2.3.2离散型随机变量的方差
高中数学 离散型随机变量的方差
若X ~ B(n, p),则DX np(1 p)
题型一 求离散型随机变量的方差
袋中有 20 个大小相同的球,其中记上 0 号的 有 10 个,记上 n 号的有 n 个(n=1,2,3,4).现从袋中任取一球, ξ 表示所取球的标号.
(1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
课堂练习 书本第68页
1、已知随机变量X的分布列
X01234 P 0.1 0.2 0.4 0.2 0.1 求DX和σX.
解:EX 00.110.2 20.4 30.2 40.1 2 DX (0 2)2 0.1 (1 2)2 0.2 (2 2)2 0.4 (3 2)2 0.2 (4 2)2 0.1 1.2
人教A版选修2-3 第二章
2.3.2 离散型随机变量的方差
一、复习回顾
1、离散型随机变量的数学期望
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
E X x1 p1 x2 p2 L xi pi L xn pn
数学期望是反映离散型随机变量的平均水平 2、数学期望的性质
0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:EX1 1400, EX 2 1400 DX1 40000, DX 2 160000
在两个单位工资的数学期望相等的情况下, 如果认为自己能力很强,应选择工资方差大 的单位,即乙单位;如果认为自己能力不强, 就应选择工资方差小的单位,即甲单位。
X DX 1.2 1.095
2、若随机变量X满足P(X=c)=1,其中c为 常数,求EX和DX。
2.3.2 离散型随机变量的方差
三、自学检测:6min P68练习1,2
1.直接用公式:E(X)=2
n
D(x) [xi E(X )]2 pi =1.2 i1
X DX 1.2 30
5
2.直接用公式:D(X)=[c-E(X)]2×1=0
方差 方差反映了X取值的稳定 与波动,集中与离散程度
(1) E ( a X b ) a E X b
计算 公式
(2)若X服从两点分 布,则 EX=p
(3)若X~B(n,p) 则EX= np
(1) D ( aX b ) a 2 D X
(2)若X服从两点分布, 则 DX=p(1-p)
(3)若X~B(n,p) 则 DX= np(1-p)
【综合应用】
某一大学毕业生参加某一公司的笔试,共有5个问题需
要解答,如该同学答对每个问题的概率均为 2 ,且每个
3
问题的解答互不影响.
(1)求该同学答对问题的个数ξ 的期望与方差.
(2)设答对一个题目得10分,否则扣1分,求该同学得分
η 的期望与方差.
【解题指南】 解答该5个问题可以认为是5次独立重复试验,答 对问题的个数ξ 服从二项分布,求η 的期望与方 差可通过ξ 与η 的线性关系间接求出.
探究点1 离散型随机变量的方差的概念
问题一:统计甲、乙两名射手以往的成绩,得其击
中目标靶的环数X1,X2的分布列分别如下:
X1 5
6
7
8
9
10
P 0.03 0.09 0.20 0.31 0.27 0.10
X2 5
高二数学2.3.2 离散型随机变量的方差
探究一
探究二
探究三
探究四
探究一 求离散型随机变量的方差
求离散型随机变量的方差的步骤: (1)列出随机变量的分布列; (2)求出随机变量的均值; (3)求出随机变量的方差.
探究一
探究二
探究三
探究四
【典型例题 1】 袋中有 20 个大小相同的球,其中标记 0 的有 10 个,标 记 n 的有 n 个(n=1,2,3,4).现从袋中任取一球.ξ 表示所取球的标号.
探究一
探究二
探究三
探究四
错因分析:忽略了随机变量分布列的性质出现错误,这里只是机械地套 用公式,且对 D(ax+b)=a2D(x)应用错误.
正解:∵0.2+0.2+a+0.2+0.1=1,∴a=0.3. ∴E(X)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.
D(X)=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0
均值 E(X)的平均偏离程度,我们称 D(X)为随机变量 X 的方差,并称其算术平 方根 ������(������)为随机变量 X 的标准差.
(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值 的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
(3)离散型随机变量的方差的性质: 设 a,b 为常数,则 D(aX+b)=a2D(X).
探究一
探究二
探究三
探究四
(2)由 D(η)=a2D(ξ),得 a2×2.75=11,得 a=±2. 又 E(η)=aE(ξ)+b,所以, 当 a=2 时,由 1=2×1.5+b,得 b=-2; 当 a=-2 时,由 1=-2×1.5+b,得 b=4.
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.3.2 离散型随机变量的方差
1 1 1 解析:因为 + +p=1,所以 p= . 2 3 6 1 1 1 2 又 E(ξ)=0× +1× +x× = .所以 x=2. 2 3 6 3
2 2 1 2 2 1 2 2 1 15 故 (1)D(ξ)= 0-3 × + 1-3 × + 2-3 × = 2 3 6 27
解得 p=0.2,n=10,故选 C. 答案:( B ) A.E(X)=3.5,D(X)=3.52 35 B.E(X)=3.5,D(X)= 12 C.E(X)=3.5,D(X)=3.5 35 D.E(X)=3.5,D(X)= 16
栏 目 链 接
栏 目 链 接
题型一 方差与标准差的计算 例1 已知离散型随机变量X的概率分布列为:
X P
1 1 7
2 1 7
3 1 7
4 1 7
5 1 7
6 1 7
7 1 7
栏 目 链 接
求其方差与标准差.
1 1 1 解析:∵E(X)=1× +2× +„+7× =4; 7 7 7 1 1 1 2 2 2 ∴D(X)=(1-4) × +(2-4) × +„+(7-4) × =4. 7 7 7 ∴ DX=2.
第二章
随机变量及其分布
2.3 离散型随机变量的均值与方差
2.3.2 离散型随机变量的方差
栏 目 链 接
1.通过实例理解取有限值的离散型随机变量方
差的概念. 2.能计算简单离散型随机变量的方差,并能解 决一些实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理 1.一般地,若离散型随机变量X的概率分布列为:
栏 目 链 接
例如:设ξ~B(n,p),且E(ξ)=2.4,D(ξ) =1.44,求n,p. 答案:n=6,p=0.4
第二章 2.3 2.3.2 离散型随机变量的方差(优秀经典课时作业练习及答案详解)
[A 组 学业达标]1.下面说法中正确的是( )A .离散型随机变量的均值E (ξ)反映了取值的概率的平均值B .离散型随机变量的方差D (ξ)反映了取值的平均水平C .离散型随机变量的均值E (ξ)反映了取值的平均水平D .离散型随机变量的方差D (ξ)反映了取值的概率的平均值 解析:由E (ξ)与D (ξ)的意义知选C. 答案:C2.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )A .6B .9C .3D .4解析:由题意得E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.答案:A3.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32D .n =7,p =0.45解析:由已知有⎩⎪⎨⎪⎧np =1.6,np (1-p )=1.28,解得n =8,p =0.2.答案:A4.甲、乙两人对同一目标各射击一次,甲命中目标的概率为23,乙命中目标的概率为45,设命中目标的人数为X ,则D (X )等于( )A.86225 B.259675 C.2215D.1522解析:X 取0,1,2,P (X =0)=13×15=115,P (X =1)=25,P (X =2)=815,所以E (X )=2215,D (X )=86225.答案:A5.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小解析:由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝⎛⎭⎫0-p -122×1-p 2+⎝⎛⎭⎫1-p -122×12+⎝⎛⎭⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.答案:D6.若D (ξ)=1,则D (ξ-D (ξ))=________. 解析:D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 答案:17.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.解析:∵D (x )=8, ∴D (2x -1)=4D (x )=2D (x )=16.答案:168.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.59.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.10.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲,乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率.(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解析:(1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为:E (ξ)=0×19+1×718+2×12=2518,D (ξ)=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324,所以D (ξ)=14918.[B 组 能力提升]11.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21 解析:E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1-1.7)2×0.3+(2-1.7)2×0.7=0.21. 答案:D12.若随机变量X 的分布列为P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .1C .4D .2解析:由分布列的性质,得a +13=1,a =23.∵E (X )=2,∴m 3+2n3=2.∴m =6-2n .∴D (X )=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (X )取最小值0. 答案:A13.已知某随机变量X 的分布列如表(p ,q ∈R ):X 1 -1 Ppq且X 的数学期望E (X )=12,那么X 的方差D (X )=________.解析:根据题意可得⎩⎪⎨⎪⎧p +q =1,p -q =12,解得p =34,q =14,故X 的方差D (X )=⎝⎛⎭⎫1-122×34+⎝⎛⎭⎫-1-122×14=34.答案:3414.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为:因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。
学案12:2.3.2 离散型随机变量的方差
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法例1 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX .温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX =(-1)×21+0×(1-2q )+1×q 2=q 2-21; DX =[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q )+[1-(q 2-21)]2×q 2.这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差例2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1.三、方差的应用例3 海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1、X2(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.温馨提示随机变量X的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X1、X2,且EX1=EX2或EX1与EX2比较接近时,我们常用DX1与DX2来比较这两个随机变量,方差值大的,则表明X较为离散,反之则表明X较为集中.同样,标准差的值较大,则标明X与其均值的偏差较大,反之,则表明X与其均值的偏差较小.各个击破类题演练1 若随机事件A在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.变式提升1 某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).类题演练2 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值.变式提升2 证明:事件在一次实验中发生的次数的方差不超过14.类题演练3 甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,且ξ、η的分布列为:计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣.变式提升3 现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下每天的产量相等,而出次品的个数的分布列如下:甲乙根据以上条件,选派谁去合适?参考答案课堂导学例1 解:由于离散型随机变量的分布列满足(1)p i ≥0,i =1,2,3,...; (2)p 1+p 2+...+p n + (1)故221(12)1,20121,1.q q q q ⎧+-+=⎪⎪≤-≤⎨⎪≤⎪⎩解得q =1-22. 故X 的分布列为∴EX =(-1)×2+0×(2-1)+1×(22-) =-2321++(-2)=1-2; DX =[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1.例2 解:设成功次数为随机变量X ,由题意可知X —B (100,p ), 那么σX =)1(100p p DX -=,因为DX =100p (1-p )=100p -100p 2(0≤p ≤1). 把上式看作一个以p 为自变量的一元二次函数,易知当p =21时,DX 有最大值25.所以DX 的最大值为5,即当p =21时,成功次数的标准差的最大值为5. 例3 解:∵EX 1=0,EX 2=0, ∴EX 1=EX 2,∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5, DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2, ∴DX 1<DX 2,由上可知,A 面大钟的质量较好. 各个击破类题演练1 解:由题意得ξ的分布列为∴Eξ=0×(1-2a )+1×2a =2a ∴Dξ=(0-2a )2(1-2a )+(1-2a )22a =(1-2a )2a (2a +1-2a ) =2a (1-2a )=-4[a -41]2+41, 由分布列的性质得0≤1-2a ≤1, 且0≤2a ≤1,∴0≤a ≤21, ∴当a =41时,Dξ最大值为41; 当a =0或21时Dξ的最小值为0.变式提升1 解:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为P (ξ=1)=0.8, ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16; ξ=3,表示第一、二发未中,第三发命中, 故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中, 故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中, 故P (ξ=5)=(1-0.8)4=0.001 6,因此,它的分布列为Eξ=1×0.8+2×0.16+3×0.032+4×0.006 4+5×0.001 6=1.25.Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.006 4+(5-1.25)2×0.001 6=0.31. 类题演练2 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p )+1×p =p ,Dξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2. (1)Dξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p +p1≥22. 当且仅当2p =p 1,即p =22时,ξξE D 12-取得最大值2-22.变式提升2 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p ,P (ξ=1)=p ,Eξ=0×(1-p )+1×p =p ,Dξ=(1-p )·(0-p )2+p (1-p )2= p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41.类题演练3 解:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).Dξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5. Dη=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24. 所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 变式提升3 解:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
高中数学教案精选--随机变量的方差2
2.3.2离散型随机变量的方差教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。
过程与方法:了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题教具准备:多媒体、实物投影仪 。
教学设想:了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。
授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x 得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5.6. 分布列的两个性质: ⑴i ≥0,=1,2,...; ⑵1+2+ (1)7.二项分布:ξ~B (n ,p ),并记kn k k n q p C -=b (k ;n ,p ).8.几何分布: g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1.9.数学期望:则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望.10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质: b aE b a E +=+ξξ)( 13.若ξ B (n,p ),则E ξ=np二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.2. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.3.方差的性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=; (3)若ξ~B (n ,p ),则=ξD np (1-p ) 4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.从而111111123456 3.5666666EX =⨯+⨯+⨯+⨯+⨯+⨯=;2222221111(1 3.5)(2 3.5)(3 3.5)(4 3.5)666611(5 3.5)(6 3.5) 2.9266DX =-⨯+-⨯+-⨯+-⨯+-⨯+-⨯≈1.71X σ=.例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX 1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1 = 1400 ,DX 1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3 + (1600 -1400 )2×0.2+(1800-1400) 2×0. 1 = 40 000 ;EX 2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,DX 2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l = 160000 .因为EX 1 =EX 2, DX 1<DX 2,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.例3.设随机变量ξ的分布列为求D ξ解:(略)12n E ξ+=, 2D 12ξ=例4.已知离散型随机变量1ξ的概率分布为离散型随机变量2ξ的概率分布为求这两个随机变量期望、均方差与标准差解:47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;11==ξσξD4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ;2ξD =0.04, 2.022==ξσξD .点评:本题中的1ξ和2ξ都以相等的概率取各个不同的值,但1ξ的取值较为分散,2ξ的取值较为集中.421==ξξE E ,41=ξD ,04.02=ξD ,方差比较清楚地指出了2ξ比1ξ取值更集中.1σξ=2,2σξ=0.02,可以看出这两个随机变量取值与其期望值的偏差例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯;同理有.0,922==ξξD E由上可知,21ξξE E =,1D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,1ξ和2ξ所有可能取的值是一致的,只是概率的分布情况不同.21ξξE E ==9,这时就通过1ξD =0.4和2ξD =0.8来比较1ξ和2ξ的离散程度,即两名射手成绩的稳定情况 例6.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好. 四、课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则 P (ξ=0)=43129= 当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则 P (ξ=1)=449119123=⨯ 当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则 P (ξ=2)=2209109112123=⨯⨯ 当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯ 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ B (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ B (200,1%E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,D ξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫ ⎝⎛-+≤5. 有A 、B 两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:其中ξA 、ξB 分别表示A 、B 两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题 意,可得ξ的分布列为2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元.五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业: P69练习1,2,3 P69 A 组4 B 组1,21.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31) 解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况解:由0.1+0.6+a+1⇒a=0.3 0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6七、板书设计(略)八、教学反思:⑴求离散型随机变量ξ的方差、标准差的步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出ξD 、σξ.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要。
高中数学选修2-3课时作业7:2.3.2离散型随机变量的方差
2.3.2 离散型随机变量的方差一、基础达标1.下列说法中,正确的是( )A .离散型随机变量的均值E (X )反映了X 取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 [答案] C2.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m )[答案] D[解析] 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 [答案] A[解析] E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8[答案] D[解析] 因随机变量X ~B (n ,p ), 则E (X )=np =8, D (X )=np ·(1-p )=1.6, 所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. [答案] 1[解析] D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.[答案] 59[解析] 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59. 7.有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中ξA ,ξB 120,试比较甲、乙两种建筑材料的稳定程度.(哪一种的稳定性较好)解 E (ξA )=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E (ξB )=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,D (ξA )=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,D (ξB )=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,由此可见,E (ξA )=E (ξB ),D (ξA )<D (ξB ),故两种材料的抗拉强度的平均值相等,其稳定程度材料乙明显不如材料甲,故甲的稳定性好. 二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2C .3.2D. 3.56 [答案] D[解析] 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12C.29D .16[答案] A[解析] 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.[答案] 25[解析] 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5,则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5,则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.为了迎战下届奥运会,对甲、乙两名射手进行一次选拔赛.已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为0.5,3a ,a ,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(其中ξ为甲击中的环数,η为乙击中的环数)(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解(1)依据题意,知0.5+3a+a+0.1=1,解得a=0.1.∵乙射中10,9,8环的概率分别为0.3,0.3,0.2,∴乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.∴ξ,η的分布列分别为(2)结合(1)中ξ,η的分布列可得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2,E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7,D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96,D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.∵E(ξ)>E(η),说明甲平均射中的环数比乙高.又∵D(ξ)<D(η),说明甲射中的环数比乙集中,比较稳定.∴甲的射击技术好.三、探究与创新13.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,则X的分布列为因为X~B(3,0.6),所以均值E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.。
高中数学第二章随机变量及其分布2.3.2离散型随机变量的方差学案新人教版选修2_32
2.3.2 离散型随机变量的方差[学习目标]1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差. [知识链接]1.某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,5; 乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述数据,两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛?答 x -甲=x -乙=7,利用样本的方差公式s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],求得: s 2甲=2.2,s 2乙=1.2.s 2甲>s 2乙,∴乙成绩较稳定,选乙参加比赛.2.随机变量的方差与样本的方差有何不同?答 样本的方差是随着样本的不同而变化的,因此它是一个随机变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常量而非变量. [预习导引]1.离散型随机变量的方差、标准差 设离散型随机变量X 的分布列为则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.我们称D (X )为随机变量X 的方差,并称其算术平方根D (X )为随机变量X 的标准差. 2.离散型随机变量方差的性质(1)设a ,b 为常数,则D (aX +b )=a 2D (X ); (2)D (c )=0(其中c 为常数).3.服从两点分布与二项分布的随机变量的方差(1)若X 服从两点分布,则D (X )=p (1-p )(其中p 为成功概率); (2)若X ~B (n ,p ),则D (X )=np (1-p ).要点一 求离散型随机变量的方差例1 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解 (1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718. P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324,∴D (ξ)=14918. 规律方法 1.求离散型随机变量X 的方差的基本步骤:理解X 的意义,写出X 可能取的全部值 ↓写出X 取每个值的概率 ↓写出X 的分布列 ↓由均值的定义求出E (X ) ↓利用公式D (X )=∑ni =1(x i -E (X ))2p i 求值 2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (a ξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=a ξ+b 的分布列,又避免了繁杂的计算,简化了计算过程.跟踪演练1 已知X 的分布列为求:(1)E (X ),D (X );(2)设Y =2X +3,求E (Y ),D (Y ).解 (1)E (X )=-1×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59.(2)E (Y )=2E (X )+3=73,D (Y )=4D (X )=209.要点二 两点分布与二项分布的方差例2 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳.各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)为3,标准差D (ξ)为62. (1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.解 由题意知,ξ服从二项分布B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0,1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3),得P (A )=1+6+15+2064=2132,或P (A )=1-P (ξ>3)=1-15+6+164=2132.所以需要补种沙柳的概率为2132.规律方法 方差的性质:D (a ξ+b )=a 2D (ξ).若ξ服从两点分布,则D (ξ)=p (1-p ).若ξ~B (n ,p ),则D (ξ)=np (1-p ).跟踪演练2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 解 设成功次数为随机变量X ,由题意可知X ~B (100,p ),则D (X )=100p (1-p ). 因为D (X )=100p (1-p )=100p -100p 2, 把上式看作一个以p 为自变量的二次函数, 易知当p =12时,D (X )有最大值为25.所以D (X )的最大值为5.即当p =12时,成功次数的标准差的值最大,最大值为5.要点三 均值与方差的综合应用例3 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、期望和方差;(2)若η=a ξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)ξ的分布列为则E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,得a =±2. 又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.规律方法 解均值与方差的综合问题时的注意事项(1)离散型随机变量的分布列、均值和方差是三个紧密联系的有机统一体,一般在试题中综合在一起考查,其解题的关键是求出分布列;(2)在求分布列时,要注意利用等可能事件、互斥事件、相互独立事件的概率公式计算概率,并注意结合分布列的性质,简化概率计算;(3)在计算均值与方差时要注意运用均值和方差的性质以避免一些复杂的计算.若随机变量X 服从两点分布、二项分布可直接利用对应公式求解.跟踪演练3 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的均值与方差;(3)求“所选3人中女生人数X ≤1”的概率. 解 (1)X 可能的取值为0,1,2. P (X =k )=C k2·C 3-k4C 36,k =0,1,2. X 的分布列(2)由(1),X 的均值与方差为E (X )=0×15+1×35+2×15=1.D (X )=(0-1)2×15+(1-1)2×35+(1-2)2×15=25.(3)由(1),“所选3人中女生人数X ≤1”的概率为P (X ≤1)=P (X =0)+P (X =1)=45.1.设随机变量X 的方差D (X )=1,则D (2X +1)的值为( ) A .2 B .3 C .4 D .5 答案 C解析 D (2X +1)=4D (X )=4×1=4.2.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)等于( )A.158B.154C.52 D .5 答案 A解析 ξ~B (10,14),∴D (ξ)=10×14×(1-14)=158.3.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________. 答案 0.4 0.1 0.5解析 由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 4.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解根据月工资的分布列,利用计算器可算得E(X1)=1 200×0.4+1 400×0.3+1 600×0.2+1 800×0.1=1 400,D(X1)=(1 200-1 400)2×0.4+(1 400-1 400)2×0.3+(1 600-1 400)2×0.2+(1 800-1 400)2×0.1=40 000;E(X2)=1 000×0.4+1 400×0.3+1 800×0.2+2 200×0.1=1 400,D(X2)=(1 000-1 400)2×0.4+(1 400-1 400)2×0.3+(1 800-1 400)2×0.2+2 200-1 400)2×0.1=160 000.因为E(X1)=E(X2),D(X1)<D(X2),所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D(X)或标准差越小,则随机变量X偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X的取值越分散.2.求离散型随机变量X的均值、方差的步骤(1)理解X的意义,写出X的所有可能的取值;(2)求X取每一个值的概率;(3)写出随机变量X的分布列;(4)由均值、方差的定义求E(X),D(X).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和D(X).一、基础达标1.下列说法中,正确的是( )A.离散型随机变量的均值E(X)反映了X取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 答案 C2.设一随机试验的结果只有A 和A -,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m ) 答案 D解析 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ). ∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 答案 A解析 E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8 答案 D解析 因随机变量X ~B (n ,p ), 则E (X )=np =8,D (X )=np ·(1-p )=1.6,所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. 答案 1解析 D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.答案 59解析 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59.7.抛掷一枚质地均匀的骰子,用X 表示掷出偶数点的次数. (1)若抛掷一次,求E (X )和D (X ); (2)若抛掷10次,求E (X )和D (X ). 解 (1)X 服从两点分布∴E (X )=p =12,D (X )=p (1-p )=12×(1-12)=14.(2)由题意知,X ~B (10,12).∴E (X )=np =10×12=5,D (X )=np (1-p )=10×12×(1-12)=52.二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2 C .3.2 D. 3.56 答案 D解析 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8 B .12 C.29 D .16答案 A解析 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量X 表示A 在1次试验中发生的次数,则方差D (X )的最大值为________. 答案 14解析 随机变量X 的所有可能取值为0,1,由题意,得X 的分布列为从而E (X )=0×(1-p )+1×p =p ,D (X )=(0-p )2×(1-p )+(1-p )2×p =p -p 2.D (X )=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,因为0<p <1,所以当p =12时,D (X )取得最大值,最大值为14.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5, 则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5, 则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示: 甲:乙:试分析两名学生的成绩水平.解 ∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80,∴E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.三、探究与创新13.(2013·北京理)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解设A i表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=∅(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8,所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13,所以X的分布列为故X的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.。
2.3.2离散型随机变量的方差
2.3.2离散型随机变量的方差232 离散型随机变量的方差在我们探索概率与统计的奇妙世界时,离散型随机变量的方差是一个非常重要的概念。
它就像是一把神奇的尺子,能够帮助我们更深入地理解随机现象背后的规律。
那什么是离散型随机变量的方差呢?咱们先从一个简单的例子说起。
假设你参加一个抽奖活动,有三种可能的奖品,价值分别为 10 元、20 元和 50 元,获得它们的概率分别是 05、03 和 02。
这个时候,我们可以把获得的奖品价值看作一个离散型随机变量 X。
那么,这个随机变量的平均值,也就是期望,通过计算可以得到:E(X) = 10×05 + 20×03 + 50×02 = 21(元)。
但是,仅仅知道平均值还不够。
因为即使平均值相同,不同的抽奖活动可能具有不同的“波动程度”。
比如说,另一个抽奖活动的奖品价值平均值也是 21 元,但是有的奖品价值很低,有的又很高,这样的抽奖活动风险就比较大。
而离散型随机变量的方差,就是用来衡量这种“波动程度”或者“分散程度”的。
具体来说,离散型随机变量 X 的方差记作 Var(X),它的计算公式是:Var(X) = E(X E(X))²。
咱们还是以刚才的抽奖活动为例,来计算一下方差。
首先,计算(X E(X))²在每个取值下的值:当 X = 10 时,(10 21)²= 121;当 X = 20 时,(20 21)²= 1;当 X = 50 时,(50 21)²= 841。
然后,分别乘以对应的概率:121×05 + 1×03 + 841×02 = 2188(元²)这就是这个抽奖活动奖品价值的方差。
方差越大,说明抽奖结果的波动越大,不确定性也就越大;方差越小,说明抽奖结果相对稳定,比较接近平均值。
再举一个例子,比如说掷骰子。
掷出的点数就是一个离散型随机变量。
2.3.2 人教A版数学选修2-3 第2章 随机变量及其分布
2.3.2 离散型随机变量的方差、标准差填一填1.(1)定义:设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.3.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).4.离散型随机变量方差的线性运算性质设a,b为常数,则D(aX+b)=a2D(X).判一判判断(1.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值.(×)2.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平.(×)3.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平.(√)4.离散型随机变量的方差越大,随机变量越稳定.(×)5.若a是常数,则D(a)=0.(√)6.若随机变量X服从两点分布,且成功的概率p=0.5,则D(X)为0.5.(×)7.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于0.196.(√)8.若X为随机变量则D(X-D(X))=D(X).(√)想一想1.提示:随机变量X的方差和标准差都反映了随机变量X取值的稳定与波动,集中与离散的程度,D(X)(或D(X))越小,稳定性越好,波动越小,显然D(X)≥0(D(X)≥0).2.离散型随机变量的方差与标准差的单位相同吗?提示:不同,方差的单位是随机变量单位的平方;标准差与随机变量本身有相同的单位.3.随机变量的方差与样本的方差有何联系与区别?提示:样本的方差是随着样本的不同而变化的,因此它是一个变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常数(量).对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体的方差.4.决策问题中如何运用均值与方差?提示:离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先计算均值,看谁的平均水平高,然后再计算方差,分析谁的水平发挥相对稳定.当然不同的情形要求不同,应视情况而定。
2.3.2离散型随机变量的方差(理科)(杨升明改)
2.3.2离散型随机变量的方差孙文正一、课标点击(一)学习目标:理解取有限个值的离散型随机变量的方差的概念,会求简单离散型随机变量的方差,并能根据概念解决一些简单问题. (二)教学重点:用样本数据的方差和标准差估计总体的方差与标准差 (二)教学难点:理解样本数据的方差、标准差的意义和作用,形成对数据处理过程进行初步评价的意识 二、教学过程: (一)知识链接离散型随机变量的数学期望的意义根据分布列求数学期望和离散型随机变量的数学期望的性质。
(二)问题导引有甲、乙两种钢筋,现从中各抽取一个标本 (如表)检查它们的抗拉强度(单位:kg/mm 2问题:哪种钢筋的质量较好?(三)自主探究1、离散型随机变量的方差 若离散型随机变量的分布列为D ξ =(x 1-E ξ)2·P 1+ (x 2-E ξ)2·P 2 … + (x n -E ξ)2·P n + …叫随机变量ξ的均方差,简称方差。
思考与讨论:1.①、D ξ的算术平方根√D ξ—— 随机变量ξ的标准差,记作σξ; ②、标准差与随机变量的单位相同;③、随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与分散的程度。
2、满足线性关系的离散型随机变量的方差 D ( a ξ+ b )= a 2·D ξ若η=a ξ+ b ,则η的分布列为D η=[ax 1+b -E(a ξ+ b)]2·P 1+ [ax 2+b -E(a ξ+ b)]2·P 2 + …+ [ax n +b -E(a ξ+ b)]2·P n + … 3、()1服从二点分布的随机变量的方差()D X pq =()2服从二项分布的随机变量的方差设ξ ~B ( n , p ),则 D ξ=qE ξ=npq ,q=1-p(四) 典例探讨η=3ξ+1E ξ= ,D ξ= . E η = ,D η =158,,,5.393- 2、已知某离散型随机变量服从的分布列为 且0<p <1,q=1-p,求D(X)解:由题目知服从二点分布。
原创1 :2.3.2离散型随机变量的方差
6
6
6
1
1
2
2
(5 3.5) (6 3.5) 2.92
6
6
2
sX
DX 1.71
题后感悟
求离散型随机变量X的方差、标准差的一般步骤:
①理解X 的意义,写出X 可能取的全部值;
②求X取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出 EX;
新疆
王新敞
奎屯
④根据方差、标准差的定义求出、.
解:根据月工资的分布列,可算得
EX 1 1200 0.4 + 1 400 0.3 + 1600 0.2 + 1800 0.1 =1400
DX 1 (1200 -1400)
2
0. 4 (1400 -1400 ) 2 0.3 (1600 -1400 ) 2 0.2
X2
P
5
0.01
6
0.05
7
0.20
8
0.41
9
0.33
请问应该派哪名同学参赛?
EX 1 8 , EX 2 8
发现两个均值相等
因此只根据均值不能区分这两名同学的射击水平.
问题探究
1、定性分析
除平均中靶环数以外,还有其他刻画两名同学各自射击特点的指标吗?
(1)分别画出1 , 2 的分布列图.
得正品之前已取出次品数的期望与方差.
新疆
王新敞
奎屯
EX=0.3 ;DX=351/1100
课堂小结
1、离散型随机变量取值的方差、标准差及意义
2、记住几个常见公式
D(aX b) a 2 DX
若X服从两点分布,则DX
课件12:2.3.2 离散型随机变量的方差
发现违反保护条例的事件次数的分布列分别为
甲保护区
X
0
1 23
P 0.3 0.3 0.2 0.2
乙保护区
Y0
1
2
P 0.1 0.5 0.4
试评定这两个保护区的管理水平.
解:甲保护区的违规次数 X 的均值和方差分别为: E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3; D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3- 1.3)2×0.2=1.21. 乙保护区的违规次数 Y 的均值和方差分别为: E(Y)=0×0.1+1×0.5+2×0.4=1.3; D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.
仅知道均值大小是不够的,比如:两个随机变量的 均值相等(即均值相等),这时还需要知道随机变量的 取值如何在均值附近变化,即计算其方差,方差大 说明随机变量取值比较分散;方差小说明随机变量 的取值比较集中、稳定.
活学活用
甲、乙两个野生动物保护区有相同的自然环境,且野生
动物的种类和数量也大致相等.两个保护区内每个季度
解得 a=152,b=c=14.
【答案】152
1 4
5.已知某运动员投篮命中率 p=0.6. (1)求一次投篮命中次数 ξ 的均值与方差; (2)求重复 5 次投篮时,命中次数 η 的均值与方差.
解:(1)投篮一次命中次数 ξ 的分布列为 ξ0 1 P 0.4 0.6
则 E(ξ)=0×0.4+1×0.6=0.6, D(ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.
3.对于已知 D(X)求 D(aX+b)型,利用方差的性质 求解,即利用 D(aX+b)=a2D(X)求解.
2.3.2离散型随机变量的方差(第二课时)
E (X1) 1200 0.4 + 1 400 0.3 + 1600 0.2 + 1800 0.1 =1400
D (X1) (1200-1400) 2 0. 4 (1400-1400 ) 2 0.3 (1600 -1400 )2 0.2
(1800-1400) 0. 1 40 000
X1
P
X2
5 0.03 5 0.01
10
6 7 0.09 0.20 6 0.05
Hale Waihona Puke 8 0.319 0.27 8 0.41
10 0.10 9 0.33
P
7 0.20
D (X 1) (i 8)2 P( X 1 i ) 1.50
D (X 2) (i 8)2 P( X 2 i) 0.82
2
E (X 2) 1 000 0.4 1 400 0.3 1 800 0.2 2200 0.1 1400
D (X 2) (1000-1400)2 0. 4 (1 400-1400)2 0.3 (1800-1400)2 0.2
+ (2200-1400 )2 0.l = 160000 .
(X) D (X) 1.71
求离散型随机变量X的方差、标准差的一般步骤:
①理解X 的意义,写出X 可能取的全部值; ②求X取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出 E(X); ④根据方差、标准差的定义求出D(X) 、√ D(X)
(2)实际应用
例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
王新敞
奎屯 新疆
E(X)=2 ; D(X)=1.98 3.甲、乙两名工人加工同一种零件,两人每天加工的零件数相同, 所得次品数分别为X、Y,X和Y的分布列如下表。试对这两名工人的 技术水平进行比较。
2.3.2离散型随机变量的方差1
η的分布列为
练习4、根据统计,一年中一个家庭万元以上的财产 被盗的概率为0.01,保险公司开办一年期万元以上 家庭财产保险,参加者需交保险费100元,若在一年 以内,万元以上财产被盗,保险公司赔偿a元 (a>100),问a如何确定,可使保险公司期望获 利?
四、课堂小结
1、离散型随机变量取值的方差、标准差及意义 2、记住几个常见公式
X
DX 1.71
例2:甲、乙两名射手在同一条件下射击,所得环数 X1, X2分布列如下: X1 P 8 0.2 9 0.6 10 0.2 X2 P 8 0.4 9 0.2 10 0.4
用击中环数的期望与方差分析比较两名射手的射击水平。
解:EX 1 9, EX 2 9
DX1 0.4, DX2 0.8
DX为这些偏离程度的加权平均,刻画了随机变量 X与其均值EX的平均偏离程度,称DX为随机变 量X的方差
D X的算术平方根√DX 为随机变量X的标准差,记作σX;
注意:
(1).随机变量的方差和标准差都反映了随机变量取值 偏离于均值的平均程度. (2).方差或标准差越小,则随机变量 偏离于均值的 平均程度越小.
2.离散型随机变量方差的性质
(1).满足线性关系的离散型随机变量的方差 D( aX+ b)= a2· DX
1 练习:已知 3 ,且 D 13, 则D 117 8
(2).服从两点分布的随机变量的方差 DX=p(1-p) (3).服从二项分布的随机变量的方差 若X ~B( n , p ),则 DX=np(1-p)
例4.(07全国)某商场经销某商品,根据以往资料 统计,顾客采用的分期付款期数 的分布列为:
P
1 0.4
2.3.2离散型随机变量的方差(上课用)
10
10
10
10
离散型随机变量取值的方差 一般地,若离散型随机变量X的概率分布为:
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
则称
D( X ) (x1 E( X ))2 p1 (xi E( X ))2 pi (xn E( X ))2 pn
n
等可能事件概率易求分布列;
(2)直接利用数学期望与方差公式求解.
解 (1)P(X=0)= 2
P(X=3)=A133 16,
A33Biblioteka 1,P(X=1)=3
C31 A33
,1
2
故X的概率分布列为
X
0
1
3
P
1
1
1
3
2
6
(2)E(X)= 0 1 1 1 3 1 1
32 6
D(X)=0 12 1 112 1 3 12 1 1
X x1 Y ax1 b P p1
x2
ax2 b
p2
··· xi ··· axi b
··· pi
··· xn ···axn b
··· pn
D(Y) (ax1 b aEX b)2 p1 (ax2 b aEX b)2 p2 (axn b aEX b)2 pn
a2 ( x1 - EX )2 p1 a2 ( x2 - EX )2 p2 a2 ( xn - EX )2 pn
数学期望是反映离散型随机变量的平均水平
2、数学期望的性质
E(aX b) aE(X ) b
3、如果随机变量X服从两点分布为
X
1
0
P
p
1-p
则 E(X ) p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EX=c×1=c = × = DX=( -c)2×1=0 =(c- ) =( =
四、例题讲解
篮球运动员在比赛中每次罚球命中得1分 例1.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,则他罚球 次的得分 的方差是多少? 次的得分X的方差是多少 ,则他罚球1次的得分 的方差是多少? 小结: 一般地,如果随机变量X服从两点分布, 小结: 一般地,如果随机变量X服从两点分布,
X P 1 p 0 1-p -
EX = 1 × p + 0 × (1 − p ) = p
服从两点分布, 若 X 服从两点分布,则 DX = p(1 − p )
篮球运动员在比赛中每次罚球命中得1分 例2.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,他连续罚球 次;求X的方差。 的方差。 ,他连续罚球3次 的方差 解: (1) X~B(3,0.7) ~ ( , )
ξ
P
1 0.4
2 0.2
3 0.2
4 0.1
5 0.1
商场经销一件该商品,采用 期付款 其利润为200 期付款, 商场经销一件该商品,采用1期付款,其利润为 期或3期付款 期或5 元,分2期或 期付款,其利润为 期或 期付款,其利润为250元,分4期或 元 期或 期付款,其利润为300元, η 表示经销一件该商品的 期付款,其利润为 元 利润。 利润。 位顾客中, (1)求事件 :”购买该商品的 位顾客中,至少有 )求事件A: 购买该商品的3位顾客中 一位采用1期付款 的概率P(A); 期付款” 一位采用 期付款” 的概率 ; 的分布列及期望E (2)求 η 的分布列及期望 η 。 )
选修2-3 高二数学 选修
2.3.2离散型随机变 离散型随机变 量的方差
一、复习回顾
1、离散型随机变量的数学期望 、
X P
x1
x2
p1
p2
··· ···
xi
pi
··· ···
xn
pn
EX = x1 p1 + x 2 p2 + L + x i pi + L + x n pn
数学期望是反映离散型随机变量的平均水平 2、数学期望的性质 、
2
2 np ∑ kC nk p k (1 − p ) n − k =
k =0 n
2n p
2
2
n p
2
2
∑C
k =0
k n
p (1 − p )
k
n−k
=
n p
2
2
第二步得
DX = np(1 − p)
方差的性质
(1)线性变化 )
平移变化不改变方差, 平移变化不改变方差,但是伸缩变化改变方差
D(aX + b ) = a DX
为随机变量X的方差。 = ∑ ( xi − EX )2 pi 为随机变量 的方差。
i =1
n
称 σX =
为随机变量X的标准差。 DX 为随机变量 的标准差。
对方差的几点说明: 对方差的几点说明: (1)随机变量的方差和标准差都反映了随机变量 ) 偏离于均值的平均程度.方差或标准差越小 方差或标准差越小, 取值 偏离于均值的平均程度 方差或标准差越小, 则随机变量偏离于均值的平均程度越小. 则随机变量偏离于均值的平均程度越小 说明:随机变量集中的位置是随机变量的均值; 说明:随机变量集中的位置是随机变量的均值;方差 集中的位置是随机变量的均值 或标准差这种度量指标是一种加权平均的度量指标. 加权平均的度量指标 或标准差这种度量指标是一种加权平均的度量指标 (2)随机变量的方差与样本的方差有何联系与区别? )随机变量的方差与样本的方差有何联系与区别? 随机变量的方差是常数, 样本的方差是随着样本 随机变量的方差是常数,而样本的方差是随着样本 变化的 因此样本的方差是随机变量. 的不同而变化 的不同而变化的,因此样本的方差是随机变量 对于简单随机样本,随着样本容量的增加, 对于简单随机样本,随着样本容量的增加,样本方 差越来越接近总体方差, 差越来越接近总体方差,因此常用样本方差来估计 总体方差. 总体方差
E X − EX 愈小,X的值就愈集中于 EX 附近,
表明此射手发挥愈稳定; 反之就愈分散,表明此射 手发挥愈不稳定.
然而在实际中 E X − EX 带有绝对值,在数学运 算上不方便,因而,通常用 E ( X − EX )2来表达随机 变量 X 取值的分散程度或集中程度. 现在我可以确定派谁去了. 现在我可以确定派谁去了 加权平均 据此分析,我可以算得: 2 DX(= ( x1 −)EX(8−1 )2 L+ (+(i9− EX×20pi +(10+ 9)2n×0.EX 024 n )2 p9+ ×0.2 x −9)2 ) .6 + L− ( x − 2 = ) . p E X −EX = 由于 E ( X − EX ) > E (Y − EY ) 乙射击的平均水平没有差别, 甲、乙射击的平均水平没有差别,在多次射击中平 均得分差别不会很大。但甲通常发挥比较稳定, 均得分差别不会很大。但甲通常发挥比较稳定,多 数得分在9环 而乙得分比较分散, 数得分在 环,而乙得分比较分散,近似平均分布 在8-10环。因此乙射击水平更稳定一些,看来甲 - 环 因此乙射击水平更稳定一些, 无话可说了. 无话可说了.
2 2
E(Y −EY)2 = (8−9)2 ×0.1+(9−9)2 ×0.8+(10−9)2 ×0.1= 0.2
X1 P
8 0.2
9 0.6
10 0.2
X2 P
8 0.4
9 0.2
10 0.4
EX 1 = 9, EX 2 = 9
DX 1 = 0.4, DX 2 = 0.8
问题2:如果其他对手的射击成绩都在8环左右, 环左右, 问题 :如果其他对手的射击成绩都在 环左右 应派哪一名选手参赛? 应派哪一名选手参赛? 问题3:如果其他对手的射击成绩都在 环左右 环左右, 问题 :如果其他对手的射击成绩都在9环左右, 应派哪一名选手参赛? 应派哪一名选手参赛?
2
(2)方差的几个恒等变形
DX = ∑ ( xi − EX ) 2 pi
n
= EX − ( EX )
2
= E ( X − EX )
i =1
2
2
注:要求方差则先求均值
练习:有甲乙两个单位都愿意聘用你, 练习:有甲乙两个单位都愿意聘用你,而你能 获得如下信息: 获得如下信息:
甲单位不同职位月工 资X1/元 元 获得相应职位的概 率P1 乙单位不同职位月工 资X2/元 元 获得相应职位的概 率P2 1200 0.4 1000 0.4 1400 0.3 1400 0.3 1600 1800 0.2 0.1
X P 0 1
3
2
3
0.3
1 2 C 3 0.7 ⋅ 0.3 2 C 3 0.7 2 ⋅ 0.3
0.7
3
一般地,如果随机变量 服从二项分布 服从二项分布, 一般地,如果随机变量X服从二项分布, 即X~B(n,p),则 ~ ( ),则 ),
EX = np
若 X ~ B ( n , p ),则 DX = np (1 − p )
1800 2200 0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位? 根据工资待遇的差异情况,你愿意选择哪家单位?
解:EX 1 = 1400, EX 2 = 1400
DX 1 = 40000, DX 2 = 160000
在两个单位工资的数学期望相等的情况下, 在两个单位工资的数学期望相等的情况下, 如果认为自己能力很强, 如果认为自己能力很强,应选择工资方差大 的单位,即乙单位;如果认为自己能力不强, 的单位,即乙单位;如果认为自己能力不强, 就应选择工资方差小的单位,即甲单位。 就应选择工资方差小的单位,即甲单位。
五、几个常用公式: 几个常用公式:
两个特殊分布的方差
服从两点分布, 若 X 服从两点分布,则 DX = p(1 − p )
若 X ~ B ( n , p ),则 DX = np (1 − p )
证明提示: 证明提示:
n
第一步求
∑k
k =0
n
2
C p (1 − p )
k n k
n−k
= n( n − 1) p + np
问题1:如果你是教练,你会派谁参加比赛呢? 问题 :如果你是教练,你会派谁参加比赛呢? 解:EX 1 = 9, EX 2 = 9
表明甲、乙射击的平均水平没有差别,在多次射击中 表明甲、乙射击的平均水平没有差别, 平均得分差别不会很大。 平均得分差别不会很大。
除平均中靶环数以外, 除平均中靶环数以外,还有其他刻画两名同学各自 射击特点的指标吗? 射击特点的指标吗? 分别画出 0.5 0.4 0.3 0.2 0.1 的分布列图. X 1 , X 2 的分布列图 P 0.5 0.4 0.3 0.2 0.1 O 5 6 7 8 9 X2
5.根据统计,一年中一个家庭万元以上的财产被盗的 根据统计, 根据统计 概率为0.01,保险公司开办一年期万元以上家庭财 概率为 , 产保险,参加者需交保险费100元,若在一年以内, 产保险,参加者需交保险费 元 若在一年以内, 万元以上财产被盗,保险公司赔偿a元 万元以上财产被盗,保险公司赔偿 元(a>100), ), 如何确定, 问a如何确定,可使保险公司期望获利? 如何确定 可使保险公司期望获利?
离散型随机变量取值的方差 一般地,若离散型随机变量X的概率分布为 的概率分布为: 一般地,若离散型随机变量 的概率分布为: