2.4 二次函数的应用(1).ppt
合集下载
二次函数应用PPT教学课件
用价值。解决这类实际问题时,首要 的一步就是___求_出__抛_物__线_解_析__式__, 而这一步必须把抛物线建立在特定的 ____直_角_坐__标_系____中才能顺利进行。 否则,将寸步难行!
生也 活是 中抛 有物 许线 多形 桥的
C
D
A
B
实例2、如图:有一座抛物线形的石拱桥,在正常水位时水面AB
——二次函数应用(一)
DJY
某抛物线如图所示: (1)根据图中所给信息,你能
说出它的哪些有关性质?
y D
9
C5
请同学们畅所欲言!
(2)你能求出这条抛物线 的解析式吗?怎样求?
A
2
-1 O
比比谁的方法好而多!
X=2
B X
5
交
点
式
解:
y D
9
抛物线与x轴交于A(-1,0)、 B(5,0)
两点
C5
可设抛物线解析式为y=a(x-5)(x+1)
1m
乙
谢谢大家 再见!
嘉兴市清河中学 初三数学组 制作:陈豪 2005年3月
敬请各位老师指导!
虎丘记
(袁宏道)
一、关于袁宏道和“公安派”:
袁宏道,明代文学家,湖广公安人,万历16年 中举人,万历20年中进士,万历23年任吴县县令, 颇有政绩,不到两年就辞官归隐。后又出仕官场, 官至吏部主事、稽勋郎中。著《袁中郎全集》。 袁宏道在明代文坛上占有重要地位。他与兄长 袁宗道、弟弟袁中道合称“公安三袁”,被称为 “公安派”。“公安派”在文学上反对形式主义和 拟古主义,在思想上反对封建礼教和儒家道统。他 们的作品也能打破传统诗文的陈规陋习,抒发个性, 清新流畅。但由于不适当地强调表现自我表现,忽 视社会现实,因而作品缺乏深厚的社会内容,思想 比较贫乏。
生也 活是 中抛 有物 许线 多形 桥的
C
D
A
B
实例2、如图:有一座抛物线形的石拱桥,在正常水位时水面AB
——二次函数应用(一)
DJY
某抛物线如图所示: (1)根据图中所给信息,你能
说出它的哪些有关性质?
y D
9
C5
请同学们畅所欲言!
(2)你能求出这条抛物线 的解析式吗?怎样求?
A
2
-1 O
比比谁的方法好而多!
X=2
B X
5
交
点
式
解:
y D
9
抛物线与x轴交于A(-1,0)、 B(5,0)
两点
C5
可设抛物线解析式为y=a(x-5)(x+1)
1m
乙
谢谢大家 再见!
嘉兴市清河中学 初三数学组 制作:陈豪 2005年3月
敬请各位老师指导!
虎丘记
(袁宏道)
一、关于袁宏道和“公安派”:
袁宏道,明代文学家,湖广公安人,万历16年 中举人,万历20年中进士,万历23年任吴县县令, 颇有政绩,不到两年就辞官归隐。后又出仕官场, 官至吏部主事、稽勋郎中。著《袁中郎全集》。 袁宏道在明代文坛上占有重要地位。他与兄长 袁宗道、弟弟袁中道合称“公安三袁”,被称为 “公安派”。“公安派”在文学上反对形式主义和 拟古主义,在思想上反对封建礼教和儒家道统。他 们的作品也能打破传统诗文的陈规陋习,抒发个性, 清新流畅。但由于不适当地强调表现自我表现,忽 视社会现实,因而作品缺乏深厚的社会内容,思想 比较贫乏。
二次函数的应用(经典) PPT
(1)若商场平均每天要盈利1200元,每件 衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
二次函数的简单应用PPT
经济学中收益与成本分析
总收益与总成本模型
01
在经济学中,总收益和总成本往往可以表示为产量的二次函数,
通过分析这些函数可以找出最大利润点。
边际收益与边际成本
02
利用二次函数的导数表示边际收益和边际成本,进而分析企业
的盈利状况。
价格与需求关系
03
在某些情况下,价格与需求之间的关系可以近似为二次函数,
通过分析这种关系可以制定合适的定价策略。
运动学问题中速度与时间关系
1 2
匀加速直线运动
根据匀加速直线运动的速度与时间关系,构建二 次函数模型求解位移、速度等参数。
竖直上抛运动
利用竖直上抛运动的速度、时间和高度之间的关 系,建立二次函数模型分析运动过程。
3
曲线运动中的速度与时间关系
在某些曲线运动中,速度与时间的关系可以近似 为二次函数,从而进行求解和分析。
在给定速度、距离等条件下,通过二次函数模型求解使得时间最短 的运动方案。
06 总结与展望
二次函数简单应用知识点总结
二次函数的对称轴
$x = -frac{b}{2a}$。
二次函数的判别式
$Delta = b^2 - 4ac$,用于 判断二次方程的根的情况。
二次函数的一般形式
$f(x) = ax^2 + bx + c$,其 中 $a neq 0$。
周长问题
对于某些特定形状的几何图形(如抛物线型、椭圆型等),可以通过二次函数表示其周长 ,并讨论周长的性质和最值问题。
综合应用
结合多种几何图形和二次函数的性质,可以解决更复杂的面积、周长等问题,如最优布局 、路径规划等实际问题。
05 二次函数在优化问题中的 应用
九年级数学上册第21章二次函数与反比例函数21.4二次函数的应用(第一课时)课件(新版)沪科版
课堂小结
答:当矩形的宽为10m时,矩形面积最大为100m2.
[归纳总结] 求极值(或最值),是许多实际问题中需研究 和解决的课题,二次函数是一种解决此类问题的模型.
探究问题二 已知二次函数的表达式应用最值解决实际问题 例 2 [教材变式题] 我市某镇的一种特产由于运输原
因,长期只能在当地销售.当地政府对该特产销售每年的投 入资金 x 万元与所获利润 P 万元之间的函数表达式为 P=- 1100(x-60)2+41.当地政府拟在“十二五”规划中加快开发 该特产的销售,其规划方案为:在规划前后对该项目每年最 多可投入 100 万元的销售投资,在实施规划 5 年的前两年中, 每年都从 100 万元中拨出 50 万元用于修建一条公路,两年 修成,通车前该特产只能在当地销售;公路通车后的 3 年中, 该特产既在本地销售,也在外地销售.在外地销售的每年的 投资金额 x 万元与所获利润 Q 万元之间的函数表达式为 Q= -19090(100-x)2+2594(100-x)+160.
因此,当 40≤x≤70 时,y=-3x+240.
(2)当每箱售价为 x 元时,每箱利润为(x-40)元,平均每 天的利润 W=(240-3x)(x-40)=-3x2+360x-9600.
(3)W=-3x2+360x-9600 =-3(x2-120x+3600-3600)-9600 =-3(x-60)2+1200,
[分析] 首先根据题意建立数学模型,即写出题目中水面的面 积与其一边长所反映的函数关系式,然后配方,写出顶点坐 标,从而确定矩形水面的边长和面积.
解:设矩形的宽为xm,面积为Sm2,得 S=x(20-x)=-x2+20x=-(x2-20x+100-100) =-(x-10)2+100 ∵a=-1<0 ∴当x=10时,S最大=100.
二次函数的应用 PPT课件 3 浙教版
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
•
62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。
•
63、彩虹风雨后,成功细节中。
•
64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。
•
65、只要有信心,就能在信念中行走。
•
66、每天告诉自己一次,我真的很不错。
•
28、有时候,生活不免走向低谷,才能迎接你的下一个高点。
•
29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。
•
30、经验是由痛苦中粹取出来的。
•
31、绳锯木断,水滴石穿。
•
32、肯承认错误则错已改了一半。
•
33、快乐不是因为拥有的多而是计较的少。
•
34、好方法事半功倍,好习惯受益终身。
•
35、生命可以不轰轰烈烈,但应掷地有声。
•
74、先知三日,富贵十年。付诸行动,你就会得到力量。
•
75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒前程。
•
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
•
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
•
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
•
49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。
•
50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。
•
51、对于最有能力的领航人风浪总是格外的汹涌。
二次函数的应用ppt课件
②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m
2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积
+300
(或用公式:当 x=
-
b 2a=25
时,y
最大值=300)
∵- 2152<0 ∴ 当 x = 25m 时,y 的值最大,最大面积为 300m2
如果设AB=xm,BC如何表示,最大面积是多少? (随堂练习)
第11页,共26页。
变式练习4: 如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、 G分别在边AB、AC上.问矩形DEFG的最大面积是多少?
((12))求当Sx取与何x的值函时数所关围系成式的及花自圃变面量积的最取大值,范最围大;值是多S少=-?4x2+24x (3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
24-4x≤8 (3)由题知24-4x>0 解得 4≤x<6
A
D
x>0
∵-4<0 且对称轴是直线 x=3
B
C
∴当 4≤x<6 时,y 随 x 增大而减少
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式,t为何 值时S最小?求出S的最小值。
(2)由题意得
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63
即 t=3cm 时 S 有最小值 63cm2
D
C
Q
2t cm
A t cm
解:(1)S=x(80-2x)= -2x2+80x
A
D
80-2x≤50
xm
xm
由题知80-2x≥40 解得 15≤x<40
二次函数的应用ppt课件
∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册
目
录
00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);
6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B
为
(
)
2
2
《二次函数的应用》PPT课件下载
22.5 二次函数的应用
1.让学生进一步熟悉,点坐标和线段之间的转化. 2.让学生学会用二次函数的知识解决有关的实际问题. 3.掌握数学建模的思想,体会到数学来源于生活,又服务
于生活.
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它
的对称轴是 直线x=h ,顶点坐标是__(_h_,__k_)__.
验证猜想
【解析】y=(600-5x)(100+x )=5x²+100x+60000
∵当=x-5=(1x0-1时0,)2y+最6大0=5060500 ∴增种10棵树时, 总产量最多,是60500个橙子
“二次函数应用” 的思路
回顾本课“最大利润”和 “最高产量”解决问题的过程, 你能总结一下解决此类问题的基本思路吗?
件;
销售额可表示为:
x500 20013.5 x
元;
所获利润可表示为: x 2.5500 20013.5 x 元;
当销售单价为 9.25 元时,可以获得最大利润,最大利润是
___9_1_12_._5___元.
何时橙子总产量最大? 某果园有100棵橙子树,每一棵树平均结600个橙子.现准备 多种一些橙子树以提高产量,但是如果多种树,那么树之间 的距离和每一棵树所接受的阳光就会减少.根据经验估计, 每多种一棵树,平均每棵树就会少结5个橙子. 如果增种x棵树,果园橙子的总产量为y个,那么y与x之间 的关系式为: y=(600-5x)(100+x ) =-5x²+100x+60000
一个人只有保持快乐和满足,才能远离痛苦;一个人只有保持青春活力,才能激流勇进;一个人只有坚持学习,才能与时俱进;一个人只有坚 持奋进,才能永远年轻。 爬上最高的境界,你会陡然发现:那里的景色竟然是你司空见惯的。 士搏出惊涛骇流而不沉沦,懦夫在风平浪静也会溺水。 我为你今天的表现感到骄傲。
1.让学生进一步熟悉,点坐标和线段之间的转化. 2.让学生学会用二次函数的知识解决有关的实际问题. 3.掌握数学建模的思想,体会到数学来源于生活,又服务
于生活.
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它
的对称轴是 直线x=h ,顶点坐标是__(_h_,__k_)__.
验证猜想
【解析】y=(600-5x)(100+x )=5x²+100x+60000
∵当=x-5=(1x0-1时0,)2y+最6大0=5060500 ∴增种10棵树时, 总产量最多,是60500个橙子
“二次函数应用” 的思路
回顾本课“最大利润”和 “最高产量”解决问题的过程, 你能总结一下解决此类问题的基本思路吗?
件;
销售额可表示为:
x500 20013.5 x
元;
所获利润可表示为: x 2.5500 20013.5 x 元;
当销售单价为 9.25 元时,可以获得最大利润,最大利润是
___9_1_12_._5___元.
何时橙子总产量最大? 某果园有100棵橙子树,每一棵树平均结600个橙子.现准备 多种一些橙子树以提高产量,但是如果多种树,那么树之间 的距离和每一棵树所接受的阳光就会减少.根据经验估计, 每多种一棵树,平均每棵树就会少结5个橙子. 如果增种x棵树,果园橙子的总产量为y个,那么y与x之间 的关系式为: y=(600-5x)(100+x ) =-5x²+100x+60000
一个人只有保持快乐和满足,才能远离痛苦;一个人只有保持青春活力,才能激流勇进;一个人只有坚持学习,才能与时俱进;一个人只有坚 持奋进,才能永远年轻。 爬上最高的境界,你会陡然发现:那里的景色竟然是你司空见惯的。 士搏出惊涛骇流而不沉沦,懦夫在风平浪静也会溺水。 我为你今天的表现感到骄傲。
2.4 二次函数的应用(第一课时).ppt
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间 隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积 为S平方米. (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积. A B
D
C
2.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB 边向点B以1cm/s的速度移动,同时,点Q从点B出发沿BC边向点C 以2cm/s的速度移动.如果P、Q两点在分别到达B、C两点后就停止 移动. (1)运动开始后第几秒时,△PBQ的面积等于8cm2? (2)设运动开始后第t秒时,五边形APQCD的面积为Scm2, 写出S与t的函数关系式,并指出自变量t的取值范围;t为何值 时S最小?求出S的最小值。 D C
N
如图,在一个直角三角形的内部作一个矩形ABCD, 其中点A和点D分别在两直角边上,BC在斜边上. M (1)设矩形的一边BC=xm,那么AB C H 边的长度如何表示? B (2)设矩形的面积为ym2,当x取何值 D G 时,y的值最大?最大值是多少? ┐
30m
A N 解: 1 由勾股定理得MN 50m, PH 24m. 40m 12 设AB bm,易得b x 24. 25 12 12 2 2 12 x 25 300. 2y xb x x 24 x 24 x 25 25 25 2 b 4ac b 或用公式 : 当x 25时, y最大值 300. 2a 4a
P
“二次函数应用” 的思路
回顾上一节“最大利润”和本节“最大面积”解 决问题的过程,你能总结一下解决此类问题的基本 思路吗?与同伴交流. 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.运用数学知识求解;
2.4二次函数的应用(1)
复习引入
写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=x2-4x-5;
(2)y=-x2-3x+4.
解:(1)开口方向:向上;对称轴:x=2;
顶点坐标:(2,-9);
(2)开口方向:向下;对称轴:x= - 3 ;
顶点坐标:( - 3
,25
2
);
2
4
第二章
学练优九年级数学下(BS) 教学课件
二次函数
课后作业
见《课堂内外》本课时练习
- 7 (x 15)2 225 . 2 14 56
当x
15 14
1.07时,S最大
225 56
4.02.
因此,当x约为1.07m时,窗户通过的光线最多.
此时,窗户的面积约为4.02 m2.
利用二次函数解决拱桥问题
例3 要使运动员坐着船从圣火的拱形桥下穿过入场,现知拱形底 座顶部离水面2 m,水面宽4 m,为了船能顺利通过,需要把水面 下降1 m,问此时水面宽度增加多少?
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜 园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大, 最大面积是多少?
问题1 变式2与变式1有什么异同? 问题2 可否模仿变式1设未知数、列函数关系式?
问题3 可否试设与墙平行的一边为x米?则如何表示另一边?
设矩形面积为Sm2,与墙平行的一边为x m ,则
解:(1)∵a=1>0,对称轴为x=2,顶点坐标为(2,-9), ∴当x=2时,y取最小值,最小值为-9;
(2)∵a=-1<0,对称轴为x=- 3 ,顶点坐标为(- 3 ,25 ),
2
24
∴当x= - 3 时,y取最大值,最小值为 25 ;
写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=x2-4x-5;
(2)y=-x2-3x+4.
解:(1)开口方向:向上;对称轴:x=2;
顶点坐标:(2,-9);
(2)开口方向:向下;对称轴:x= - 3 ;
顶点坐标:( - 3
,25
2
);
2
4
第二章
学练优九年级数学下(BS) 教学课件
二次函数
课后作业
见《课堂内外》本课时练习
- 7 (x 15)2 225 . 2 14 56
当x
15 14
1.07时,S最大
225 56
4.02.
因此,当x约为1.07m时,窗户通过的光线最多.
此时,窗户的面积约为4.02 m2.
利用二次函数解决拱桥问题
例3 要使运动员坐着船从圣火的拱形桥下穿过入场,现知拱形底 座顶部离水面2 m,水面宽4 m,为了船能顺利通过,需要把水面 下降1 m,问此时水面宽度增加多少?
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜 园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大, 最大面积是多少?
问题1 变式2与变式1有什么异同? 问题2 可否模仿变式1设未知数、列函数关系式?
问题3 可否试设与墙平行的一边为x米?则如何表示另一边?
设矩形面积为Sm2,与墙平行的一边为x m ,则
解:(1)∵a=1>0,对称轴为x=2,顶点坐标为(2,-9), ∴当x=2时,y取最小值,最小值为-9;
(2)∵a=-1<0,对称轴为x=- 3 ,顶点坐标为(- 3 ,25 ),
2
24
∴当x= - 3 时,y取最大值,最小值为 25 ;