重庆市部分区县2014-2015学年高一下学期期末联考数学试卷

合集下载

重庆市部分区县2014-2015学年高一下学期期末联考数学试题word版 含答案

重庆市部分区县2014-2015学年高一下学期期末联考数学试题word版 含答案

2014-2015学年度下期期末联考(本卷共4页,满分150分,考试时间120分钟)1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题的答案标号涂黑。

若需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束,将试题卷和答题卡一并交回。

.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,.等比数列{}n a 中,44=a ,则35a a = A.20B. 16C.15D.10如果,,a b R ∈且a b >,那么下列不等式中不一定...成立的是 A .a b -<- B. 12a b ->- C. ab a >2D. a b b a ->-在ABC ∆中,若45A =°,60B =°,2a =.则b = A.6下列事件是随机事件的是1)连续两次掷一枚硬币,两次都出现正面向上. (2)异性电荷相互吸引 3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数 A.(1)(2) B. (2)(3) C.(3)(4) D. (1)(4) ABC ∆中,2,3,60,b c A ===︒则a =36. 变量y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,02x y x y x ,目标函数y x z +=2,则z 的最小值是A .21-B .0C .1D .1-7.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a = A .4- B. 6- C.8- D.10-8.执行如图所示的程序框图,若输出的S =88,则判断框内应填入的条件是 A .?7>k B .?6>k C .?5>kD .?4>k9.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如下图),21,s s 分别表示甲、乙选手的标准差,则1s 与2s 的关系是 A. 21s s < B . 21s s = C. 21s s > D. 不能确定10.在数列{}n a 中,4,3211-==+n n a a a ,则数列{}n a 的前n 项和n s 的最大值是 A. 136 B. 140 C. 144 D. 148 11. 下列说法正确的是 A.函数x x y 2+=的最小值为 B.函数)0(sin 2sin π<<+=x xx y的最小值为 C.函数xx y 2+=的最小值为函数x x y lg 2lg +=的最小值为12.在钝角三角形ABC 中,若45B =°,a =c 的取值范围是A.(B.()()0,12,+∞ C.()1,2 D.),2()1,0(+∞二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上.13. 不等式()()120x x -+<的解集是 .14.程序:M=1 M=M+1 M=M+2 PRINT M END M 的最后输出值为甲 乙8 7 6 75 4 1 8 0 2 9 4 315. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8.若用分层抽样从中抽取6个城市,则丙组中应抽取的城市数为________.16. 函数)0,1(1)3(log >≠-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中0,0>>n m ,则nm 21+的最小值为 . 三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 在等差数列{}n a 中,11760,12.a a =-=- (Ⅰ)求通项n a ;(Ⅱ)求此数列前30项的绝对值的和.18.(本小题满分12分)设ABC ∆的内角C B A ,,所对应的边长分别是,,,a b c 且3cos , 2.5B b == (Ⅰ)当︒=30A 时,求a 的值;(Ⅱ)当ABC ∆的面积为3时,求c a +的值.19. (本小题满分12分)某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图; (Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批球的直径误差不超过[39.97,39.99)0.03 mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20. (本小题满分12分)已知1)1()(2++-=x aa x x f . (Ⅰ)当21=a 时,解不等式()0f x ≥; (Ⅱ)若0>a ,解关于x 的不等式0)(≤x f .21. (本小题满分12分) 设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且c a C b 21cos -=. (Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.22. (本题满分10分)已知数列{}n a 和{}n b 中,数列{}n a 的前n 项和为,n s 若点),(n s n 在函数x x y 142+-=的图象上,点),(n b n 在函数x a y =的图象上.设数列{}=n c {}n n b a .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n c 的前n 项和n T ; (Ⅲ)求数列{}n c 的最大值.重庆市部分区县2014—2015学年度下期期末联考 高一数学参考答案一、选择题:(每小题5分,共60分)。

【数学】重庆市沙坪坝区第一中学2014-2015学年高一下学期期末考试

【数学】重庆市沙坪坝区第一中学2014-2015学年高一下学期期末考试

重庆一中高一下期期末考试数 学 试 题 卷 2015.7一、选择题:(每小题5分,共计50分,在每小题给出的四个选项中,只有一项符合要求.) 1.10y -+=的倾斜角为( ) A .56π B .23π C .3π D .6π2.学校教务处要从某班级学号为160-的60名学生中用系统抽样方法抽取6名同学的作业进行检查,则被抽到的学生的学号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 3.下列命题中错误的是( )A .夹在两个平行平面间的平行线段相等B .过直线l 外一点M 有且仅有一个平面与直线l 垂直,C .垂直于同一条直线的两个平面平行D .空间中如果两个角的两边分别对应平行,那么这两个角相等 4.如右图,程序框图所进行的求和运算是 ( )5.边长为5,7,8的三角形的最大角与最小角之和为( ) A . B . C . D . 6.如图是某三棱锥的三视图,则该三棱锥的表面积为( )α090012001350150A. 4B.6C. 4D.67.已知,且()()119x y ++=,则x y +的最小值是( )A .B .5C .D . 8.10111111111+224248242⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…………的值为( ) A .9172+B .10192+C .111112+D .10172+ 9.(原创)在ABC ∆中3,2AC BC AB ===,P 为三角形ABC 内切圆圆周上一点,则PA PB ·的最大值与最小值之差为( )A .4 B. C. D .210(原创).已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,,P Q 是面1111A B C D 上的两个不同的动点.给出以下四个结论:①若DP =则DP在该四棱柱六个面上的投影长度之和的最大值为②若P 在面对角线11AC 上,则在棱1DD 上存在一点M 使得1MB BP ⊥; ③若,P Q 均在面对角线11AC 上,且1PQ =,则四面体BDPQ 的体积一定是定值; ④若,P Q 均在面对角线11AC 上,则四面体BDPQ 在底面1111ABCD A B C D -上的投影恒为凸四边形的充要条件是PQ ;以上各结论中,正确结论的个数是( )A .1B .2C .3D .4二、填空题:(每小题5分,共计25分,把答案填在答题卡的相应位置.)11.经过点的直线与倾斜角为的直线垂直,则________. 12.已知等差数列的前n 项和为n S ,且满足253,25a S ==,则10S = . 13(原创).已知,B C 是球O 的一个小圆1O上的两点,且BC =2BOC π∠=123BO C π∠=,则三棱锥1O O BC -的体积为______. 14(原创)在星期天晚上的6:30-8:10之间,小明准备用连续的40分钟来完成数学作业,已知他选择完成数学作业的时间是随机的,则在7:00时,小明正在做数学作业的概率是______.15(原创).已知0m ≥,满足条件4y xx y y mx m ≥⎧⎪+≤⎨⎪≤-⎩的目标函数z x my =+的最大值小于2,则0,0>>y x 429211),3(),1,2(a Q P --︒45=a {}n am 的取值范围是______.三、解答题:(本大题共6小题,共计75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分13分)某同学对本地[]30,55岁的爱好阅读的人群随机抽取n 人进行了一次调查,得到如下年龄统计表,其中不超过40岁的共有60人。

重庆市永川中学2014_2015学年高一数学下学期半期联合考试试题理

重庆市永川中学2014_2015学年高一数学下学期半期联合考试试题理

重庆市名校联盟2014~2015学年下期半期联合考试高2017级 数学试题卷(理工农医类)数学测试卷共4页。

满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮 擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个备选项中,只有一项 是符合题目要求的。

1.若R,a b c a b ∈>、、,则下列不等式成立的是 ( ) A .11a b< B .a c b c +>+ C .22a b > D .||||a c b c > 2.已知△ABC中,a =b =,60B ∠=︒,那么A ∠= ( ) A .30︒B .45︒C .60︒D .13545︒︒或3.已知关于x 的不等式20ax x c -+>的解集为1(1,)2-,则a c 、的值分别为( )A .21-,B .21--,C .12-,D . 21- , 4.在等差数列{}n a 中252,20a S ==,则8a =( ) A .8B .12C .14D .165.已知向量(1,2),(1,0),(3,4)a b c →→→===.若λ为实数,且()a b λ→→+∥c →,则λ的值为( )A .2B .1C .12 D .146. 已知数列{}n a 满足1112,1(,2)n n a a n N n a *-==-∈≥则8a 的值为( ) A .1B .12C .1-D .27.已知等比数列{}n a 的公比是正数,且273424,2a a a a ⋅==,则6S ( )A .63B .64C .126D .378.在平行四边形ABCD 中,,,2AB a AD b AM MC ===,P 为AD 的中点,则MP等于( )A .2136a b →→+B .2736a b →→-C .2136a b →→--D .2736a b →→--9.在ABC ∆中, sin :sin :sin 2:3:4A B C =,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .无法确定10. 已知,a b →→是平面内两个单位向量,且a b →→⊥,若向量c →满足 ()()0a c b c →→→→-⋅-=,则∣c →∣的最大值为( )A . 1 B11.设n S 为等差数列{}n a 的前n 项和.若4540,a a a <>,则使0n S >成立的最小正整数n 为 ( )A .9B .8C .7D .612.对任意两个非零平面向量α和β,定义αβαβββ⋅*=⋅,若两个非零平面向量a 、 b的夹角(,)42ππθ∈,且a b *和b a *都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b *等于( )A .12B .1C .32D .52二、填空题:本大题共4小题,每小题5分,共20分。

2014-2015学年重庆市巴蜀中学高一(下)期末数学试卷(文科)

2014-2015学年重庆市巴蜀中学高一(下)期末数学试卷(文科)

2014-2015学年重庆市巴蜀中学高一(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量=(2,1),=(x,﹣2),若∥,则x等于()A.1 B.﹣1 C.4 D.﹣42.(5分)等差数列{a n}中,若a1+a2015=4,则a2+a2014=()A.2 B.4 C.8 D.163.(5分)已知△ABC中,b=2,B=45°,C=105°,则a=()A.B.+1 C.﹣1 D.4.(5分)实数a,b,“<<0“是“a>b“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)已知f′(x)是函数f(x)的导数,y=f′(x)的图象如图所示,则y=f (x)的图象最有可能是图中()A.B.C.D.6.(5分)若变量x,y满足约束条件,则2x+y的最大值是()A.2 B.4 C.7 D.87.(5分)在△ABC中,若,则△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形8.(5分)已知点p(x,y)(x>0,y>0)在经过点A(2,0),B(0,1)两点的直线上,则+的最小值为()A.9 B.4 C.D.9.(5分)如图所示的程序框图运行的结果是()A.B.C.D.10.(5分)过点M(1,3)引圆x2+y2=2的切线,切点分别为A,B,则sin∠AMB=()A.B.C.D.11.(5分)已知||=2,是单位向量,且关于x的函数f(x)=x3+||x2+•x 是R上的单调函数,则向量与的夹角的范围是()A.[0,)B.[0,]C.[0,]D.[,)12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a对任意的x∈(﹣1,0)不等式f (x)<0恒成立,则a的范围是()A.(﹣∞,] B.[,1]C.(﹣∞,1]D.[,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)圆x2+y2﹣2x﹣2y=0的圆心坐标为.14.(5分)在△ABC中,角A的平分线为AD,D在边BC上,AB=,AD=,B=45°,则A=.15.(5分)数列{a n}满足a1=1,S n为{a n}前n项和,且2a n=S n+1,则+++…+=.16.(5分)圆O半径为2,A是圆O上一定点,BC是圆O上动弦,且弦长为3,则(+)•的最大值为.三、解答题(共6小题,满分70分)17.(10分)公差不为零的等差数列{a n},a2=4,且a2,a4,a7成等比数列.(1)求数列{a n}的通项a n;(2)设b n=+a n,求数列{b n}的前n项和T n.18.(12分)已知函数f(x)=ax3+cx在x=3处的切线方程为8x﹣y﹣18=0.(1)求函数f(x)的解析式;(2)若f(x)≤m(m∈R)对任意x∈[﹣2,2]上恒成立,求m的取值范围.19.(12分)已知直线l:kx﹣y+2k=0(k∈R)过定点为P.(1)若直线l与直线2015x+2015y﹣2017=0垂直,求k的值;(2)已知点A(1,3),B(﹣5,5),求过点P且与A,B点距离相等的直线l 的方程.20.(12分)在△ABC中,且a,b,c分别是内角A,B,C的对边,且a=bcosC ﹣c.(1)求角B的大小;(2)若△ABC的面积S=4,求△ABC周长的最小值.21.(12分)已知圆心为(2,3)的圆C上的点到直线x+y﹣3=0的最短距离为﹣1.(1)求圆C的方程;(2)过点N(﹣1,0)的直线l与圆C交于P,Q两点,且•=12,其中O 为坐标原点,求△OPQ的面积.22.(12分)设f(x)=﹣2ln(x+1)+x2﹣a(x﹣2)(a∈R).(1)当a=0时,求f(x)的单调区间和极值;(2)若存在唯一整数x0使f(x0)<0,求a的取值范围.2014-2015学年重庆市巴蜀中学高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量=(2,1),=(x,﹣2),若∥,则x等于()A.1 B.﹣1 C.4 D.﹣4【解答】解:向量=(2,1),=(x,﹣2),若∥,则有1×x=2×(﹣2)=﹣4;即x=﹣4;故选:D.2.(5分)等差数列{a n}中,若a1+a2015=4,则a2+a2014=()A.2 B.4 C.8 D.16【解答】解:由等差数列{a n}的性质可得:a2+a2014=a1+a2015=4,故选:B.3.(5分)已知△ABC中,b=2,B=45°,C=105°,则a=()A.B.+1 C.﹣1 D.【解答】解:∵△ABC中,b=2,B=45°,C=105°,可得:A=180°﹣B﹣C=30°,∴由正弦定理,可得:a===.故选:A.4.(5分)实数a,b,“<<0“是“a>b“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由“<<0“能推出“a>b“,是充分条件,由a>b推不出“<<0“,不是必要条件,故选:A.5.(5分)已知f′(x)是函数f(x)的导数,y=f′(x)的图象如图所示,则y=f (x)的图象最有可能是图中()A.B.C.D.【解答】解:根据导函数可知函数在(﹣∞,﹣1)上单调减,在(﹣1,1)上单调增,在(1,+∞)上单调减,结合图象可知y=f(x)的图象最有可能是图中B故选:B.6.(5分)若变量x,y满足约束条件,则2x+y的最大值是()A.2 B.4 C.7 D.8【解答】解:满足约束条件的可行域如下图中阴影部分所示:∵目标函数Z=2x+y,∴Z O=0,Z A=4,Z B=7,Z C=4,故2x+y的最大值是7,故选:C.7.(5分)在△ABC中,若,则△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【解答】解:由题意可知向量与的夹角为A,记||=c,||=b,||=a 则由可得,c2=bc•cosA+a2,即cosA=又由余弦定理可得cosA=,故=化简可得c2=a2+b2,由勾股定理可知△ABC为直角三角形.故选:D.8.(5分)已知点p(x,y)(x>0,y>0)在经过点A(2,0),B(0,1)两点的直线上,则+的最小值为()A.9 B.4 C.D.【解答】解:由A(2,0)、B(0,1)可求直线AB的斜率k AB==﹣,∴由点斜式可得直线AB的方程为:x+2y=2,∴+=(+)(x+2y)=(1+4++)≥(5+2)=(5+4)=,当且仅当x=,y=时取等号,故选:C.9.(5分)如图所示的程序框图运行的结果是()A.B.C.D.【解答】解:模拟程序的运行,可得A=0,i=1满足条件i≤1008,执行循环体,A=,i=2满足条件i≤1008,执行循环体,A=+,i=3…满足条件i≤1008,执行循环体,A=++…+=(1﹣﹣+…+﹣)=(1﹣)=,i=1009此时,不满足条件i≤1008,退出循环,输出A 的值为.故选:D.10.(5分)过点M(1,3)引圆x2+y2=2的切线,切点分别为A,B,则sin∠AMB=()A.B.C.D.【解答】解:如图所示,由题意可得|OM|==,|OB|=r=;由勾股定理可得|MA|=|MB|==2,∴sin∠OMB===,∴cos∠OMB===,∴sin∠AMB=sin2∠OMB=2sin∠OMBcos∠OMB=2××=.故选:C.11.(5分)已知||=2,是单位向量,且关于x的函数f(x)=x3+||x2+•x 是R上的单调函数,则向量与的夹角的范围是()A.[0,)B.[0,]C.[0,]D.[,)【解答】解:设向量与的夹角为θ∵函数f(x)=x3+||x2+•x是R上的单调函数,∴f′(x)=x2+||x+•与x轴没有交点或者只有一个交点,∴△=||2﹣4•=12﹣8cosθ≤0,即cosθ≥,∵0≤θ≤π,∴0≤θ≤,故选:B.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a对任意的x∈(﹣1,0)不等式f (x)<0恒成立,则a的范围是()A.(﹣∞,] B.[,1]C.(﹣∞,1]D.[,+∞)【解答】解:对任意的x∈(﹣1,0)不等式f(x)<0恒成立,即a<在(﹣1,0)恒成立,令g(x)=,x∈(﹣1,0),则g′(x)=<0,故g(x)在(﹣1,0)递减,故a≤g(0)=1,故选:C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)圆x2+y2﹣2x﹣2y=0的圆心坐标为(1,1).【解答】解:圆x2+y2﹣2x﹣2y=0,即圆(x﹣1)2+(y﹣1)2 =2,故它的圆心为(1,1),故答案为:(1,1).14.(5分)在△ABC中,角A的平分线为AD,D在边BC上,AB=,AD=,B=45°,则A=30°.【解答】解:角A的平分线为AD,D在边BC上,AB=,AD=,B=45°,△ABD中,由正弦定理,,可得:sin∠ADB=,∴∠ADB=60°或120°当∠ADB=60°时,那么:∠BAD=180°﹣45°﹣60°=75°,∴A=2∠BAD=150°,可得∠C=180﹣150°﹣45°=﹣15°不成立.故得∠ADB=120°,那么:∠BAD=180°﹣120﹣60°=15°,∴A=2∠BAD=30°,故答案为:30°.15.(5分)数列{a n}满足a1=1,S n为{a n}前n项和,且2a n=S n+1,则+++…+=2﹣()n﹣1.【解答】解:∵2a n=S n+1,)=S n+1,∴2(S n﹣S n﹣1+1),∴S n+1=2(S n﹣1∵S1+1=a1+1=2,∴数列{S n+1}是以2为首项,以2为公比的等比数列,∴S n+1=2×2n﹣1,∴a n=2n﹣1,∴=()n﹣1,∵=1∴+++…+==2﹣()n﹣1,故答案为:2﹣()n﹣116.(5分)圆O半径为2,A是圆O上一定点,BC是圆O上动弦,且弦长为3,则(+)•的最大值为12.【解答】解:如图,(+)•===.∴当与成0°角时,(+)•有最大值为2×2×3×1=12.故答案为:12.三、解答题(共6小题,满分70分)17.(10分)公差不为零的等差数列{a n},a2=4,且a2,a4,a7成等比数列.(1)求数列{a n}的通项a n;(2)设b n=+a n,求数列{b n}的前n项和T n.【解答】解:(1)由题意,{a n}是等差数列,设公差为d,a2=4,且a2,a4,a7成等比数列,则a4=4+2d,a7=4+5d,∴(4+2d)2=4(4+5d),解得:d=0(舍去)或d=1.∴通项a n=a2+(n﹣2)d=n+2.(2)b n=+a n,可得b n=2n+n+2.那么:{b n}的前n项和T n=T1+T2+…+T n=21+3+22+4+…+2n+n+2=21+22+…+2n+(3+4+5+…+n+2)==.18.(12分)已知函数f(x)=ax3+cx在x=3处的切线方程为8x﹣y﹣18=0.(1)求函数f(x)的解析式;(2)若f(x)≤m(m∈R)对任意x∈[﹣2,2]上恒成立,求m的取值范围.【解答】解:(1)f′(x)=3ax2+c,k=f′(3)=27a+c=8,①f(3)=27a+3c=8×3﹣18=6,②联立①②解得:,c=﹣1.∴f(x)=x3﹣x;(2)f(x)≤m(m∈R)对任意x∈[﹣2,2]上恒成立,即f(x)max≤m,x∈[﹣2,2]恒成立,f′(x)=x2﹣1,由f′(x)=x2﹣1=0,得x1=﹣1,x2=1.列x、f′(x)、f(x)的关系表:由表可知,.∴.19.(12分)已知直线l:kx﹣y+2k=0(k∈R)过定点为P.(1)若直线l与直线2015x+2015y﹣2017=0垂直,求k的值;(2)已知点A(1,3),B(﹣5,5),求过点P且与A,B点距离相等的直线l的方程.【解答】解:直线l:kx﹣y+2k=0(k∈R)化为:k(x+2)﹣y=0,令,解得x=﹣2,y=0,可得直线l过定点P(﹣2,0).(1)∵直线l与直线2015x+2015y﹣2017=0垂直,则k×=﹣1,解得k=1.(2)分类讨论:①若直线l∥AB,则k=k AB==﹣,可得直线l的方程为:﹣x﹣y﹣=0,化为:x+3y+2=0.②若直线l经过线段AB的中点M(﹣2,4),∴﹣2k﹣4+2k=0,无解,综上可得:直线l的方程为:x+3y+2=0.20.(12分)在△ABC中,且a,b,c分别是内角A,B,C的对边,且a=bcosC ﹣c.(1)求角B的大小;(2)若△ABC的面积S=4,求△ABC周长的最小值.【解答】解:(1)∵a=bcosC﹣c,∴由正弦定理可得:sinA=sinBcosC﹣sinC,可得:sin(B+C)=sinBcosC﹣sinC,∴sinBcosC+cosBsinC=sinBcosC﹣sinC,可得:cosBsinC=﹣sinC,∵C为三角形内角,sinC>0,可得:cosB=﹣,∴由B∈(0,π),可得:B=.(2)∵S=acsinB=×ac×=4,解得:ac=16,△ABC∴由余弦定理可得:cosB=≥,∴可得:≥,可得:﹣16≥32﹣b2,解得:b2≥48,即b≥4,当且仅当a=c=4时等号成立,∴△ABC周长=a+b+c=(a+c)+b≥2+b=2+4=8+4,即当a=c=4时,△ABC周长的最小值为8+4.21.(12分)已知圆心为(2,3)的圆C上的点到直线x+y﹣3=0的最短距离为﹣1.(1)求圆C的方程;(2)过点N(﹣1,0)的直线l与圆C交于P,Q两点,且•=12,其中O 为坐标原点,求△OPQ的面积.【解答】解:(1)设圆的方程是(x﹣2)2+(y﹣3)2=r2,(r>0),∵圆心为(2,3)到直线x+y﹣3=0的距离d1=,且圆心为(2,3)的圆C上的点到直线x+y﹣3=0的最短距离为﹣1,故r=1,故圆的方程是(x﹣2)2+(y﹣3)2=1;(2)当直线l的斜率不存在或斜率是0时,直线和圆相离,不合题意,从而直线的斜率必存在且不是0,设直线l的方程为x=my﹣1,且P(x1,y1),Q(x2,y2),则,消去x化简得:(m2+1)y2﹣(6m+6)y+17=0,故,∴x1x2=(my1﹣1)(my2﹣1)=m2y1y2﹣m(y1+y2)+1=,∴•=x1x2+y1y2==12,解得:m=1,满足△>0,故直线l的方程是:x=y﹣1即x﹣y+1=0,故该直线过圆心C(2,3),∴|PQ|=2r=2,又原点到直线l的距离为d=,故△OPQ的面积是S=|PQ|•d2=.22.(12分)设f(x)=﹣2ln(x+1)+x2﹣a(x﹣2)(a∈R).(1)当a=0时,求f(x)的单调区间和极值;(2)若存在唯一整数x0使f(x0)<0,求a的取值范围.【解答】解:(1)当a=0时,f(x)=﹣2ln(x+1)+x2,f′(x)=﹣=(x>﹣1),∴当x∈(﹣1,1)时,f′(x)<0,f(x)为减函数,当x∈(1,+∞)时,f′(x)>0,f(x)为增函数,∴当x=1时,函数f(x)求得极小值为f(1)=;(2)存在唯一整数x0使f(x0)<0,即存在唯一整数x0使<0,也就是a(x0﹣2)>,令g(x)=﹣2ln(x+1)+,h(x)=a(x﹣2).由(1)可知,x∈(﹣1,1)时,g(x)为减函数,当x∈(1,+∞)时,g(x)为增函数,且极小值为.∵ln(x+1)<x(x>0),∴g(x)=﹣2ln(x+1)+>,作出函数g(x)与h(x)的图象如图:要使存在唯一整数x0使f(x0)<0,则,则ln2﹣﹣4ln2+.∴a的取值范围是ln2﹣﹣4ln2+.。

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(文科)

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(文科)

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.)1.(5分)已知集合A={0,1,2},集合B={﹣1,0,1},则集合A∩B=()A.{﹣1,0,1,2} B.{0,1}C.{﹣1,6}D.∅2.(5分)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,先采用分层抽取容量为45人的样本,那么高一、高二、高三年级抽取的人数分别为()A.15、5、25 B.15、15、15 C.10、5、30 D.15、10、203.(5分)函数f(x)=+log2(6﹣x)的定义域是()A.{x|x>6}B.{x|﹣3<x<6}C.{x|x>﹣3}D.{x|﹣3≤x<6}4.(5分)已知等比数列{a n}满足:a2=2,a5=,则公比q为()A.﹣ B.C.﹣2 D.25.(5分)已知向量=(2m,1),向量=(1,﹣8),若⊥,则实数m的值是()A.﹣4 B.4 C.D.6.(5分)已知△ABC中c=4,a=4,C=30°,则A等于()A.60°B.60°或120°C.30°D.30°或150°7.(5分)当n=3时,执行如图所示的程序框图,输出的S值为()A.30 B.14 C.8 D.68.(5分)实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.09.(5分)已知数列{a n}的前n项和为S n,且,则S n取最小值时,n的值是()A.3 B.4 C.5 D.610.(5分)设a>0,b>0.若3是3a与3b的等比中项,则的最小值为()A.4 B.2 C.1 D.11.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.12.(5分)函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是()A.(﹣∞,4﹣2)∪(4+2,+∞)B.(4﹣2,4+2)C.(﹣,﹣)D.(﹣,﹣)二、填空题(共4小题,每小题5分,共20分.)13.(5分)lg4+lg50﹣lg2的值是.14.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+|=.15.(5分)不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,则实数m的取值范围为.16.(5分)表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a ij.则(1)a nn=(n∈N*);(2)表中的数52共出现次.三、解答题:(本大题共7个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.18.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC ﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.20.(12分)已知函数f(x)=2.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g (x)在区间上的最大值和最小值.21.(12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?22.(12分)已知数列{a n}的前n项和为T n,且点(n,T n)在函数y=x 上,且a n+2+3log4b n=0(n∈N*)(1)求{b n}的通项公式;(2)数列{c n}满足c n=a n•b n,求数列{c n}的前n项和S n;(3)记数列的前n项和为B n,设d n=,证明:d1+d2+…+d n<.2014-2015学年重庆市巫山中学高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.)1.(5分)已知集合A={0,1,2},集合B={﹣1,0,1},则集合A∩B=()A.{﹣1,0,1,2} B.{0,1}C.{﹣1,6}D.∅【解答】解:∵集合A={0,1,2},集合B={﹣1,0,1},∴集合A∩B={0,1},故选:B.2.(5分)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,先采用分层抽取容量为45人的样本,那么高一、高二、高三年级抽取的人数分别为()A.15、5、25 B.15、15、15 C.10、5、30 D.15、10、20【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高一年级抽取的人数是300×=15人,高二年级抽取的人数是200×=10人,高三年级抽取的人数是400×=20人,故选:D.3.(5分)函数f(x)=+log2(6﹣x)的定义域是()A.{x|x>6}B.{x|﹣3<x<6}C.{x|x>﹣3}D.{x|﹣3≤x<6}【解答】解:要使函数有意义,x+3≥0,且6﹣x>0∴|﹣3≤x<6∴函数的定义域为:{x|﹣3≤x<6}故选:D.4.(5分)已知等比数列{a n}满足:a2=2,a5=,则公比q为()A.﹣ B.C.﹣2 D.2【解答】解:∵等比数列{a n}满足:a2=2,a5=,∴2q3=,解得q=.故选:B.5.(5分)已知向量=(2m,1),向量=(1,﹣8),若⊥,则实数m的值是()A.﹣4 B.4 C.D.【解答】解:由向量=(2m,1),向量=(1,﹣8),若⊥,则•=0,即2m×1+1×(﹣8)=0,解得m=4,故选:B.6.(5分)已知△ABC中c=4,a=4,C=30°,则A等于()A.60°B.60°或120°C.30°D.30°或150°【解答】解:△ABC中c=4,a=4,C=30°,由正弦定理,可得sinA==,∵a=44=c,∴A>C,解得A=60°或120°.故选:B.7.(5分)当n=3时,执行如图所示的程序框图,输出的S值为()A.30 B.14 C.8 D.6【解答】解:模拟执行程序框图,可得n=3,K=1,S=0满足条件k≤n,S=2,K=2满足条件k≤n,S=6,K=3满足条件k≤n,S=14,K=4不满足条件k≤n,退出循环,输出S的值为14.故选:B.8.(5分)实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.0【解答】解:由约束条件作出可行域如图,化目标函数z=x+3y为,由图可知,当直线过A(﹣2,2)时,直线在y轴上的截距最小,z有最小值为﹣8.故选:B.9.(5分)已知数列{a n}的前n项和为S n,且,则S n取最小值时,n的值是()A.3 B.4 C.5 D.6=a n+3,得a n+1﹣a n=3(n∈N*),【解答】解:在数列{a n}中,由a n+1∴数列{a n}是公差为3的等差数列.又a1=﹣10,∴数列{a n}是公差为3的递增等差数列.由a n=a1+(n﹣1)d=﹣10+3(n﹣1)=3n﹣13≥0,解得.∵n∈N*,∴数列{a n}中从第五项开始为正值.∴当n=4时,S n取最小值.故选:B.10.(5分)设a>0,b>0.若3是3a与3b的等比中项,则的最小值为()A.4 B.2 C.1 D.【解答】解:∵3是3a与3b的等比中项,∴32=3a•3b=3a+b,∴a+b=2.a>0,b>0.∴===2.当且仅当a=b=1时取等号.故选:B.11.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A.12.(5分)函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是()A.(﹣∞,4﹣2)∪(4+2,+∞)B.(4﹣2,4+2)C.(﹣,﹣)D.(﹣,﹣)【解答】∵g(x)=log2x在(0,2)上单调递增,且g(x)<1;故|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同实数解可化为t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;当若在(0,1),{0}上,则2m+3=0,则m=﹣;故t=0或t=;不成立;若在(0,1),{1}上;则1+m+2m+3=0,故m=﹣;故t2+mt+2m+3=0的解为t=或t=1;成立;若在(0,1),(1,+∞)上,则;解得﹣<m<﹣;故选:D.二、填空题(共4小题,每小题5分,共20分.)13.(5分)lg4+lg50﹣lg2的值是2.【解答】解:lg4+lg50﹣lg2=lg=lg100=2,故答案为:214.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+|=.【解答】解:由题意可得||=2,||=1,向量与的夹角为60°,∴=2×1×cos60°=1,∴=+2+=4+2+1=7,∴=,故答案为.15.(5分)不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,则实数m的取值范围为(﹣,3] .【解答】解:若m2﹣2m﹣3=0,则m=﹣1或m=3,若m=﹣1,不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0为4x﹣1<o不合题意;若m=3,不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0为﹣1<0对一切x∈R恒成立,所以m=3可取,设f(x)=(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1,当m2﹣2m﹣3<0且△=[﹣(m﹣3)]2+4(m2﹣2m﹣3)<0,解得:﹣<m <3,即﹣<m≤3时不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,故答案为:.16.(5分)表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a ij.则(1)a nn=n2+1(n∈N*);(2)表中的数52共出现4次.【解答】解:a nn表示第n行第n列的数,由题意知第n行是首项为n+1,公差为n的等差数列,∴a nn=(n+1)+(n﹣1)×n=n2+1.第i行第j列的数记为A ij.那么每一组i与j的解就是表中一个数.因为第一行数组成的数列A1j(j=1,2,)是以2为首项,公差为1的等差数列,所以A1j=2+(j﹣1)×1=j+1,所以第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,所以A ij=j+1+(i﹣1)×j=ij+1.令A ij=ij+1=52,即ij=51=1×51=17×3=3×17=51×1,故表中52共出现4次.故答案为:n2+1,4.三、解答题:(本大题共7个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.18.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC ﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得:sinAcosC﹣sinCsinA=0.…(2分)因为0<A<π,所以sinA>0,从而cosC=sinC,又cosC≠0,…(4分)所以tanC=,所以C=.…(6分)(Ⅱ)在△ABC中,S==6,得a=6,…(9分)△ABC由余弦定理得:c2=62+42﹣2×=28,所以c=2.…(12分)20.(12分)已知函数f(x)=2.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g (x)在区间上的最大值和最小值.【解答】解:(1)函数f(x)=2==2sin(2x+)所以:T=(2)由(1)得:函数f(x)=2sin(2x+)向右平移个单位得到:g(x)=2sin(2x﹣)由于所以:函数g(x)=2sin(2x﹣)∈[﹣1,2]当x=0时函数的最小值为﹣1.当x=时,函数取得最大值为2.21.(12分)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?【解答】解:设矩形栏目的高为acm,宽为bcm,则ab=9000.①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+2.当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140cm,宽为175cm时,可使广告的面积最小.22.(12分)已知数列{a n}的前n项和为T n,且点(n,T n)在函数y=x 上,且a n+2+3log4b n=0(n∈N*)(1)求{b n}的通项公式;(2)数列{c n}满足c n=a n•b n,求数列{c n}的前n项和S n;(3)记数列的前n项和为B n,设d n=,证明:d1+d2+…+d n<.【解答】(1)解:由点(n,T n)在函数y=x上,得:,(ⅰ)当n=1时,.(ⅱ)当n≥2时,a n=T n﹣T n﹣1=3n﹣2,∴a n=3n﹣2.又∵a n+2+3log4b n=0,∴;(2)解:∵且s n=c1+c2+c3+…+c n,∴…①…②由①﹣②得:,,整理得:;(3)证明:∵,∴数列的前n项和为.∵,∵,∴.即.当n=1时.。

重庆高一下学期期末考试数学理试题有答案

重庆高一下学期期末考试数学理试题有答案

时, f ( x) 的最小值为 5,求 m 的值 .
x [0, ]
2
20. ( 本小题满分 12分 )
设函数 f(x)=a x -(k-1)a x (a>0 , a 1) 是定义域为 R的奇函数 ( Ⅰ) 若 f(1)>0 ,试求使不等式 f x2 tx +f 2 x 1 >0在定义域上恒成立的 t 的取值范围
CP 1 PD ,则 PA PB ( ) 2
A. 3
B.
10
C.
0
D.
4
4
9
10. 设 a
0, b
1 ,若 a
b
2,则 3
1 的最小值为 ( )
a b1
A. 2 3
B.8
C.
43
D.
4 23
11. 等比数列 {a n} 中,首项 a1
2015 ,公比 q
的值为 ( )
1 ,记 Tn 为它的前 n项之积,则 Tn 最大时, n 2
.
17. ( 本小题满分 12分 )
已知数列 { a n} 满足 an 1
3an
4 , (n
*
N)

a1
1,
( Ⅰ ) 求证:数列 an 2 是等比数列;
[: 学# 科 #网Z#X#X#K]
( Ⅱ ) 求数列 { a } 的前 n项和 S . n
n
18. ( 本小题满分 12分 ) 某校从参加 2015 年高考的学生中随机抽取 60名 学生,将其数学成绩 ( 均为整数 ) 分成六组
A. ( ﹣ 2,﹣ 1) B .( ﹣ 1, 0) C . (0 , 1) D . (1 , 2)
5. 要得到函数

重庆市永川中学2014_2015学年高一数学下学期半期联合考试试题文

重庆市永川中学2014_2015学年高一数学下学期半期联合考试试题文

重庆市名校联盟2014~2015学年下期联合考试高2017级 数学试题卷(文史类)数学试题卷(文史类)共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1. 若d c b a >>,,则下列不等式成立的是( ) A .d b c a +>+ B .d b c a ->-C .bd ac >D .22b a >2. 在ABC ∆中,c b a ,,分别为C B A ,,的对边,3,2,13===c b a ,则A =( )A .30°B .60°C .90°D .135°3. 一元二次不等式0)1)(2(<+-x x 的解集是( )A. ()1,2-B. ()2,1-C .()+∞-∞-,2()1,D .()+∞-∞-,1()2,4. 若7,m ,-1构成等差数列,则=-7m ( ) A.3- B.4- C.4D .35. 已知向量a=(1,2),b=(1,0),c=(3,2) .若λ为实数,且(a+λb)//c ,则λ= ( )A.14B.12C .1D .26. 在等差数列{}n a 中,53=a ,108=a ,则{}n a 的前10项和等于( )A. 60B. 75C. 90D. 1507. 等比数列{}n a 中,已知公比2=q ,7321=++a a a ,则=++543a a a ( ) A .14B .21C .28D .638. 如右图ABC ∆,已知2=,则=( )A. )(31-B. )(21AC AB -C.)(31+D. )(21AC AB +9. 在△ABC 中,内角C B A ,,所对的边长分别是c b a ,,,若bc b a 322+=,B C sin 3sin =,则=CA .30°B . 60°C .120°D .150°10.在ABC ∆中,已知BC BA CB CA AC AB AC ⋅+⋅+⋅=2,则ABC ∆是A.(非等边的)锐角三角形B. 等边三角形C .直角三角形 D. 钝角三角形 11.已知等比数列{}n a 的前n 项和a S nn -=2,则数列⎭⎬⎫⎩⎨⎧+n n a a 1的前n 项和为 A .221-+n B .2221-+-n n C .1221-+-n n D .1221+--n n12.已知A B C ∆中,.342,3===∠AC AB BAC π点P 满足)0(≠=λλ且0≠+=m AB AC m ,则λ+m 3等于A .6B .4C .32D .2二、填空题:本大题共4小题,每小题5分,共20分. 把答案填写在答题卡相应位置上. 13. 若向量)3,2(),2,1(-==BC AB,则=.14. 在ABC ∆中,c b a ,,分别为C B A ,,的对边,2,3,3===∆b a S ABC ,则=C sin.15.等比数列{}n a 的前n 项和为n S ,已知321,2,3S S S 成等差数列,则q =.16.已知关于x 的不等式02≤--a ax x在)3,1(∈x 上恒成立,则实数a 的取值范围为.三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本题12分)在ABC ∆中,内角C B A ,,所对的边分别是c b a ,,.已知32,13π==C c . (I )若2=a ,求A sin 的值; (II )若b a 3=,求 b a ,的值.18.(本题12分)在等比数列{}n a 中,n S 为数列{}n a 前n 项的和,且0>q .已知12,3432=+=a a S . (I )求数列{}n a 的通项公式;(II )若等差数列{}n b 满足2112=-b b ,且211a b =,求数列{}n b 的前n 项和n T ;19.(本题12分)已知)1,1(),2,1(-==.(I )若θ为b a +与-的夹角, 求θcos ;(II )若b a +2与b a k -垂直, 求k 的值.20.(本题12分)某中学今年4月份曾发生流感,据资料统计,4月1日,该校新的流感病毒感染者有20人,此后,每天的新感染者成等差数列增加,且比前一天增加50人.由于该校采取有效措施,使该种病毒的传播得到控制,从4月某日起,每天的新感染者成等差数列减少,且比前一天减少30人,直到4月30日流感得到有效控制而统计截止。

《解析》重庆市巫山中学2014-2015学年高一下学期期末数学试卷(文科)Word版含解析

《解析》重庆市巫山中学2014-2015学年高一下学期期末数学试卷(文科)Word版含解析

重庆市巫山中学2014-2015学年高一下学期期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.)1.已知集合A={0,1,2},集合B={﹣1,0,1},则集合A∩B=()A.{﹣1,0,1,2} B.{0,1} C.{﹣1,6} D.∅2.某校高中生共有900人,其中2014-2015学年高一年级300人,2014-2015学年高二年级200人,2015届高三年级400人,先采用分层抽取容量为45人的样本,那么2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.15、5、25 B.15、15、15 C.10、5、30 D.15、10、203.函数的定义域是()A.{x|x>6} B.{x|﹣3<x<6} C.{x|x>﹣3} D.{x|﹣3≤x<6}4.已知等比数列{a n}满足:a2=2,a5=,则公比q为()A.﹣B.C.﹣2 D.25.已知向量=(2m,1),向量=(1,﹣8),若⊥,则实数m的值是()A.﹣4 B.4C.D.6.已知△ABC中c=4,a=4,C=30°,则A等于()A.60°B.60°或120°C.30°D.30°或150°7.当n=3时,执行如图所示的程序框图,输出的S值为()A.30 B.14 C.8D.68.实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.09.已知数列{a n}的前n项和为S n,且,则S n取最小值时,n的值是()A.3B.4C.5D.610.设a>0,b>0.若3是3a与3b的等比中项,则的最小值为()A.4B.2C.1D.11.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.12.函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是()A.(﹣∞,4﹣2)∪(4+2,+∞)B.(4﹣2,4+2)C.(﹣,﹣)D.(﹣,﹣)二、填空题(共4小题,每小题5分,共20分.)13.lg4+lg50﹣lg2的值是.14.平面向量与的夹角为60°,=(2,0),||=1,则|+|=.15.不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,则实数m的取值范围为.16.表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a ij.则(1)a nn=(n∈N*);(2)表中的数52共出现次.三、解答题:(本大题共7个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.20.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值.21.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?22.已知数列{a n}的前n项和为T n,且点(n,T n)在函数y=x上,且a n+2+3log4b n=0(n∈N*)(1)求{b n}的通项公式;(2)数列{c n}满足c n=a n•b n,求数列{c n}的前n项和S n;(3)记数列的前n项和为B n,设d n=,证明:d1+d2+…+d n<.重庆市巫山中学2014-2015学年高一下学期期末数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.)1.已知集合A={0,1,2},集合B={﹣1,0,1},则集合A∩B=()A.{﹣1,0,1,2} B.{0,1} C.{﹣1,6} D.∅考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解即可.解答:解:∵集合A={0,1,2},集合B={﹣1,0,1},∴集合A∩B={0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.某校高中生共有900人,其中2014-2015学年高一年级300人,2014-2015学年高二年级200人,2015届高三年级400人,先采用分层抽取容量为45人的样本,那么2014-2015学年高一、2014-2015学年高二、2015届高三年级抽取的人数分别为()A.15、5、25 B.15、15、15 C.10、5、30 D.15、10、20考点:分层抽样方法.专题:计算题.分析:根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.解答:解:根据题意得,用分层抽样在各层中的抽样比为=,则在2014-2015学年高一年级抽取的人数是300×=15人,2014-2015学年高二年级抽取的人数是200×=10人,2015届高三年级抽取的人数是400×=20人,故选D.点评:本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.3.函数的定义域是()A.{x|x>6} B.{x|﹣3<x<6} C.{x|x>﹣3} D.{x|﹣3≤x<6}考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:要使函数有意义,必须使函数的每一部分都有意义,函数定义域是各部分定义域的交集.解答:解:要使函数有意义,x+3≥0,且6﹣x>0∴|﹣3≤x<6∴函数的定义域为:{x|﹣3≤x<6}故答案选D.点评:函数定义域是各部分定义域的交集.4.已知等比数列{a n}满足:a2=2,a5=,则公比q为()A.﹣B.C.﹣2 D.2考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列通项公式求解.解答:解:∵等比数列{a n}满足:a2=2,a5=,∴2q3=,解得q=.故选:B.点评:本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的通项公式的求法.5.已知向量=(2m,1),向量=(1,﹣8),若⊥,则实数m的值是()A.﹣4 B.4C.D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量垂直的条件:数量积为0,解方程即可求得m.解答:解:由向量=(2m,1),向量=(1,﹣8),若⊥,则•=0,即2m×1+1×(﹣8)=0,解得m=4,故选B.点评:本题考查平面向量的运用,考查向量垂直的条件:数量积为0,考查运算能力,属于基础题.6.已知△ABC中c=4,a=4,C=30°,则A等于()A.60°B.60°或120°C.30°D.30°或150°专题:解三角形.分析:直接利用正弦定理求解即可.解答:解:△ABC中c=4,a=4,C=30°,由正弦定理,可得sinA==,∵a=44=c,∴A>C,解得A=60°或120°.故选:B.点评:本题考查正弦定理的应用,三角形的解法,考查计算能力.7.当n=3时,执行如图所示的程序框图,输出的S值为()A.30 B.14 C.8D.6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,K的值,当K=4时,不满足条件k≤n,退出循环,输出S的值为14.解答:解:模拟执行程序框图,可得n=3,K=1,S=0满足条件k≤n,S=2,K=2满足条件k≤n,S=6,K=3满足条件k≤n,S=14,K=4不满足条件k≤n,退出循环,输出S的值为14.故选:B.点评:本题主要考察了循环结构的程序框图,依次正确写出每次循环得到的S,K的值是解题的关键,属于基本知识是考查.8.实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.0考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=x+3y为,由图可知,当直线过A(﹣2,2)时,直线在y轴上的截距最小,z有最小值为﹣8.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.已知数列{a n}的前n项和为S n,且,则S n取最小值时,n的值是()A.3B.4C.5D.6专题:等差数列与等比数列.分析:由递推式得到给出的数列是公差为3的递增等差数列,利用通项公式求出数列从第五项开始为正值,则S n取最小值时的n的值可求.解答:解:在数列{a n}中,由a n+1=a n+3,得a n+1﹣a n=3(n∈N*),∴数列{a n}是公差为3的等差数列.又a1=﹣10,∴数列{a n}是公差为3的递增等差数列.由a n=a1+(n﹣1)d=﹣10+3(n﹣1)=3n﹣13≥0,解得.∵n∈N*,∴数列{a n}中从第五项开始为正值.∴当n=4时,S n取最小值.故选:B.点评:本题考查了数列递推式,考查了等差关系的确定,考查了等差数列的通项公式及数列的和,是中档题.10.设a>0,b>0.若3是3a与3b的等比中项,则的最小值为()A.4B.2C.1D.考点:基本不等式.专题:不等式的解法及应用.分析:利用等比中项即可得出a与b的关系,再利用“乘1法”和基本不等式的性质即可得出.解答:解:∵3是3a与3b的等比中项,∴32=3a•3b=3a+b,∴a+b=2.a>0,b>0.∴===2.当且仅当a=b=1时取等号.故选B.点评:熟练掌握等比中项、“乘1法”和基本不等式的性质是解题的关键.11.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.解答:解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A点评:本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.12.函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是()A.(﹣∞,4﹣2)∪(4+2,+∞)B.(4﹣2,4+2)C.(﹣,﹣)D.(﹣,﹣)考点:函数的零点与方程根的关系.专题:计算题;函数的性质及应用.分析:由题意|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同实数解可化为t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;从而分别讨论即可.解答:∵g(x)=log2x在(0,2)上单调递增,且g(x)<1;故|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同实数解可化为t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;当若在(0,1),{0}上,则2m+3=0,则m=﹣;故t=0或t=;不成立;若在(0,1),{1}上;则1+m+2m+3=0,故m=﹣;故t2+mt+2m+3=0的解为t=或t=1;成立;若在(0,1),(1,+∞)上,则;解得﹣<m<﹣;故选D.点评:本题考查了函数的零点与方程的根的关系应用,属于基础题.二、填空题(共4小题,每小题5分,共20分.)13.lg4+lg50﹣lg2的值是2.考点:对数的运算性质.专题:函数的性质及应用.分析:根据对数的运算法则进行计算即可得到结论.解答:解:lg4+lg50﹣lg2=lg=lg100=2,故答案为:2点评:本题主要考查对数的基本运算,利用对数的运算法则是解决本题的关键,比较基础.14.平面向量与的夹角为60°,=(2,0),||=1,则|+|=.考点:数量积表示两个向量的夹角;向量的模.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义求出=1,求出=+2+ 的值,即可求得的值.解答:解:由题意可得||=2,||=1,向量与的夹角为60°,∴=2×1×cos60°=1,∴=+2+=4+2+1=7,∴=,故答案为.点评:本题主要考查两个向量的数量积的定义,求向量的模的方法,属于中档题.15.不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,则实数m的取值范围为(﹣,3].考点:函数恒成立问题.专题:函数的性质及应用.分析:要分别考虑二次项系数为0和不为0两种情况,当二次项系数为0时,只要验证是否对一切x∈R成立即可;当二次项系数不为0时,主要用二次函数开口方向和判别式求出m的取值范围,最后两种情况下求并集即可.解答:解:若m2﹣2m﹣3=0,则m=﹣1或m=3,若m=﹣1,不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0为4x﹣1<o不合题意;若m=3,不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0为﹣1<0对一切x∈R恒成立,所以m=3可取,设f(x)=(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1,当m2﹣2m﹣3<0且△=[﹣(m﹣3)]2+4(m2﹣2m﹣3)<0,解得:﹣<m<3,即﹣<m≤3时不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对一切x∈R恒成立,故答案为:.点评:本题主要考查二次函数恒成立问题,考虑二次项系数为0的情况容易忽略,所以也是易错题.16.表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为a ij.则(1)a nn=n2+1(n∈N*);(2)表中的数52共出现4次.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:a nn表示第n行第n列的数,由题意知第n行是首项为n+1,公差为n的等差数列,由此能求出a nn;利用观察法及定义可知第1行数组成的数列A1j(j=1,2,)是以2为首项,公差为1的等差数列,进一步分析得知第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,同时分别求出通项公式,从而得知结果.解答:解:a nn表示第n行第n列的数,由题意知第n行是首项为n+1,公差为n的等差数列,∴a nn=(n+1)+(n﹣1)×n=n2+1.第i行第j列的数记为A ij.那么每一组i与j的解就是表中一个数.因为第一行数组成的数列A1j(j=1,2,)是以2为首项,公差为1的等差数列,所以A1j=2+(j﹣1)×1=j+1,所以第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,所以A ij=j+1+(i﹣1)×j=ij+1.令A ij=ij+1=52,即ij=51=1×51=17×3=3×17=51×1,故表中52共出现4次.故答案为:n2+1,4.点评:此题考查行列模型的等差数列的求法,是基础题,解题时要熟练掌握等差数列的性质.三、解答题:(本大题共7个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.解答:解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.点评:本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n项和,是中档题.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.考点:频率分布直方图.专题:概率与统计.分析:(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.解答:解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.点评:本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC﹣csinA=0.(Ⅰ)求角C的大小;(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(Ⅰ)由正弦定理得:sinAcosC﹣sinCsinA=0,即可解得tanC=,从而求得C的值;(Ⅱ)由面积公式可得S△ABC==6,从而求得得a的值,由余弦定理即可求c的值.解答:解:(Ⅰ)在△ABC中,由正弦定理得:sinAcosC﹣sinCsinA=0.…因为0<A<π,所以sinA>0,从而cosC=sinC,又cosC≠0,…所以tanC=,所以C=.…(Ⅱ)在△ABC中,S△ABC==6,得a=6,…由余弦定理得:c2=62+42﹣2×=28,所以c=2.…点评:本小题主要考查正弦定理、余弦定理、三角形的面积公式、同角三角函数的基本关系式等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.20.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(1)首先利用函数的恒等变换把函数转化成正弦型函数,进一步求出函数的周期.(2)利用(1)的结论对函数定型平移变换,进一步利用函数的定义域求三角函数的最值.解答:解:(1)函数f(x)=2==2sin(2x+)所以:T=(2)由(1)得:函数f(x)=2sin(2x+)向右平移个单位得到:g(x)=2sin(2x﹣)由于所以:函数g(x)=2sin(2x﹣)∈[﹣1,2]当x=0时函数的最小值为﹣1.当x=时,函数取得最大值为2.点评:本题考查的知识要点:函数图象的恒等变换,正弦型函数的周期和图象的变换问题,利用函数的定义域求三角函数的最大值和最小值.21.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?考点:基本不等式在最值问题中的应用.专题:应用题.分析:设矩形栏目的高为acm,宽为bcm,则依题意可知ab=9000,代入广告的面积中,根据基本不等式的性质求得广告面积的最小值.根据等号成立的条件确定广告的高和宽.解答:解:设矩形栏目的高为acm,宽为bcm,则ab=9000.①广告的高为a+20,宽为2b+25,其中a>0,b>0.广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18500+25a+40b≥18500+2=18500+2.当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24500.故广告的高为140cm,宽为175cm时,可使广告的面积最小.点评:本题主要考查了基本不等式在最值问题中的应用.基本不等式在解决生活问题中常被用到,也是2015届高考应用题中热点,平时应用注意这方面的训练.22.已知数列{a n}的前n项和为T n,且点(n,T n)在函数y=x上,且a n+2+3log4b n=0(n∈N*)(1)求{b n}的通项公式;(2)数列{c n}满足c n=a n•b n,求数列{c n}的前n项和S n;(3)记数列的前n项和为B n,设d n=,证明:d1+d2+…+d n<.考点:数列的求和;数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由点(n,T n)在函数y=x上,得:,求出{a n}的通项公式,再由a n+2+3log4b n=0即可求出{b n}的通项公式;(2)由且s n=c1+c2+c3+…+c n,求出①,②由数列的裂项相减法,即可求出数列{c n}的前n 项和S n;(3)由,求出数列的前n项和为,又d n=,然后利用不等式的放缩法求解,即可证明所求结论.解答:(1)解:由点(n,T n)在函数y=x上,得:,(ⅰ)当n=1时,.(ⅱ)当n≥2时,a n=T n﹣T n﹣1=3n﹣2,∴a n=3n﹣2.又∵a n+2+3log4b n=0,∴;(2)解:∵且s n=c1+c2+c3+…+c n,∴…①…②由①﹣②得:,,整理得:;(3)证明:∵,∴数列的前n项和为.∵,∵,∴.即.当n=1时.点评:本题考查了数列的通项公式,考查了数列的求和,关键是会用数列的裂项相减法,考查了数列与不等式的综合,会用不等式的放缩法求解,考查了学生的计算能力,是难题.。

2014-2015年重庆市七校联考高一(下)期末数学试卷(文科)(解析版)

2014-2015年重庆市七校联考高一(下)期末数学试卷(文科)(解析版)

2014-2015学年重庆市七校联考高一(下)期末数学试卷(文科)一、选择题(本大题共12个小题,每小题5分;在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11B.12C.13D.142.(5分)10名工人某天生产同一零件,生产的件数茎叶图如图所示,若众数为c,则c=()A.12B.14C.15D.173.(5分)设集合A={x|x2﹣2x﹣3<0},B={x|1≤x≤4},则A∩B=()A.{x|1≤x<3}B.{x|1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4} 4.(5分)等差数列{a n}中,a1+a4+a7=39,a3+a6+a9=27,则数列{a n}前9项的和S9等于()A.99B.66C.144D.2975.(5分)从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A.B.C.D.无法确定6.(5分)已知△ABC中,a,b,c分别为角A,B,C的对边,,则∠B等于()A.60°B.30°或150°C.60°D.60°或120°7.(5分)求S=1+3+5+…+101的程序框图如图所示,其中①应为()A.A=101B.A≥101C.A≤101D.A>1018.(5分)△ABC的内角A、B、C的对边分别为a、b、c,且a sin A+c sin C﹣a sin C=b sin B.则∠B=()A.B.C.D.9.(5分)若函数f(x)=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值范围是()A.[1,+∞)B.(1,19)C.[1,19)D.(﹣1,19] 10.(5分)若f(x)=x2+kx+1,a n=f(n),n∈N*,已知数列{a n}是递增数列,则k的取值范围是()A.[0,+∞)B.(﹣1,+∞)C.[﹣2,+∞)D.(﹣3,+∞)11.(5分)若a,b∈[0,2],则方程x2+=0有实数解的概率是()A.B.C.D.12.(5分)已知等差数列{a n}中,a3=9,a5=17,记数列的前n项和为S n,若S2n+1﹣S n≤,对任意的n∈N*成立,则整数m的最小值为()A.5B.4C.3D.2二、填空题:(本大题共4个小题,每小题5分,把答案写在答题卡上方能得分)13.(5分)某企业共有职工150人,其中高级职称15人,中级职称45人,一般职称90人,现采用分层抽样来抽取30人,各职称人数分别为,,.14.(5分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向在C处追赶上渔船乙,刚好用2小时.则BC=.15.(5分)数列{a n}满足a1=2,a n﹣a n﹣1=,则a n=.16.(5分)设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最小值为2,则的最小值为.三、解答题:(解答应写出必要的文字说明,证明或演算过程)17.(12分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,b4=8,{a n}的前10项和S10=55.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n b n}的前n项和T n.18.(12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m,n,求事件“|m﹣n|>10”概率.19.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,若,(1)求A的大小;(2)若a=3,b+c=3,求△ABC的面积.20.(12分)某城市理论预测2007年到2011年人口总数与年份的关系如表所示.(1)请根据表提供的数据,求最小二乘法求出Y关于x的线性回归方程;(2)据此估计2012年该城市人口总数.参考公式:.21.(12分)已知等差数列{a n}中,公差d>0,且满足:a2•a3=45,a1+a4=14.(1)求数列{a n}的通项公式;(2)若数列的前n项和为S n,令f(n)=(n∈N*),求f(n)的最大值.22.(10分)已知△ABC是锐角三角形,角A,B,C所对的边分别是a,b,c,(1)若a,b,c成等比数列,求角B的最大值,并判断此时△ABC的形状;(2)若A,B,C成等差数列,求sin A+sin C的取值范围.2014-2015学年重庆市七校联考高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分;在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11B.12C.13D.14【解答】解:∵数列1,1,2,3,5,8,x,21,34,55 设数列为{a n}∴a n=a n﹣1+a n﹣2(n>3)∴x=a7=a5+a6=5+8=13故选:C.2.(5分)10名工人某天生产同一零件,生产的件数茎叶图如图所示,若众数为c,则c=()A.12B.14C.15D.17【解答】解:10个数据为:9,10,11,12,12,14,14,14,15,20,∴众数为14,故选:B.3.(5分)设集合A={x|x2﹣2x﹣3<0},B={x|1≤x≤4},则A∩B=()A.{x|1≤x<3}B.{x|1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}【解答】解:∵不等式x2﹣2x﹣3<0等价于(x+1)(x﹣3)<0∴集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},又∵集合B={x|1≤x≤4},∴A∩B={x|1≤x<3}.故选:A.4.(5分)等差数列{a n}中,a1+a4+a7=39,a3+a6+a9=27,则数列{a n}前9项的和S9等于()A.99B.66C.144D.297【解答】解:由等差数列的性质可得a1+a7=2a4,a3+a9=2a6,又∵a1+a4+a7=39,a3+a6+a9=27,∴a1+a4+a7=3a4=39,a3+a6+a9=3a6=27,∴a4=13,a6=9,∴a4+a6=22,∴数列{a n}前9项的和S9====99故选:A.5.(5分)从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A.B.C.D.无法确定【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是从4件产品中取2件,共有C42=6种结果,满足条件的事件是取出的产品全是正品,共有C32=3种结果,∴根据古典概型概率公式得到P=,故选:B.6.(5分)已知△ABC中,a,b,c分别为角A,B,C的对边,,则∠B等于()A.60°B.30°或150°C.60°D.60°或120°【解答】解:由正弦定理可知=∴sin B=b•=4×=∵0<B<180°∴B=60°或120°故选:D.7.(5分)求S=1+3+5+…+101的程序框图如图所示,其中①应为()A.A=101B.A≥101C.A≤101D.A>101【解答】解:∵程序的功能是求S=1+3+5+…+101的值,且在循环体中,S=S+A表示,每次累加的是A的值,故当A≤101应满足条件进入循环,A>101时就不满足条件故条件为:A≤101故选:C.8.(5分)△ABC的内角A、B、C的对边分别为a、b、c,且a sin A+c sin C﹣a sin C=b sin B.则∠B=()A.B.C.D.【解答】解:∵a sin A+c sin C﹣a sin C=b sin B由正弦定理可得,由余弦定理可得,cos B==∵0<B<π∴故选:B.9.(5分)若函数f(x)=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值范围是()A.[1,+∞)B.(1,19)C.[1,19)D.(﹣1,19]【解答】解:f(x)=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,即(a2+4a﹣5)x2﹣4(a﹣1)x+3>0(*)恒成立,(1)当a2+4a﹣5=0时,可得a=﹣5或a=1,若a=﹣5,(*)式可化为24x+3>0,不恒成立;若a=1,(*)式可化为3>0,恒成立;(2)当a2+4a﹣5≠0时,可得a≠﹣5且a≠1,由题意可得,,即,解得1<a<19;综上所述,a的取值范围是:[1,19),故选:C.10.(5分)若f(x)=x2+kx+1,a n=f(n),n∈N*,已知数列{a n}是递增数列,则k的取值范围是()A.[0,+∞)B.(﹣1,+∞)C.[﹣2,+∞)D.(﹣3,+∞)【解答】解:a n=f(n)=n2+nk+1,n∈N*,∵数列{a n}是递增数列,∴a n<a n+1,即n2+nk+1<(n+1)2+(n+1)k+1,化为:k>﹣(2n+1),由于数列{﹣(2n+1)}是单调递减数列,∴k>﹣3.则k的取值范围是(﹣3,+∞).故选:D.11.(5分)若a,b∈[0,2],则方程x2+=0有实数解的概率是()A.B.C.D.【解答】解:若a,b∈[0,2],则SΩ=2×2=4,记“方程x2+=0有实数解”为事件A,则事件A:△=a﹣2b≥0表示的平面区域如图中阴影部分所示:∴S A=,故P(A)=,故选:D.12.(5分)已知等差数列{a n}中,a3=9,a5=17,记数列的前n项和为S n,若S2n+1﹣S n≤,对任意的n∈N*成立,则整数m的最小值为()A.5B.4C.3D.2【解答】解:设等差数列{a n}的公差为d,∵a3=9,a5=17,∴,解得a1=1,d=4.∴a n=1+4(n﹣1)=4n﹣3.∴数列的前n项和为S n=1++…+.则S2n+1﹣S n=++…+=f(n),f(n+1)﹣f(n)=<0,∴数列{f(n)}单调递减,∴f(n)≤f(1)==.∵S2n+1﹣S n≤,对任意的n∈N*成立,∴(S2n+1﹣S n)max≤,∴<,解得m>,∴整数m的最小值为5.故选:A.二、填空题:(本大题共4个小题,每小题5分,把答案写在答题卡上方能得分)13.(5分)某企业共有职工150人,其中高级职称15人,中级职称45人,一般职称90人,现采用分层抽样来抽取30人,各职称人数分别为3,9,18.【解答】解:由=,所以,高级职称人数为15×=3(人);中级职称人数为45×=9(人);一般职员人数为90×=18(人).所以高级职称人数、中级职称人数及一般职员人数依次为3,9,18.故答案为:3,9,18.14.(5分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向在C处追赶上渔船乙,刚好用2小时.则BC=28.【解答】解:依题意,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2﹣2AB×AC×cos∠BAC=122+202﹣2×12×20×cos120°=784.解得BC=28.故答案为:28.15.(5分)数列{a n}满足a1=2,a n﹣a n﹣1=,则a n=.【解答】解:∵数列{a n}满足a1=2,,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1===;故答案为.16.(5分)设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最小值为2,则的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=ax+by(a>0,b>0)为,由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2a+3b=2.∴,则=()()=2+.当且仅当a=b时上式等号成立.故答案为:.三、解答题:(解答应写出必要的文字说明,证明或演算过程)17.(12分)在等差数列{a n}和等比数列{b n}中,a1=b1=1,b4=8,{a n}的前10项和S10=55.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n b n}的前n项和T n.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q.∵a1=b1=1,b4=8,{a n}的前10项和S10=55.∴S10=10+d=55;b4=q3=8;解得:d=1,q=2.所以:a n=n,b n=2n﹣1.(2)由(1)得a n•b n=n•2n﹣1,(8分)所以T n=1+2•21+3•22+…+n•2n﹣1①,(9分)2T n=2+2•22+…+(n﹣1)•2n﹣1+n•2n②,(10分)①﹣②得,﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n=(1﹣n)•2n﹣1,(12分)故T n=(n﹣1)•2n+1.(13分).18.(12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m,n,求事件“|m﹣n|>10”概率.【解答】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(3分)(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y(5分)成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,(6分)若m,n∈[50,60)时,只有xy一种情况,(7分)若m,n∈[90,100]时,有ab,bc,ac三种情况,(8分)若m,n分别在[50,60)和[90,100]内时,有共有6种情况,所以基本事件总数为10种,(9分)事件“|m﹣n|>10”所包含的基本事件个数有6种(10分)∴.(12分)19.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,若,(1)求A的大小;(2)若a=3,b+c=3,求△ABC的面积.【解答】解:(1)∵,∴,∴A=60°.…(5分)(2)∵,…(8分)∴bc=3,…(10分)∴.…(12分)20.(12分)某城市理论预测2007年到2011年人口总数与年份的关系如表所示.(1)请根据表提供的数据,求最小二乘法求出Y关于x的线性回归方程;(2)据此估计2012年该城市人口总数.参考公式:.【解答】解:(1)由题意,=2,,0×5+1×7+2×8+3×11+4×19=132,=30,∴==3.2∴10=3.2×2+a,∴a=3.6∴回归直线方程为y=3.2x+3.6(2)把x=5代入线性回归方程,得到y=3.2×5+3.6=19.6(十万).21.(12分)已知等差数列{a n}中,公差d>0,且满足:a2•a3=45,a1+a4=14.(1)求数列{a n}的通项公式;(2)若数列的前n项和为S n,令f(n)=(n∈N*),求f(n)的最大值.【解答】解:(1)由题设知:,∴,∵d>0,∴a2=5,a3=9.∴a n=4n﹣3.(2)∵,∴,∴(当n=2时取=).22.(10分)已知△ABC是锐角三角形,角A,B,C所对的边分别是a,b,c,(1)若a,b,c成等比数列,求角B的最大值,并判断此时△ABC的形状;(2)若A,B,C成等差数列,求sin A+sin C的取值范围.【解答】解:(1)∵a,b,c成等比数列,∴b2=ac,∴.…(3分)当且仅当a=c时取“=”,∴B的最大值是,此时三角ABC是等边三角形.…(5分)(2)∵A,B,C成等差数列,∴2B=A+C,∴B=60°…(6分)∴,…(7分)∵,∴30°<C<90°,∴60°<30°+C<120°,∴.∴.…(10分)。

2014-2015学年度高一第二学期期末测试卷

2014-2015学年度高一第二学期期末测试卷

2014-2015学年度第二学期期末测试卷高一数学(甲卷)注意事项:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,答卷前,考生务必将白己的姓名、准考证号填写在本试卷和答题卡的相应位置上。

2.问答第1卷时.选出每小题答案后,用铅笔把答题卡上对应题8的答案标号涂黑如需改动。

用橡皮擦干净后,再选涂上其它答案标号.写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.把黑、红、白3张纸牌分给甲、乙、两三人,每人一张,则事件“甲分得红牌”与“乙分得红牌”是( )A.对立事件B.必然事件C.不可能事件D.互斥但不对立事件2.设某高中的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(),1,2,,i i x y i n =,得回归直线方程为ˆ0.8585.71yx =-,则下列结论不正确的是( )A. y 与x 具有正线性相关关系B.回归直线过样本点的中心(),x yC.若该高中某女生身高增加1cm ,则其体重约增加0.85kgD.若该高中某女生身高为170cm ,则可断定其体重必为58.79kg3.在区间[]0,2之间随机抽取一个数x ,则x 满足210x -≥的概率为( )A.34 B. 12 C. 13 D. 144.按如图的程序框图运行后,输出的S 应为( )A. 7B. 15C. 26D. 405.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程为ˆ0.56y x a =+,身高为172cm 的高三男生的体重约为( )A. 70.09kgB. 70.12kgC. 70.55kgD. 71.05kg6.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若222a b c +>,则ABC 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定7.设0a >,0b >,则下列不等式中不恒成立的是( )A.12a a+≥ B.()2221a b a b +≥+- ≥ D.3322a b ab +≥ 8.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示则甲、乙、丙三人训练成绩方差2s甲,2s乙,2s 丙的大小关系是( )A. 222s s s <<甲乙丙B. 222s s s <<甲乙丙C.222s s s <<乙甲丙D. 222s s s <<乙甲丙9.在10个学生中,男生有x 个,现从10个学生中任选5人去参加某项活动:①至少有一个女生;②5个男生,1个女生;③3个男生,3个女生。

2014-2015年重庆市南开中学高一(下)期末数学试卷(解析版)

2014-2015年重庆市南开中学高一(下)期末数学试卷(解析版)

2014-2015学年重庆市南开中学高一(下)期末数学试卷一、选择题(本大题12个小题,每小题5分,共60分,每小题只有一个选项符合要求)1.(5分)已知点A(10,1),B(2,y),向量,若,则实数y的值为()A.5B.6C.7D.82.(5分)已知过点(﹣2,3)可以作圆(x﹣a)2+(y﹣2)2=9的两条切线,则a的范围是()A.(﹣∞,﹣3)∪(3,+∞)B.C.(﹣3,3)D.3.(5分)执行如图的程序,若输出结果为2,则输入的实数x的值是()A.3B.C.4D.24.(5分)已知四个条件,①b>0>a②0>a>b③a>0>b④a>b>0,能推出成立的有()A.1个B.2个C.3个D.4个5.(5分)直线l经过(2,﹣3)和(﹣10,6)两点,则点(﹣1,1)到直线l的距离为()A.B.C.D.6.(5分)已知等差数列{a n}中,3a5+7a11=5,S n是{a n}的前n项和,则S9+S21=()A.5B.10C.15D.207.(5分)如图所示,矩形ABCD和一个圆心角为90°的扇形拼在一起,其中AB=2,BC =AE=1,则以AB所在直线为旋转轴将整个图形旋转一周所得几何体的表面积为()A.7πB.5πC.9πD.8π8.(5分)若向量满足:,,,则=()A.2B.C.1D.9.(5分)已知数列{a n}中,a1=1,a n+1﹣3a n=0,b n=log3a n,则数列{b n}的前10项和等于()A.10B.45C.55D.3910.(5分)若第一象限的点(a,b)关于直线x+y﹣2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1B.3C.D.11.(5分)若正实数x,y满足=1,则xy的最小值是()A.9B.12C.15D.1812.(5分)已知圆C:(x﹣1)2+y2=1,直线l:x+2y﹣5=0,点P(x0,y0)在直线l上,若存在圆C上的两点M,N,使得∠MPN=60°,则x0的取值范围是()A.[1,2]B.C.D.二、填空题(本大题4个小题,每小题5分,共20分)13.(5分)一个几何体的三视图如图所示,则该几何体的体积为14.(5分)已知圆O:x2+y2=1和圆C:x2+y2﹣2x﹣4y+m=0相交于A、B两点,若|AB|=,则m的值是.15.(5分)已知x,y满足,则x2+y2的取值范围是.16.(5分)数列{a n}满足直线:x+ny+2=0和直线:3x+a n y+3=0平行,数列{b n}的前n项和记为S n,其中b n=,若,则满足条件的正整数对(m,n)=.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)17.(10分)S n是等差数列{a n}的前n项和,若S5=10,S6=15,(1)求{a n}的通项公式;(2)b n=,求数列{b n}的前10项和.18.(12分)(1)求垂直于直线x+y﹣1=0且与两坐标轴围成的三角形的面积是的直线方程:(2)求经过点P(1,2)的直线,且使A(2,3),B(0,﹣5)到它的距离相等的直线方程.19.(12分)如图的多面体中,ABCD为矩形,且AD⊥平面ABE,AE=EB=BC=2,F为CE的中点,AE⊥BE.(1)求证:AE∥平面BFD;(2)求三棱锥E﹣BDC的体积.20.(12分)如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥AD,平面ADEF ⊥平面ABCD,且BC=2EF,AE=AF,点G为EF中点.(1)求证:AG⊥CD:(2)在线段AC上是否存在点M,使得GM∥平面ABF?若存在,求出AM:MC的值;若不存在,说明理由.21.(12分)在平面直角坐标系xOy中,已知圆C1:x2+y2=4和圆C2:(x﹣3)2+y2=1(1)若直线l过点A(2,0),且被圆C1截得的弦长为,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍,试求所有满足条件的点P的坐标.22.(12分)已知点列A n(x n,0)满足:=a﹣1其中n∈N*,又已知x0=﹣1,x1=1,(1)若a=0,数列x n的通项公式(n∈N*);(2)若a=2,点,记a n=|BA n|(n∈N*),且{a n}的前n项和为S n,求证:S n<.2014-2015学年重庆市南开中学高一(下)期末数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题5分,共60分,每小题只有一个选项符合要求)1.(5分)已知点A(10,1),B(2,y),向量,若,则实数y的值为()A.5B.6C.7D.8【解答】解:A(10,1),B(2,y),∴=(﹣8,y﹣1),向量,∵,∴﹣8+2y﹣2=0∴y=5故选:A.2.(5分)已知过点(﹣2,3)可以作圆(x﹣a)2+(y﹣2)2=9的两条切线,则a的范围是()A.(﹣∞,﹣3)∪(3,+∞)B.C.(﹣3,3)D.【解答】解:由题意(﹣2,3)在圆外,∴(﹣2﹣a)2+(3﹣2)2>9,解得a<﹣2﹣2或a>﹣2+2,故选:B.3.(5分)执行如图的程序,若输出结果为2,则输入的实数x的值是()A.3B.C.4D.2【解答】解:若y=x﹣1=2,则x=3,与不满足条件x>1矛盾;若y=log2x=2,则x=4,满足条件x>1,符合题意,∴输入的实数x的值是4.故选:C.4.(5分)已知四个条件,①b>0>a②0>a>b③a>0>b④a>b>0,能推出成立的有()A.1个B.2个C.3个D.4个【解答】解:①∵b>0>a,∴,因此①能推出成立;②∵0>a>b,∴ab>0,∴,∴,因此②能推出成立;③∵a>0>b,∴,因此③不能推出;④∵a>b>0,∴,∴,因此④能推出成立.综上可知:只有①②④能推出成立.故选:C.5.(5分)直线l经过(2,﹣3)和(﹣10,6)两点,则点(﹣1,1)到直线l的距离为()A.B.C.D.【解答】解:∵直线l经过(2,﹣3)和(﹣10,6)两点,∴直线方程为=,即3x+4y+6=0,∴点(﹣1,1)的直线l的距离d==,故选:D.6.(5分)已知等差数列{a n}中,3a5+7a11=5,S n是{a n}的前n项和,则S9+S21=()A.5B.10C.15D.20【解答】解:在等差数列中,S9+S21=+=×2a5+×2a11=9a5+21a11=3(3a5+7a11)=3×5=15,故选:C.7.(5分)如图所示,矩形ABCD和一个圆心角为90°的扇形拼在一起,其中AB=2,BC =AE=1,则以AB所在直线为旋转轴将整个图形旋转一周所得几何体的表面积为()A.7πB.5πC.9πD.8π【解答】解:由已知可得:以AB所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球与圆柱的组合体,半球的半径和圆柱底面的半径为1,圆柱的高为2,故半球面的面积为:2πr2=2π,圆柱的底面面积为:πr2=π,圆柱的侧面积为:2πrh=4π,故组合体的表面积为:7π,故选:A.8.(5分)若向量满足:,,,则=()A.2B.C.1D.【解答】解:因为,,所以=0,=0,所以,所以=2,所以;故选:B.9.(5分)已知数列{a n}中,a1=1,a n+1﹣3a n=0,b n=log3a n,则数列{b n}的前10项和等于()A.10B.45C.55D.39【解答】解:∵a1=1,a n+1﹣3a n=0,∴数列{a n}是以1为首项、3为公比的等比数列,∴a n==1•3n﹣1=3n﹣1,∴b n=log3a n==n﹣1,∴数列{b n}是以0为首项、1为公差的等差数列,∴其前10项和为:=45,故选:B.10.(5分)若第一象限的点(a,b)关于直线x+y﹣2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1B.3C.D.【解答】解:设A(a,b)关于直线x+y﹣2=0的对称点B(x0,y0)在直线2x+y+3=0上,∴线段AB的中点(,)在直线x+y﹣2=0上,由题意得:,∴a+2b=9,∴+=+=++≥+2=,当且仅当:=即b=2a时“=”成立,故选:C.11.(5分)若正实数x,y满足=1,则xy的最小值是()A.9B.12C.15D.18【解答】解:由=1,得:xy=2x+y+6,由条件利用基本不等式可得xy=2x+y+6≥2+6,令xy=t2,即t=>0,可得t2﹣2t﹣6≥0.即得到(t﹣3)(t+)≥0可解得t≤﹣,t≥3.又注意到t>0,故解为t≥3,所以xy≥18.故选:D.12.(5分)已知圆C:(x﹣1)2+y2=1,直线l:x+2y﹣5=0,点P(x0,y0)在直线l上,若存在圆C上的两点M,N,使得∠MPN=60°,则x0的取值范围是()A.[1,2]B.C.D.【解答】解:由题意,从直线上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,不妨设切线为PE,PF,则∠EPF为60°时,∠ECF为120°,∴在Rt△PEC中,PC=2.故问题转化为在直线x+2y﹣5=0上找到一点,使它到点C的距离为2.设P(x0,2.5﹣0.5x0),∵C(1,0),∴|PC|2=(x0﹣1)2+(2.5﹣0.5x0)2=4∴x0=1或.∴点P的横坐标x0的取值范围是[1,]故选:B.二、填空题(本大题4个小题,每小题5分,共20分)13.(5分)一个几何体的三视图如图所示,则该几何体的体积为2【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,其底面面积S=×2×2=2,高h=3,故几何体的体积V=Sh=2,故答案为:214.(5分)已知圆O:x2+y2=1和圆C:x2+y2﹣2x﹣4y+m=0相交于A、B两点,若|AB|=,则m的值是1或﹣3.【解答】解:由圆O:x2+y2=1和圆C:x2+y2﹣2x﹣4y+m=0,可得直线AB的方程﹣2x﹣4y+m+1=0,圆O到直线AB的距离为d==,∵|AB|=,∴2=,解得m=1或﹣3.故答案为:1或﹣3.15.(5分)已知x,y满足,则x2+y2的取值范围是[,6+2].【解答】解:由题意,x,y满足的平面区域如图阴影部分,则在阴影部分(包括边界)的点中到原点距离,最小值为原点到直线的距离为:;最大值为=1+,所以x2+y2的取值范围是[,6+2].故答案为:[,6+2].16.(5分)数列{a n}满足直线:x+ny+2=0和直线:3x+a n y+3=0平行,数列{b n}的前n项和记为S n,其中b n=,若,则满足条件的正整数对(m,n)=(1,1).【解答】解:∵直线:x+ny+2=0和直线:3x+a n y+3=0平行,∴=,即a n=3n,∴b n=23n=8n,∴S n==•8n+1﹣,∴,即<,∴<,∴<,∴当m=1时,只需<成立即可,又∵n=1是上述不等式的一个解,∴正整数对(1,1)满足条件,故答案为:(1,1).注:此题答案不唯一.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)17.(10分)S n是等差数列{a n}的前n项和,若S5=10,S6=15,(1)求{a n}的通项公式;(2)b n=,求数列{b n}的前10项和.【解答】解:(1)记数列{a n}的公差为d,∵S5=5a1+d=5(a1+2d)=10,∴a3=a1+2d=2,又∵S6=15,∴a6=S6﹣S5=15﹣10=5,∴d===1,∴a1=a3﹣2d=2﹣2=0,∴数列{a n}的通项a n=a1+(n﹣1)d=n﹣1;(2)∵a n=n﹣1,∴b n===﹣,∴数列{b n}的前10项和为:1﹣+﹣+…+﹣=1﹣=.18.(12分)(1)求垂直于直线x+y﹣1=0且与两坐标轴围成的三角形的面积是的直线方程:(2)求经过点P(1,2)的直线,且使A(2,3),B(0,﹣5)到它的距离相等的直线方程.【解答】解:∵直线方程x+y﹣1=0,∴直线的斜率k=﹣1,则垂直直线x+y﹣1=0的斜率k=1,设所求直线的方程为y=x+b,∴直线在x轴上的截距为﹣b,在y轴上的截距为b,∵与l垂直且与两坐标轴围成的三角形的面积为,∴S=|b||﹣b|=,即b2=1解得b=±1,∴所求的直线方程为y=x+1或y=x﹣1.(2)所求直线经过点(2,3)和(0,﹣5)的中点或与点(2,3)和(0,﹣5)所在直线平行.①直线经过点A(2,3)和B(0,﹣5)的中点(1,﹣1)时,直线方程为x=1;②当A(2,3),B(0,﹣5)在所求直线同侧时,所求直线与AB平行,∵k AB=4,∴y﹣2=4(x﹣1),即4x﹣y﹣2=0所以满足条件的直线为4x﹣y﹣2=0或x=119.(12分)如图的多面体中,ABCD为矩形,且AD⊥平面ABE,AE=EB=BC=2,F为CE的中点,AE⊥BE.(1)求证:AE∥平面BFD;(2)求三棱锥E﹣BDC的体积.【解答】(1)证明:设AC∩BD=G,连接FG,易知G是AC的中点,∵F是EC中点.∴在△ACE中,FG∥AE,∵AE⊄平面BFD,FG⊂平面BFD,∴AE∥平面BFD.(2)解:取AB的中点O,连接EO,则EO⊥平面ABCD,EO=,∴三棱锥E﹣BDC的体积==.20.(12分)如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥AD,平面ADEF ⊥平面ABCD,且BC=2EF,AE=AF,点G为EF中点.(1)求证:AG⊥CD:(2)在线段AC上是否存在点M,使得GM∥平面ABF?若存在,求出AM:MC的值;若不存在,说明理由.【解答】解:(1)证明:因为AE=AF,点G是EF的中点,所以AG⊥EF.又因为EF∥AD,所以AG⊥AD.因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,AG⊂平面ADEF,所以AG⊥平面ABCD.因为CD⊂平面ABCD,所以AG⊥CD.(2)存在点M在线段AC上,且=,使得:GM∥平面ABF.证明:如图,过点M作MN∥BC,且交AB于点N,连结NF,因为=,所以==,因为BC=2EF,点G是EF的中点,所以BC=4GF,又因为EF∥AD,四边形ABCD为正方形,所以GF∥MN,GF=MN.所以四边形GFNM是平行四边形.所以GM∥FN.又因为GM⊄平面ABF,FN⊂平面ABF,所以GM∥平面ABF.21.(12分)在平面直角坐标系xOy中,已知圆C1:x2+y2=4和圆C2:(x﹣3)2+y2=1(1)若直线l过点A(2,0),且被圆C1截得的弦长为,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍,试求所有满足条件的点P的坐标.【解答】解:(1)由于A(2,0)在圆C1上,所以直线l的斜率存在.设直线l的方程为y=k(x﹣2),圆C1的圆心到l的距离为d,所以d=.由点到直线l的距离公式得d==,即k2=1,解得k=1或﹣1,所以直线l的方程为y=x﹣2或y=﹣x+2,即x﹣y﹣2=0,或x+y﹣2=0;(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a),∵⊙C1和的半径r1=2,⊙C2的半径为r1=1,圆心距O102=3,直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍,∴⊙C1的圆心到直线l1的距离是圆C2的圆心到直线l2的距离的2倍,即=2×整理得k(a+2b)+2a﹣b﹣6=0或(2b﹣a)k++2a+b﹣6=0,∵k的取值有无穷多个,∴或解得或,这样的点只可能是点P1(,﹣)或点P2(,)经检验点P1和P2满足题目条件22.(12分)已知点列A n(x n,0)满足:=a﹣1其中n∈N*,又已知x0=﹣1,x1=1,(1)若a=0,数列x n的通项公式(n∈N*);(2)若a=2,点,记a n=|BA n|(n∈N*),且{a n}的前n项和为S n,求证:S n<.【解答】(1)解:∵=﹣1其中n∈N*,又x0=﹣1,x1=1,∴(x n+1,0)•(x n+1﹣1,0)=﹣1,∴(x n+1)(x n+1﹣1)=﹣1,化为=1,∴数列为等差数列,首项为1,公差为1,∴=1+(n﹣1)=n,∴x n=.(2)证明:当a=2时,=2﹣1,可得:(x n+1)(x n+1﹣1)=1,化为x n+1=>1,a n+1===,(只有n=1时取等号).∴a n+1<…<=.∴S n=a1+a2+…+a n<=<=.∴S n<.。

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(理科)

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(理科)

2014-2015学年重庆市巫山中学高一(下)期末数学试卷(理科)一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{7}D.{1,4,7}2.(5分)已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣ C.2 D.﹣23.(5分)在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣14.(5分)已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)5.(5分)要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度6.(5分)在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.647.(5分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.118.(5分)已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.9.(5分)已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P 在CD上,且,则=()A.﹣ B.﹣C.0 D.410.(5分)设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.11.(5分)等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.1312.(5分)已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知变量x,y满足,则x+y的最大值是.14.(5分)已知sin(α+)=,α∈(﹣,0),则tanα=.15.(5分)若非零向量f(x)满足||=||,且,则与的夹角为.16.(5分)若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围.三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.(12分)已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.(12分)某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.19.(12分)已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.20.(12分)设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.21.(12分)已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.22.(10分)△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.2014-2015学年重庆市巫山中学高一(下)期末数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{7}D.{1,4,7}【解答】解:∵A={1,3,5,6},B={2,3,4,5},∴A∩B={3,5}.故选:A.2.(5分)已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣ C.2 D.﹣2【解答】解:∵直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,∴,解得m=.故选:A.3.(5分)在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣1【解答】解:∵=3.5,∴这组数据的样本中心点是(2.5,3.5)把样本中心点代入四个选项中,只有y=x+1成立,故选:A.4.(5分)已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)【解答】解:∵函数f(x)=e x﹣x2+8x,令g(x)=e x,h(x)=x2﹣8x,画出图象判断交点1个数.∵g(0)=1,h(0)=0,g(﹣1)=e﹣1,h(﹣1)=9,∴g(0)>h(0),g(﹣1)<h(﹣1),∴交点在(﹣1,0)内,即函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是(﹣1,0)故选:B.5.(5分)要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:将函数y=sin2x的图象上所有点向左平移个单位长度,即可得函数的图象,故选:C.6.(5分)在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.64【解答】解:∵a3=4,a7=16,∴q4===4(q为公比),∴a5=a4•q2=a4•=4•2=8,故选:C.7.(5分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.11【解答】解:模拟执行程序,可得i=1,S=0S=lg3,不满足条件1<S,执行循环体,i=3,S=lg3+lg=lg5,不满足条件1<S,执行循环体,i=5,S=lg5+lg=lg7,不满足条件1<S,执行循环体,i=7,S=lg5+lg=lg9,不满足条件1<S,执行循环体,i=9,S=lg9+lg=lg11,满足条件1<S,跳出循环,输出i的值为9.故选:B.8.(5分)已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.【解答】解:在△ABC中,∠A=,AB=3,AC=3,所以BC2=AB2+AC2﹣2AB ×AC×cos∠A=27+9﹣18=9,所以BC=3,在线段BC上任取一点P,则线段PB的长大于2的点P在距离C的一端BC的内,由几何概型线段PB的长大于2的概率为;故选:A.9.(5分)已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P 在CD上,且,则=()A.﹣ B.﹣C.0 D.4【解答】解:如图,分别以边CB,CA所在直线为x,y轴,建立平面直角坐标系,则:C(0,0),A(0,2),B(2,0),D(1,1);设P(x,y),∵;(x,y)=(1﹣x,1﹣y);∴;解得;∴,,;∴.故选:B.10.(5分)设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.【解答】解:∵设a>0,b>1,a+b=2,∴=(a+b﹣1)=4+=4+2,当且仅当a=(b﹣1)=时取等号,∴的最小值为4+2.故选:D.11.(5分)等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.13【解答】解:∵=||=|a n|=2015•()n,+1∵210=1024,211=2048|>|T n|,∴当n≤10时,|T n+1|<|T n|,当n≥11时,|T n+1故|T n|max=|T11|,又T10<0,T11<0,T9>0,T12>0,∴T n的最大值是T9和T12中的较大者,∵=a10a11a12=[2015()10]3>1,∴T12>T9因此当n=12时,T n最大.故选:C.12.(5分)已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.【解答】解:∵f(x)是偶函数,且f(x)=有唯一的零点.∴f(0)=0,解得,m=1或﹣3,又∵m>0,∴m=1,∴a2+b2=1,令a=cosθ,b=sinθ,,则由a3+b3+1=t(a+b+1)3得:.令x=cosθ+sinθ,则,且.于是.因为函数在上单调递减,因此,t的最小值为.故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知变量x,y满足,则x+y的最大值是4.【解答】解:作出直线x=1,y=2,x﹣y=0,从而得到不等式组表示的平面区域,如右图所示的阴影部分.设z=x+y,则y=﹣x+z,此方程可表示一系列斜率为﹣1的平行直线,当直线经过点A时,直线在y轴上的截距z最大,此时,由,得,即A(2,2),从而z max=x+y=2+2=4,即x+y的最大值是4.故答案为:4.14.(5分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.15.(5分)若非零向量f(x)满足||=||,且,则与的夹角为.【解答】解:根据条件,=;∴;∴;∴与的夹角为.故答案为:.16.(5分)若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围(2+2,6] .【解答】解:由∠C=且三角形是锐角三角形可得,由正弦定理得,∴a=×sinA=sinA,b=sinB=sin(﹣A),∴a+b=[sinA+sin(﹣A)]=(sinA+cosA)=4sin(A+),∴<A+<,∴<sin(A+)≤1,即2<a+b≤4∴△ABC周长l=a+b+c∈(2+2,6].故答案为:(2+2,6].三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.(12分)已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.【解答】(Ⅰ)证明:∵a n=3a n+4,+1∴,∴{a n+2}是公比为3等比数列;(Ⅱ)解:∵a1=1,∴a1+2=1+2=3,∴a n+2=3•3n﹣1=3n,∴a n=3n﹣2,∴.18.(12分)某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.【解答】解:(Ⅰ)[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3;…(5分)(Ⅱ)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).…(7分)∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m、n;…(8分)在[120,130)分数段内抽取4人,并分别记为a、b、c、d;…(9分)设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.…(10分)则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.…(11分)∴.…(12分)19.(12分)已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.【解答】解:(Ⅰ)==;∴;令2x=,k∈Z;∴f(x)的对称轴方程为:x=,k∈Z;(Ⅱ)x∈;∴;∴2x=时,f(x)min=2+2m=5;∴m=3.20.(12分)设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.【解答】解:(Ⅰ)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1﹣(k﹣1)=0,∴k=2.∵函数f(x)=a x﹣a﹣x(a>0且a≠1),∵f(1)>0,∴a﹣>0,又a>0,∴a>1.由于y=a x单调递增,y=a﹣x单调递减,故f(x)在R上单调递增.不等式化为:f(x2+tx)>f(﹣2x﹣1).∴x2+tx>﹣2x﹣1,即x2+(t+2)x+1>0 恒成立,∴△=(t+2)2﹣4<0,解得﹣4<t<0.(Ⅱ)∵f(1)=,,即3a2﹣8a﹣3=0,∴a=3,或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2.令t=f(x)=3x﹣3﹣x,由(1)可知k=2,故f(x)=3x﹣3﹣x,显然是增函数.∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(),若,当t=m时,,∴m=2(舍去)若,当t=时,,解得m=<,综上可知m=.21.(12分)已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.【解答】(Ⅰ)解:∵S n=1﹣a n(n∈N*),∴S n+1=1﹣a n+1,作差得:,又当n=1时,,故.(Ⅱ)证明:由已知得:当n=1时,,结论成立,当n≥2时,==,结论也成立,综上知,对∀n∈N*,都成立.22.(10分)△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.【解答】解:(1)设△ABC的三边a、b、c的长度分别为n﹣1、n、n+1(n∈N*且n>1),∵(n﹣1)+n>n+1,∴n>2,得n是大于3的整数∵△ABC是钝角三角形,可得∠C为钝角,有cosC<0,由余弦定理得:(n+1)2=(n﹣1)2+n2﹣2n(n﹣1)•cosC>(n﹣1)2+n2,即(n﹣1)2+n2<(n+1)2⇒n2﹣4n<0⇒0<n<4,因此,整数n的值为3,可得△ABC三边长分别为2,3,4.∵cosC===﹣∴最大角的余弦值为﹣(2)由(1)得,最大角C的正弦为sinC==,设夹角C的平行四边形两边分别为m、n,∵m+n=4,∴mn≤=4,当且仅当m=n=2时,mn的最大值为4因此,平行四边形的面积S=mnsinC=mn≤×4=∴当平行四边形两边都等于2时,夹角C的平行四边形面积最大值为.。

重庆市七校联考高一数学下学期期末考试试题 文-人教版高一全册数学试题

重庆市七校联考高一数学下学期期末考试试题 文-人教版高一全册数学试题

开始①是 否 S =0A =1 S =S +A A =A +2输出S 结束第2题2014—2015学年度第二学期期末七校联考高一数学试题(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的某某、某某号等填写在答题卷规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上. 4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分;在每个小题给出的四个选项中,只有一项是符合题目要求的)1.在数列1 , 1 , 2 , 3 , 5 , 8 , x , 21 , 34 , 55中,x 等于( ) A .11 B .12 C .13 D .142.10名工人某天生产同一零件,生产的件数茎叶图如图所示, 若众数为c ,则c=()A .12B .14C .15D .17 3.设集合{}032|2<--=x x x A ,{}41|≤≤=x x B ,则=⋂B A ()A .{}31|<≤x xB .{}31|≤≤x xC .{}43|≤<x xD .{}43|≤≤x x4.等差数列}{n a 中,27,39963741=++=++a a a a a a 则数列}{n a 的前9项的和等于( ) A .66B .99 C .144 D .2975.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A .41B .21C .81D .无法确定6.已知ABC ∆中,边a ,b ,c 所对角分别为A,B,C, 30,34,4===A b a ,则=∠B ( ) A .30B .15030或C .60D .12060或7.求101531++++= S 的流程图程序如图所示,其中①应为( ) A .?101=A B .?101≤AC .?101>AD .?101≥A8.ABC ∆的内角A,B,C 的对边分别为a ,b ,c , 且B b C a C c A a sin sin 2sin sin =-+.则=∠B ( )A .6πB .4π第14题C .3πD .43π 9.若函数3)1(4)54()(22+---+=x a x a a x f 的图象恒在x 轴上方,则a 的取值X 围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]10.若*∈=++=N n n f a kx x x f n ),(,1)(2,已知数列{}n a 是递增数列,则k 的取值X 围是( )A .),0[+∞B .),1(+∞-C .),2[+∞-D .),3(+∞- 11.若]2,0[,∈b a ,则方程022=++bx a x 有实数解的概率是( ) A .43B .21C .31D .41 12.已知等差数列{}n a 中,17,953==a a ,记数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n S ,若()Z m mS S n n ∈≤-+,1512,对任意的*∈N n 成立,则整数m 的最小值为( ) A .5 B .4 C .3 D .2 二、填空题:(本大题共4个小题,每小题5分,把答案写在答题卡上方能得分)13.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现按分层抽样抽取30人,则抽取高级职称人数为____________. 14.如图,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速 度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向在C 处追赶上渔船乙,刚好用 2小时.则BC=. 15.数列{}n a 满足),2(,21,211N n n a a a nn n ∈≥=-=-,则n a = 16.设x ,y 满足约束条件231+1x x y y x ≥⎧⎪-≥⎨⎪≥⎩,若目标函数=+(>0,>0)z ax by a b 的最小值为2,则b a 32+的最小值为______________. 三、解答题:(解答应写出必要的文字说明,证明或演算过程)17. (本小题满分12分)在等差数列{}n a 和等比数列{}n b 中,8,1411===b b a ,{}n a 的前10项和55. (1)求n b ;(2)设{}n n b a 的前n 和为n S ,求n S .18.(本小题满分12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(2)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m﹣n|>10”发生的概率.19.(本小题满分12分)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若CcA a sin 3cos =, (1)求A (2)若3=a ,23=+c b ,求ABC ∆的面积.20.(本小题满分12分)某镇统计2010年到2014年中心城区人口总数与年份的关系如下表:(1)请根据上表提供的数据,用最小二乘法求出线性回归方程ˆybx a =+. (2)据此估计2020年该镇人口总数.参考公式:1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑,21.(本小题满分12分)已知等差数列}{n a 中,公差0>d ,且满足:4532=⋅a a ,1441=+a a .年份201x (年) 0 1 2 3 4 人口数y (万) 5 7 8 11 19(1)求数列}{n a 的通项公式;(2)若数列⎭⎬⎫⎩⎨⎧⋅+11n n a a 的前n 项和为n S ,令16)(+=n S n f n(*N n ∈),求)(n f 的最大值.22.(本小题满分10分)已知ABC ∆是锐角三角形,角A ,B ,C 所对的边分别是a ,b ,c , (1)若a ,b ,c 成等比数列,求角B 的最大值,并判断此时ABC ∆的形状; (2)若A ,B ,C 成等差数列,求C A sin sin +的取值X 围.2014—2015学年度第二学期期末七校联考高一数学(文科)参考答案一、选择题:1-5 CBABB 6-10 DBBCD 11-12 DA二、填空题:13.3 14.28 15.n⎪⎭⎫⎝⎛-212516.22517.解:(1)设{}n b 的公比为q ,则有:∴314q b b =.∴q=2.…………………………………………2分 ∴12-=n n b .…………………………………………………5分(2)∴55102101=⨯+a a ,∴1010=a …………………………6分 ∴n a n = …………………………7分 ∴12-⋅=n n n n b a∴n n n n n b a b a b a b a b a S +++++=--11332211∴1221022)1(232221--⋅+⋅-++⋅+⋅+⋅=n n n n n S ①∴n n n n n S 22)1(23222121321⋅+⋅-++⋅+⋅+⋅=⋅- ②………9分 ∴①-②:n nnn n n n S 221212222221321⋅---=⋅-+++++=-- ……………………11分∴12)1(+-=n n n S …………………………12分18.解:(1)由频率分布直方图可知:)80,60[的频率为:58.010)04.0018.0(=⨯+…………………………2分 ∴295058.0=⨯∴合格人数为29人。

重庆市高级中学七校联考高一数学下学期期末模拟试卷(含解析)

重庆市高级中学七校联考高一数学下学期期末模拟试卷(含解析)

重庆市高级中学七校联考2014-2015学年高一下学期期末数学模拟试卷一.选择题共10小题,每小题5分,共50分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.(5分)sin390°的值为()A.B.C.D.2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)3.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7 B.42 C.210 D.8404.(5分)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2 B.﹣2 C.D.﹣5.(5分)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°6.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.123 B.105 C.95 D.237.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.8.(5分)学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一会有30%改选A菜.用a n表示第n个星期一选A的人数,如果a1=428,则a4的值为()A.324 B.316 C.304 D.3029.(5分)已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=,则M、N、P的大小关系为()A.M>N>P B.P<M<N C.N>P>M D.P>N>M10.(5分)已知平面向量,,满足||=,||=1,•=﹣1,且﹣与﹣的夹角为45°,则||的最大值等于()A.B.2 C.D.1二.填空题:本大题共四小题,每小题5分.11.(5分)若集合A={x|x2﹣2x<0},B={x|y=lg(x﹣1)},则A∩B为.12.(5分)设a,b>0,a+b=5,则的最大值为.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=.14.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.15.(5分)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=.三.解答题:本大题共有6小题,共75分.解答应写出相应的过程、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.17.(12分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1f1(45,50] n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费x i和年销售量y i(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中:=w i(Ⅰ)根据散点图判断,y=a+bx与,哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y﹣x,根据(II)的结果回答下列问题:(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?(ii)当年宣传费x为何值时,年利润的预报值最大?并求出最大值19.(13分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.20.(13分)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.21.(13分)已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.重庆市高级中学七校联考2014-2015学年高一下学期期末数学模拟试卷参考答案与试题解析一.选择题共10小题,每小题5分,共50分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.(5分)sin390°的值为()A.B.C.D.考点:运用诱导公式化简求值.专题:计算题.分析:390°=360°+30°,直接利用诱导公式转化为锐角的三角函数,即可得到结论解答:解:利用诱导公式可得:sin390°=sin(360°+30°)=sin30°=故选D.点评:本题考查诱导公式的运用,根据所求角确定运用诱导公式是关键.2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论.解答:解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.点评:本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.3.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7 B.42 C.210 D.840考点:循环结构.专题:计算题;算法和程序框图.分析:算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S 的值.解答:解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4.(5分)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2 B.﹣2 C.D.﹣考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x 取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解答:解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y ﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.(5分)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=c osB,∵B是三角形的一个内角,∴B=45°,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.6.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.123 B.105 C.95 D.23考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知结合等差数列的性质求得a3,a4,进一步求得公差和首项,代入等差数列的前n项和得答案.解答:解:在等差数列{a n}中,由a2+a4=4,a3+a5=10,得a3=2,a4=5,∴d=a4﹣a3=5﹣2=3,则a1=a3﹣2d=2﹣6=﹣4,∴.故选:C.点评:本题考查等差数列的通项公式,考查了等差数列的性质,是基础的计算题.7.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.考点:数列的求和;等差数列的前n项和.专题:计算题.分析:由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和解答:解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选A点评:本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题8.(5分)学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一会有30%改选A菜.用a n表示第n个星期一选A的人数,如果a1=428,则a4的值为()A.324 B.316 C.304 D.302考点:数列的函数特性.专题:等差数列与等比数列.分析:设{a n}为第n个星期一选A的人数,{b n}为第n个星期一选B的人数,b n=500﹣a n,根据这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A 菜,可得a n+1=a n+150,运用递推关系式求出前4项,即可.解答:解:根据题意可得:设{a n}为第n个星期一选A的人数,{b n}为第n个星期一选B 的人数,根据这星期一选B菜的,下星期一会有改选A菜,a n+1=a n×+(500﹣a n)×∴a n+1=a n+150,∵a1=428∴a2=364,a3=332,a4=316,故选:B点评:本题考查数列知识在生产实际中的应用,理清题设中的数量关系,合理地运用数列知识进行求解是关键.9.(5分)已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=,则M、N、P的大小关系为()A.M>N>P B.P<M<N C.N>P>M D.P>N>M考点:有理数指数幂的化简求值.专题:集合.分析:根据幂函数指数函数的性质进行比较即可.解答:解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A点评:本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键10.(5分)已知平面向量,,满足||=,||=1,•=﹣1,且﹣与﹣的夹角为45°,则||的最大值等于()A.B.2 C.D.1考点:正弦定理;平面向量数量积的运算.专题:解三角形;平面向量及应用.分析:由于平面向量,,满足||=,||=1,•=﹣1,利用向量的夹角公式可得.由于﹣与﹣的夹角为45°,可得点C在△OAB的外接圆的弦AB 所对的优弧上,因此可得||的最大值为△OAB的外接圆的直径.解答:解:设,,.∵平面向量,,满足||=,||=1,•=﹣1,∴=,∴.∵﹣与﹣的夹角为45°,∴点C在△OAB的外接圆的弦AB所对的优弧上,如图所示.因此||的最大值为△OAB的外接圆的直径.∵==.由正弦定理可得:△OAB的外接圆的直径2R===.故选:A.点评:本题考查了向量的夹角公式、三角形法则、数形结合的思想方法、正弦定理等基础知识与基本技能方法,考查了推理能力,属于难题.二.填空题:本大题共四小题,每小题5分.11.(5分)若集合A={x|x2﹣2x<0},B={x|y=lg(x﹣1)},则A∩B为{x|1<x<2}.考点:交集及其运算.专题:计算题.分析:求出集合A中一元二次不等式的解集确定出集合A,根据负数和0没有对数,得到x﹣1大于0,求出x的范围确定出集合B,求出两集合的交集即可.解答:解:由集合A中的不等式x2﹣2x<0,因式分解得:x(x﹣2)<0,可化为:或,解得:0<x<2,所以集合A={x|0<x<2};由集合B中的函数y=lg(x﹣1),得到x﹣1>0,解得:x>1,所以集合B={x|x>1},则A∩B={x|1<x<2}.故答案为:{x|1<x<2}点评:本题属于以一元二次不等式的解集和对数函数的定义域为平台,考查了交集的运算,是一道基础题.也是2015届高考中常考的题型.12.(5分)设a,b>0,a+b=5,则的最大值为3.考点:函数最值的应用.专题:计算题;函数的性质及应用.分析:利用柯西不等式,即可求出的最大值.解答:解:由题意,()2≤(1+1)(a+1+b+3)=18,∴的最大值为3,故答案为:3.点评:本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.13.(5分)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=4.考点:正弦定理的应用.专题:解三角形.分析:由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.解答:解:∵3sinA=2sinB,∴由正弦定理可得:3a=2b,∵a=2,∴可解得b=3,又∵cosC=﹣,∴由余弦定理可得:c2=a2+b2﹣2abcosC=4+9﹣2×=16,∴解得:c=4.故答案为:4.点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.(5分)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p﹣2=0有两个负根的概率为.考点:几何概型.专题:开放型;概率与统计.分析:由一元二次方程根的分布可得p的不等式组,解不等式组,由长度之比可得所求概率.解答:解:方程x2+2px+3p﹣2=0有两个负根等价于,解关于p的不等式组可得<p≤1或p≥2,∴所求概率P==故答案为:点评:本题考查几何概型,涉及一元二次方程根的分布,属基础题.15.(5分)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=﹣6或4.考点:带绝对值的函数.专题:创新题型;函数的性质及应用.分析:分类讨论a与﹣1的大小关系,化简函数f(x)的解析式,利用单调性求得f(x)的最小值,再根据f(x)的最小值等于5,求得a的值.解答:解:∵函数f(x)=|x+1|+2|x﹣a|,故当a<﹣1时,f(x)=,根据它的最小值为f(a)=﹣3a+2a﹣1=5,求得a=﹣6.当a=﹣1时,f(x)=3|x+1|,它的最小值为0,不满足条件.当a≥﹣1时,f(x)=,根据它的最小值为f(a)=a+1=5,求得a=4.综上可得,a=﹣6 或a=4,故答案为:﹣6或4.点评:本题主要考查对由绝对值的函数,利用单调性求函数的最值,体现了转化、分类讨论的数学思想,属于中档题.三.解答题:本大题共有6小题,共75分.解答应写出相应的过程、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.考点:二倍角的余弦;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.解答:解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.点评:本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.17.(12分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1f1(45,50] n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.解答:解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为=,∴P(A)==0.4096,∴P()=1﹣P(A)=1﹣0,4096=0.5904,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率0.5904.点评:本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费x i和年销售量y i(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中:=w i(Ⅰ)根据散点图判断,y=a+bx与,哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y﹣x,根据(II)的结果回答下列问题:(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?(ii)当年宣传费x为何值时,年利润的预报值最大?并求出最大值考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题19.(13分)已知等差数列{a n}满足a3=2,前3项和S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)设等比数列{b n}满足b1=a1,b4=a15,求{b n}前n项和T n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件列式求得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)求出,再求出等比数列的公比,由等比数列的前n项和公式求得{b n}前n项和T n.解答:解:(Ⅰ)设等差数列{a n}的公差为d,则由已知条件得:,解得.代入等差数列的通项公式得:;(Ⅱ)由(Ⅰ)得,.设{b n}的公比为q,则,从而q=2,故{b n}的前n项和.点评:本题考查了等差数列和等比数列的通项公式,考查了等差数列和等比数列的前n 项和,是中档题.20.(13分)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.考点:不等关系与不等式.专题:不等式的解法及应用.分析:(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.解答:解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为4点评:本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.21.(13分)已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+ =﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .21-B .0C .1D .1-7.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a = A .4- B. 6- C.8- D.10-8.执行如图所示的程序框图,若输出的S =88,则判断框内应填入 的条件是A .?7>kB .?6>kC .?5>kD .?4>k9.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如下图),21,s s 分别表示甲、乙选手的标准差,则1s 与2s 的关系是 A. 21s s < B . 21s s = C. 21s s > D. 不能确定10.在数列{}n a 中,4,3211-==+n n a a a ,则数列{}n a 的前n 项和n s 的最大值是 A. 136 B. 140 C. 144 D. 148 11. 下列说法正确的是 A.函数x x y 2+=的最小值为 B.函数)0(sin 2sin π<<+=x xx y的最小值为 C.函数x x y 2+=的最小值为 D.函数xx y lg 2lg +=的最小值为 12.在钝角三角形ABC 中,若45B =°,a =c 的取值范围是A.(B.()()0,12,+∞ C.()1,2 D.),2()1,0(+∞二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上.13. 不等式()()120x x -+<的解集是 .14.程序:M=1 M=M+1 M=M+2 PRINT M END M 的最后输出值为 . 15. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8.若用分层抽样从中抽取6个城市,则丙组中应抽取的城市数为________.甲 乙8 7 6 75 4 1 8 0 2 94 316. 函数)0,1(1)3(log >≠-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中0,0>>n m ,则nm 21+的最小值为 . 三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在等差数列{}n a 中,11760,12.a a =-=- (Ⅰ)求通项n a ;(Ⅱ)求此数列前30项的绝对值的和.18.(本小题满分12分)设ABC ∆的内角C B A ,,所对应的边长分别是,,,a b c 且3cos , 2.5B b == (Ⅰ)当︒=30A 时,求a 的值;(Ⅱ)当ABC ∆的面积为3时,求c a +的值.19. (本小题满分12分)某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径 (单位:mm),将数据分组如下:(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图; (Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批球的直径误差不超过0.03 mm 的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00版权所有:中华资源库 作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20. (本小题满分12分)已知1)1()(2++-=x aa x x f . (Ⅰ)当21=a 时,解不等式()0f x ≥; (Ⅱ)若0>a ,解关于x 的不等式0)(≤x f .21. (本小题满分12分) 设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且c a C b 21cos -=.(Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.22. (本题满分10分)已知数列{}n a 和{}n b 中,数列{}n a 的前n 项和为,n s 若点),(n s n 在函数x x y 142+-=的图象上,点),(n b n 在函数xa y =的图象上.设数列{}=n c {}n nb a .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n c 的前n 项和n T ; (Ⅲ)求数列{}n c 的最大值.重庆市部分区县2014—2015学年度下期期末联考高一数学参考答案一、选择题:(每小题5分,共60分)。

二、填空题:(每小题4分,共20分)。

13. {}21x x -<<; 14. 4; 15. 2; 16. 8.三、解答题:(共6个解答题,共70分)17.解:(Ⅰ)∵d a a 16117+=即d 166012+-=-.∴3=d . 3分 ∴633)1(360-=-+-=n n a n . 6分 (Ⅱ)由0≤n a ,则210633≤⇒≤-n n . 8分 ∴)()(3023222132130321a a a a a a a a a a a ++++++-=++++ =)2763()60963(++++++++ 11分7652)273(92)603(20=+⨯++⨯=. 12分18.解:(Ⅰ)∵,53cos =B ∴,54sin =B , 3分由正弦定理可知:25sin =A a ,∴.45=a 6分(Ⅱ)∵,sin 21B ac S ABC =∆ 7分∴,352==ac ac由余弦定理得:B ac c a b cos 2222-+= 9分 ∴95642222-+=-+=c a ac c a ,即1322=+c a 10分 则:,28)(,132)(22=+=-+c a ac c a 11分故:72=+c a 12分19.解:(Ⅰ)填图各2分 4分(Ⅱ)设误差不超过0.03的事件为A , 则 9.0120.050.020.0)(=++=A p . 8分 (Ⅲ) )2002.405000.402098.391096.39(1001⨯+⨯+⨯+⨯⨯=x 10分 1(399.6799.62000800.4)100=⨯+++ =39.996 11分40.00()mm ≈ 12分20. 解:(Ⅰ)当21=a 时,有不等式23()102f x x x =-+≥, ∴1()(2)02x x --≥, 3分∴不等式的解为:1{|2}2x x x x ∈<>或 6分(Ⅱ)∵不等式0))(1()(≤--=a x ax x f 8分又∵0a > 9分当10<<a 时,有a a >1,∴不等式的解集为}1|{ax a x ≤≤; 10分当1>a 时,有a a <1,∴不等式的解集为}1|{a x ax ≤≤; 11分当1=a 时,不等式的解为1=x 。

12分21.解:解法一:(Ⅰ)∵c a C b 21cos -=, ∴由余弦定理,得c a ab c b a b 212.222-=-+,∴ac a c b a -=-+22222,∴ac b c a =-+222, 2分∴ac B ac =cos 2, 则 21cos =B , 4分∵),0(π∈B ,∴3π=B .6分(Ⅱ)ac c a c a c b a l =-+++=++=1)1(,122知由,∴ac c a 31)(2=-+ 8分∴22)(43131)(c a ac c a ++≤+=+ ∴4)(2≤+c a . ∴2≤+c a .10分又∵1=>+b c a ,∴△ABC 的周长]3,2(∈++=c b a l . 12分解法二:(Ⅰ)∵c a C b 21cos -=, ∴由正弦定理得:C A C B sin 21sin cos sin -=,2分∴C C B C B C C B C B sin 21sin cos cos sin sin 21)sin(cos sin -+=-+=, ∴1cos sin sin 2B C C =, ∵0sin ≠C ,∴21cos =B . 4分∵),0(π∈B ,∴3π=B .6分(Ⅱ)∵3π=B ,∴32π=+C A . 7分由正弦定理,得AaB b sin sin =, ∴A B A b a sin 332sin sin ==,同理可得C c sin 332=,8分2sin )sin()]322sin cos cos sin )33a c A C A A A A A πππ+=+=+-=+-cosA 2sin(A )6A π=+=+10分∵320π<<A ,∴5666A πππ<+<,∴1)6sin(21≤+<πA , ∴,2)6sin(21≤+<πA ,11分故△ABC 的周长]3,2(∈++=c b a l . 12分22. 解:(Ⅰ)由已知得:n n s n 142+-=, 1分∵当15221+-=-≥-n s s n n n 时,, 2分又当n =1时,,1311==s a 符合上式. 3分∴152+-=n a n . 4分(Ⅱ)由已知得:n n b 2=,∴{}{}n n n n n b a c 2).152(+-== 5分n n n T 2)152(29211213321⨯+-++⨯+⨯+⨯= ①.2)152(2)172(2921121321432+⨯+-+⨯+-++⨯+⨯+⨯=n n n n n T ②②-①可得:262)152()2222(11543-⨯+-+++++=++n n n n T6分262)152(21)21(2113-⨯+-+--=+-n n n.342)217(1-⋅-=+n n7分(Ⅲ)∵n n n c 2)152(⋅+-= ∴112)132(++⋅+-=n n n cn n n n n n n n c c 2)211(2)152(2)132(11⋅-=⋅+--⋅+-=-++8分令01>-+n n c c ,得:.211<n9分∴.192232)1562(6666766321=⨯=⨯+⨯-=>><<<<c c c c c c c c 为最大即且故n c 最大值为.192 10分。

相关文档
最新文档