图象和性质
1.(2018•香坊区)对于反比例函数y 2
不正确的是( )
x
C
A.点(﹣2,﹣1)在它的图象上
B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
,下列说法
课堂检测
基础巩固题
2.(2018•上海)已知反比例函数y k 1 (k是常数,k≠1) 的图象有一支在第二象限,那么k的取x值范围是 k<1
-5
解析式说明理由吗?
-6
探究新知
(3) 对于反比例函数y k (k>0),考虑问题(1)(2), x
你能得出同样的结论吗?
y
O
x
探究新知
归纳: 反比例函数 y k (k>0) 的图象和性质: x
y
(1)由两条曲线组成,且分别位
于第一、三象限,它们与 x 轴、y
轴都不相交;
O
x (2)在每个象限内,y 随 x 的增
若 x1> x2,则 y1与y2的大小关系为 ( ) C
A. y1 > y2 B. y1 = y2 C. y1 < y2 D. 无法确定
解析:因为8>0,且 A,B 两点均在该函数图象的第一 象限部分,根据 x1>x2,可知y1,y2的大小关系.
探究新知
观 察
当 k =-2,-4,-6时,反比例函数y k
的图象上,并说明理由;
解:分别把点 B,C 的坐标代入反比例函数的解析式, 因为点 B 的坐标不满足该解析式,点C的坐标满足该 解析式,所以点 B 不在该函数的图象上,点C 在该函 数的图象上.
巩固练习
(3) 当 -3< x <-1 时,求 y 的取值范围.
26.1.2反比例函数的图象和性质 课件(共15张PPT)人教版初中数学九年级下册
类比正比例函数,研究反比例函数的图 象与性质
作业
画出反比例函数 y 6 , y 6 , y 3 , y 3 的
x
xx
x
函数图象。
作业展示
1.反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
2.已知反比例函数 y 4 k x
(1)若函数的图象位于第一、三象限,
0
12
x
本节收获
1、进一步巩固复习了作函数图象的一般方法和步骤
2、反比例函数 y k (k为常数,k≠0)的图象是双曲线 x
当k>0时,双曲线的两支分别位于第一、第三象限, 在每个象 限内y值随x值的增大而减小。 当k<0时,双曲线的两支分别位于第二、第四象限, 在每个 象限内y值随x值的增大而增大。
26.1.2反比例函数的图象和性质
回顾与思考
我们研究了正比例函数的哪些方面
函数
正比例函数
解析式
y kxk 0
自变量取值范围
全体实数
图象形状
过原点的一条直线
图象位置
图象趋势 增减性
k 0
y y=kx
ox
k 0
y y=k
xox
经过一、三象限 经过二、四象限
从左到右逐渐上升 从左到右逐渐下降
Y随x的增大而增大 Y随x的增大而减小
则k____<_4________; (2)若在每一象限内,y随x增大而增大,
则k____>_4________.
3.若点(-2,y1)、(-1,y2)在反比例函数
26.1.2反比例函数的图象和性质
随自变量x增大而增大”的是( B )
A.①③ B.③④ C.②④ D.②③
课堂检测
26.1 反比例函数/
基础巩固题
1.(2018•香坊区)对于反比例函数 y 2 ,下列说法 x
不正确的是( C )
A.点(﹣2,﹣1)在它的图象上
y
y 2 x
y
y 4 x
y y 6
x
O
x
O
x
O
x
探究新知
26.1 反比例函数/
归纳:
反比例函数
yk x
(k<0) 的图象和性质:
y
(1)由两条曲线组成,且分别位于
第二、四象限,它们与x轴、y轴都
不相交;
O
x (2)在每个象限内,y随x的增大而
增大.
探究新知
26.1 反比例函数/
y
k x
察 的图象,有哪些共同特征?
与 思
y
y 2 x
y
y 4 x
y y 6
x
考
O
x
O
x
O
x
探究新知
26.1 反比例函数/
回顾上面我们利用函数图象,从特殊到一般研究反比
例函数 y k x
(k>0) 的性质的过程,你能用类似的方法
研究反比例函数
y
k x
(k<0)的图象和性质吗?
(2) 判断点 B (-1,6),C(3,2) 是否在这个函数的 图象上,并说明理由;
解:分别把点 B,C 的坐标代入反比例函数的解析式, 因为点 B 的坐标不满足该解析式,点C的坐标满足该 解析式,所以点 B 不在该函数的图象上,点C 在该函 数的图象上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.2反比例函数的图象和性质(一)
思考(1)、 反比例函数的图象是什么?是连续的吗?
(2)、反比例函数的图象的性质是什么?是由谁决定的? (3)、反比例函数的图象是轴对称还是中心对称的,如果是轴对称找出对称轴如是中心对称找出对称中心。
一、作出反比例函数
y 6=和y 6
-= 的图象
1、反比例函数x
k
y =
(k 为常数,0≠k )图像是_____________ 2、当 k >0,图象的两个分支分别在 象限,在每个象限内y 随x 的增大而
当 k <0,图象的两个分支分别在 象限,在每个象限内y 随x 的增大而
3、反比例函数的图象是 图形, 原点。
三、练习
1、如果反比例函数x
k
y =
的图象过点(3,-4), 那么函数的图象应在( ) A .第一、三象限 B.第一、第二象限 C.第二、四象限 D.第三、四象限 2、对于反比例函数
y=,下列说法正确的是( )
3、(2014湖北孝感)在反比例函数3
k y x
-=
图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )
A .k >3
B .k >0
C .k <3
D . k <0 4、(2014河北省)如图1,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( )
A .2
y x
=
B .2
y x
=-
C .12y x
=
D .12y x
=-
5、(2014山东临沂)已知反比例函数x
k
y =
的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2
B 、y 1=y 2
C 、y 1<y 2
D 、无法确定
6、(2014•牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k ≠0)的图象大致是( ) .
.
.
.
7、 若反比例函数2
2)12(--=m x
m y 的图像在第二、四象限,则m 的值是( )
A 、-1或1
B 、小于
2
1
的任意实数 C 、-1 D 、不能确定 图1
4、(2014山东枣庄)反比例函数x
k
y =
的图象如图所示,点
M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2
(C)4 (D)-4
5、(2014湖南岳阳)在下图中,反比例函数x
k y 12+=的图象大致是
( )
6、(2014四川资阳)如图6,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数m
y x
=
的图象的两个交点.
(1) 求此反比例函数和一次函数的解析式;
(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.
图
6。