2012年高考辽宁数学试题(理科)解析2

合集下载

2012年辽宁高考试题(理数,word解析版)

2012年辽宁高考试题(理数,word解析版)

【解析】 2+i = 2+i2-i=
5
= - i ,故选 A. 55

3. 已知两个非零向量 a,b 满足 a+b = a-b ,则下面结论正确




A. a//b B. a b C. a = b

D. a+b=a-b
【命题意图】 本题主 要 考查平面向量运算,是简单题.

【解析 2】已知得 a+b = a-b ,即 a -2ab+ b = a +2ab+ b ab=0a b ,
故选 B.
4. 已知命题 p:x1,x2 R, f x2 -f x1 x2 -x1 0 ,则 p 是
A. x1,x2 R, f x2 -f x1 x2 -x1 0
【解析】全称命题的否定形式为将“ ”改为“ ”,后面的加以否定,即将“
f x2 -f x1 x2 -x1 0 ”改为“ f x2 -f x1 x2 -x1 <0 ”,故选 C.
5. 一排 9 个座位坐了 3 个三口之家.若每家人坐在一起,则不同的坐法种数为

D.1
=11a6
=88
,故选
B.
档题.
【解析】如图所示,令 AC=x,CB=y ,则 x+y=12x>0,y>0,矩形面积设为 S ,则
S =xy=x 12-x 32 ,解得 0<x 4或8 x<12 ,该矩形面积小于 32 cm2 的概率为
8 = 2 ,故选 C. 12 3
A.58
B.88
C.143
【命题意图】本题主要考查等差数列通项公式和前 n 项和公式,是简单题.

2012年普通高等学校招生全国统一考试理科数学(辽宁卷)

2012年普通高等学校招生全国统一考试理科数学(辽宁卷)

辽宁理科1.(2012辽宁,理1)已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=( ). A .{5,8} B .{7,9} C .{0,1,3} D .{2,4,6}B 由已知条件可得∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},所以(∁U A )∩(∁U B )={7,9},故选B . 2.(2012辽宁,理2)复数2i 2i -+=( ). A .35-45iB .35+45iC .1-45iD .1+35iA 2i 2i-+=2(2i)(2i)(2i)-+-=244i i 5-+=35-45i ,故选A .3.(2012辽宁,理3)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ). A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -bB |a +b |2=|a |2+2a ·b +|b |2,|a -b |2=|a |2-2a ·b +|b |2,因为|a +b |=|a -b |,所以|a |2+2a ·b +|b |2=|a |2-2a ·b +|b |2,即2a ·b =-2a ·b , 所以a ·b =0,a ⊥b .故选B .4.(2012辽宁,理4)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则p 是( ). A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0C 命题p 是一个全称命题,其否定为存在性命题,p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故选C .5.(2012辽宁,理5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ). A .3×3! B .3×(3!)3 C .(3!)4 D .9!C 完成这件事可以分为两步,第一步排列三个家庭的相对位置,有33A 种排法;第二步排列每个家庭中的三个成员,共有333333A A A 种排法.由乘法原理可得不同的坐法种数有33333333A A A A ,故选C . 6.(2012辽宁,理6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ). A .58 B .88 C .143D .176 B 因为数列{a n }为等差数列,所以S 11=11111(a a )2+,根据等差数列的性质,若p +q =m +n ,则a p +a q =a m +a n 得,a 1+a 11=a 4+a 8=16,所以S 11=11162⨯=88,故选B .7.(2012辽宁,理7)已知sin α-cos α∈(0,π),则tan α=( ).A .-1B 2C 2D .1A 将sin α-cos sin 2α-2sin αcos α+cos 2α=2,即sin αcos α=-12,则22ααααsin cos sin cos +=2αα1tan tan +=-12,整理得2tan α+tan 2α+1=0,即(tan α+1)2=0, 所以tan α=-1.故选A .8.(2012辽宁,理8)设变量x ,y 满足x y 10,0x y 20,0y 15,-≤⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( ).A .20B .35C .45D .55D 不等式组表示的平面区域如图所示,则2x +3y 在A (5,15)处取得最大值,故选D .9.(2012辽宁,理9)执行如图所示的程序框图,则输出的S 值是( ). A .-1 B .23C .32D .4 D 当i =1时,S =224-=-1; i =2时,S =221+=23; i =3时,S =2223-=32;i =4时,S =2322-=4;i =5时,S =224-=-1;i =6时,S =23;i =7时,S =32;i =8时,S =4;i =9时,输出S ,故选D .10.(2012辽宁,理10)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( ). A .16B .13C .23D .45C 设AC =x cm (0<x <12),则CB =12-x (cm ),则矩形面积S =x (12-x )=12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12,在数轴上表示为由几何概型概率公式得,概率为812=23,故选C .11.(2012辽宁,理11)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos (πx )|,则函数h (x )=g (x )-f (x )在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为( ).A .5B .6C .7D .8 B 由f (-x )=f (x ),f (x )=f (2-x )可知,f (x )是偶函数,且关于直线x =1对称,又由f (2-x )=f (x )=f (-x )可知,f (x )是以2为周期的周期函数.在同一坐标系中作出f (x )和g (x )在13,22⎡⎤-⎢⎥⎣⎦上的图象如图,可知f (x )与g (x )的图象在13,22⎡⎤-⎢⎥⎣⎦上有6个交点,即h (x )的零点个数为6.12.(2012辽宁,理12)若x ∈[0,+∞),则下列不等式恒成立的是( ). A .e x ≤1+x +x 2 B1-12x +14x 2C .cos x ≥1-12x 2D .ln (1+x )≥x -18x 2C 对于e x 与1+x +x 2,当x =5时,e x >32,而1+x +x 2=31,所以A 选项不正确;1-12x +14x 2,当x =14时51-12x +14x 2=5764<5所以B 选项不正确;令f (x )=cos x +12x 2-1,则f '(x )=x -sin x ≥0对x ∈[0,+∞)恒成立,f (x )在[0,+∞)上为增函数,所以f (x )的最小值为f (0)=0,所以f (x )≥0,cos x ≥1-12x 2,故C 正确;令g (x )=ln (1+x )-x +18x 2,则g '(x )=1x 1++14x -1,令g '(x )=0,得x =0或x =3.当x ∈(0,3)时,g '(x )<0,当x ∈(3,+∞)时,g '(x )>0,g (x )在x =3时取得最小值g (3)=ln 4-3+98<0,所以D 不正确.13.(2012辽宁,理13)一个几何体的三视图如图所示,则该几何体的表面积为 .38 由三视图可以看出该几何体为一个长方体从中间挖掉了一个圆柱,长方体表面积为2×(4×3+3×1+4×1)=38,圆柱的侧面积为2π,上下两个底面积和为2π,所以该几何体的表面积为38+2π-2π=38.14.(2012辽宁,理14)已知等比数列{a n }为递增数列,且25a =a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n = .2n 设数列{a n }的首项为a 1,公比为q ,则21a ·q 8=a 1·q 9,a 1=q ,由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0,解得q =2或q =12,因为数列{a n }为递增数列,所以q =2,a 1=2,a n =2n .15.(2012辽宁,理15)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为.-4 由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴212242y ,(-2)2y ,⎧=⎨=⎩①② ∴12y 8,y 2,=⎧⎨=⎩ ∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y '=x ,∴过点P 的切线斜率为y 'x 4==4. ∴过点P 的切线为:y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y 'x 2 =-=-2, ∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2. 联立y 4x 8,y 2x 2,=-⎧⎨=--⎩得x =1,y =-4,∴点A 的纵坐标为-4.16.(2012辽宁,理16)已知正三棱锥P -ABC ,点P ,A ,B ,C,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为.3正三棱锥P -ABC 可看作由正方体PADC -BEFG 截得,如图所示,PF 为三棱锥P -ABC 的外接球的直径,且PF ⊥平面ABC .设正方体棱长为a ,则3a 2=12,a =2,AB =AC =BC =S △ABC =12×2由V P -ABC =V B -PAC ,得13·h ·S △ABC =13×12×2×2×2,所以h3因此球心到平面ABC317.(2012辽宁,理17)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,所以cos B =12.(2)解法一:由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,所以sin A sin C =1-cos 2B =34.解法二:由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =22a c ac 2ac+-,解得a =c ,所以A =C =B =60°,故sin A sin C =34.18.(2012辽宁,理18)如图,直三棱柱ABC -A 'B 'C ',∠BAC =90°,AB =AC =λAA ',点M ,N 分别为A 'B 和B 'C '的中点. (1)证明:MN ∥平面A 'ACC ';(2)若二面角A '-MN -C 为直二面角,求λ的值.解:(1)证法一:连结AB ',AC ',由已知∠B AC =90°,AB =AC ,三棱柱ABC -A 'B 'C '为直三棱柱,所以M 为AB '中点. 又因为N 为B 'C '的中点, 所以MN ∥AC '.又MN ⊄平面A 'A CC ',AC '⊂平面A 'ACC ', 因此MN ∥平面A 'ACC '.证法二:取A 'B '中点P ,连结MP ,NP , 而M ,N 分别为AB '与B 'C '的中点, 所以MP ∥AA ',PN ∥A 'C ',所以MP ∥平面A 'ACC ',PN ∥平面A 'ACC '. 又MP ∩NP =P ,因此平面MPN ∥平面A 'A CC '. 而MN ⊂平面MPN ,因此MN ∥平面A 'ACC '.(2)以A 为坐标原点,分别以直线AB ,AC ,AA '为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图所示. 设AA '=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A '(0,0,1),B '(λ,0,1),C '(0,λ,1),所以M λ1,0,22⎛⎫ ⎪⎝⎭,N λλ,,122⎛⎫⎪⎝⎭.设m =(x 1,y 1,z 1)是平面A 'MN 的法向量,由m '0,m 0A M M N ⎧⋅=⎪⎨⋅=⎪⎩得111110,2210,22x z y z λλ⎧-=⎪⎪⎨⎪+=⎪⎩可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由n 0,n 0N C M N ⎧⋅=⎪⎨⋅=⎪⎩得222220,2210,22x y z y z λλλ⎧-+-=⎪⎪⎨⎪+=⎪⎩可取n =(-3,-1,λ).因为A '-MN -C 为直二面角,所以m ·n =0,即-3+(-1)×(-1)+λ2=0,解得19.(2012辽宁,理19)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:χ2=211221221n (n n n n )n n n n -,将2×2列联表中的数据代入公式计算,得χ2=2112212211212n (n n n n )n n n n ++++-=2100(30104515)75254555⨯⨯-⨯⨯⨯⨯=10033≈3.030.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B 13,⎛⎫ ⎪,从而X 的分布列为E (X )=np =3×14=34,D (X )=np (1-p )=3×14×34=916.20.(2012辽宁,理20)如图,椭圆C 0:22x a+22y b=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=21t ,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程; (2)设动圆C 2:x 2+y 2=22t 与C 0相交于A ',B ',C ',D '四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A 'B 'C 'D '的面积相等,证明:21t +22t 为定值. (1)解:设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a ,0),A 2(a ,0),则直线A 1A 的方程为y =11y x a+(x +a ),①直线A 2B 的方程为y =11y x a--(x -a ).②由①②得y 2=21221y x a--(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故212x a+212y b=1.从而21y =b 2212x 1a ⎛⎫- ⎪⎝⎭,代入③得22x a-22y b=1(x <-a ,y <0).(2)证明:设A '(x 2,y 2),由矩形ABCD 与矩形A 'B 'C 'D '的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故2211x y =2222x y . 因为点A ,A '均在椭圆上,所以b 222112x x 1a ⎛⎫-⎪⎝⎭=b 222222x x 1a ⎛⎫- ⎪⎝⎭. 由t 1≠t 2,知x 1≠x 2,所以21x +22x =a 2. 从而21y +22y =b 2, 因此21t +22t =a 2+b 2为定值.21.(2012辽宁,理21)设f (x )=ln (x +1ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x 6+.(1)解:由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y '|x =0=1ax 1⎛⎫+⎪+⎝⎭|x =0=32+a ,得a =0.(2)证法一:由均值不等式,当x >0时,x +1+1=x +2,故x 1+<x 2+1.记h (x )=f (x )-9x x 6+,则h '(x )=1x 1++2x 1+-254(x 6)+=2x 12(x 1)+++-254(x 6)+<x 64(x 1)++-254(x 6)+=32(x 6)216(x 1)4(x 1)(x 6)+-+++.令g (x )=(x +6)3-216(x +1),则当0<x <2时,g '(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数, 又由g (0)=0,得g (x )<0, 所以h '(x )<0.因此h (x )在(0,2)内是递减函数, 又h (0)=0,得h (x )<0. 于是当0<x <2时,f (x )<9x x 6+.证法二:由(1)知f (x )=ln (x +1)+x 1+-1.由均值不等式,当x >0时,2(x 1) 1+<x +1+1=x +2, 故x 1+<x 2+1.①令k (x )=ln (x +1)-x ,则k (0)=0,k '(x )=1x 1+-1=x x 1-+<0,故k (x )<0,即ln (x +1)<x .② 由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时, h '(x )=f (x )+(x +6)f '(x )-9 <32x +(x +6)1x 12x 1⎛+⎪++⎝⎭-9 =12(x 1)+[3x (x +1)+(x +6)(2+x 1+)-18(x +1)]<1x 3x (x 1)(x 6)318(x 1)2(x 1)2⎡⎤⎛⎫++++-+ ⎪⎢⎥+⎝⎭⎣⎦ =x 4(x 1)+(7x -18)<0.因此h (x )在(0,2)内单调递减, 又h (0)=0,所以h (x )<0,即f (x )<9x x 6+.22.(2012辽宁,理22)选修4-1:几何证明选讲如图,☉O 和☉O '相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交☉O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明:(1)由AC 与☉O '相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB , 所以△ACB ∽△DAB .从而A C A D=A B B D,即AC ·BD =AD ·AB .(2)由AD 与☉O 相切于A ,得∠AED =∠BAD , 又∠ADE =∠BDA ,得△EAD ∽△ABD . 从而A E A B=A D BD,即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .23.(2012辽宁,理23)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. (1)解:圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.解ρ2,ρ4θcos =⎧⎨=⎩得ρ=2,θ=±3π,故圆C 1与圆C 2交点的坐标为2,3π⎛⎫⎪⎝⎭,2,-3π⎛⎫ ⎪⎝⎭.注:极坐标系下点的表示不唯一.(2)解法一:由x ρθ,y ρθcos sin =⎧⎨=⎩得圆C 1与C 2交点的直角坐标分别为(11故圆C 1与C 2的公共弦的参数方程为x 1,y t,=⎧⎨=⎩t(或参数方程写成x 1,y y,=⎧⎨=⎩y 解法二:将x =1代入x ρθ,y ρθcos sin =⎧⎨=⎩得ρcos θ=1,从而ρ=1θcos .于是圆C 1与C 2的公共弦的参数方程为x 1,y θ,tan =⎧⎨=⎩-3π≤θ≤3π.24.(2012辽宁,理24)选修4—5:不等式选讲已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若x f (x)-2f 2⎛⎫ ⎪⎝⎭≤k 恒成立,求k 的取值范围. 解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.当a >0时,-4a≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f x 2⎛⎫ ⎪⎝⎭,则h(x)=1,x1,1 4x3,-1x,211,x,2⎧⎪≤-⎪⎪--<<-⎨⎪⎪-≥-⎪⎩所以|h(x)|≤1,因此k≥1.。

2012年辽宁省高考数学试卷(理科)含答案

2012年辽宁省高考数学试卷(理科)含答案

2012年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•辽宁)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}考点:交、并、补集的混合运算.专题:计算题.分析:由题已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)解答:解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B点评:本题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规则2.(5分)(2012•辽宁)复数=()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:进行复数的除法运算,分子和分母同乘以分母的共轭复数,再进行复数的乘法运算,化成最简形式,得到结果.解答:解:===,故选A.点评:本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.3.(5分)(2012•辽宁)已知两个非零向量,满足|+|=|﹣|,则下面结论正确的是()A.∥B.⊥C.||=|| D.+=﹣考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于||和||表示以 、 为邻边的平行四边形的两条对角线的长度,再由|+|=|﹣|可得此平行四边形的对角线相等,故此平行四边形为矩形,从而得出结论. 解答:解:由两个两个向量的加减法的法则,以及其几何意义可得, ||和||表示以 、 为邻边的平行四边形的两条对角线的长度.再由|+|=|﹣|可得此平行四边形的对角线相等,故此平行四边形为矩形,故有⊥.故选B . 点评: 本题主要考查两个向量的加减法的法则,以及其几何意义,属于中档题. 4.(5分)(2012•辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0,则¬p 是( ) A . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0 B . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0 C . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0 D . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0考点: 命题的否定. 专题: 简易逻辑. 分析:由题意,命题p 是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项 解答: 解:命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0是一个全称命题,其否定是一个特称命题, 故¬p :∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0. 故选:C . 点评:本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律. 5.(5分)(2012•辽宁)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( ) A . 3×3! B . 3×(3!)3 C . (3!)4 D . 9!考点: 排列、组合及简单计数问题. 专题: 计算题. 分析:完成任务可分为两步,第一步,三口之家内部排序,第二步,三家排序,由分步计数原理计数公式,将两步结果相乘即可 解答:解:第一步,分别将三口之家“捆绑”起来,共有3!×3!×3!种排法; 第二步,将三个整体排列顺序,共有3!种排法 故不同的作法种数为3!×3!×3!×3!=3!4故选C点评:本题主要考查了分步计数原理及其应用,排列数及排列数公式的应用,捆绑法计数的技巧,属基础题6.(5分)(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.7.(5分)(2012•辽宁)已知,则tanα=()A.﹣1 B.C.D.1考点:同角三角函数间的基本关系.专题:计算题.分析:由条件可得1﹣2sinαcosα=2,即sin2α=﹣1,故2α=,α=,从而求得tanα的值.解答:解:∵已知,∴1﹣2sinαcosα=2,即sin2α=﹣1,故2α=,α=,tanα=﹣1.故选A.点评:本题主要考查同角三角函数的基本关系的应用,求得α=,是解题的关键,属于基础题.8.(5分)(2012•辽宁)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.55考点:简单线性规划.专题:计算题.分析:先画出满足约束条件的平面区域,结合几何意义,然后求出目标函数z=2x+3y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.解答:解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D点评:本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.9.(5分)(2012•辽宁)执行如图所示的程序框图,则输出的S值是()A.﹣1 B.C.D.4考点:循环结构.专题:计算题.分析:直接利用循环结构,计算循环各个变量的值,当i=9<9,不满足判断框的条件,退出循环输出结果即可.解答:解:第1次判断后循环,S=﹣1,i=2,第2次判断后循环,S=,i=3,第3次判断后循环,S=,i=4,第4次判断后循环,S=4,i=5,第5次判断后循环,S=﹣1,i=6,第6次判断后循环,S=,i=7,第7次判断后循环,S=,i=8,第8次判断后循环,S=4,i=9,第9次判断不满足9<8,推出循环,输出4.故选D.点评:本题考查循环框图的作用,正确计算循环变量的数值,是解题的关键,考查计算能力.10.(5分)(2012•辽宁)在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.B.C.D.考点:几何概型.专题:计算题.分析:设AC=x,则0<x<12,若矩形面积为小于32,则x>8或x<4,从而利用几何概型概率计算公式,所求概率为长度之比解答:解:设AC=x,则BC=12﹣x,0<x<12若矩形面积S=x(12﹣x)<32,则x>8或x<4即将线段AB三等分,当C位于首段和尾段时,矩形面积小于32,故该矩形面积小于32cm2的概率为P==故选C点评:本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比是解决本题的关键,属基础题11.(5分)(2012•辽宁)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在上的零点个数为()A.5B.6C.7D.8考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:计算题;压轴题;数形结合.分析:利用函数的奇偶性与函数的解析式,求出x∈[0,],x∈[]时,g(x)的解析式,推出f(0)=g(0),f(1)=g(1),g()=g()=0,画出函数的草图,判断零点的个数即可.解答:解:因为当x∈[0,1]时,f(x)=x3.所以当x∈[1,2]时2﹣x∈[0,1],f(x)=f(2﹣x)=(2﹣x)3,当x∈[0,]时,g(x)=xcos(πx);当x∈[]时,g(x)=﹣xcosπx,注意到函数f(x)、g(x)都是偶函数,且f(0)=g(0),f(1)=g(1)=1,g()=g()=0,作出函数f(x)、g(x)的草图,函数h(x)除了0、1这两个零点之外,分别在区间[﹣,0],[0,],[,1],[1,]上各有一个零点.共有6个零点,故选B点评:本题主要考查函数的奇偶性、对称性、函数的零点,考查转化能力、运算求解能力、推理论证能力以及分类讨论思想、数形结合思想,难度较大.12.(5分)(2012•辽宁)若x∈[0,+∞),则下列不等式恒成立的是()A.e x≤1+x+x2B.C.D.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题.分析:对于A,取x=3,e3>1+3+32,;对于B,令x=1,,计算可得结论;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=cosx+1≥0,从而可得函数在[0,+∞)上单调增,故成立;对于D,取x=3,.解答:解:对于A,取x=3,e3>1+3+32,所以不等式不恒成立;对于B,x=1时,左边=,右边=0.75,不等式成立;x=时,左边=,右边=,左边大于右边,所以x∈[0,+∞),不等式不恒成立;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=cosx+1≥0,∴h′(x)在[0,+∞)上单调增∴h′(x)≥h′(0)=0,∴函数在[0,+∞)上单调增,∴h(x)≥0,∴;对于D,取x=3,,所以不等式不恒成立;故选C.点评:本题考查大小比较,考查构造函数,考查导数知识的运用,确定函数的单调性是解题的关键.二、填空题:本大题共4小题,每小题5分.13.(5分)(2012•辽宁)一个几何体的三视图如图所示,则该几何体的表面积为38.考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的形状,利用三视图的数据,求出几何体的表面积即可.解答:解:由三视图可知,几何体是底面边长为4和3高为1的长方体,中间挖去半径为1的圆柱,几何体的表面积为:长方体的表面积+圆柱的侧面积﹣圆柱的两个底面面积.即S=2×(3×4+1×3+1×4)+2π×1﹣2×12π=38.故答案为:38.点评:本题考查三视图与直观图的关系,几何体的表面积的求法,判断三视图复原几何体的形状是解题的关键.14.(5分)(2012•辽宁)已知等比数列{a n}为递增数列,且a52=a10,2(a n+a n+2)=5a n+1,则数列{a n}的通项公式a n=2n.考点:数列递推式.专题:计算题.分析:通过,求出等比数列的首项与公比的关系,通过2(an+a n+2)=5a n+1求出公比,推出数列的通项公式即可.解答:解:∵,∴,∴a1=q,∴,∵2(a n+a n+2)=5a n+1,∴,∴2(1+q2)=5q,解得q=2或q=(等比数列{a n}为递增数列,舍去)∴.故答案为:2n.点评:本题主要考查等比数列的通项公式,转化思想和逻辑推理能力,属于中档题.15.(5分)(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为﹣4.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:通过P,Q的横坐标求出纵坐标,通过二次函数的导数,推出切线方程,求出交点的坐标,即可得到点A的纵坐标.解答:解:因为点P,Q的横坐标分别为4,﹣2,代入抛物线方程得P,Q的纵坐标分别为8,2.由x2=2y,则y=,所以y′=x,过点P,Q的抛物线的切线的斜率分别为4,﹣2,所以过点P,Q的抛物线的切线方程分别为y=4x﹣8,y=﹣2x﹣2联立方程组解得x=1,y=﹣4故点A的纵坐标为﹣4.故答案为:﹣4.点评:本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题.16.(5分)(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为.考点:球内接多面体.专题:计算题;压轴题.分析:先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算解答:解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,∵圆O的半径为,∴正方体的边长为2,即PA=PB=PC=2球心到截面ABC的距离即正方体中心到截面ABC的距离设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V=S△ABC×h=S△PAB×PC=××2×2×2=2△ABC为边长为2的正三角形,S△ABC=×∴h==∴正方体中心O到截面ABC的距离为﹣=故答案为点评:本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题三、解答题:解答应写文字说明,证明过程或演算步骤.17.(12分)(2012•辽宁)在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C 成等差数列.(Ⅰ)求cosB的值;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.考点:数列与三角函数的综合.专题:计算题;综合题.分析:(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.解答:解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分点评:本题考查数列与三角函数的综合,着重考查等比数列的性质,考查正弦定理与余弦定理的应用,考查分析转化与运算能力,属于中档题.18.(12分)(2012•辽宁)如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)若二面角A′﹣MN﹣C为直二面角,求λ的值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;与二面角有关的立体几何综合题.专题:计算题;证明题;转化思想.分析:(I)法一,连接AB′、AC′,说明三棱柱ABC﹣A′B′C′为直三棱柱,推出MN∥AC′,然后证明MN∥平面A′ACC′;法二,取A′B′的中点P,连接MP、NP,推出MP∥平面A′ACC′,PN∥平面A′ACC′,然后通过平面与平面平行证MN∥平面A′ACC′.(II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,设AA′=1,推出A,B,C,A′,B′,C′坐标求出M,N,设=(x1,y1,z1)是平面A′MN的法向量,通过,取,设=(x2,y2,z2)是平面MNC的法向量,由,取,利用二面角A'﹣MN﹣C为直二面角,所以,解λ.解答:(I)证明:连接AB′、AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC﹣A′B′C′为直三棱柱,所以M为AB′中点,又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,因此MN∥平面A′ACC′;法二:取A′B′的中点P,连接MP、NP,M、N分别为A′B、B′C′的中点,所以MP∥AA′,NP∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图,设AA′=1,则AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).所以M(),N(),设=(x1,y1,z1)是平面A′MN的法向量,由,得,可取,设=(x2,y2,z2)是平面MNC的法向量,由,得,可取,因为二面角A'﹣MN﹣C为直二面角,所以,即﹣3+(﹣1)×(﹣1)+λ2=0,解得λ=.点评:本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中.第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明.19.(12分)(2012•辽宁)电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女10 55合计(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)P(K2≥k)0.05 0.01k 3.841 6.635.考点:独立性检验的应用;频率分布直方图.专题:计算题;数形结合.分析:(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出K2,与3.841比较即可得出结论;(II)由题意,用频率代替概率可得出从观众中抽取到一名“体育迷”的概率是,由于X∽B(3,),从而给出分布列,再由公式计算出期望与方差即可解答:解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:非体育迷体育迷合计男30 15 45女45 10 55合计75 25 100将2×2列联表中的数据代入公式计算,得:K2==≈3.03,因为3.03<3.841,所以没有理由认为“体育迷”与性别有关.(II)由频率分布直方图知抽到“体育迷”的频率是0.25,将频率视为概率,即从观众中抽取到一名“体育迷”的概率是,由题意X∽B(3,),从而分布列为X 0 1 2 3P所以E(X)=np=3×=.D(X)=npq=3××=.点评:本题考查独立性检验的运用及期望与方差的求法,频率分布直方图的性质,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型20.(12分)(2012•辽宁)如图,已知椭圆C0:,动圆C1:.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;(Ⅱ)设动圆C2:与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.考点:圆锥曲线的综合.专题:综合题;压轴题.分析:(Ⅰ)设出线A1A的方程、直线A2B的方程,求得交点满足的方程,利用A在椭圆C0上,化简即可得到M轭轨迹方程;(Ⅱ)根据矩形ABCD与矩形A'B'C'D'的面积相等,可得A,A′坐标之间的关系,利用A,A′均在椭圆上,即可证得=a2+b2为定值.解答:(Ⅰ)解:设A(x1,y1),B(x2,y2),∵A1(﹣a,0),A2(a,0),则直线A1A的方程为①直线A2B的方程为y=﹣(x﹣a)②由①×②可得:③∵A(x1,y1)在椭圆C0上,∴∴代入③可得:∴;(Ⅱ)证明:设A′(x3,y3),∵矩形ABCD与矩形A'B'C'D'的面积相等∴4|x1||y1|=4|x3||y3|∴=∵A,A′均在椭圆上,∴=∴=∴∵t1≠t2,∴x1≠x3.∴∵,∴∴=a2+b2为定值.点评:本题考查轨迹方程,考查定值问题的证明,解题的关键是设出直线方程,求出交点的坐标,属于中档题.21.(12分)(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:综合题;压轴题.分析:(I)由y=f(x)过(0,0),可求b的值,根据曲线y=f(x)与直线在(0,0)点相切,利用导函数,可求a的值;(II)由(I)知f(x)=ln(x+1)+,由均值不等式,可得,构造函数k(x)=ln(x+1)﹣x,可得ln(x+1)<x,从而当x>0时,f(x)<,记h(x)=(x+6)f(x)﹣9x,可证h(x)在(0,2)内单调递减,从而h(x)<0,故问题得证.解答:(I)解:由y=f(x)过(0,0),∴f(0)=0,∴b=﹣1∵曲线y=f(x)与直线在(0,0)点相切.∴y′|x=0=∴a=0;(II)证明:由(I)知f(x)=ln(x+1)+由均值不等式,当x>0时,,∴①令k(x)=ln(x+1)﹣x,则k(0)=0,k′(x)=,∴k(x)<0 ∴ln(x+1)<x,②由①②得,当x>0时,f(x)<记h(x)=(x+6)f(x)﹣9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)﹣9<<=∴h(x)在(0,2)内单调递减,又h(0)=0,∴h(x)<0∴当0<x<2时,f(x)<.点评:本题考查导数知识的运用,考查导数的几何意义,考查构造法的运用,考查不等式的证明,正确构造函数是解题的关键.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(10分)(2012•辽宁)选修4﹣1:几何证明选讲如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:(Ⅰ)AC•BD=AD•AB;(Ⅱ)AC=AE.考点:综合法与分析法(选修).专题:证明题.分析:(I)利用圆的切线的性质得∠CAB=∠ADB,∠ACB=∠DAB,从而有△ACB∽△DAB,=,由此得到所证.(II)利用圆的切线的性质得∠AED=∠BAD,又∠ADE=∠BDA,可得△EAD∽△ABD,=,AE•BD=AD•AB,再结合(I)的结论AC•BD=AD•AB 可得,AC=AE.解答:证明:(I)∵AC与⊙O'相切于点A,故∠CAB=∠ADB,同理可得∠ACB=∠DAB,∴△ACB∽△DAB,∴=,∴AC•BD=AD•AB.(II)∵AD与⊙O相切于点A,∴∠AED=∠BAD,又∠ADE=∠BDA,∴△EAD∽△ABD,∴=,∴AE•BD=AD•AB.再由(I)的结论AC•BD=AD•AB 可得,AC=AE.点评:本题主要考查圆的切线的性质,利用两个三角形相似得到成比列线段,是解题的关键,属于中档题.23.(2012•辽宁)选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.24.(2012•辽宁)选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;压轴题.分析:(Ⅰ)先解不等式|ax+1|≤3,再根据不等式f(x)≤3的解集为{x|﹣2≤x≤1},分类讨论,即可得到结论.(Ⅱ)记,从而h(x)=,求得|h(x)|≤1,即可求得k的取值范围.解答:解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.点评:本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.。

2012年高考真题——理科数学(辽宁卷)

2012年高考真题——理科数学(辽宁卷)

2012年高考真题——理科数学(辽宁卷)复数(A)(B)(C) (D)【答案解析】A,故选A【点评】本题主要考查复数代数形式的运算,属于容易题。

复数的运算要做到细心准确。

已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是(A) a∥b(B) a∥b(C){0,1,3}(D)a+b=ab【答案解析】B一、由|a+b|=|ab|,平方可得ab=0, 所以a∥b,故选B二、根据向量加法、减法的几何意义可知|a+b|与|ab|分别为以向量a,b为邻边的平行四边形的两条对角线的长,因为|a+b|=|ab|,所以该平行四边形为矩形,所以a∥b,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。

解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解。

已知命题p:x1,x2R,(f(x2)f(x1))(x2x1)≥0,则p是(A) x1,x2R,(f(x2)f(x1))(x2x1)≤0(B) x1,x2R,(f(x2)f(x1))(x2x1)≤0(C) x1,x2R,(f(x2)f(x1))(x2x1)0(D) x1,x2R,(f(x2)f(x1))(x2x1)0【答案解析】C命题p为全称命题,所以其否定p应是特称命题,又(f(x2)f(x1))(x2x1)≥0否定为(f(x2)f(x1))(x2x1)0,故选C【点评】本题主要考查含有量词的命题的否定,属于容易题。

一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3!(B) 3×(3!)3 (C)(3!)4(D) 9!【答案解析】C此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法。

因此不同的坐法种数为,答案为C【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。

在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=(A)58(B)88(C)143 (D)176【答案解析】B在等差数列中,,答案为B【点评】本题主要考查等差数列的通项公式、性质及其前n项和公式,同时考查运算求解能力,属于中档题。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

2012年高考数学试卷及解析辽宁卷(理科)

2012年高考数学试卷及解析辽宁卷(理科)

2012年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U UC A C B=(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}(2)复数22ii -= +(A)3455i-(B)3455i+(C)415i-(D)315i+(3)已知两个非零向量a,b满足|a+b|=|a-b|,则下面结论正确的是(A) a∥b(B) a⊥b(C){0,1,3} (D)a+b=a-b(4)已知命题p:∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≥0,则⌝p是(A) ∃x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0(B) ∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0(C) ∃x1,x2∈R,(f(x2)-f(x1)(x2-x1)<0(D) ∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)<0(5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3!(B) 3×(3!)3 (C)(3!)4(D) 9!(6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=(A)58 (B)88 (C)143 (D)176(7)已知sin cos αα-=α∈(0,π),则tan α=(A) -1(B)(C) (D) 1 (8)设变量x ,y 满足10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则2x +3y 的最大值为(A) 20 (B) 35 (C) 45(D) 55(9)执行如图所示的程序框图,则输出的S 的值是(A) -1 (B)23 (C) 32(D) 4 (10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 3的概率为 (A) 16 (B) 13 (C) 23 (D) 45(11)设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )=|x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为 (A)5 (B)6 (C)7 (D)8(12)若[0,)x ∈+∞,则下列不等式恒成立的是(A)21x e x x ++ (2111)24x x <-+ (C)21cos 12x x -… (D)21ln(1)8x x x +- (Ⅱ)本卷包括必考题和选考题两部分。

2012年辽宁高考数学理科试卷(带详解)

2012年辽宁高考数学理科试卷(带详解)

2012年普通高等学校招生全国统一考试(辽宁卷)答案与解析数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=UUA B 痧 ( )A .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6 【测量目标】集合的基本运算.【考查方式】通过列举法给出全集与子集,求两集合的交集. 【难易程度】容易 【参考答案】B 【试题解析】()()U UA B痧即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,()()(){}==7,9U UU A B A B 痧?.2.复数2i=2i -+ ( ) A .34i 55- B .34+i 55 C .41i 5- D .31+i 5【测量目标】复数代数形式的四则运算.【考查方式】给出复数的除法形式,考查复数的代数形式的四则运算.【难易程度】容易 【参考答案】A【试题解析】()()()22i 2i 34i 34===i 2+i 2+i 2i 555----- 3. 已知两个非零向量a,b 满足+=-a b a b ,则下面结论正确 ( ) A .a b B .⊥a bC .=a bD .+=-a b a b【测量目标】向量的线性运算.【考查方式】给出两个非零向量满足的关系式,求两向量的线性关系. 【难易程度】容易 【参考答案】B【试题解析】+=-a b a b ,可以从几何角度理解,以非零向量a,b 为邻边做平行四边形,对角线长分别为,+-a b a b ,若=+-a b a b ,则说明四边形为矩形,所以⊥a b ;也可由已知得22+=-a b a b ,即22222+=+2+=0-∴∴⊥a ab b a ab b ab a b 4. 已知命题()()()()122121:,,0p x x f x f x xx ∀∈--R …,则p ⌝是 ( )A .()()()()122121,,0x x f x f x xx ∃∈--R … B .()()()()122121,,0x x f x f x xx ∀∈--R … C .()()()()122121,,<0x x f x f x xx ∃∈--R D .()()()()122121,,<0x x f x f x xx ∀∈--R【测量目标】简单的逻辑联结词,全称量词与存在量词. 【难易程度】容易【考查方式】给出命题形式求其非命题形式. 【参考答案】C【试题解析】全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()21210f x f x xx --…”改为“()()()()2121<0f x f x x x --”.5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 ( ) A .33!⨯ B .()333!⨯ C .()43! D .9!【测量目标】排列组合及其应用.【考查方式】给出排列组合的条件,求不同的方案数量. 【难易程度】中等【参考答案】C【试题解析】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S ( ) A .58 B .88 C .143 D .176 【测量目标】等差数列的性质,等差数列前n 项和.【考查方式】给出等差数列中两项的和,利用等差数列的性质求数列的前几项和. 【难易程度】容易 【参考答案】B【试题解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7.已知()sin cos 0,πααα-∈,则tan α= ( ) A .1- B.2-C.2D .1【测量目标】同角三角函数的基本关系.【考查方式】给出sin α与cos α满足的关系,求tan α的值. 【难易程度】容易 【参考答案】A【试题解析】方法一:()sin cos 0,πααα-∈,两边平方得1sin 2=2,α-()sin 2=1,20,2π,αα-∈3π3π2=,=,24ααtan =1α∴- 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =1ααα∴-8. 设变量,x y 满足100+20015x y x y y -⎧⎪⎨⎪⎩…剟剟,则2+3x y 的最大值为 ( )A .20B .35C .45D .55 【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出不等式组,画出不等式表示的范围,求解目标函数的最值. 【难易程度】容易【参考答案】D【试题解析】如图所示过点()5,15A ,2+3x y 的最大值为55第8题图9. 执行如图所示的程序框图,则输出的S 值是 ( ) A .1- B .23 C .32D .4第9题图【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,最后输出. 【难易程度】容易 【参考答案】D【试题解析】当=1i 时,经运算得2==124S --;(步骤1) 当=2i 时,经运算得()22==213S --;(步骤2) 当=3i 时,经运算得23==2223S -;(步骤3) 当=4i 时,经运算得2==4322S -;(步骤4) 当=5i 时,经运算得2==124S --;(步骤5) 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段,AC CB 的长,则该矩形面积小于322cm 的概率为 ( ) A .16B .13 C .23D .45【测量目标】几何概型.【考查方式】给出围成长方形的方式,求其面积大于一定值时的概率. 【难易程度】中等 【参考答案】C【试题解析】如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==1232S xy x x -….解得0<48<12x x 或剟,该矩形面积小于322cm 的概率为82=123第10题图11. 设函数)(x f ()x ∈R 满足()()()(),=2f x f x f x f x -=-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos πg x x x ,则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为 ( ) A .5 B .6 C .7 D .8【测量目标】偶函数的性质,函数的周期性,函数零点的求解与判断,函数图象的应用. 【考查方式】给出函数式,求复合函数在某区间上的零点数. 【难易程度】较难 【参考答案】B【试题解析】()(),f x f x -=所以函数)(x f 为偶函数,所以()()()=2=2f x f x f x --,所以函数)(x f 为周期为2的周期函数(步骤一) 且()()0=0,1=1f f ,而()()=c o s πg x x x 为偶函数, 且()1130====0222g g g g ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在同一坐标系下作出两函数(步骤二)在13,22⎡⎤-⎢⎥⎣⎦上的图象,发现在13,22⎡⎤-⎢⎥⎣⎦内图象共有6个公共点,(步骤三) 则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为6.(步骤四)第11题图12. 若[)0,+x ∈∞,则下列不等式恒成立的是 ( ) A .2e 1++xx x …B2111+24x x -…C .21cos 12x x -… D .()21ln 1+8x x x -… 【测量目标】不等式比较大小.【考查方式】给出未知数的范围,判断不等式的正确性. 【难易程度】中等 【参考答案】C【试题解析】验证A ,当332=3e >2.7=19.68>1+3+3=13x 时,,故排除A ;(步骤一) 验证B ,当1=2x,而111113391+===<=22441648484848-⨯⨯,故排除B ;(步骤二)验证C ,令()()()21=cos 1+,=sin +,=1cos 2g x x x g x x x g x x '''---,显然()>0g x ''恒成立 所以当[)0,+x ∈∞,()()0=0g x g ''…,所以[)0,+x ∈∞,()21=cos 1+2g x x x -为增函数,所以()()0=0g x g …,恒成立,故选C ;(步骤三)验证D ,令()()()()()2311=ln 1++,=1+=8+144+1x x x h x x x x h x x x -'--, 令()<0h x ',解得0<<3x ,所以当0<<3x 时,()()<0=0h x h ,显然不恒成立(步骤四)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13. 一个几何体的三视图如图所示,则该几何体的表面积为 .第13题图【测量目标】由三视图求几何体的表面积.【考查方式】给出几何体的三视图,求其表面积. 【难易程度】容易 【参考答案】38【试题解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体,中心去除一个半径为1的圆柱,所以表面积为()243+41+31+2π2π=38⨯⨯⨯⨯-14.已知等比数列{}n a 为递增数列,且()2510+2+1=,2+=5n n n a a a a a ,则数列{}n a 的通项公式=n a ____________.【测量目标】等比数列的的通项,等比数列的性质.【考查方式】给出等比数列通项之间满足的关系,求等比数列的通项公式 【难易程度】容易 【参考答案】2n【试题解析】令等比数列{}n a 的公比为q ,则由()+2+12+=5n nn a a a 得,222+2=5,25+2=0q q q q -,解得1=22q q =或,(步骤一) 又由2510=a a 知,()24911=a qa q ,所以1=a q ,(步骤二)因为{}n a 为递增数列,所以1==2a q ,=2n n a (步骤三)15. 已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,2-,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程,求抛物线上两点的切线交点的纵坐标. 【难易程度】容易 【参考答案】4- 【试题解析】21=,=2y x y x ',所以以点P 为切点的切线方程为=48y x -,以点Q 为切点的切线方程为=22y x --,联立两方程的=1y=4x ⎧⎨-⎩16. 已知正三棱锥P ABC -,点,,,PABC若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为 . 【测量目标】正三棱锥的性质.【考查方式】通过球内接正三棱锥的性质,求球心到截面的距离.【参考答案】3【试题解析】如图所示,O 为球心,'O 为截面ABC 所在圆的圆心,令===PA PB PC a ,,,PA PB PC 两两相互垂直,==AB BC CA ,(步骤一)所以'=3CO a ,'=3PO a ,22+=333a ⎛⎛⎫ ⎪ ⎪⎝⎝⎭,解得=2a ,(步骤二)所以PO a ,OO (步骤三)第16题图三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c ,角,,A B C 成等差数列. (1)求cos B 的值;(2)边,,a b c 成等比数列,求sin sin A C 的值【测量目标】利用正余弦定理解决有关角度问题.【考查方式】通过角成等差,求角的余弦值;在给出边成等比数列,求两角正弦的乘积. 【难易程度】容易【试题解析】(1)由已知π12=+,++=π,=,cos =32B AC A B C B B ∴(步骤一) (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB (步骤二)解法二:2=b ac ,222221++=cos ==222a c b a c acB ac ac--,由此得22+=,a c ac ac -得=a c (步骤二)所以π===3A B C ,3sin sin =4A C (步骤三) 18. (本小题满分12分)如图,直三棱柱'''ABC A B C -,=90BAC ∠,=='AB AC AA λ,点,M N 分别为'A B 和''B C 的中点(1)证明:''MNAACC 平面 ;(2)若二面角'--A MN C 为直二面角,求λ的值第18题图【测量目标】线面平行的判定,二面角,空间直角坐标系,空间向量及其运算. 【考查方式】给出线段的关系,用线线平行推导线面平行,根据二面角为之二面角求未知数. 【难易程度】中等 【试题解析】(1)连结','AB AC ,由已知=90,=BAC AB AC ∠ 三棱柱-'''ABC A B C 为直三棱柱,所以M 为'AB 中点.又因为N 为''B C 中点(步骤一) 所以'MN AC ,又MN ⊄平面''A ACC'AC ⊂平面''A ACC ,因此''MN AACC 平面 (步骤二)(2)以A 为坐标原点,分别以直线,,'AB AC AA 为x 轴,y 轴,z 轴建立直角坐标系-O xyz ,如图所示,设'=1,AA 则==AB AC λ,于是()()()()()()0,0,0,,0,0,0,,0,'0,0,1,',0,1,'0,,1A B C A B C λλλλ, 所以1,0,,,,12222M N λλλ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(步骤三) 设()111=,,x y z m 是平面'A MN 的法向量,由'=0,=0A M MN ⎧⎪⎨⎪⎩ m m 得11111=0221+=022x z y z λλ⎧-⎪⎪⎨⎪⎪⎩,可取()=1,1,λ-m (步骤四)设()222=,,x y z n 是平面MNC 的法向量,由=0,=0NC MN ⎧⎪⎨⎪⎩ n n 得22222+=0221+=022x y z y z λλλ⎧--⎪⎪⎨⎪⎪⎩,可取()=3,1,λ--n (步骤五) 因为'--A MN C 为直二面角,所以()()2=0,3+11+=0λ--⨯- 即m n,解得λ(步骤六)第18题图19. (本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷“22⨯抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X附:()21122122121+2++1+2=n n n n n n n n n χ-,第19题图【测量目标】频率分布直方图,用样本估计总体,离散型随机变量的期望与方差.【考查方式】通过频率分布直方图,完成联表,判断相关性;给出随机抽样的方式求分布列期望与方差.【难易程度】中等 【试题解析】22⨯将列联表中的数据代入公式计算,得()()221122122121+2++1+210030104515100=== 3.0307525455533n n n n n n n n n χ-⨯⨯-⨯≈⨯⨯⨯(步骤一)因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.(步骤二) 由题意13,4X B ⎛⎫ ⎪⎝⎭,从而X 的分布列为()==3=44E X np ⨯,()()=1=3=4416D X np p -⨯⨯.(步骤三)20. (本小题满分12分)如图,椭圆()22022:+=1>b>0,,x y C a a b a b为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点(1)求直线1AA 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''A B C D 的面积相等,证明:2212+t t 为定值第20题图【测量目标】圆锥曲线中的轨迹问题,圆锥曲线中的定值问题.【考查方式】给出椭圆与动圆的函数表达式,求其上两直线交点的轨迹方程;再根据两动圆形成的矩形面积相等,证明两未知数的平方之和为定值. 【难易程度】较难 【试题解析】(1)设()()1111,,,A x y B x y -,又知()()12,0,,0A a A a -,则 直线1A A 的方程为 ()11=++y y x a x a① 直线2A B 的方程为()11=y y x a x a--- ②(步骤一) 由①②得 ()22221221=y y x a x a--- ③(步骤二) 由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1x y b a ⎛⎫- ⎪⎝⎭,代入③得()2222=1<,<0x y x a y a b--(步骤三)(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''A B C D 的面积相等,得2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以2222221212221=1x x b x b x a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(步骤四)由12t t ≠,知12x x ≠,所以22212+=x x a .(步骤五)从而22212+=y y b ,因而222212+=+t t a b 为定值(步骤六) 21. (本小题满分12分)设()()()=ln +1+,,,f x x ax b a b a b ∈R 为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切.(1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x 【测量目标】导数的几何意义,均值不等式,利用导数解决不等式问题.【考查方式】通过曲线与直线相切求函数表达式中未知数;再限定x 的定义域证明不等式. 【难易程度】较难 【试题解析】(1)由()=y f x 的图象过()0,0点,代入得=1b - 由()=y f x 在()0,0处的切线斜率为32,又=0=013'==++12x x y a a x ⎛⎫⎪⎝⎭,得=0a (步骤一)(2)(证法一)由均值不等式,当>0x 时,+1+1=+2xx +12x(步骤二)记()()9=+6xh x f x x -, 则()()()()()22215454+654=<+14+1+6+6+6x h x x x x x x '-- ()()()()32+6216+1=4+1+6x x x x -,(步骤三) 令()()()3=+6216+1g x x x -,则当0<<2x 时,()()2=3+6216<0g x x '-因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,所以()<0h x '(步骤四) 因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,于是当0<<2x 时,()9<+6xf x x (步骤五) (证法二)由(1)知()()=ln +1+1f x x ,由均值不等式,当>0x 时,+1+1=+2x x,故+12x(步骤一)令()()=ln +1k x x x -,则()()10=0,'=1=<0+1+1xk k x x x --,故()<0k x ,即()l n +1<x x ,由此得,当>0x 时,()3<2f x x ,记()()()=+69h x x f x x -,(步骤二) 则当0<<2x 时,()()()()()31=++69<++692+1h x f x x f x x x x ⎛''-- ⎝()()()(()()()()()11=3+1++618+1<3+1++63+18+12+12+12x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()()=718<04+1xx x -(步骤三)因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,即()9<+6xf x x (步骤四) 22. (本小题满分10分)选修4-1:几何证明选讲如图,O 和'O 相交于A ,B 两点,过A 作两圆的切线分别交两圆于,C D 两点,连结DB 并延长交O 于点E .证明:(1)=AC BD AD AB ; (2)=AC AE第22题图【测量目标】圆的性质的应用. 【考查方式】给出两圆中直线位置关系,证明直线的比例关系. 【难易程度】中等 【试题解析】 证明:(1)由AC 与O 相切于A ,得=CAB ADB ∠∠,同理=ACB DAB ∠∠,(步骤一)所以ACB DAB △∽△.从而=AC ABAD BD,即=AC BD AD AB (步骤二) (2)由AD 与O 相切于A ,得=A E D B A D ∠∠,又=A D E B D A ∠∠,得EA D AB D △∽△(步骤三)从而=AE ADAB BD,即=AE BD AD AB ,(步骤四) 综合(1)的结论,=AC AE (步骤五)23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆221:+=4C x y ,圆()222:2+=4C x y -(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示)(2)求圆1C 与圆2C 的公共弦的参数方程【测量目标】极坐标与参数方程.【考查方式】给出直角坐标系下两圆的方程,求极坐标方程,并求出两圆公共弦的参数方程. 【难易程度】容易 【试题解析】圆1C 的极坐标方程为=2ρ,圆2C 的极坐标方程为=4cos ρθ,(步骤一) 解=2=4cos ρρθ⎧⎨⎩得π=2,=3ρθ±,故圆1C 与圆2C 交点的坐标为ππ2,,2,33⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(步骤二)注:极坐标系下点的表示不唯一(2)(解法一)由=cos =sin x y ρθρθ⎧⎨⎩,得圆1C 与圆2C 交点的直角坐标为((,1,故圆1C 与圆2C 的公共弦的参数方程为=1=x t y t⎧⎨⎩(或参数方程写成=1=x y y y ⎧⎨⎩(步骤三) (解法二) 将=1x 代入=cos =sin x y ρθρθ⎧⎨⎩,得cos =1ρθ,从而1=cos ρθ(步骤三)于是圆1C 与圆2C 的公共弦的参数方程为=1ππ=tan 33x y θθ⎧-⎨⎩剟(步骤四) 24. (本小题满分10分)选修4-5:不等式选讲已知()()=+1f x ax a ∈R ,不等式()3f x …的解集为{}21x x -剟(1)求a 的值 (2)若()22x f x f k ⎛⎫-⎪⎝⎭…恒成立,求k 的取值范围 【测量目标】不等式恒成立问题.【考查方式】给出不等式的函数表达式及其解集,求函数式中的未知数;给出不等关系求k 的取值范围.【难易程度】中等 【试题解析】(1)由+13ax …得42ax -剟,又()3f x …的解集为{}21x x -剟,所以当0a …时,不合题意当>0a 时,42x a a-剟,得=2a (步骤一) (2)记()()=22x h x f x f ⎛⎫- ⎪⎝⎭,则()1,11=43,1<<211,2x h x x x x ⎧⎪-⎪⎪----⎨⎪⎪--⎪⎩……,所以()1h x …,因此1k …(步骤二)。

2012学年高考理科数学年辽宁卷答案

2012学年高考理科数学年辽宁卷答案

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)【解析】{0,1}N ={0,1}M N =【提示】先求出N =,再利用交集定义得出MN .【考点】集合的基本运算(交集),则q ⌝”,所以“若又C 的渐近线为πsin 6x ⎛- ⎝()f x ∴值域为【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域.【解析】由图知,||||cos(π)2||(cos AB BC AB BC B BC =-=⨯⨯-BC AC AB BC-,82m m ++b a ⎛⎫∴= ⎪⎝⎭bPA PB PC PD=,Array PA PB PC PD=,即可求出圆的半径.π2AC ω=,sin(b ωϕ+90,得AC PA⊥平面而PA,AE所以CD⊥90, ,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B (4,3,0),(0,5,0)D (2,4,0),(0,0,)P h (Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,AP =,8CD AE =-+,0CD AP =,所以,而AP ,AE 是平面内的两条相交直线,所以CD (Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ABCD 的法向量,而与平面PAE 所成的角,cos ,CD PB PA PB <>=<>,即||||||||C D P BP AP BC D P B P A P B =,知,(4,2,0)CD =-,(0,0,AP =由(4,0,)PB h =-,故22162516h h h h ++=++3351501220(y y y =03420(y y =2k11 / 11。

2012年高考数学(理科)试卷辽宁卷(含答案)最完美最高清word版

2012年高考数学(理科)试卷辽宁卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学理工农医类(辽宁卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(U A )∩(U B )=()A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6} 2.复数2i 2i -=+( )A .34i 55- B .34i 55+ C .41i 5-D .31i 5+3.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -b 4.已知命题p :x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则p 是( ) A.x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<05.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A .3×3! B .3×(3!)3 C .(3!)4 D .9!6.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143 D .176 7.已知sin α-cos αα∈(0,π),则tan α=( ) A .-1 B.2-C.2D .18.设变量x ,y 满足10,020,015,x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( )A .20B .35C .45D .559.执行如图所示的程序框图,则输出的S 值是( )A .-1B .23C .32D .410.在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A .16B .13C .23D .4511.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在[12-,32]上的零点个数为( )A .5B .6C .7D .812.若x ∈[0,+∞),则下列不等式恒成立的是( )A .e x ≤1+x +x 2 B211124x x ≤-+C .cos x ≥1-12x 2D .ln(1+x )≥x -18x 2第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.一个几何体的三视图如图所示,则该几何体的表面积为__________.14.已知等比数列{a n }为递增数列,且2510a a =,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =__________.15.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.16.已知正三棱锥P -ABC ,点P ,A ,B ,CPA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值. 18.如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.19.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的(2)1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:22112212211212()n n n n n n n n n χ++++-=,20.如图,椭圆C 0:22221xya b+=(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 12,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 12+t 22为定值.21.设f (x )=ln(x +1)ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线32y x =在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,9()6x f x x <+.22.选修4-1:几何证明选讲如图,O 和O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .23.选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.24.选修4—5:不等式选讲已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若()2()2x f x f k -≤恒成立,求k 的取值范围.1. B 由已知条件可得U A ={2,4,6,7,9},U B ={0,1,3,7,9},所以(U A )∩(U B )={7,9},故选B .2. A222i(2i)44i i34i 2i (2i)(2i)555---+===-++-,故选A .3. B |a +b |2=|a |2+2a ·b +|b |2,|a -b |2=|a |2-2a ·b +|b |2, 因为|a +b |=|a -b |, 所以|a |2+2a ·b +|b |2=|a |2-2a ·b +|b |2, 即2a ·b =-2a ·b , 所以a ·b =0,a ⊥b .故选B .4. C 命题p 是一个全称命题,其否定为存在性命题,p :x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故选C .5. C 完成这件事可以分为两步,第一步排列三个家庭的相对位置,有33A 种排法;第二步排列每个家庭中的三个成员,共有333333A A A 种排法.由乘法原理可得不同的坐法种数有33333333A A A A ,故选C . 6. B 因为数列{a n }为等差数列, 所以1111111()2a a S +=,根据等差数列的性质,若p +q =m +n ,则a p +a q =a m +a n 得,a 1+a 11=a 4+a 8=16,所以111116882S ⨯==,故选B .7. A 将sin α-cos αsin 2α-2sin αcos α+cos 2α=2,即sin αcos α=12-,则222sin cos tan 1sin cos tan 12αααααα==-++,整理得2tan α+tan 2α+1=0, 即(tan α+1)2=0,所以tan α=-1.故选A .8. D 不等式组表示的平面区域如图所示,则2x +3y 在A (5,15)处取得最大值,故选D . 9. D 当i =1时,2124S ==--;i =2时,22213S ==+;i =3时,232223S ==-;i =4时,24322S ==-;i =5时,2124S ==--;i =6时,23S =; i =7时,32S =;i =8时,S =4;i =9时,输出S ,故选D . 10. C 设AC =x cm(0<x <12), 则CB =12-x (cm),则矩形面积S =x (12-x )=12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12,在数轴上表示为 由几何概型概率公式得,概率为82123=,故选C .11. B 由f (-x )=f (x ),f (x )=f (2-x )可知,f (x )是偶函数,且关于直线x =1对称, 又由f (2-x )=f (x )=f (-x )可知,f (x )是以2为周期的周期函数. 在同一坐标系中作出f (x )和g (x )在[12-,32]上的图象如图,可知f(x)与g(x)的图象在[12-,32]上有6个交点,即h (x )的零点个数为6.12. C 对于e x 与1+x +x 2,当x =5时,e x >32,而1+x +x 2=31,所以A与211124x x -+,当14x =5=,21157124645x x -+=<,所以B 项不正确;令f (x )=cos x +12x 2-1,则f ′(x )=x -sin x ≥0对x ∈[0,+∞)恒成立,f (x )在[0,+∞)上为增函数,所以f (x )的最小值为f (0)=0,所以f (x )≥0,cos x ≥1-12x 2,故C 项正确;令g (x )=ln(1+x )-x +18x 2,则11()114g x x x '=+-+,令g ′(x )=0,得x =0或x =3.当x ∈(0,3)时,g ′(x )<0,当x ∈(3,+∞)时,g ′(x )>0,g (x )在x =3时取得最小值g (3)=ln 4-3+98<0,所以D 项不正确.13.答案:38解析:由三视图可以看出该几何体为一个长方体从中间挖掉了一个圆柱,长方体表面积为2×(4×3+3×1+4×1)=38,圆柱的侧面积为2π,上下两个底面积和为2π,所以该几何体的表面积为38+2π-2π=38.14.答案:2n解析:设数列{a n }的首项为a 1,公比为q ,则a 12·q 8=a 1·q 9,a 1=q ,由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0,解得q =2或12q =,因为数列{a n }为递增数列,所以q =2,a 1=2,a n =2n.15.答案:-4解析:由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴()212242, 22, y y ⎧=⎪⎨-=⎪⎩①②∴128,2,y y =⎧⎨=⎩ ∴P (4,8),Q (-2,2).又∵抛物线可化为212y x =,∴y ′=x ,∴过点P 的切线斜率为44x y ='=. ∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为22x y =-'=-,∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2. 联立48,22,y x y x =-⎧⎨=--⎩解得x =1,y =-4,∴点A 的纵坐标为-4. 16.3解析:正三棱锥P -ABC 可看作由正方体P ADC -BEFG 截得,如图所示,PF 为三棱锥P -ABC 的外接球的直径,且PF ⊥平面ABC .设正方体棱长为a ,则3a 2=12,a =2,AB =AC =BC=.122ABC S ∆=⨯=.由V P -ABC =V B -PAC ,得111222332A B C h S ∆⋅⋅=⨯⨯⨯⨯,所以3h =,因此球心到平面ABC3.17.解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以1cos 2B =.(2)解法一:由已知b 2=ac ,及1cos 2B =,根据正弦定理得sin 2B =sin A sin C , 所以sin A sin C =1-cos 2B =34.解法二:由已知b 2=ac ,及1cos 2B =,根据余弦定理得22cos 2a c acB ac+-=,解得a =c , 所以A =C =B =60°,故sin A sin C =34.18.解:(1)证法一:连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱, 所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′.又MN 平面A ′ACC ′,AC ′平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.证法二:取A ′B ′中点P ,连结MP ,NP , 而M ,N 分别为AB ′与B ′C ′的中点, 所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′, PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN 平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1),所以M (2λ,0,12),N (2λ,2λ,1).设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由0,0A M M N ⎧⋅'=⎪⎨⋅=⎪⎩m m 得111110,2210,22x z y z λλ⎧-=⎪⎪⎨⎪+=⎪⎩ 可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由0,0N C M N ⎧⋅=⎪⎨⋅=⎪⎩n n 得222220,2210,22x y z y z λλλ⎧-+-=⎪⎪⎨⎪+=⎪⎩ 可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0,即-3+(-1)×(-1)+λ2=0,解得λ19.解:(1)人,从而2×2列联表如下:将2×2222112212211212()100(30104515)100 3.0307525455533n n n n n n n n n χ++++-⨯⨯-⨯===≈⨯⨯⨯.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B (3,14),从而X 的分布列为E (X )=np =13344⨯=,D (X )=np (1-p )=13934416⨯⨯=.20.解:(1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为11()y y x a x a=++,①直线A 2B 的方程为11()y y x a x a-=--.②由①②得22221221()y y x a x a-=--.③由点A (x 1,y 1)在椭圆C 0上,故2211221x y ab+=.从而y 12=b 2(1-212x a),代入③得22221x y ab-= (x <-a ,y <0).(2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 12y 12=x 22y 22.因为点A ,A ′均在椭圆上, 所以b 2x 12(1-212x a )=b 2x 22(1-222x a).由t 1≠t 2,知x 1≠x 2,所以x 12+x 22=a 2.从而y 12+y 22=b 2,因此t 12+t 22=a 2+b 2为定值.21.解:(1)由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y ′|x =0=(11x +++a )|x =0=32+a ,得a=0. (2)当x >0时,x +1+1=x +2, 12x <+. 记h (x )=f (x )-96x x +, 则2154()1(6)h x x x '=+-++22546542(1)(6)4(1)(6)x x x x x +-<-++++=32(6)216(1)4(1)(6)x x x x +-+++.令g (x )=(x +6)3-216(x +1),则当0<x<2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数, 又由g (0)=0,得g (x )<0,所以h ′(x )<0.因此h (x )在(0,2)内是递减函数, 又h (0)=0,得h (x )<0. 于是当0<x <2时,9()6x f x x <+.证法二:由(1)知f (x )=ln(x +1)1.由均值不等式,当x >0时,x +1+1=x +2, 12x <+.①令k (x )=ln(x +1)-x ,则k (0)=0,1()1011x k'x x x -=-=<++,故k (x )<0,即ln(x +1)<x .② 由①②得,当x >0时,3()2f x x <.记h (x )=(x +6)f (x )-9x ,则当0<x <2时, h ′(x )=f (x )+(x +6)f ′(x )-9 <32x +(x +6)(11x ++)-9 =12(1)x +[3x (x +1)+(x +6)(2-18(x +1)] <12(1)x +[3x (x +1)+(x +6)(3+2x )-18(x +1)]=4(1)xx +(7x -18)<0.因此h (x )在(0,2)内单调递减, 又h (0)=0,所以h (x )<0,即9()6x f x x <+.22.证明:(1)由AC 与O ′相切于A ,得∠CAB =∠ADB , 同理∠ACB =∠DAB , 所以△ACB ∽△DAB . 从而A C AB A DB D=,即AC ·BD =AD ·AB .(2)由AD 与O 相切于A ,得∠AED =∠BAD ,又∠ADE =∠BDA ,得△EAD ∽△ABD . 从而A E A D A BB D=,即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .23.解:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解2,4cos ρρθ=⎧⎨=⎩得ρ=2,π3θ=±,故圆C 1与圆C 2交点的坐标为(2,π3),(2,π3-).注:极坐标系下点的表示不唯一.(2)解法一:由cos ,sin x y ρθρθ=⎧⎨=⎩得圆C 1与C 2交点的直角坐标分别为(1),(1,.故圆C 1与C 2的公共弦的参数方程为1,,x t y t =⎧-≤≤⎨=⎩(或参数方程写成1,,x y y y =⎧-≤≤⎨=⎩解法二:将x =1代入cos ,sin x y ρθρθ=⎧⎨=⎩得ρcos θ=1,从而1cos ρθ=.于是圆C 1与C 2的公共弦的参数方程为1,ππtan ,33x y θθ=⎧-≤≤⎨=⎩.24.解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,42x a a-≤≤,得a =2.(2)记h (x )=f (x )-2()2x f ,则()1,1,143,1,211,,2x h x x x x ⎧⎪≤-⎪⎪---<<-⎨⎪⎪-≥-⎪⎩=所以|h (x )|≤1,因此k ≥1.。

2012年辽宁高考理科数学(高清版含答案)

2012年辽宁高考理科数学(高清版含答案)

2012年辽宁高考理科数学(高清版含答案)一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}(2)复数(A) (B) (C) (D)(3)已知两个非零向量a,b满足|a+b|=|a b|,则下面结论正确的是(A) a∥b (B) a⊥b(C){0,1,3} (D)a+b=a b(4)已知命题p:x 1,x2R,(f(x2)f(x1)(x2x1)≥0,则p是(A)x1,x2R,(f(x2)f(x1)(x2x1)≤0(B)x1,x2R,(f(x2)f(x1)(x2x1)≤0(C)x 1,x2R,(f(x2)f(x1)(x2x1)<0(D)x1,x2R,(f(x2)f(x1)(x2x1)<0(5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3!(B) 3×(3!)3 (C)(3!)4 (D) 9!(6)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=(A)58 (B)88 (C)143 (D)176(7)已知,(0,π),则=(A) 1 (B) (C) (D) 1(8)设变量x,y满足则2x+3y的最大值为(A) 20 (B) 35 (C) 45 (D) 55(9)执行如图所示的程序框图,则输出的S的值是(A) 1 (B)(C) (D) 4(10)在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm3的概率为(A) (B) (C) (D)(11)设函数f(x)满足f()=f(x),f(x)=f(2x),且当时,f(x)=x3.又函数g(x)=|x cos|,则函数h(x)=g(x)-f(x)在上的零点个数为(A)5 (B)6 (C)7 (D)8(12)若,则下列不等式恒成立的是(A) (B)(C) (D)第Ⅱ卷本卷包括必考题和选考题两部分。

2012年全国高考理科数学试题及答案-辽宁卷

2012年全国高考理科数学试题及答案-辽宁卷

【解析二】∵ sin α − cos α =
∵α ∈ (0,π ),∴ 2α ∈ (0, 2π ),∴ 2α =
【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算 求解能力,难度适中。
⎧ x − y ≤ 10 ⎪ (8) 设变量 x,y 满足 ⎨0 ≤ x + y ≤ 20, 则 2 x + 3 y 的最大值为 ⎪0 ≤ y ≤ 15 ⎩
www.zgxzw .com
中国校长网
2012 年普通高等学校招生全国统一考试(辽宁卷) 数学(理)
注意事项: 1.本试卷分第Ⅰ卷( 选择题)和第Ⅱ卷(非选择题 )两部分。答卷前,考生务必将自己的姓名、准考 证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
中国校长网资源频道
http:// zy .zgxzw. com
www.zgxzw .com
中国校长网
【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有 3!种排法,三个家庭共有
3!× 3!× 3! = (3!)3 种排法;再把三个家庭进行全排列有 3! 种排法。因此不同的坐法种数为 (3!) 4 ,
−1
(B ) −
2 2
(C )
2 2
(D ) 1
【答案】A 【解析一】∵ sin α − cos α =
2,∴ 2 sin(α −
π π ) = 2,∴ sin(α − ) = 1 4 4
∵α ∈ (0,π ),∴α =

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

 2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x 对称得:|PQ |最小值为.故选:B .【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分. 13.(5分)已知向量夹角为45°,且,则= 3.【考点】9O :平面向量数量积的性质及其运算;9S :数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题. 【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得 故答案为:3【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x ,y 满足约束条件:;则z=x ﹣2y 的取值范围为 .【考点】7C :简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y﹣z=0在y 轴上的截距,截距越大,z 越小,结合函数的图形可求z 的最大与最小值,从而可求z 的范围【解答】解:作出不等式组表示的平面区域 由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大由可得B (1,2),由可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y ∈[﹣3,3] 故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【考点】CP :正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii )购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD ﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD ∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.祝福语祝你考试成功!。

2012年辽宁高考理数学试题及答案3篇

2012年辽宁高考理数学试题及答案3篇

2012年辽宁高考理数学试题及答案第一篇:辽宁高考理数学试题解析2012年辽宁高考理数学试题难度适中,整体考察的知识点比较全面,且注重应用能力的考察。

下面就具体来分析试卷中的各道题型。

一、选择题部分选择题部分偏重于计算题和基础知识的考察,如二次函数、三角函数、平面向量等,难度不大。

其中第10题为较为典型的计算题,需要考生掌握函数的运算规律和图像的变换关系。

二、填空题部分填空题部分考察了一些应用能力较强的题目,主要集中在集合运算、概率与统计等方面。

其中第16题考查了乘法原理和排列组合问题,第20题考察了直线方程的综合应用。

三、解答题部分解答题部分的难度较大,考查了一些较复杂的问题和思维题。

其中第22题考查了向量的叉乘和平面的交点,需要考生综合运用几何知识和向量运算技巧;第25题考查了随机变量的概率分布和期望值,需要考生具有较强的概率计算能力和推理能力。

综合来看,2012年辽宁高考理数学试题难度较为适中,基础知识和应用能力的考查相对均衡,考查了学生综合运用知识解决问题的能力,对于提高学生的综合素质和思维能力有一定的促进作用。

第二篇:辽宁高考理数学试题详解一、选择题部分1.本题考查数列的通项公式及求和公式,根据等差数列的通项公式和求和公式,可知该数列的通项公式为an=4+(n-1)2,将n=101代入可求得a101=202;再根据求和公式Sn=n(a1+an)/2,将a1=4,an=202,n=101代入可求得S101=10203。

2.本题考查幂函数的图像变化规律,根据幂函数的图像变化规律可知,当a>1时,函数图像上移,当0<a<1时,函数图像下移,当a<0时,函数图像关于x轴对称。

故D选项正确。

3.本题考查对数函数的基本概念和性质,根据对数函数的定义,当x在(0,1)之间时,log3x<0,当x在(1,∞)之间时,log3x>0,故B选项正确。

4.本题考查函数的复合运算,首先求出f(x)=log3(x+1)-1的定义域为[-1,∞);然后将x=2y+1代入,得到g(y)=f(2y+1)=log3(2y+3)-1;最后求出g(y+1)-g(y)=log32-(y+2),故C选项正确。

版辽宁高考理科数学试卷带答案

版辽宁高考理科数学试卷带答案

2012年高考辽宁卷理科数学答案一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知全集U=0,1,2,3,4,5,6,7,8,9,会合A=0,1,3,5,8,会合B =2,4,5,6,8,则C U AIC U B=A.5,8B.7,9C.0,1,3D.2,4,6难度易正确答案B C U AI C U B=C U AUB=7,92.复数2-i=2+iA.3-4i B.3+4i C.1-4i D.1+3i 5555552-i 23-4i34难度易正确答案A=2-i=i2+i2-i5=-2+i553.已知两个非零向量r r r r rra,b知足a+b=a-b,则下边结论正确r r r r r r r rrr A.a//b B.a b C.a=b D.a+b=a-b难度中正确答案Brrrr r ra+b=a-b,能够从几何角度理解,以非零向量a,b为邻边做平行四边形,对r r r r rr r r r r角线长分别为a+b,a-b,若a+b=a-b,则说明四边形为矩形,所以a b;r r2rr2也可由已知得a+b=a-b,r2rr r2r2rr r2rr r r即a-2ab+b=a+2ab+b ab=0a b4.已知命题p:x1,x2R,f x2-fx1x2-x10,则p是A.x1,x2R,fx2-fx1x2-x10B.x1,x2R,fx2-fx1x2-x10C.x1,x2R,fx2-fx1x2-x1<0D.x1,x2R,fx2-fx1x2-x1<0难度易正确答案C全称命题的否定形式为将“”改为“”,后边的加以否定,马上“fx2-fx1x2-x10”改为“f x2-f x1x2-x1<0”一排9个座位坐了3个三口之家.若每家人坐在一同,则不一样的坐法种数为A.33!B.33C.3!43!D.9!难度中正确答案C每家3口人坐在一同,捆绑在一同3!,共3个3!,又3家3个整体持续摆列有3!4种方法,总合有3!6.在等差数列a n中,已知a4+a8=16,则该数列前11项和S11=A.58B.88C.143D.176难度中正确答案Ba4+a8=2a6=16a6=8,而S11=11a1+a11=11a6=8827.已知sin-cos=2,0,,则tanA .1B .2C .2D .1当i=4时,经运算得S=2=4;2232-2难度中正确答案A当i=5时,经运算得S=2=-1;方法一:sin -cos= 2,0, ,两边平方得1-sin2 =2,2-4i=8时,经运算得 S=4;接着i=9知足此后开始重复,每隔 4一循环,所以当sin2=-1,20,2,2=3,=3,tan=-1输出条件,输出 S=42 410.在长为12cm 的线段AB 上任取一点 C.现作一矩形,邻边长分别等于线段方法二:因为局势比较特别,能够两边取导数得cos+sin=0,tan=-1AC ,CB 的长,则该矩形面积小于 32cm 2的概率为x-y10A .1B .1C .2D .48.设变量x,y 知足0 x+y 20,则2x+3y 的6335难度中正确答案Cy 15以下图,令AC=x,CB=y ,则x+y=12x>0,y>0,最大值为A .20B .35C .45D .55矩形面积设为S ,则S=xy=x12-x 32 。

(完整版)2012辽宁高考理科数学试卷(带答案)

(完整版)2012辽宁高考理科数学试卷(带答案)

2012年高考辽宁卷理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U U C A C B IA .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6难度 易 正确答案B ()()(){}=C =7,9U U U C A C B A B I U2.复数2-=2+ii A .34-55iB .34+55iC .41-5iD .31+5i难度 易 正确答案A()()()22-2-3-434===-2+2+2-555i i i i i i i 3. 已知两个非零向量,a b r r满足+=-a b a b r r r r ,则下面结论正确A .//a b r rB .a b ⊥r rC .=a b r rD .+=-a b a b r r r r难度 中 正确答案B+=-a b a b r r r r ,可以从几何角度理解,以非零向量,a b r r为邻边做平行四边形,对角线长分别为+,-a b a b r r r r ,若+=-a b a b r r r r,则说明四边形为矩形,所以a b ⊥r r ;也可由已知得22+=-a b a b r r r r ,即2222-2+=+2+=0a ab b a ab b ab a b ∴∴⊥r r r r r r r r r r r r4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈ D .()()()()122121,,--<0x x R f x f x x x ∀∈难度 易 正确答案C全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()2121--0f x f x x x ≥”改为“()()()()2121--<0f x f x x x ”5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 A .33!⨯ B .()333!⨯ C .()43! D .9!难度 中 正确答案C每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S A .58 B .88 C .143 D .176 难度 中 正确答案B4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7.已知()sin -cos 0,αααπ∈,则tan α=A .1-B .22-C .22D .1难度 中 正确答案A方法一:()sin -cos =2,0,αααπ∈,两边平方得1-sin 2=2,α()sin 2=-1,20,2,ααπ∈332=,=,24ππααtan =-1α∴ 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =-1ααα∴8. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .55 难度 中 正确答案D如图所示过点()5,15A 时,2+3x y 的最大值为55 9. 执行如图所示的程序框图,则输出的S 值是A .-1B .23 C .32D .4 难度 中 正确答案D 当=1i 时,经运算得2==-12-4S ; 当=2i 时,经运算得()22==2--13S ;当=3i 时,经运算得23==222-3S ; 当=4i 时,经运算得2==432-2S ; 当=5i 时,经运算得2==-12-4S ;从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为 A .16B .13 C .23 D .45难度 中 正确答案C如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==12-32S xy x x ≤。

2012年高考数学辽宁卷分析

2012年高考数学辽宁卷分析

2012年辽宁省高考数学(理科)试卷分析(一)试卷的基本结构如下:数学高考试卷,由于各省根据课程标准自主命题,卷面的题目数、分值(60分、20分、70分)各不相同,但试题的题型相同,有选择题、填空题、解答题.(二)题型分析1、选择题部分本套选择题的前两个小题考集合与复数的运算,这基本是固定不变的了,每年都是,并且难度都是很小的。

而最后的三道小题,也就是第10、11、12题,比较有难度,正是对学生数形结合及转化的思想以及推理论证和运算能力的考查。

中间的题则主要就是在考查学生对知识的掌握情况,均比较简单,只要熟练掌握书中的基本概念并且能够理解透彻,那么这些题都会迎刃而解。

2、填空题部分填空题的总评和总结:这四道填空题相对而言还是比较简单的。

只要是掌握了基本的概念,那么解决起来就不会有困难。

但是第15题中还是设下了小陷阱。

因为题中问的是A点的纵坐标,而同学们有可能由于疏忽而直接填了A点的坐标,或是写成了“y=-4”。

而第16题就比较创新,考查同学们空间联想能力,需要先还原立方体,然后解决此题。

解答题的总评和总结:对于解答题部分,同学们只要在掌握基本概念的基础上认真做答,那么第17题就一定满分。

第18题也是平时常见的题型,第2问虽然看着别扭一点儿,但是好在本题很适合建系,看似困难的题,也不构成威胁了。

第19题往往也都比较简单。

近三年,辽宁理数第19题均没有多少技术含量(10年、12年考的是卡方,11年考的是分布列和期望),仅仅是纯粹的计算,因此只要同学们认真审题,不遗漏信息,就会稳拿12分。

而第20题的第2问一向是比较难的,通常需要强大的计算能力支持。

然而,今年的第20题,不少同学在第1问就止步不前,找不到思路,最后不得不放弃。

其实答案早就藏在繁乱的式子后向同学们招手了。

求出M点的坐标,消掉其中的t1,就能紧握12分了。

最后,对于第21题的,主要考查学生的分类讨论能力及计算整理能力。

但是今年的稍有改变。

2012年高考理科数学辽宁卷

2012年高考理科数学辽宁卷

数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2012年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集0,1,2,3,4,5,6,7,{}8,9U =,集合0,1,3,8{}5,A =,集合2,4,5,8{}6,B =,则()()U U A B =I 痧( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6} 2.复数2i2i -=+( )A .34i 55-B .34i 55+C .41i 5-D .31i 5+3.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .|a |=|b |D .a +b =a -b4.已知命题p :12,x x ∀∈R ,2121(()())()0f x f x x x --≥,则p ⌝是( )A .12,x x ∃∈R ,2121(()())()0f x f x x x --≤;B .12,x x ∀∈R ,2121(()())()0f x f x x x --≤;C .12,x x ∃∈R ,2121(()())()0f x f x x x --<;D .12,x x ∀∈R ,2121(()())()0f x f x x x --<;5.一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 ( ) A .33!⨯B .33(3!)⨯C .4(3!)D .9!6.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( )A .58B .88C .143D .176 7.已知sin cos 2αα-=,(0,π)α∈,则tan α=( )A .1-B .22-C .22D .18.设变量x ,y 满足10,020,015,x y x y y -⎧⎪+⎨⎪⎩„剟剟则23x y +的最大值为( )A .20B .35C .45D .559.执行如图所示的程序框图,则输出的S 值是( ) A .1-B .23C .32D .410.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为( ) A .16 B .13 C .23D .4511.设函数()f x ()x ∈R 满足()()f x f x -=,()(2)f x f x =-,且当[0,1]x ∈时,3()f x x =.又函数()|cos(π)|g x x x =,则函数()()()h x g x f x =-在13[,]22-上的零点个数为( ) A .5B .6C .7D .8 12.若[0,)x ∈+∞,则下列不等式恒成立的是( )A .2e 1x x x ++≤B .2111241x x x-++≤ C .21cos 12x x -…D .21ln(1)8x x x +-…第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.一个几何体的三视图如图所示,则该几何体的表面积为 .14.已知等比数列{}n a 为递增数列,且2510a a =,212()5n n n a a a +++=,则数列{}n a 的通项公式n a = .15.已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,2-,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .16.已知正三棱锥P ABC -,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)18.(本小题满分12分)如图,直三棱柱ABC A B C '''-,90BAC ∠=o ,AB =AC AA λ'=,点M ,N 分别为A B '和B C ''的中点.(Ⅰ)证明:MN ∥平面A ACC '';(Ⅱ)若二面角A MN C '--为直二面角,求λ的值.19.(本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷 合计 男 女 10 55 合计(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X .附:22112212211212()n n n n n n n n n χ++++-=,2()P k χ≥0.05 0.01 k3.841 6.63520.(本小题满分12分)如图,椭圆0C :22221x y a b+=(0a b >>,a ,b 为常数),动圆1C :2221x y t +=,1b t a <<.点1A ,2A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点. (Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆2C :2222x y t +=与0C 相交于A ',B ',C ',D '四点,其中2b t a <<,12t t ≠.若矩形ABCD 与矩形A B C D ''''的面积相等,证明:2212t t +为定值.21.(本小题满分12分)设()ln(1)1f x x x ax b =+++++(a ,b ∈R ,a ,b 为常数),曲线()y f x =与直线32y x =在(0,0)点相切.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当02x <<时,9()6xf x x <+.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O e 和O 'e 相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交O e 于点E .证明: (Ⅰ)AC BD AD AB =g g ; (Ⅱ)AC AE =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆1C ,2C 的极坐标方程,并求出圆1C ,2C 的交点坐标(用极坐标表示); (Ⅱ)求圆1C 与2C 的公共弦的参数方程.24.(本小题满分10分)选修4—5:不等式选讲已知()|1|f x ax =+()a ∈R ,不等式()3f x ≤的解集为{|21}x x -剎?. (Ⅰ)求a 的值;(Ⅱ)若|()2()|2x f x f k -…恒成立,求k 的取值范围.。

2012年高考理科数学辽宁卷

2012年高考理科数学辽宁卷
如图, O 和 O 相交于 A , B 两点,过 A 作两圆的切线分别交两圆于 C , D 两点,连 结 DB 并延长交 O 于点 E .证明: (Ⅰ) AC BD AD AB ; (Ⅱ) AC AE .
23.(本小题满分 10 分)选修 4—4:坐标系与参数方程 在直角坐标系 xOy 中,圆 C1 : x2 y2 4 ,圆 C2 : (x 2)2 y2 4 . (Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C1 , C2 的极坐标方 程,并求出圆 C1 , C2 的交点坐标(用极坐标表示); (Ⅱ)求圆 C1 与 C2 的公共弦的参数方程.
A. 1
B. 2
3
C. 3
D. 4
2
10.在长为 12 cm 的线段 AB 上任取一点 C .现作一矩形,邻
边长分别等于线段 AC , CB 的长,则该矩形面积小于 32
cm2 的概率为 A. 1
6 C. 2
3
() B. 1 3 D. 4 5
11.设函数 f (x) (x R) 满足 f (x) f ( x), f (x) f (2 x) ,且当 x [0,1] 时, f (x) x3 .
2
(Ⅰ)求 a , b 的值; (Ⅱ)证明:当 0 x 2 时, f (x) 9x .
x6
数学试卷 第 5 页(共 6 页)
请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题记分.作答 时用 2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分 10 分)选修 4—1:几何证明选讲
又函数 g(x) | x cos(πx) | ,则函数 h(x) g(x) f (x) 在 [ 1 , 3] 上的零点个数为( ) 22

2012年高考理数真题试卷(辽宁卷)

2012年高考理数真题试卷(辽宁卷)

第1页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2012年高考理数真题试卷(辽宁卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( )A . {5,8}B . {7,9}C . {0,1,3}D . {2,4,6}2. (2012•辽宁)执行如图所示的程序框图,则输出的S值是( )A . ﹣1B .C .D . 43. (2012•辽宁)在长为12cm 的线段AB 上任取一点C .现做一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A . B . C . D .答案第2页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. (2012•辽宁)已知,则tanα=( )A . ﹣1B . -C .D . 15. (2012•辽宁)已知两个非零向量 , 满足| + |=| ﹣ |,则下面结论正确的是( ) A . ∁ B . ∁ C . | |=| | D . + = ﹣6. (2012•辽宁)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A . 58 B . 88 C . 143 D . 1767. (2012•辽宁)设变量x ,y 满足 ,则2x+3y 的最大值为( )A . 20B . 35C . 45D . 558. (2012•辽宁)已知命题p :∁x 1 , x 2∁R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0,则¬p 是( )A . ∁x 1 , x 2∁R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0B . ∁x 1 , x 2∁R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0C . ∁x 1 , x 2∁R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0D . ∁x 1 , x 2∁R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<09. (2012•辽宁)设函数f (x )(x∁R )满足f (﹣x )=f (x ),f (x )=f (2﹣x ),且当x∁[0,1]时,f (x )=x 3 . 又函数g (x )=|xcos (πx )|,则函数h (x )=g (x )﹣f (x )在 上的零点个数为( )A . 5B . 6C . 7D . 810. (2012•辽宁)若x∁[0,+∞),则下列不等式恒成立的是( ) A . e x ≤1+x+x 2 B . C . D .11. (2012•辽宁)复数 =( ) A .B .C .D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考辽宁卷理科数学解析版一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U UC A C BA .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6【命题意图】本题主要考查集合的补集、交集运算,是容易题. 【解析】()()(){}=C =7,9U U U C A C B A B ,故选B. 2.复数2-=2+iiA .34-55iB .34+55i C .41-5i D .31+5i【命题意图】本题主要考查复数的除法运算,是容易题.【解析】()()()22-2-3-434===-2+2+2-555i ii i i i i ,故选A. 3. 已知两个非零向量,a b满足+=-a b a b ,则下面结论正确A .//a bB .a b ⊥C .=a bD .+=-a b a b【命题意图】本题主要考查平面向量运算,是简单题.【解析1】+=-a b a b ,可以从几何角度理解,以非零向量,a b为邻边做平行四边形,对角线长分别为+,-a b a b ,若+=-a b a b,则说明四边形为矩形,所以a b ⊥ ,故选B.【解析2】已知得22+=-a b a b ,即2222-2+=+2+=0a ab b a ab b ab a b ∴∴⊥,故选B.4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是 A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈D .()()()()122121,,--<0x x R f x f x x x ∀∈【命题意图】本题主要考查全称命题的否定,是容易题.【解析】全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()2121--0f x f x x x ≥”改为“()()()()2121--<0f x f x x x ”,故选C. 5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 A .33!⨯ B .()333!⨯ C .()43!D .9!【命题意图】本题主要考查相邻的排列问题,是简单题.【命题意图】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!,故选C.6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S A .58 B .88 C .143 D .176【命题意图】本题主要考查等差数列通项公式和前n 项和公式,是简单题.【解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a ,故选B.7.已知()sin -cos 0,αααπ∈,则tan α= A .1- B.2-C.2D .1【命题意图】本题主要考查同角三角函数基本关系式、特殊角的的三角函数,是中档题. 【解析1】()sin -cos 0,αααπ∈,两边平方得1-sin 2=2,α ()sin 2=-1,20,2,ααπ∈332=,=,24ππααtan =-1α∴,故选A.【解析2】由于形势比较特殊,可以两边取导数得cos +sin =0,tan =-1ααα∴ 8. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .55【命题意图】本题主要考查简单线性规划,是中档题. 【解析】作出可行域如图中阴影部分所示,由图知目标函数过点()5,15A 时,2+3x y 的最大值为55,故选D. 9. 执行如图所示的程序框图,则输出的S 值是A .-1B .23C .32D .4【命题意图】本题主要考查程序框图知识,是中档题. 【解析】当=1i 时,经运算得2==-12-4S ;当=2i 时,经运算得()22==2--13S ;当=3i 时,经运算得23==222-3S ;当=4i 时,经运算得2==432-2S ;当=5i 时,经运算得2==-12-4S ;故选D.从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为 A .16B .13C .23D .45【命题意图】本题主要考查几何概型及应用意识.是中档题.【解析】如图所示,令=,=AC x CB y ,则()+=12>0,y >0x y x,矩形面积设为S ,则()==12-32S xy x x ≤,解得0<48<12x x ≤≤或,该矩形面积小于322cm 的概率为82=123,故选C.11. 设函数)(x f ()x R ∈满足()()()(),=2-f x f x f x f x -=,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()=-h x g x f x 在13-,22⎡⎤⎢⎥⎣⎦上的零点个数为 A .5 B .6 C .7 D .8【命题意图】本题主要考查函数的奇偶性、对称性、周期性、函数图像、函数零点等基础知识,是难题.【解析】由()()f x f x -=知,所以函数)(x f 为偶函数,所以()()()=2-=-2f x f x f x ,所以函数)(x f 为周期为2的周期函数,且()()0=0,1=1f f ,而()()=c o s g x x x π为偶函数,且()1130==-==0222g g g g ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在同一坐标系下作出两函数在13-,22⎡⎤⎢⎥⎣⎦上的图像,发现在13-,22⎡⎤⎢⎥⎣⎦内图像共有6个公共点,则函数()()()=-h x g x f x 在13-,22⎡⎤⎢⎥⎣⎦上的零点个数为6,故选B. 12. 若[)0,+x ∈∞,则下列不等式恒成立的是 A .21++x e x x ≤ B2111-+24x x ≤C .21cos 1-2x x ≥D .()21ln 1+-8x x x ≥【命题意图】本题主要考查不等式恒成立问题,是难题. 【解析】验证A ,当332=3>2.7=19.68>1+3+3=13x e 时,,故排除A ;验证B ,当1=2x 时,,3,而111113391-+===<22441648484848⨯⨯,故排除B ;验证C ,令()()()21=cos -1+,'=-sin +,''=1-cos 2g x x x g x x x g x x ,显然()''>0g x 恒成立所以当[)0,+x ∈∞,()()''0=0g x g ≥,所以[)0,+x ∈∞,()21=cos -1+2g x x x 为增函数,所以()()0=0g x g ≥,恒成立,故选C ;验证D ,令 ()()()()()2-311=ln 1+-+,'=-1+=8+144+1x x x h x x x x h x x x ,令()'<0h x ,解得0<<3x ,所以当0<<3x 时,()()<0=0h x h ,显然不恒成立,故选C.二、填空题:本大题共4小题,每小题5分.13. 一个几何体的三视图如图所示,则该几何体的表面积为 .【命题意图】本题主要考查简单几何体的三视图及其体积计算,是简单题.【命题意图】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为()243+41+31+2-2=38ππ⨯⨯⨯⨯14.已知等比数列{}n a 为递增数列,且()2510+2+1=,2+=5n n n a a a a a ,则数列{}n a 的通项公式=n a ____________.【命题意图】本题主要考查等比数列的通项公式及方程思想,是简单题. 【解析】设等比数列{}n a 的公比为q ,则由()+2+12+=5n nn a a a 得,222+2=5,2-5+2=0q q q q ,解得1==2q 或q 2,又由2510=a a 知,()24911=a q a q ,所以1=a q ,因为{}n a 为递增数列,所以1==2a q ,=2n n a15. 已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,-2,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .【命题意图】本题主要考查抛物线的切线与两直线的交点,是中档题. 【解析】21=,'=2y x y x ,所以以点P 为切点的切线方程为=4-8y x ,以点Q 为切点的切线方程为=-2-2y x ,联立两方程的1-4x y =⎧⎨=⎩16. 已知正三棱锥-P A B C ,点,,,P A B C 的球面上,若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为 .【命题意图】本题主要考查球与正三棱锥的切接问题,是难题. 【解析】如图所示,O 为球心,'O 为截面ABC 所在圆的圆心,设===P A P B P C a ,,,PA PB PC 两两相互垂直,==AB BC CA ,所以'=3C O a ,'=3PO a ,22+=333a a ⎛⎛⎫ ⎪ ⎪⎝⎭⎝⎭,解得=2a ,所以'==33PO a ,'=3O O三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)在A B C ∆中,角,,A B C 的对边分别为,,a b c ,角,,A B C 成等差数列。

(1)求cos B 的值;(2)边,,a b c 成等比数列,求sin sin A C 的值【命题意图】本题主要考查等差数列、等比数列概念、正余弦定理应用,是容易题.【解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ ……6分(2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A C B解法二:2=b ac ,222221+-+-=cos ==222a c ba c acB ac ac,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C ……12分18. (本小题满分12分)如图,直三棱柱-'''A B C A B C ,=90B A C ∠︒,=='AB AC AA λ,点,M N 分别为'A B 和''B C 的中点 (1)证明://''MN A ACC 平面;(2)若二面角'--A M N C 为直二面角,求λ的值 【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题. 【解析】(1)连结','AB AC ,由已知=90,=BAC AB AC ∠︒ 三棱柱-'''A B C A B C 为直三棱柱,所以M 为'A B 中点.又因为N 为''B C 中点 所以//'M N A C ,又M N ⊄平面''A A C C'A C ⊂平面''A A C C ,因此//''MN A ACC 平面 ……6分 (2)以A 为坐标原点,分别以直线,,'AB AC AA 为x 轴,y 轴,z轴建立直角坐标系-O xyz ,如图所示 设'=1,AA 则==AB AC λ, 于是()()()()()()0,A B λλ, 所以1,0,,,,12222M N λλλ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,设()111=,,m x y z 是平面'A M N的法向量,由'=0,=0m A M m M N ⎧⎪⎨⎪⎩得11111-=0221+=022x z y z λλ⎧⎪⎪⎨⎪⎪⎩,可取()=1,-1,m λ 设()222=,,n x y z是平面M N C 的法向量,由=0,=0n N C n M N ⎧⎪⎨⎪⎩ 得22222-+-=0221+=022x y z y z λλλ⎧⎪⎪⎨⎪⎪⎩,可取()=-3,-1,n λ 因为'--A M N C 为直二面角,所以()()2=0,-3+-1-1+=0m n λ⨯即,解得λ……12分19. (本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷” (1)根据已知条件完成下面的22⨯列联表,并据此资料你是否(2采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X附:()2112212212-=n n n n n n n n n χ,【命题意图】本题主要考查频率分布直方图的应用、独立性检验、随机变量的分布列、期望、方差计算,考查运用所学知识解决实际问题能力,是中档题. 【解析】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而22⨯列联表如下:将22⨯ ……3分()()221122122121+2++1+2-1003010-4515100===3.0307525455533n n n n n n n n n χ⨯⨯⨯≈⨯⨯⨯因为3.030<3.841,所以没有理由认为“体育迷”与性别有关. ……6分 (2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意13,3X B ⎛⎫ ⎪ ,从而X 的分布列为……10分()13==3=44E X np ⨯,()()139=1-=3=4416D X np p ⨯⨯. (12)分20. (本小题满分12分) 如图,椭圆()22022:+=1>b>0,a,b xyC a a b为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点(1)求直线1A A 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形A B C D 与矩形''''A B C D 的面积相等,证明:2212+t t 为定值【命题意图】本题主要考查圆的方程、椭圆方程、轨迹求法、解析几何中的定值问题,考查转化与化归能力、运算求解能力,是难题. 【解析】设()()1111,,,-A x y B x y ,又知()()12-,0,,0A a A a ,则 直线1A A 的方程为 ()11=++y y x a x a①直线2A B 的方程为 ()11-=--y y x a x a②由①②得 ()22221221-=--y y xax a③由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1-x y b a ⎛⎫⎪⎝⎭,代入③得()2222-=1<-,<0x y x a y ab……6分(2)证明:设()22',A x y ,由矩形A B C D 与矩形''''A B C D 的面积相等,得2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以2222221212221-=1-x x b x b x a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭由12t t ≠,知12x x ≠,所以22212+=x x a 。

相关文档
最新文档