第四章因式分解讲义及中考题(北师大版)
北师大数学八年级下册第四章-因式分解经典讲义
第01讲_因式分解知识图谱因式分解知识精讲概念(1)把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,(2)因式分解与整式乘法是互逆过程2222()2()a ab a a bx yx y x y-=-++=+(√)(√)注意事项(1)分解的对象必须是多项式;(2)分解的结果一定是几个整式的乘积的形式;(3)要分解到不能分解为止2323623x y x y=⋅(×)2(1)(2)2x x x x+-=--(×)3229633(32)a a a a a a-+=-(×)概念(1)多项式()am bm cm m a b c++=++,其中m叫做这个多项式各项的公因式(2)m既可以是一个单项式,也可以是一个多项式(1)多项式15m3n2+5m2n﹣20m2n3的公因式是5m2n(2)m(n-2) -m2(2-n)可化简为m(n-2)+m2(n-2),公因式是m (n-2)分解因式得m(n-2) (m+1)步骤(1)公因式的系数——找各因式系数的最大公约数(2)公因式的字母——各因式中相同的字母 (3)相同字母指数——取各字母指数的最低次幂平方差公式(1)()()22a b a b a b -=+-即两个数的平方差,等于这两个数的和与这个数的差的积()()()22249232323x x x x -=-=+-完全平方公式 (1)()2222a ab b a b ±+=±其中,222a ab b ±+叫做完全平方式即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方()()()2222241292223323x xy y x x y y x y -+=-⋅⋅+=-三点剖析一.考点:1.概念;2.提公因式法;3.公式法.二.重难点:提公因式法;公式法三.易错点:没有分解彻底,一定要分解到每一项都不能再分解为止.概念例题1、 下列各等式从左到右的变形是因式分解,且分解正确的是( ) A.ax 2+bx +x =x (ax +b )B.a 2+2ab +b 2-1=(a +b )2-1C.(x +5)(x -1)=x 2-4x -5D.2211()42x x x -+=-【答案】 D【解析】 A 、公因式是x ,应为ax 2+bx +x =x (ax +b +1),故本选项错误; B 、a 2+2ab +b 2-1=(a +b )2-1=(a +b +1)(a +b -1),分解不彻底,故本选项错误; C 、右边不是积的形式,故本选项错误;D 、完全平方公式分解因式,故本选项正确.例题2、 下列从左到右的变形,属于因式分解的有( )(1)2(1)(2)2x x x x +-=-- (2)()ax ay a a x y a --=-- (3)2323623x y x y =⋅ (4)24(2)(2)x x x -=+-(5)3229633(32)a a a a a a -+=- A.0个 B.1个 C.2个 D.3个【答案】 B【解析】 从左到右,式(1)是整式乘法;式(2)右端不是积的形式;式(3)中左右两边均是单项式,原来就是乘积形式,我们说的因式分解,指的是将多项式分解成几个整式的乘积形式;式(5)的右边括号内漏掉了“1”这项;只有式(4)是正确的.例题3、 若多项式x 2+ax +b 分解因式的结果(x -2)(x +3),则a ,b 的值分别是( ) A.a =1,b =-6 B.a =5,b =6 C.a =1,b =6 D.a =5,b =-6 【答案】 A【解析】 ∵多项式x 2+ax +b 分解因式的结果为(x -2)(x +3), ∴x 2+ax +b =(x -2)(x +3)=x 2+x -6, 故a =1,b =-6.随练1、 下列各式由左边到右边的变形中,是因式分解的是( ) A.2xy+6xz+3=2x (y+3z )+3 B.(x+6)(x ﹣6)=x 2﹣36 C.﹣2x 2﹣2xy=﹣2x (x+y ) D.3a 2﹣3b 2=3(a 2﹣b 2) 【答案】 C【解析】 A 、在等式的右边最后计算的是和,不符合因式分解的定义,故A 不正确; B 、等式从左边到右边属于整式的乘法,故B 不正确;C 、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C 正确;D 、多项式a 2﹣b 2仍然可以继续分解为(a+b )(a ﹣b ),故D 属于分解不彻底,故D 不正确; 故选C .随练2、 下列变形,属于因式分解的有( ) ①x 2-16=(x +4)(x -4) ②x 2+3x -16=x (x +3)-16 ③(x +4)(x -4)=x 2-16 ④x 2+x =x (x +1) A.1个 B.2个 C.3个 D.4个 【答案】 B【解析】 由因式分解的意义可知: ①④是因式分解,提公因式法例题1、 3322222491421a bc a b c ab c +-在分解因式时,应提取的公因式是( ) A.27abc B.227ab c C.2227a b c D.337a bc 【答案】 A【解析】 因为()3322222224914217723a bc a b c ab c abc a c ab b +-=+-,所以提取的公因式为27abc ,故选A 选项. 例题2、 单项式2234a b c -,212ab c ,38ab 的公因式是________. 【答案】 24ab【解析】 由公因式的定义可知,题目中三项的公因式为24ab . 例题3、 多项式(x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y )的公因式是( ) A.x+y ﹣z B.x ﹣y+z C.y+z ﹣x D.不存在 【答案】 A【解析】 (x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y ) =(x+y ﹣z )(x ﹣y+z )+(y+z ﹣x )(x+y ﹣z ) =(x+y ﹣z )(x ﹣y+z+y+z ﹣x ) =2z (x+y ﹣z ),故多项式(x+y ﹣z )(x ﹣y+z )﹣(y+z ﹣x )(z ﹣x ﹣y )的公因式是:x+y ﹣z 例题4、 若x -y =5,xy =6,则x 2y -xy 2=________. 【答案】 30【解析】 ∵x -y =5,xy =6, ∴x 2y -xy 2=xy (x -y )=6×5=30.例题5、 计算:20182-2018×2017=________. 【答案】 2018【解析】 20182-2018×2017=2018(2018-2017)=2018×1=2018. 例题6、 若m ﹣n=﹣1,则(m ﹣n )2﹣2m+2n=______. 【答案】 3【解析】 ∵m ﹣n=﹣1, ∴(m ﹣n )2﹣2m+2n =(m ﹣n )2﹣2(m ﹣n ) =(﹣1)2﹣2×(﹣1) =1+2 =3.例题7、 分解因式:(1)324x x y -(2)324(1)2(1)q p p -+- (3)22x y xy - (4)22x xy -【答案】 (1)2(4)x x y -(2)22(1)(221)p q pq --+(3)22()x y xy xy x y -=-(4)()2x x y -【解析】 (1)()32244x x y x x y -=-(2)()()()()()()322241212121121221q p p p q p p q pq -+-=--+=--+⎡⎤⎣⎦ (3)()22x y xy xy x y -=- (4)()222x xy x x y -=-随练1、 下列各组代数式中没有公因式的是( ) A.5()m a b --与()b a - B.2()a b +与a b -- C.mx y +与x y +D.2a ab -+与22a b ab -【答案】 C【解析】 A 选项公因式为a b -;B 选项公因式为a b +;C 选项没有公因式;D 选项公因式为()a a b -;故答案为C 选项.随练2、 多项式mx 2-m 与多项式x 2-2x +1的公因式是( ) A.x -1 B.x +1 C.x 2-1 D.(x -1)2 【答案】 A【解析】 暂无解析随练3、 在分解3225(32)(23)x a b b a --+-时,提出公因式2(32)a b --后,另一个因式是( ) A.35xB.351x +C.351x -D.35x -【答案】 C【解析】 因为()()()()22233532233251x a b b a a b x --+-=---,所以另一个因式是351x -,故选C 选项. 随练4、 若m -n =-1,则(m -n )2-2m +2n =________. 【答案】 3【解析】 ∵m -n =-1, ∴(m -n )2-2m +2n =(m -n )2-2(m -n ) =(-1)2-2×(-1) =1+2 =3.随练5、 已知m 2=n +2,n 2=m +2,m ≠n ,求m 3-2mn +n 3的值. 【答案】 -2【解析】 暂无解析随练6、 (﹣8)2014+(﹣8)2013能被下列数整除的是( ) A.3 B.5 C.7 D.9【答案】 C【解析】 (﹣8)2014+(﹣8)2013 =(﹣8)2013×(﹣8+1) =﹣7×(﹣8)2013,则(﹣8)2014+(﹣8)2013能被7整除 随练7、 把下列各多项式分解因式 (1)5232a b a b a b -+(2)222271449x y xy x y --+(3)22()(1)()(1)x y a a x y a a +++--++ (4)222318(2)24(2)12(2)x x y xy y x x y x ----- (5)()()()x x y z y x y z z x y z ++++++++【答案】 (1)232(1)a b a b -+(2)7(27)xy x y xy -+-(3)22(1)y a a ++(4)26(2)(58)x y x x y --(5)2()x y z ++【解析】 (1)()52322321a b a b a b a b a b -+=-+ (2)2222714497(27)x y xy x y xy x y xy --+=-+-(3)()()()()()()()222211121x y a a x y a a a a x y x y y a a +++--++=+++-+=++(4)()()()()()22322182242122623422x x y xy y x x y x x x y x y x y -----=--+-⎡⎤⎣⎦()()26258x x y x y =--(5)()()()()2x x y z y x y z z x y z x y z ++++++++=++公式法例题1、 下列多项式中能用平方差公式分解因式的是( ) A.a 2+(﹣b )2 B.5m 2﹣20m C.﹣x 2﹣y 2 D.﹣x 2+9 【答案】 D【解析】 A 、a 2+(﹣b )2,无法运用平方差公式分解因式,故此选项错误; B 、5m 2﹣20m=5m (m ﹣4),无法运用平方差公式分解因式,故此选项错误; C 、﹣x 2﹣y 2,无法运用平方差公式分解因式,故此选项错误; D 、﹣x 2+9=(3﹣x )(3+x ),符合题意,故此选项正确.例题2、 下列各式中能用完全平方公式进行因式分解的是( ) A.21x x ++ B.221x x +- C.21x - D.269x x -+ 【答案】 D【解析】 A 、21x x ++不符合完全平方公式法分解因式的式子特点,故A 错误; B 、221x x +-不符合完全平方公式法分解因式的式子特点,故B 错误; C 、21x -不符合完全平方公式法分解因式的式子特点,故C 错误;D 、22693x x x +=--()2,故D 正确. 例题3、 下列多项式可以用公式法因式分解的是( )A.m 2+4mB.﹣a 2﹣b 2C.m 2+3m+9D.﹣y 2+x 2 【答案】 D【解析】 A .m 2+4m 只有一项平方项,所以不能用平方差公式因式分解,故此选项错误; B .﹣a 2﹣b 2两项的符号相同,所以不能用平方差公式因式分解,故此选项错误; C .m 2+3m+9不符合完全平方公式形式,故此选项错误;D .﹣y 2+x 2符合平方差公式因式分解的式子的特点,故选项正确. 例题4、 分解因式(1)p 2(q -1)-p (1-q ).(2)(a 2+4b 2)2-16a 2b 2. 【答案】 (1)p (p +1)(q -1) (2)(a +2b )2(a -2b )2 【解析】 暂无解析 例题5、 因式分解: (1)x 2-36;(2)3x (a -b )-6y (b -a ); (3)(y 2-1)2-6(y 2-1)+9. 【答案】 (1)(x +6)(x -6) (2)3(a -b )(x +2y ) (3)(y +2)2(y -2)2【解析】 (1)x 2-36=(x +6)(x -6);(2)3x (a -b )-6y (b -a )=3x (a -b )+6y (a -b )=3(a -b )(x +2y ); (3)原式=(y 2-1-3)2 =(y 2-4)2=(y +2)2(y -2)2.例题6、 已知x +y =4,xy =1,求下列各式的值: (1)x 2y +xy 2; (2)(x 2-1)(y 2-1). 【答案】 (1)4 (2)-12【解析】 (1)当x +y =4、xy =1时, x 2y +xy 2=xy (x +y )=1×4=4; (2)当x +y =4、xy =1时, 原式=x 2y 2-x 2-y 2+1 =x 2y 2-(x 2+y 2)+1=(xy )2-(x +y )2+2xy +1 =1-16+2+1 =-12.例题7、 分解因式: (1)2269x ax a ++(2)2244x y xy --+(3)29()6()1a b a b -+-+【答案】 (1)2(3)x a +(2)2(2)x y --(3)2(331)a b -+【解析】 (1)222226923(3)(3)x ax a x x a a x a +++⋅⋅++==(2)222222244(44)[222](2)x y xy x xy y x x y y x y --+=--+=--⋅⋅+=--() (3)222229()6()1[3()]23()11[3()1](331)a b a b a b a b a b a b -+-+-+⋅-⋅+-+-+===例题8、 分解因式:(1)48610369b x c y - (2)22(2)(2)x y x y +-- (3)8881x y -(4)()()223223a b a b +-+【答案】 (1)243524359(2)(2)b x c y b x c y +-(2)8xy (3)442222(9)(3+)(3)x y x y x y +-(4)()5()a b a b +-【解析】 (1)4861048610242352243524353699(4)9[(2)()]9(2)(2)b x c y b x c y b x c y b x c y b x c y ---+-===,(2)22(2)(2)x y x y +--[(2)(2)][(2)(2)](22)(22)(2)(4)8x y x y x y x y x y x y x y x y x y xy =++-+--=++-+-+== (3)8881x y -42424444442222442222442222(9)()(9)(9)(9)[(3)()](9)[(3+)(3)](9)(3+)(3)x y x y x y x y x y x y x y x y x y x y x y =-=+-=+-=+-=+-(4)()()223223a b a b +-+[(32)(23)][(32)(23)](3223)(3223)(55)()5()()a b a b a b a b a b a b a b a b a b a b a b a b =++++-+=++++--=+-=+-随练1、 下列各式中,不能用完全平方公式分解的个数为( )①x 2﹣4x+8;②﹣x 2﹣2x ﹣1;③4m 2+4m ﹣1;④﹣m 2+m ﹣14;⑤4a 4﹣a 2+1a.A.1个B.2个C.3个D.4个 【答案】 C【解析】 ①x 2﹣4x+8,不能;②﹣x 2﹣2x ﹣1,能;③4m 2+4m ﹣1,不能;④﹣m 2+m ﹣14,能;⑤4a 4﹣a 2+1a,不能,则不能用完全平方公式分解的个数为3个, 故选C随练2、 已知a =20182,b =2017×2019,则a -b 的值为________. 【答案】 1【解析】 ∵a =20182,b =2017×2019,∴a -b =20182-2017×2019=20182-(2018-1)×(2018+1)=20182-20182+1=1. 随练3、 因式分解x 4-4=________(实数范围内分解). 【答案】2(2)(x x x ++ 【解析】 x 4-4=(x 2+2)(x 2-2)222(2)[]x x =+-2(2)(x x x =+-.随练4、 下列各式:x 2-y 2,-x 2+y 2,-x 2-y 2,(-x )2+(-y )2,x 4-y 4中能用平方差公式分解因式的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 C【解析】 x 2-y 2=(x +y )(x -y ),-x 2+y 2=(y +x )(y -x ),-x 2-y 2,(-x )2+(-y )2,x 4-y 4=(x +y )(x -y )(x 2+y 2),则能用平方差公式分解因式的有3个.随练5、 若x 2+2(m -3)x +16=(x +n )2,则m =________. 【答案】 7或-1【解析】 ∵x 2+2(m -3)x +16=(x +n )2, ∴n =±4,∴2(m -3)=±8, 解得:m =7或-1.随练6、 分解因式:(1)5a b ab -(2)44()()a m n b m n +-+ (3)11116m m a a +--+【答案】 (1)2(1)(1)(1)ab a a a ++-(2)22()()()()m n a b a b a b +++-(3)11(4)(4)16m a a a --+-【解析】 (1)54222(1)(1)(1)(1)(1)(1)a b ab ab a ab a a ab a a a -=-=+-=++-(2)4444222222()()()()()()()()()()()a m n b m n m n a b m n a b a b m n a b a b a b +-+=+-=++-=+++-(3)11121111(16)(4)(4)161616m m m m a a a a a a a +----+=--=-+- 随练7、 把下列各式因式分解: (1)x (x -5)2-x (-5+x )(x +5) (2)(a +2b )2-a 2-2ab ; (3)-2(m -n )2+32;(4)-x 3+2x 2-x ; 【答案】 (1)-10x (x -5) (2)2b (a +2b )(3)-2(m -n +4)(m -n -4) (4)-x (x -1)2【解析】 (1)原式=x (x -5)2-x (x -5)(x +5)=x (x -5)[(x -5)-(x +5)]=-10x (x -5) (2)原式=a 2+4ab +4b 2-a 2-2ab =2ab +4b 2=2b (a +2b ) (3)原式=-2[(m -n )2-16]=-2(m -n +4)(m -n -4) (4)原式=-x (x 2-2x +1)=-x (x -1)2 随练8、 (1)分解因式2a 3-8ab 2; (2)计算:(-2a 2b )2•(3ab 2-5a 2b )÷(-ab )3; (3)先化简后求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =5,y =3. 【答案】 (1)2a (a +2b )(a -2b ) (2)-12a 2b +20a 3 (3)x -y ;2【解析】 (1)2a 3-8ab 2 =2a (a 2-4b 2) =2a (a +2b )(a -2b );(2)原式=4a 4b 2•(3ab 2-5a 2b )÷(-a 3b 3) =(12a 5b 4-20a 6b 3)÷(-a 3b 3) =-12a 2b +20a 3;(3)[(x -y )2+(x +y )(x -y )]÷2x =[(x 2-2xy +y 2)+(x 2-y 2)]÷2x =(2x 2-2xy )÷2x =x -y ,当x =5,y =3时,原式=5-3=2. 随练9、 分解因式:(1)42222244a x a x y x y -+ (2)22()12()36x y x y z z +-++ (3)222(4)8(4)16x x x x ++++(4)22222241(2)2(2)22x y x y y y ---+【答案】 (1)222(2)x a y -(2)2(6)x y z +-(3)4(2)x +(4)221(2)(2)2x y x y +-【解析】(1)()24222222422222222244(44)[()2()(2)2](2)a x a x y x y x a a y y x a a y y x a y -+=-+=-⋅⋅+=-(2)22222()12()36()2()(6)(6)(6)x y x y z z x y x y z z x y z +-++=+-++=+-(3)222222222224(4)8(4)16(4)2(4)44(44)[(2)](2)x x x x x x x x x x x x ++++=++⋅+⋅+=++=+=+(4)22222241(2)2(2)22x y x y y y ---+ 22222242222222222222222221[(2)4(2)4]21[(2)2(2)(2)(2)]21(22)21(4)21[(2)(2)]21(2)(2)2x y x y y y x y x y y y x y y x y x y x y x y x y =---+=--⋅-⋅+=--=-=+-=+-拓展1、 下列各式中,从左到右的变形是因式分解的是( ) A.3x +3y -5=3(x +y )-5 B.(x +1)(x -1)=x 2-1 C.x 2+2x +1=(x +1)2 D.x (x -y )=x 2-xy 【答案】 C【解析】 暂无解析2、 下列变形:①(x+1)(x ﹣1)=x 2﹣1;②9a 2﹣12a+4=(3a ﹣2)2;③3abc 3=3c•abc 2;④3a 2﹣6a=3a (a ﹣2)中,是因式分解的有__________(填序号) 【答案】 ②④【解析】 分析:直接利用因式分解的意义分析得出答案. 解:①(x+1)(x ﹣1)=x 2﹣1,是多项式乘法,故此选项错误; ②9a 2﹣12a+4=(3a ﹣2)2,是因式分解; ③3abc 3=3c•abc 2,不是因式分解; ④3a 2﹣6a=3a (a ﹣2),是因式分解; 故答案为:②④.3、 下列从左到右的变形,是在式分解的是( )①()a x y ax ay +=+ ②22111()()a a a b b b-=+- ③29(3)(3)ax a a x x -=+-④221()()1x y x y x y --=+-- ⑤222222()2()x x y y x y x y -+-=---A.②③B.③C.③⑤D.③④ 【答案】 B【解析】 暂无解析4、 多项式4x 2﹣4与多项式x 2﹣2x +1的公因式是( ) A.x ﹣1 B.x +1 C.x 2﹣1 D.(x ﹣1)2 【答案】 A【解析】 ∵4x 2﹣4=4(x +1)(x ﹣1),x 2﹣2x +1=(x ﹣1)2, ∴多项式4x 2﹣4与多项式x 2﹣2x +1的公因式是(x ﹣1). 5、 多项式15m 3n 2+5m 2n ﹣20m 2n 3的公因式是( ) A.5mn B.5m 2n 2 C.5m 2n D.5mn 2 【答案】 C【解析】 多项式15m 3n 2+5m 2n ﹣20m 2n 3中, 各项系数的最大公约数是5,各项都含有的相同字母是m 、n ,字母m 的指数最低是2,字母n 的指数最低是1, 所以它的公因式是5m 2n .6、 如多项式339363x y xy xy -+提取公因式________后,另一个因式是________. 【答案】 3xy ,223121x y -+【解析】 由提公因式法可知,()3322936333121x y xy xy xy x y -+=-+所以提出公因式3xy 之后,另一个公因式为223121x y -+.7、 分解因式()()()()x m n a b y n m b a -----=_________. 【答案】 ()()()m n a b x y ---【解析】 ()()()()()()()()()()()x m n a b y n m b a x m n a b y m n a b m n a b x y -----=-----=--- 8、 因式分解:x 2﹣2x+(x ﹣2)=______________. 【答案】 (x+1)(x ﹣2)【解析】 原式=x (x ﹣2)+(x ﹣2)=(x+1)(x ﹣2). 9、 因式分解:(a -b )2-(b -a )=________. 【答案】 (a -b )(a -b +1)【解析】 原式=(a -b )2+(a -b )=(a -b )(a -b +1),10、 若x=123456789×123456786,y=123456788×123456787,则x y (填>,<或=)【答案】 <.【解析】 ∵x ﹣y=123456789×123456786﹣123456788×123456787 =(123456788+1)×123456786﹣123456788×(123456786+1)=123456788×123456786+123456786﹣123456788×123456786﹣123456788 =﹣2<0, ∴x <y.11、 代数式x 4﹣81,x 2﹣9与x 2﹣6x+9的公因式为( )A.x+3B.(x+3)2C.x ﹣3D.x 2+9【答案】 C【解析】 x 4﹣81=(x 2+9)(x 2﹣9), =(x 2+9)(x+3)(x ﹣3); x 2﹣9=(x+3)(x ﹣3); x 2﹣6x+9=(x ﹣3)2.因此3个多项式的公因式是x ﹣3. 故选:C .12、 分解因式:9(a -1)2-4(b -2)2. 【答案】 (3a +2b -7)(3a -2b +1)【解析】 原式=[3(a -1)+2(b -2)][3(a -1)-2(b -2)] =(3a -3+2b -4)(3a -3-2b +4) =(3a +2b -7)(3a -2b +1).13、 分解因式:(1)2249a b -(2)24162516a y b -+【答案】 (1)()23(23)a b a b +-(2)8282(45)(45)b ay b ay +-【解析】 (1)222249(2)(3)(23)(23)a b a b a b a b -=-=+-(2)241616248222828225161625(4)(5)(45)(45)a y b b a y b ay b ay b ay -+=-=-=+-14、 因式分解: (1)2x 2-18;(2)3m 2n -12mn +12n ; (3)(x -y )2-6(x -y )+9; (4)(m 2+4n 2)2-16m 2n 2. 【答案】 (1)2(x +3)(x -3) (2)3n (m -2)2 (3)(x -y -3)2 (4)(m +2n )2(m -2n )2【解析】 (1)原式=2(x 2-9)=2(x +3)(x -3); (2)原式=3n (m 2-4m +4)=3n (m -2)2; (3)原式=(x -y -3)2; (4)原式=(m 2+4mn +4n 2)(m 2-4mn +4n 2) =(m +2n )2(m -2n )2. 15、 分解因式(1)244ma ma m -+ (2)232a a a -+(3)22244a b ab c +--【答案】 (1)2(2)m a -(2)2(1)a a -(3)(2)(2)a b c a b c ---+【解析】 (1)22244(44)(2)ma ma m m a a m a -+=-+=- (2)23222(12)(1)a a a a a a a a -+=-+=- (3)2222244(2)(2)(2)a b ab c a b c a b c a b c +--=--=-+-- 16、 分解因式:(1)22229()12()4()a b a b a b -+-++(2)42363a a -+11 (3)112n n n a a a +-+-(4)22222(1)4m n m n +--【答案】 (1)2(5)a b -(2)223(1)(1)a a +-(3)12(1)n a a --(4)(1)(1)(1)(1)m n m n m n m n +++--+--【解析】(1)22229()12()4()a b a b a b -+-++2222222[3()]12()()[2()][3()]23()2()[2()][3()2()](3322)(5)a b a b a b a b a b a b a b a b a b a b a b a b a b =-++⋅-++=-+⨯-⨯+++=-++=-++=-(2)4242222223633(21)3(1)3[(1)(1)]3(1)(1)a a a a a a a a a -+=-+=-=+⋅-=+-(3)1111121222(21)(1)n n n n n n n n a a a a a a a a a a a +-+---+-=-+=-+=-(4)22222(1)4m n m n +-- 2222222222(12)(12)[(2)1][(2)1][()1][()1](1)(1)(1)(1)m n mn m n mn m mn n m mn n m n m n m n m n m n m n =+-+⋅+--=++--+-=+---=+++--+--。
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)
【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。
北师大版八年级数学下册第四章因式分解小结与复习课件
⑸(2x+y)2-2(2x+y)+1
(6) (x-y)2 - 6x +6y+9
解:原式=(2x+y-1)2
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
(8) (x+1)(x+5)+4
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
2. 若 100x2-kxy+49y2 是一个完全平方式, 则k= ( ±140)
3.计算(-2)101+(-2)100
解:原式=(-2)(-2)100+ (-2)100
=(-2)100(-2+1) =2100·(-1)=-2100
4.已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x39
=4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
三分 ③再考虑分组分解法
四查 ④检查:特别看看多项式因式 是否分解彻底
课堂小结
因 式 分 解
概念
与整式乘法的关系
提公因式法
方法 公式法
平方差公式
完全平方差公式
提:公因式 步骤 运:运用公式
查:检测结果是否彻底
首页
随堂训练
1.把下列各式分解因式:
(1) 4x2-16y2
(2) x2+xy+ y2.
第四章 因式分解
小结与复习
知识 归纳
复习点一 (一)分解因式的概念:
把一个多项式化成几个整式的积的情势, 叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积
北师大数学八年级下册第四章-因式分解进阶经典讲义
第02讲_因式分解进阶知识图谱因式分解的高级方法知识精讲一.十字相乘法二.分组分解法分组分解法分解因式常用的思路有:十字相乘法 2(0)ax bx c a ++≠ 若a 1 c 2+a 2 c 1 =b ,则 21122()()ax bx c a x c a x c ++=++ 分解思路为“看两端,凑中间” 21232x x ++21232=(8)(4)x x x x ++++a 1a 2c 2c 1a 1c 2 + a 2c 1分组分解法(1)适用场景:不能直接运用提公因式法和公式法(2)方法:把这个多项式分成几组,对各组分别分解因式,然后再对整体作因式分解四项=二项+二项(按字母分组、按系数分组、符合公式的两项分组)四项=三项+一项(先完全平方公式后平方差公式)五项=三项+二项(完全平方公式)六项=三项+三项(完全平方公式)六项=二项+二项+二项(各组之间有公因式)六项=三项+二项+一项(完全平方公式)三.换元法四.拆、添项法三点剖析一.考点:1.十字相乘法;2.分组分解法;3.换元法;4.拆、添项二.重难点:十字相乘法;分组分解法;换元法;拆、添项.三.易错点:(1)正确的十字相乘必须满足以下条件:在上式中,竖向的两个数必须满足关系12a a a =,12c c c =;斜向的两个数必须满足关系1221a c a c b +=,分解思路为“看两端,凑中间.”(2)换元法换元分解因式后,一定要记得将原有的字母换回来,并最终对每一项都彻底因式分解.c 1c 2a 2a 1换元法将一个较复杂的代数式中的某一部分看作一个整体,用一个新字母替代它,简化运算过程设, 则原式易错点:换元分解因式后,一定要记得将原有的字母换回来。
并再次对每一项彻底的因式分解拆、添项(1)在多项式中添上两个符号相反的项,再使用分组分解法进行分解因式(2)将多项式中的某一项拆成两项或多项,再使用分组分解法十字相乘法例题1、 如果把多项式x 2﹣8x+m 分解因式得(x ﹣10)(x+n ),那么m+n=_____________. 【答案】 -18【解析】 ∵x 2﹣8x+m=(x ﹣10)(x+n ), ∴x 2﹣8x+m=x 2+(﹣10+n )x ﹣10n , ∴﹣10+n=﹣8,m=﹣10n , 解得:n=2,m=﹣20, m+n=﹣20+2=﹣18.例题2、 因式分解:﹣2x 2y+8xy ﹣6y=_______. 【答案】 ﹣2y (x ﹣1)(x ﹣3)【解析】 原式=﹣2y (x 2﹣4x+3)=﹣2y (x ﹣1)(x ﹣3)例题3、 甲、乙两个同学分解因式x 2+ax+b 时,甲看错了b ,分解结果为(x+2)(x+4);乙看错了a ,分解结果为(x+1)(x+9),则a=__,b=__. 【答案】 6;9【解析】 分解因式x 2+ax+b ,甲看错了b ,但a 是正确的, 他分解结果为(x+2)(x+4)=x 2+6x+8, ∴a=6,同理:乙看错了a ,分解结果为(x+1)(x+9)=x 2+10x+9, ∴b=9,例题4、 因式分解:221999199911999x x .【答案】 ()()199911999x x +- 【解析】 该题考查的是因式分解.十字相乘可得原式()()199911999x x =+- 例题5、 把下列多项式因式分解 (1)22273x xy y -+(2)22675x xy y --【答案】 (1)(3)(2)x y x y --(2)(2)(35)x y x y +-【解析】 (1)22273(3)(2)x xy y x y x y -+=--(2)22675(2)(35)x xy y x y x y --=+- 例题6、 把下列多项式因式分解 (1)2532x x -- (2)2568x x +- (3)26525x x -- (4)26113x x -+【答案】 (1)(52)(1)x x +- (2)(54)(2)x x -+(3)(25)(35)x x -+(4)(23)(31)x x --【解析】 利用十字相乘法进行因式分解可得(1)2532(52)(1)x x x x --=+- (2)2568(54)(2)x x x x +-=-+ (3)26525(25)(35)x x x x --=-+ (4)26113(23)(31)x x x x -+=-- 例题7、 分解因式:2214425x y xy +- 【答案】 ()212x -【解析】 略例题8、 仔细阅读下面例题,解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n ),得 x 2-4x +m =(x +3)(x +n )则x 2-4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩.解得:n =-7,m =-21 ∴另一个因式为(x -7),m 的值为-21 问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值. 【答案】 另一个因式为(x +4),k =20 【解析】 设另一个因式为(x +a ),得2x 2+3x -k =(2x -5)(x +a ) 则2x 2+3x -k =2x 2+(2a -5)x -5a ∴2535a a k -=⎧⎨-=-⎩解得:a =4,k =20故另一个因式为(x +4),k 的值为20. 随练1、 如果x 2-px +q =(x +1)(x -3),那么p 等于( ) A.-2 B.2 C.-3 D.3【答案】 B【解析】 已知等式整理得:x 2-px +q =(x +1)(x -3)=x 2-2x -3, 可得-p =-2,q =3, 解得:p =2.随练2、 分解因式:22268x y x y -++- 【答案】 (4)(2)x y x y -++-【解析】 ()()22222682169x y x y x x y y -++-=++--+()()()()22131313x y x y x y =+--=++-+-+ 随练3、 阅读下列材料,并解答相应问题:对于二次三项式x 2+2ax+a 2这样的完全平方式,可以用公式法将它分解成(x+a )2的形式,但是,对于一般的二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x 2+2ax ﹣3a 2=x 2+2ax+a 2﹣a 2﹣3a 2=(x+a )2﹣(2a )2=(x+3a )(x ﹣a ) (1)像上面这样把二次三项式分解因式的数学方法是 ; A .提公因式法 B .十字相乘法 C .配方法 D .公式法 (2)这种方法的关键是 ;(3)用上述方法把m 2﹣6m+8分解因式. 【答案】 (1)B ;(2)利用完全平方公式及平方差公式变形 (3)(m ﹣2)(m ﹣4)【解析】 (1)像上面这样把二次三项式分解因式的数学方法是十字相乘法; (2)这种方法的关键是利用完全平方公式及平方差公式变形; (3)原式=m 2﹣6m+9﹣1=(m ﹣3)2﹣1=(m ﹣3+1)(m ﹣3﹣1)=(m ﹣2)(m ﹣4), 故答案为:(1)B ;(2)利用完全平方公式及平方差公式变形 随练4、 把下列多项式因式分解 (1)2232x xy y ++ (2)2276x xy y -+ (3)22421x xy y --(4)22215x xy y +-【答案】 (1)()(2)x y x y ++(2)()(6)x y x y --(3)(3)(7)x y x y +-(4)(3)(5)x y x y -+【解析】 (1)()()22322x xy y x y x y ++=++(2)2276()(6)x xy y x y x y -+=-- (3)22421(3)(7)x xy y x y x y --=+-(4)22215(3)(5)x xy y x y x y +-=-+ 随练5、 把下列多项式因式分解 (1)2383x x +- (2)2352x x -+ (3)42627x x -- (4)2236a b a ab +--【答案】 (1)(31)(3)x x -+(2)(32)(1)x x --(3)2(3)(3)(3)x x x -++(4)(2)(13)a b a +-【解析】 (1)2383(31)(3)x x x x +-=-+ (2)2352(32)(1)x x x x -+=--(3)()()()()()4222262793333x x x x x x x --=-+=+-+ (4)()()()()2236232213a b a ab a b a a b a b a +--=+-+=+- 随练6、 把下列多项式因式分解 (1)2273x x -+ (2)2675x x -- (3)4268x x ++(4)2()4()3a b a b +-++【答案】 (1)(3)(21)x x --(2)(21)(35)x x +-(3)22(2)(4)x x ++(4)(1)(3)a b a b +-+- 【解析】 (1)利用十字相乘法进行因式分解得(1)2273(3)(21)x x x x -+=-- (2)2675(21)(35)x x x x --=+- (3)422268(2)(4)x x x x ++=++(4)2()4()3(1)(3)a b a b a b a b +-++=+-+-分组分解法例题1、 已知:a 2+b 2+c 2-ab -ac -bc =0,则a 、b 、c 的大小关系为________. 【答案】 a =b =c【解析】 ∵a 2+b 2+c 2-ab -bc -ac =0, ∵2a 2+2b 2+2c 2-2ab -2bc -2ac =0,a 2+b 2-2ab +b 2+c 2-2bc +a 2+c 2-2ac =0, 即(a -b )2+(b -c )2+(c -a )2=0, ∵a -b =0,b -c =0,c -a =0, ∵a =b =c .例题2、 已知a=998,b=997,c=996,则a 2﹣ab ﹣ac+bc=______________. 【答案】 2【解析】 原式=a (a ﹣b )﹣c (a ﹣b ) =(a ﹣b )(a ﹣c ) =(998﹣997)(998﹣996) =1×2 =2,例题3、 分解因式a 2﹣b 2﹣2b ﹣1=__________. 【答案】 (a+b+1)(a ﹣b ﹣1). 【解析】 a 2﹣b 2﹣2b ﹣1 =a 2﹣(b 2+2b+1) =a 2﹣(b+1)2 =(a+b+1)(a ﹣b ﹣1).例题4、 把下列多项式因式分解 (1)224484a b a b ab +-+-(2)222xy xz y yz z --+-【答案】 (1)(2)(24)a b a b ---(2)()()y z x y z --+【解析】 (1)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(2)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+例题5、 仔细阅读下列解题过程:若a 2+2ab +2b 2-6b +9=0,求a 、b 的值. 解:∵a 2+2ab +2b 2-6b +9=0 ∴a 2+2ab +b 2+b 2-6b +9=0 ∴(a +b )2+(b -3)2=0 ∴a +b =0,b -3=0 ∴a =-3,b =3根据以上解题过程,试探究下列问题:(1)已知x 2-2xy +2y 2-2y +1=0,求x +2y 的值; (2)已知a 2+5b 2-4ab -2b +1=0,求a 、b 的值;(3)若m =n +4,mn +t 2-8t +20=0,求n 2m -t 的值. 【答案】 (1)3 (2)a =2;b =1 (3)1【解析】 (1)∵x 2-2xy +2y 2-2y +1=0 ∴x 2-2xy +y 2+y 2-2y +1=0 ∴(x -y )2+(y -1)2=0 ∴x -y =0,y -1=0, ∴x =1,y =1, ∴x +2y =3;(2)∵a 2+5b 2-4ab -2b +1=0 ∴a 2+4b 2-4ab +b 2-2b +1=0 ∴(a -2b )2+(b -1)2=0 ∴a -2b =0,b -1=0 ∴a =2,b =1; (3)∵m =n +4,∴n (n +4)+t 2-8t +20=0 ∴n 2+4n +4+t 2-8t +16=0 ∴(n +2)2+(t -4)2=0 ∴n +2=0,t -4=0 ∴n =-2,t =4 ∴m =n +4=2∴n 2m -t =(-2)0=1.例题6、 阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法称作分组分解. 例如:以下两个式子的分解因式的方法就称为分组分解法.(1)am+an+bm+bn=(am+bm )+(an+bn )=m (a+b )+n (a+b )=(a+b )(m+n ); (2)x 2﹣y 2﹣2y ﹣1=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x+y ﹣1) 试用上述方法分解因式: (1)a 2+2ab+b 2+ac+bc (2)4a 2﹣x 2+4xy ﹣4y 2. 【答案】 (1)(a+b )(a+b+c )(2)(2a+x ﹣2y )(2a ﹣x+2y )【解析】 (1)原式=(a 2+2ab+b 2)+(ac+bc )=(a+b )2+c (a+b )=(a+b )(a+b+c ); (2)原式=4a 2﹣(x 2﹣4xy+4y 2)=4a 2﹣(x ﹣2y )2=(2a+x ﹣2y )(2a ﹣x+2y ). 例题7、 把下列多项式因式分解 (1)251539a m am abm bm -+-(2)432x x x x +++(3)432433x x x x ++++ (4)22ax bx bx ax a b -+-+-(5)2223(1)()22x x xy y x y xy +-+++(6)222x x y xy x y y -+-+-【答案】 (1)()()353m a a b -+;(2)()()211x x x ++;(3)()()2213xx x +++;(4)()()21a b x x --+;(5)()222(1)x x xy y +++;(6)()()21y x x y --+【解析】 (1)()()()()2515395333353a m am abm bm m a a b a m a a b -+-=-+-=-+⎡⎤⎣⎦ (2)()()()()432321111x x x x x x x x x x x +++=+++=++ (3)()()()43243222243333313x x x x x x x x x xx x ++++=+++++=+++(4)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+(5)()()2223222222(1)()22(1)2(1)x x xy y x y xy x x xy y xy x x xy y +-+++=+-++=+++ (6)()()()()()222221111x x y xy x y y x y x y y y y x x y -+-+-=---+-=--+ 随练1、 分解因式:y+y 2+xy+xy 2=______. 【答案】 y (1+y )(1+x )【解析】 先进行分组,再用提公因式法进行因式分解,即可解答. 解:y+y 2+xy+xy 2=(y+y 2)+(xy+xy 2) =y (1+y )+xy (1+y ) =(1+y )(y+xy ) =y (1+y )(1+x ).随练2、 分解因式:3232x x y y +-- 【答案】 22()()x y x x xy y y -++-+【解析】 原式33222222()()()()()()()()x y x y x y x xy y x y x y x y x x xy y y =-+-=-++++-=-++-+ 随练3、 分解因式:43221x x x x ++++ 【答案】 22(1)(1)x x x +++【解析】 原式432222222()(1)(1)(1)(1)(1)x x x x x x x x x x x x x =+++++=+++++=+++ 随练4、 把下列多项式因式分解 (1)2214497x xy y x y -++- (2)222(2)123(3)m n mn n m +--- 【答案】 (1)(7)(71)x y x y --+ (2)(23)(23)m n m n mn --+【解析】 (1)()()()()2221449777771x xy y x y x y x y x y x y -++-=-+-=--+ (2)()()2222222(2)123(3)234129m n mn n m m n mn m mn n +---=-+-+()()()()223232323mn m n m n m n mn m n =-+-=-+-随练5、 把下列多项式因式分解(1)2222x x y xy x y y -+-+- (2)222ax by cx ay bx cy ++--- (3)222221a b c c ab +---- (4)222494126x y z xy yz xz ++--+ 【答案】 (1)()(1)(1)x y y x ---(2)()(2)a b c x y -+-(3)(1)(1)a b c a b c -++---(4)2(23)x y z -+ 【解析】 (1)()()()22222222x x y xy x y y x y x y xy x y -+-+-=-----()()()()()()()11x y x y xy x y x y x y x y y =+-----=----⎡⎤⎣⎦()()()11x y y x =---(2)()()222222ax by cx ay bx cy ax bx cx by ay cy ++---=-++--()()()()22x a b c y a b c a b c x y =-+--+=-+-(3)()()()()222222222212211a b c c ab a ab b c c a b c +----=-+-++=--+(1)(1)a b c a b c =-++--- (4)()222249412623x y z xy yz xz x y z ++--+=-+随练6、 把下列多项式因式分解 (1)222xy xz y yz z --+- (2)222222x y xz z a ay --+-- (3)22(3)(34)a b b a --- (4)2(1)1x x x ----【答案】 (1)()()y z x y z --+(2)()()x z a y x z a y -++---(3)(2)(32)a b a -+(4)2(1)(1)x x -+ 【解析】 (1)()()()()2222xy xz y yz z x y z y z y z x y z --+-=---=--+ (2)()()()()22222222222222x y xz z a ay x xz z y ay a x z y a --+--=-+-++=--+ ()()x z a y x z a y =-++---(3)()()2222(3)(34)62346342a b b a a b ab a a ab a b ---=--+=-+-()()()()3222232a a b a b a b a =-+-=-+(4)()()()()()()2233222(1)1111111x x x x x x x x x x x x x x ----=-++-=-+-=-+-=-+ 随练7、 把下列多项式因式分解 (1)23442x x x -+- (2)24263a ab a b +++ (3)2244a b a b -+- (4)22944a ab b ---(5)2221693025m a ab b -+-(6)22194m n mn -++(7)224252036x y xy +--【答案】 (1)()()()2212x x x x --+-+(2)(23)(2)a a b ++(3)()(4)a b a b -++(4)(32)(32)a b a b ++--(5)(435)(435)m a b m a b +--+ (6)11(3)(3)22m n m n +++-(7)(256)(256)x y x y -+-- 【解析】 (1)()()()()()()2234222242422212x x x x x x x x x x x xx -+-=--=+--+=--+-+(2)()()()()242632232223a ab a b a a b a b a b a +++=+++=++ (3)()()()()()224444a b a b a b a b a b a b a b -+-=+-+-=-++(4)()()()222944923232a ab b a b a b a b ---=-+=++--(5)()()()2222216930251635435435m a ab b m a b m a b m a b -+-=--=+--+ (6)222111199334222m n mn m n m n m n ⎛⎫⎛⎫⎛⎫-++=+-=+++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ (7)()()()22=256256256x y x y x y --=-+--换元法例题1、 若实数a ,b 满足(2a +2b )(2a +2b -2)-8=0,则a +b =________. 【答案】 -1或2【解析】 设a +b =x ,则由原方程,得 2x (2x -2)-8=0,整理,得4x 2-4x -8=0,即x 2-x -2=0, 分解得:(x +1)(x -2)=0, 解得:x 1=-1,x 2=2.则a +b 的值是-1或2.例题2、 分解因式:22()(32349)x x x x -+--+ 【答案】 223()1x x -- 【解析】 22222223234()()(9326329())3(1)x x x x x x x x x x -+--+=-+--++=-- 例题3、 分解因式:(1)2(3)5(3)14p p ---- (2)()()224341256xx x x -+--+【答案】 (1)(10)(1)p p --(2)2(1)(5)(44)x x x x +---【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =-- (2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--例题4、 分解因式:(1)2(3)5(3)14p p ----(2)()()224341256x x x x -+--+(3)22(815)(87)15x x x x +++++(4)22(1)(2)12x x x x ++++- 【答案】 (1)(10)(1)p p --(2)2(1)(5)(2)x x x +--(3)2(2)(6)(810)x x x x ++++(4)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()()()2235314353143732p p p p p p ----=----=---+()()101p p =--(2)()()()()22222434125649420x x x x x x x x -+--+=---+()()()()()22244455144x x x x x x x x =----=-+--(3)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(4)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++随练1、 已知实数x ,y 满足(x 2+y 2)(x 2+y 2-12)=45,求x 2+y 2的值. 【答案】 15【解析】 设x 2+y 2=a ,则a (a -12)=45, a 2-12a -45=0, (a -15)(a +3)=0, a 1=15,a 2=-3, ∵x 2+y 2=a≥0, ∴x 2+y 2=15.随练2、 (2013初二上期中人民大学附属中学)因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++. 【解析】 该题考查的是因式分解. 令26x x a +=,则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++()()()224410x x x x =++++随练3、 因式分解:222618680x xx x【答案】 ()()()224410x x x x ++++.【解析】 该题考查的是因式分解. 令26x x a +=, 则原式21880a a =++ ()()810a a =++()()2268610x x x x =++++ ()()()224410x x x x =++++ 随练4、 分解因式:(1)22(815)(87)15x x x x +++++ (2)22(1)(2)12x x x x ++++-【答案】 (1)2(2)(6)(810)x x x x ++++(2)2(1)(2)(5)x x x x -+++ 【解析】 (1)()()()()2222281587158228120x x x x x x x x +++++=++++()()()()()22281081226810x x x x x x x x =++++=++++(2)()()()()222221212310x x x x x x x x ++++-=+++-()()()()()22252215x x x x x x x x =+++-=+-++拆、添项例题1、 分解因式441x +【答案】 22(221)(221)x x x x ++-+ 【解析】()()()()224422222414414212212212x x x x x x x x x x +=++-=+-=+++-例题2、 分解因式:42471x x -+ 【答案】 22(71)(71)x x x x ++-+【解析】 ()()()()22424222224712149171717x x x x x x x x x x x -+=++-=+-=+++-例题3、 分解因式:841x x ++【答案】 2242(1)(1)(1)x x x x x x ++-+-+【解析】 原式844424424221(1)(1)(1)x x x x x x x x x =++-=+-=++-+2242(1)(1)(1)x x x x x x =++-+-+例题4、 分解因式:32265x x x +-- 【答案】 (1)(3)(2)x x x ++-【解析】 3232226566(1)(3)(2)x x x x x x x x x x x +--=+++--=++-例题5、 分解因式)()()(222y x z x z y z y x -+-+- 【答案】 ))()((z x y x z y ---【解析】 22222222()()()=()()()=()()()x y z y z x z x y x y z z x y x y z z y y z x y x z -+-+--+-+----随练1、 分解因式:343a a -+【答案】2(1)(3)a a a -+- 【解析】 332224333(1)(3)a a a a a a a a a a -+=-+--+=-+-随练2、 分解因式:224414x y x y -++【答案】 2222(4)(4)x y xy x y xy +++-【解析】 ()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-随练3、 分解因式:4414x y +【答案】 222211()()22x y xy x y xy +++- 【解析】 ()224442242222111442x y x x y y x y x y xy ⎛⎫+=++-=+- ⎪⎝⎭22221122x y xy x y xy ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭随练4、 分解因式:4231x x -+【答案】22(1)(1)x x x x +--- 【解析】 拆项法:原式=422222[()(1)](1)(1)x x x x x x x x ----=+--- 随练5、 分解因式:4224a ab b ++【答案】 2222()()a ab b a ab b ++-+【解析】 添项法:原式=2422422a a b b a b ++-随练6、 分解因式:432234232a a b a b ab b ++++【答案】222()a ab b ++ 【解析】 43223443222234232222a a b a b ab b a a b a b a b ab b ++++=+++++()()4224222222a a b b ab a b a b =+++++()()()22222222222a b ab a b a b a b ab =++++=++随练7、 分解因式:(1)()()22ax by bx ay ++-(2)()(2)(1)(1)x y x y xy xy xy +++++-【答案】 (1)2222()()a b x y ++(2)(1)(1)(1)x y x y xy ++++-【解析】 (1)()()222222222222ax by bx ay a x abxy b y b x abxy a y ++-=+++-+()()()()2222222222x a b y a b a b x y =+++=++(2)()()()()211x y x y xy xy xy +++++-()()()()222211x y xy x y xy x y xy =++++-=++-()()()()()11111x y xy x y xy x y x y xy =+++++-=++++-拓展1、 因式分解 (1)3x ﹣12x 2 (2)x 2﹣9x ﹣10(3)x 2﹣2xz+z 2﹣4y 2(4)25(m+n )2﹣4(m ﹣n )2. 【答案】 (1)3x (1﹣4x )(2)(x ﹣10)(x+1)(3)(x ﹣z+2y )(x ﹣z ﹣2y )(4)(7m+3n )(3m+7n ) 【解析】 (1)原式=3x (1﹣4x ); (2)原式=(x ﹣10)(x+1);(3)原式=(x ﹣z )2﹣4y 2=(x ﹣z+2y )(x ﹣z ﹣2y );(4)原式=[5(m+n )+2(m ﹣n )][5(m+n )﹣2(m ﹣n )] =(7m+3n )(3m+7n ). 2、 因式分解 ①3p 2﹣6pq ②2x 2+8x+8③a 2(x ﹣y )+16(y ﹣x ) ④x 2﹣2x ﹣15.【答案】 ①3p (p ﹣2q ), ②2(x+2)2 ③(x ﹣y )(a+4)(a ﹣4) ④ (x ﹣5)(x+3)【解析】 ①3p 2﹣6pq=3p (p ﹣2q );②2x 2+8x+8=2(x 2+4x+4)=2(x+2)2; ③a 2(x ﹣y )+16(y ﹣x ) =(x ﹣y )(a 2﹣16) =(x ﹣y )(a+4)(a ﹣4); ④x 2﹣2x ﹣15=(x ﹣5)(x+3). 3、 因式分解:3232x x x ++. 【答案】 ()()12x x x ++【解析】 该题考查的是因式分解.把一个多项式化为几个最简整式的积的形式,这种变形叫做因式分解,也叫做分解因式. 3232x x x ++()232x x x =++()()12x x x =++4、 分解因式:22672x xy y -+ 【答案】 (3x -y )(x -2y ) 【解析】 (3x -y )(x -2y )5、 把下列多项式因式分解 (1)22568x xy y +- (2)2232x xy y -+ (3)2263x x +-(4)2815x x -+【答案】 (1)(2)(54)x y x y +-(2)()(2)x y x y --(3)(9)(7)x x +-(4)(3)(5)x x -- 【解析】 (1)22568(2)(54)x xy y x y x y +-=+-(2)()()22322x xy y x y x y -+=-- (3)()()226397x x x x +-=+-(4)()()281535x x x x -+=--6、 分解因式:x 3﹣5x 2y ﹣24xy 2= . 【答案】 x (x+3y )(x ﹣8y ) 【解析】 x 3﹣5x 2y ﹣24xy 2 =x (x 2﹣5xy ﹣24y 2) =x (x+3y )(x ﹣8y ) 故答案为:x (x+3y )(x ﹣8y ).7、 分解因式:2212x x y ---+ 【答案】 (1)(1)y x y x ++--【解析】 原式2222(12)(1)(1)(1)y x x y x y x y x =-++=-+=++--8、 把22222222448a b c d a c b d abcd +--+因式分解. 【答案】 (22)(22)ab cd ac bd ab cd ac bd ++-+-+【解析】 ()()22222222222222224484444a b c d a c b d abcd a b abcd c d a c abcd b d +--+=++--+ ()()2222(22)(22)ab cd ac bd ab cd ac bd ab cd ac bd =+--=++-+-+9、 分解因式:3254222x x x x x --++- 【答案】 42(2)(1)x x x -+-【解析】 原式32542442(2)(2)(2)(2)(2)(2)(2)(1)x x x x x x x x x x x x x =---+-=---+-=-+- 10、 把下列多项式因式分解(1)224484a b a b ab +-+-(2)4322221a a a a ++++【答案】 (1)(2)(24)a b a b ---(2)22(1)(1)a a ++【解析】 (1)()()222244844448a b a b ab a ab b a b +-+-=-+--()()2242a b a b =---()()224a b a b =---(2)()()()()243242222221212111a a a a a a a a a a ++++=++++=++11、 把下列多项式因式分解(1)22ax bx bx ax a b -+-+-(2)432433x x x x ++++(3)2222424a b c d ab cd +--++(4)2269261x xy y x y ++--+ 【答案】 (1)()()21a b x x --+;(2)()()2213x x x +++;(3)(2)(2)a b c d a b c d ++-+-+;(4)2(31)x y +-【解析】 (1)()()()()22221ax bx bx ax a b x a b x a b a b a b x x -+-+-=---+-=--+ (2)()()()43243222243333313x x x x x x x x x x x x ++++=+++++=+++ (3)()()()()222222424222a b c d ab cd a b c d a b c d a b c d +--++=+--=++-+-+(4)()()()222269261323131x xy y x y x y x y x y ++--+=+-++=+- 12、 把下列多项式因式分解(1)242363ax bx x ay by y -+-+- (2)224484a b a b ab +-+- (3)5432221x x x x x +--++(4)228166249x xy y x y -++-+ 【答案】 (1)(21)(23)a b x y -+-(2)(2)(24)a b a b ---(3)32(1)(1)x x +-(4)2(43)x y -+ 【解析】 (1)()()()()2423632213212123ax bx x ay by y x a b y a b a b x y -+-+-=-+--+=-+-(2)()()()()()()2222244844448242224a b a b ab a ab b a b a b a b a b a b +-+-=-+--=---=---(3)()()()()()2543242232221121111(1)(1)x x x x x x x x x x x x x x +--++=+-+++=+-=+-(4)()()()22228166249464943x xy y x y x y x y x y -++-+=-+-+=-+13、 把下列多项式因式分解 (1)1xy x y --+ (2)325153x x x --+ (3)27321x y xy x -+- (4)(1)(2)6x x x --- (5)222(1)()ab x x a b +++(6)215430bm bn am an -+-(7)233a a ab b --+【答案】 (1)()()11y x --;(2)()()2351x x --;(3)()()37x x y -+;(4)()()232x x -+;(5)()()ax b bx a ++;(6)()()2215b a m n +-;(7)()()3a b a -- 【解析】 (1)()()()()()()111111xy x y xy x y x y y y x --+=---=---=-- (2)()()()()()()32322251535153533351x x x x x x x x x x x --+=---=---=-- (3)()()()()()()227321721373337x y xy x x x xy y x x y x x x y -+-=-+-=-+-=-+(4)()()()()()()323222(1)(2)632632632332x x x x x x x x x x x x x x ---=-+-=-+-=-+-=-+ (5)()()()()()()222222(1)()ab x x a b abx b x a x ab bx ax b a ax b ax b bx a +++=+++=+++=++ (6)()()215430241530bm bn am an bm am bn an -+-=+-+ ()()()()221522215m b a n b a b a m n =+-+=+-(7)()()()()()()22333333a a ab b a ab a b a a b a b a b a --+=---=---=--14、 把下列多项式因式分解(1)2c abcd ac bd -+-(2)5432222a a a a a +++++ (3)54ax ax ax a -+-(4)2ax ay a bx by ab -++-+ (5)2293x x y y ---(6)2222x y z yz --+【答案】 (1)(1)(1)ac bd +-(2)23(1)(2)a a a +++(3)4(1)(1)a x x -+ (4)()()x y a a b -++(5)(3)(31)x y x y +--(6)()()x y z x y z +--+【解析】 (1)()()()()21c abcd ac bd c bd ac c bd c bd ac -+-=-+-=-+ (2)()()()()54323222322212112a a a a a a a a a a a a a +++++=+++++=+++ (3)()()()()54441111ax ax ax a ax x a x a x x -+-=-+-=-+(4)()()()()()2ax ay a bx by ab x a b y a b a a b a b x y a -++-+=+-+++=+-+(5)()()()()()()()22229393333331x x y y x y x y x y x y x y x y x y ---=--+=+--+=+-- (6)()()()()2222222222x y z yz x y yz z x y z x y z x y z --+=--+=--=+--+ 15、 若m =4n +3,则m 2-8mn +16n 2的值是________. 【答案】 9【解析】 ∵m =4n +3, ∴m -4n =3,则原式=(m -4n )2=32=9.16、 分解因式:()()x x x x 2232349-+--+【答案】 ()2231x x --【解析】 2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--17、 因式分解:()()222618680x x x x ++++【答案】 ()()()224610x x x x ++++.【解析】 令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++()()()224610x x x x =++++18、 分解因式41)42)(52(22++---x x x x 【答案】 ()()()21322x x x x +--+ 【解析】 本题考查的是因式分解. 设22y x x =-,上式()()5414y y =-++, 整理得:上式26y y =--十字相乘法得:上式()()32y y =-+.把22y x x =-代入得:()()222322x x x x ---+十字相乘法得:上式()()()21322x x xx =+--+19、 因式分解: (1)222618680x xx x(2)()()x x x x 2232349-+--+【答案】 (1)()()()224610x x x x ++++;(2)()2231x x --【解析】 (1)令26x x a +=,则原式21880a a =++()()810a a =++()()2268610x x x x =++++=()()()224610x x x x ++++(2)2222222(32)(34)9(32)6(32)9(31)x x x x x x x x x x -+--+=-+--++=--20、 分解因式:(1)224414x y x y -++(2)841x x ++【答案】 2222(4)(4)x y xy x y xy +++-;2242(1)(1)(1)x x x x x x ++-+-+ 【解析】 (1)()()22224442242222142164x y x y x x y y x y x y xy -++=++-=+-()()222244x y xy x y xy =+++-(2)848442242121(1)(1)(1)x x x x x x x x x x x ++=++-=++-+-+21、 分解因式:464x +【答案】22(84)(84)x x x x +++- 【解析】()()()()22442222264166416848484x x x x x x x x x x +=++-=+-=+++-22、 分解因式:3234x x +-【答案】 2(1)(2)x x --【解析】 323222344444(1)(2)x x x x x x x x x +-=-+-+-=--23、 分解因式:12631x x -+ 【答案】 6363(1)(1)x x x x -+++【解析】()()()()2212612666363633121111x x x x x x x x x x x -+=-+-=--=-+++24、 分解因式:444222222222a b c a b b c c a ---+++ 【答案】 ()()()()c a b c a b a b c a b c -+--++++- 【解析】 444222222222a b c a b b c c a ---+++ 22444222222222222222222222242224()(2)(2)()()()()a b a b c b c c a a b a b a b c a b a b c a b a b c c a b c a b a b c a b c =---++-=-+-=++---+=-+--++++-25、 分解因式:3)5)(3(22-----x x x x 【答案】 (1)(2)(2)(3)x x x x ++-- 【解析】22222(3)(5)3(3)2(3)3(1)(2)(2)(3)x x x x x x x x x x x x -----=------=++-- 26、 分解因式2222(48)3(48)2x x x x x x ++++++【答案】 ()()()22458x x x x ++++【解析】()()()()22222248348248482x x x x x x x x x x x x ++++++=++++++()()()22458x x x x =++++。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)
第四章 因式分解(提高)提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.m m(1);(2); (3);(4); (5).【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. 【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解. 【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A. B.C. D.【答案】B ;类型二、提公因式法分解因式2、(2019春•山亭区期中)把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3. 【思路点拨】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案; (2)直接提取公因式﹣4ab ,进而分解因式得出答案. 【答案与解析】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ] =2m (m ﹣n )(5m ﹣n );()a x y ax ay +=+2221(2)(1)(1)x xy y x x y y y ++-=+++-24(2)(2)ax a a x x -=+-221122ab a b =222112a a a a ⎛⎫++=+ ⎪⎝⎭21a 1a243(2)(2)3a a a a a -+=-++2244(2)x x x ++=+11(1)x x x+=+2(1)(1)1x x x +-=-(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 举一反三:【变式】(2019春•濉溪县期末)下列分解因式结果正确的是( ) A.a b+7ab ﹣b=b (a +7a ) B.3x y ﹣3xy+6y=3y (x ﹣x ﹣2) C.8xyz ﹣6x y =2xyz (4﹣3xy ) D.﹣2a +4ab ﹣6ac=﹣2a (a ﹣2b+3c ) 【答案】D.解:A 、原式=b (a +7a+1),错误;B 、原式=3y (x ﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确. 故选D .类型三、提公因式法分解因式的应用3、若、、为的三边长,且,则按边分类,应是什么三角形? 【答案与解析】解:∵∴当时,等式成立,当时,原式变为,得出, ∴∴是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型. 4、对任意自然数(>0),是30的倍数,请你判定一下这个说法的正确性,并说说理由. 【答案与解析】 解:∵为大于0的自然数,∴为偶数,15×为30的倍数, 即是30的倍数.222222222a b c ABC ∆()()()()a b b a b a a c a b a c -+-=-+-ABC ∆()()()()a b b a b a a c a b a c -+-=-+-()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--a b =a b ≠a b a c -=-b c =a b b c ==或ABC ∆n n 422n n +-()44422222221152n n n n n n +-=⨯-=-=⨯n 2n2n422n n +-【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式. 举一反三: 【变式】说明能被7整除.【答案】 解:所以能被7整除.5、(2019春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x y+xy 的值. 【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可. 【答案与解析】解:∵xy=—3,x+y=2,∴x y+xy =xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 【巩固练习】 一.选择题1. (2019春•北京期末)把多项式2x 3y ﹣x 2y 2﹣6x 2y 分解因式时,应提取的公因式为( )A .x 2yB .xy 2C .2x 3yD .6x 2y2. 观察下列各式:①;②;③;④;⑤;⑥.其中可以用提公因式法分解因式的有()A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥ 3. 下列各式中,运用提取公因式分解因式正确的是( )A. B.C. D.4. 分解因式的结果是( )A. B.C. D.422n n +-422n n +-200199198343103-⨯+⨯200199198343103-⨯+⨯()198219833431073=-⨯+=⨯200199198343103-⨯+⨯2222abx adx -2226x y xy +328421m m m -++3223a a b ab b ++-()()()22256p q x y x p q p q +-+++()()()24ax y x y b y x +--+()()()()22222a x a a x -+-=-+()32222x x x x x x ++=+()()()2x x y y x y x y ---=-()2313x x x x --=--2322212n n n x x x +++-+()22nx xx -+()2322n x x x -+()2122n xx x +-+()322n x x x -+5. (2019秋•西城区校级期中)把﹣6x y ﹣3x y ﹣8x y 因式分解时,应提取公因式( ) A.﹣3x y B.-2x yC.x yD.﹣x y6. 计算的结果是( )A. B.-1 C. D.-2二.填空题7. 把下列各式因式分解:(1)__________.(2)_________________.8. 在空白处填出适当的式子: (1);(2)9. 因式分解:______________.10. (2019•黔南州)若ab=2,a ﹣b=﹣1,则代数式a 2b ﹣ab 2的值等于___________. 11. .12. (2019春•深圳校级期中)若m ﹣n=3,mn=﹣2,则2m 2n ﹣2mn 2+1的值为_____________.三.解答题 13.已知:,求的值. 14. (2019春•北京校级月考)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x 3﹣x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3﹣x 2+m=(2x+1)(x 2+ax+b ),则:2x 3﹣x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b比较系数得,解得,∴解法二:设2x 3﹣x 2+m=A•(2x+1)(A 为整式) 由于上式为恒等式,为方便计算了取,32222322222222()2011201022+-2010220102-2168a b ab --=()()2232xx y x y x ---=()()()()111x y y x --=-+()()238423279ab b c a bc +=+()()()x b c a y b c a a b c +--+----=2011201222_________________-=213x x +=43261510x x x ++2×=0,故 .(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.15. 先分解因式(1)、(2)、(3),再解答后面问题; (1)1++(1+); (2)1++(1+)+;(3)1++(1+)++ 问题:.先探索上述分解因式的规律,然后写出:1++(1+)+++…+分解因式的结果是_______________..请按上述方法分解因式:1++(1+)+++…+(为正整数). 【答案与解析】 一.选择题1. 【答案】A ;【解析】2x 3y ﹣x 2y 2﹣6x 2y=x 2y (2x ﹣y ﹣6). 2. 【答案】D【解析】①;②;⑤;⑥.所以可以用提公因式法分解因式的有①②⑤⑥.3. 【答案】C ;【解析】;.4. 【答案】C ;5. 【答案】D .【解析】解:﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3=﹣x 2y 2(6x+3+8y ),因此﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3的公因式是﹣x 2y 2. 故选D .6. 【答案】C ; 【解析】.二.填空题7. 【答案】(1);(2)a a a a a a a ()21a +a a a a ()21a +a ()31a +a a a a a ()21a +a ()31a +()20121a +b a a a a ()21a +a ()31a +()1na +n ()abx adx axb d -=-()222623x y xy xy x y +=+()()()()()222225656p q x y xp q p q p q x y x p q ⎡⎤+-+++=+-++⎣⎦()()()()()2244ax y x y b y x x y a x y b ⎡⎤+--+=+--⎣⎦()()()()22222a x a a x -+-=--()322221x x x x x x ++=++()()()()2011201020102010201020102010222222222+-=+-⨯-=+-⨯=-()821ab a -+()()221xx y x --【解析】.8. 【答案】(1);(2); 【解析】. 9. 【答案】;【解析】 .10.【答案】-2;【解析】∵ab=2,a ﹣b=﹣1,∴a 2b ﹣ab 2=ab (a ﹣b )=2×(﹣1)=﹣2. 11.【答案】;【解析】.12.【答案】-11;【解析】解:∵2m 2n ﹣2mn 2+1=2mn (m ﹣n )+1将m ﹣n=3,mn=﹣2代入得: 原式=2mn (m ﹣n )+1 =2×(﹣2)×3+1 =﹣11.故答案为:﹣11.三.解答题 13.【解析】解:14.【解析】()()()()()()22222323221xx y x y x x x y x x y x x y x ---=---=--1y -2427b ()()()()()()111111y x x y y x y y -+=-+-=---()()1x y bc a -++-()()()x b c a y b c a a b c +--+----()()()x b c a y b c a b c a =+--+-++-()()1x y b c a =-++-20112-()201120122011201120112011222222122-=-⨯=-=-43261510x x x ++()()()43322222222226699691169333331313x x x x x x x x x x x x x x x x x x x =++++=++++=⨯+⨯+=+=+=⨯=解:设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),取x=1,得1+m+n ﹣16=0①, 取x=2,得16+8m+2n ﹣16=0②, 由①、②解得m=﹣5,n=20. 15.【解析】解:(1)原式=;(2)原式=;(3)原式=.结果为:,.原式= = ==……=平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.()()()2111a a a ++=+()()()()()()31111111a a a a a a a a ++++=+++=+⎡⎤⎣⎦()()()21111a a a a a a ⎡⎤++++++⎣⎦()()()1111a a a a a =+++++⎡⎤⎣⎦()()()2111a a a =+++()41a =+a ()20131a +b ()()()1111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()21111......1n a a a a a a a -⎡⎤++++++++⎣⎦()()()33111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()111111n n a a a a -++++=+()()22a b a b a b -=+-(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解.【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:a b a b 2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-(1); (2)(3); (4);【答案】解:(1)原式(2)原式= = (3)原式 (4)原式2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4). 【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】(2019•杭州模拟)先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.【答案】解:原式=(2a+3b+2a ﹣3b )(2a+3b ﹣2a+3b )=4a×6b=24ab ,当a=,即ab=时,()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x yx x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-原式=24ab=4.类型二、平方差公式的应用3、(2019春•新化县期末)在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x4﹣y4=(x﹣y)(x+y)(x2+y2),当x=9,y=9时,x﹣y=0,x+y=18,x2+y2=162,则密码018162.对于多项式4x3﹣xy2,取x=10,y=10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x3﹣xy2进行因式分解,得到4x3﹣xy2=x(2x+y)(2x﹣y),然后把x=10,y=10代入,分别计算出2x+y=及2x﹣y的值,从而得出密码.【答案与解析】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10,2x+y=30,2x﹣y=10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.4、(2019春•成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣. 【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【巩固练习】一.选择题1.(2019•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22. (2019春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( )A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C. D. 4. 下列各式,其中因式分解正确的是( )①;② ③④A.1个B.2个C.3个D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( )A .61,63B .61,65C .63,65D .63,676. 乘积应等于( ) ()()2292323a b a b a b -+=+-()()5422228199a ab a a b a b -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭A .B .C .D . 二.填空题 7. ; . 8. 若,将分解因式为__________. 9. 分解因式:_________. 10. 若,则是_________.11. (2019春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .12.(2019•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 . 三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)14.(2019秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设,,……,(为大于0的自然数) (1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】一.选择题1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】; ; 5121211202311_________m m a a +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422n x x x x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a ba b a a b a b a b -=+-=++-. 4. 【答案】C ;【解析】①②③正确. .5. 【答案】C ; 【解析】6. 【答案】C ;【解析】 二.填空题7. 【答案】;【解析】.8. 【答案】;【解析】. 9. 【答案】;【解析】原式=. 10.【答案】4;【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212*********=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111......11112233991010314253108119 (223344991010)1111121020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m a a a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x ++-=+-=-=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=216﹣1+1,=216因为216的末位数字是6,所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2, ∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4.三.解答题13.【解析】解:(1)-1998×2000 = (2)(3)14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±.15.【解析】解:(1)又为非零的自然数,∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256. 为一个完全平方数的2倍时,为完全平方数.21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (215050)=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式 .(2)原式 .2、(2019•大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab 3= ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】解:22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+x y ()()()()4234x y x y x y x y y +++++()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令∴上式即 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式? 因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 2254x xy y u ++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2019春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:所以a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2019春•萧山区期中)若(2019﹣x )(2019﹣x )=2019,则(2019﹣x )2+(2019﹣x )2= .【答案】4032.解:∵(2019﹣x )(2019﹣x )=2019,∴[(2019﹣x )﹣(2019﹣x )]2=(2019﹣x )2+(2019﹣x )2﹣2(2019﹣x )(2019﹣x )=4,则(2019﹣x )2+(2019﹣x )2=4+2×2019=4032. 【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A .-5B .7C .-1D .7或-12.(2019•富顺县校级模拟)下列各式中,不能用完全平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④;⑤.A .1个B .2个C .3个D .4个3. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2019•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c2﹣ab ﹣bc ﹣ac 的值为( )A . 0B . 1C . 2D . 35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是( )A. B. C. D.二.填空题7.(2019•赤峰)分解因式:4x 2﹣4xy +y 2= .8. 因式分解:=_____________. 9. 因式分解: =_____________.10. 若,=_____________.3(5)a b b c +=±-28a c b b c a +==-或a b c c a b -<8b c a b =-<2a c b +=22(3)16x m x +-+m 24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >()222224m nm n +-2221x x y ++-224250x y x y +-++=x y +11. 当取__________时,多项式有最小值_____________.12.(2019•宁波模拟)如果实数x 、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2019春•怀集县期末)已知a+=,求下列各式的值: (1)(a+)2;(2)(a ﹣)2;(3)a ﹣.15. 若三角形的三边长是,且满足,试判断三角形的形状.小明是这样做的:解:∵,∴.即∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D ;【解析】由题意,=±4,.2. 【答案】C ;【解析】② ③ ⑤ 不能用完全平方公式分解.3. 【答案】B ;【解析】,所以,选B. 4. 【答案】D ;【解析】解:由题意可知a ﹣b=﹣1,b ﹣c=﹣1,a ﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ca ),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2],x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -==[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D .5. 【答案】A ;【解析】原式=. 6. 【答案】B ;【解析】,由题意得,,所以.二.填空题 7. 【答案】(2x ﹣y )2 【解析】4x 2﹣4xy +y 2=(2x )2﹣2×2x •y +y 2=(2x ﹣y )2.8. 【答案】; 【解析】.9. 【答案】【解析】. 10.【答案】1;【解析】,所以,. 11.【答案】-3,1;【解析】,当时有最小值1. 12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x ﹣3y )2+(x ﹣2)2=0,因为x ,y 均是实数,∴x﹣3y=0,x ﹣2=0,∴x=2,y=,∴==.故答案为. 三.解答题13.【解析】解:将代入 ()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b ++=++-()22222a b a b =+-2ab =()222225a b a b +-=∵≥0,∴=3.14.【解析】解:(1)把a+=代入得:(a+)2=()2=10; (2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a ﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a ﹣=±=±.15.【解析】 解:∵∴∴∴,该三角形是等边三角形.十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.()()2222222259a b a b +-=+=22a b +22a b +2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==pq x q p x +++)(22. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:【答案与解析】解:原式=【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解:因为22(1)(6136)x a x a a++--+()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-a x23345xy y x y++--2(34)35(35)(1)y x y x y x y=+-+-=+-+()2a a-所以:原式=[-2][ -12] ==【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】解:(1)令, 则原式(2)令, 原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项→.()()()22221214a a a a a a ----=--22(2)(12)a a a a ----()()()()1234a a a a +-+-222(3)2(3)8x x x x ----()()223432x x x x =---+()()()()4112x x x x =-+--22(1)(2)12x x x x ++++-22(33)(34)8x x x x +-++-21x x t ++=222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++-2(2)(1)(5)x x x x =+-++23x x m +=2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++222332x xy y x y -++-+2()x y -3()x y -【答案与解析】解:原式【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】(2019秋•昌江区校级期末)分解因式:.【答案】解:= ==.类型三、拆项或添项分解因式5、(2019春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a )+3a][(x+a )﹣3]2()3()2x y x y =-+-+(1)(2)x y x y =-+-+22a b ac bc -++225533a b a b --+23345xy y x y ++--()()()()()a b a b c a b a b a b c =+-++=+-+()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-2242244241a b c ab ac bc ++--+-2242244241a b c ab ac bc ++--+-()()()2222444241a b ab ac bcc +-+-++-()()()()222222211b a c b a c c -+-++-()()222121b a c b a c -++-+-=(x+4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x 2﹣4xy+3y 2=0化为(x ﹣ )•(x ﹣ )=0并直接写出y 与x 的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y 与x 的关系式求值.【答案与解析】解:(1)x 2+2ax ﹣3a2 =x 2+2ax+a 2﹣4a2 =(x+a )2﹣4a2 =(x+a+2a )(x+a ﹣2a )=(x+3a )(x ﹣a );(2)x 2﹣4xy+3y2 =x 2﹣4xy+4y 2﹣y2 =(x ﹣2y )2﹣y2 =(x ﹣2y+y )(x ﹣2y ﹣y )=(x ﹣y )(x ﹣3y );x=y 或x=3y ;故答案为:y ;3y(3)原式===﹣, 若x=y ,原式=﹣2;若x=3y ,原式=﹣. 【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】一.选择题1. (2019秋·惠民县期末)如果多项式能因式分解为,那么下列结论正确的是 ( ).A.=6B.=1C.=-2D.=32. 若,且,则的值为( ). A.5 B.-6 C.-5 D.63. 将因式分解的结果是( ).2322mx nx --()()32x x p ++m n p mnp ()2230x a b x ab x x +++=--b a <b ()()256x y x y +-+-A. B.C. D.4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a+1)(b+1)C .(a+1)(b ﹣1)D .(a ﹣1)(b+1)5. 对运用分组分解法分解因式,分组正确的是( )A. B.C. D.6.如果有一个因式为,那么的值是( )A. -9B.9C.-1D.1二.填空题7.(2019•黄冈模拟)分解因式: .8. 分解因式:= .9.分解因式的结果是__________.10. 如果代数式有一因式,则的值为_________. 11.若有因式,则另外的因式是_________.12. 分解因式:(1);(2)三.解答题13. 已知,, 求的值.14. 分解下列因式:(1)(2)(3)(4) 15.(2019•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.()()23x y x y +++-()()23x y x y +-++()()61x y x y +-++()()61x y x y +++-224293x x y y +--22(42)(93)x x y y ++--22(49)(23)x y x y -+-22(43)(29)x y x y -+-22(423)9x x y y +--3233x x x m +-+()3x +m 2242y xy x --+=224202536a ab b -+-5321x x x -+-a 3223a a b ab b --+()a b -3)32(2-+-+k x k kx mn m x m n x -+-+22)2(0x y +=31x y +=2231213x xy y ++()()128222+---a a a a 32344xy xy x y x y -++42222459x y x y y --43226a a a +-如:ax+by+bx+ay=(ax+bx )+(ay+by )=x (a+b )+y (a+b )=(a+b )(x+y )2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2. 【答案与解析】一.选择题1. 【答案】B ;【解析】, ∴,解得.2. 【答案】B ;【解析】,由,所以. 3. 【答案】C ;【解析】把看成一个整体,分解.4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当时,代数式为零,解得.二.填空题()()()223233222x x p x p x p mx nx ++=+++=--22,32p p n =-+=-1n =()()23065x x x x --=-+b a <6b =-()x y +()()()()25661x y x y x y x y +-+-=+-++()()2323x y x y +-23x y-3x =-9m =-7. 【答案】. 【解析】解:===.8. 【答案】; 【解析】原式9. 【答案】;【解析】原式.10.【答案】16;【解析】由题意当时,代数式等于0,解得. 11.【答案】; 【解析】.12.【答案】;; 【解析】;.三.解答题13.【解析】解:由,解得 所以,原式.14.【解析】解:(1)原式;()()22x y x y -+--2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--()()256256a b a b -+--()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--()()()22111x x x x +--+()()()()()()()23222321111111x xx x x x x x x =-+-=-+=+--+4x =16a =()()a b a b -+()()322322a a b ab b aa b b a b --+=---()()2a b a b =-+()()31kx k x +-+()()x m x m n --+()()2(23)331kx k x k kx k x +-+-=+-+()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦()()22231213334x xy y x y x y y ++=+++0x y +=31x y +=12y =21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭()()()()()()22261223a a a a a a a a =----=+-+-。
北师大版八年级数学下册第四章因式分解章末复习课件(共42张)
章末复习
母题2 (教材P104复习题第1题) 把下列各式因式分解: (1)7x2-63; (2)a3-a; (3)3a2-3b2; (4)y2-9(x+y)2; (5)a(x-y)-b(y-x)+c(x-y); (6)x(m+n)-y(n+m)+(m+n); (7)(x+y)2-16(x-y)2; (8)a2(a-b)2-b2(a-b)2; (9)(x+y+z)2-(x-y-z)2; (10)(x+y)2-14(x+y)+49.
章末复习
相关题1 把下列各式分解因式: (1)5x2-15xy+10xy2; (2)a(x-2)+(2-x)2; (3)2x2y-8xy+8y; (4)(m2+n2)2-4m2n2.
章末复习
解:(1)原式=5x(x-3y+2y2). (2)原式=(x-2)(a+x-2). (3)原式=2y(x2-4x+4)=2y(x-2)2. (4)原式=(m2+n2+2mn)(m2+n2-2mn)=(m+n)2·(m-n)2.
相关题3 求证:不论x取何实数, 多项式-2x4-12x3-18x2的值都不会是 正数.
证明:原式=-2x2(x2+6x+9)=-2x2(x+3)2. ∵-2x2≤0,(x+3)2≥0, ∴-2x2(x+3)2≤0, ∴不论 x 取何实数,原式的值都不会是正数.
章末复习
专题四 因式分解的应用
【要点指点】 因式分解不仅在数值计算、代数式的化简求值等方 面有广泛的应用, 在解决实际问题时也同样重要.通过学习和应用 因式分解, 能使我们的视察能力、运算能力、逻辑思维能力、探究 能力得到提高.
第四章 因式分解复习题---解答题(含解析)
北师大版数学八下第四章分解因式---解答题一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay24.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=;(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.6.(2018秋•松江区期中)因式分解:x4﹣16y4.7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片张,B类卡片张,C类卡片张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.23.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.24.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.北师大版数学八下第四章分解因式---解答题参考答案与试题解析一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.4.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【分析】根据分解因式的方法﹣提公因式法分解因式即可.【解答】解:(1)2a(x﹣y)﹣6b(y﹣x)=2(x﹣y)(a+3b);(2)(a2﹣2a+1)﹣b(a﹣1)=(a﹣1)(a﹣b﹣1);(3)2x(y﹣x)+(x+y)(x﹣y)=(y﹣x)(2x﹣x﹣y)=﹣(x﹣y)2.5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=a2﹣b2,S②=(a+b)(a﹣b);(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20182﹣20172=(2018+2017)(2018﹣2017)=4035×1=4035.6.(2018秋•松江区期中)因式分解:x4﹣16y4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a【分析】先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.【解答】解:(1)原式=m(n2﹣2n+1)=m(n﹣1)2;(2)原式=x(x﹣2)+(x﹣2)=(x﹣2)(x+1).10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣a(25x2﹣10x+1)=﹣a(5x﹣1)2;(2)原式=4x2(a﹣b)﹣y2(a﹣b)=(a﹣b)(2x+y)(2x﹣y).11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.【分析】(1)提公因式分解因式即可;(2)先根据多项式乘法法则将式子展开,再根据完全平方公式分解因式即可.【解答】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)+=x2+3x+2+=x2+3x+=(x+)2.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.【分析】(1)利用平方差公式分解因式;(2)利用(1)中分解的结果得到c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0,再提公因式得到(a+b)(a﹣b)(c2﹣a2﹣b2)=0,于是a﹣b=0或c2﹣a2﹣b2=0,然后判断三角形的形状.【解答】解:(1)a2c2﹣b2c2=c2(a2﹣b2)=c2(a+b)(a﹣b);a4﹣b4=(a2﹣b2)(a2+b2)=(a﹣b)(a+b)(a2+b2);(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a﹣b)(a+b)(a2+b2);∴c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0;∴(a+b)(a﹣b)(c2﹣a2﹣b2)=0,∵a、b、c分别是△ABC的三边.∴a﹣b=0或c2﹣a2﹣b2=0,∴a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.【分析】(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4=﹣(m﹣2)2≤0.【解答】解:(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4,=﹣(m﹣2)2≤0,即:c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.【分析】先将已知化简得:a﹣2b=1,再把所求的式子进行因式分解,最后代入计算.【解答】解:a(a+1)﹣(a2+2b)=1,a2+a﹣a2﹣2b﹣1=0,a﹣2b=1,a2﹣4ab+4b2﹣2a+4b,=(a﹣2b)2﹣2(a﹣2b),=12﹣2×1,=﹣1.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.【分析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【解答】解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.【分析】用6张卡片(边长为a的正方形卡片1张,边长为b的正方形卡片2张,边长为a、b的矩形卡片3张)拼成一个大长方形,可判断矩形ABCD的面积为a2+3ab+2b2,从而得到因式分解得结果.【解答】解:如图,矩形ABCD的面积为a2+3ab+2b2,a2+3ab+2b2可分解为(a+b)(a+2b).18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?【分析】(1)根据“神秘数”定义可判断;(2)把2019写成平方差的形式,解方程即可判断是否是神秘数;(3)由(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),可判断构造的“神秘数”是4的倍数;(4)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)∵28=82﹣62=64﹣36∴28是“神秘数”(2)2019不是“神秘数”设2 019是由y和y﹣2两数的平方差得到的,则y2﹣(y﹣2)2=2 019,解得:y=505.75,不是偶数,∴2 019不是“神秘数”.(3)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的“神秘数”是4的倍数,且是奇数倍(4)(2k+1)2﹣(2k﹣1)2=8k,是8的倍数,但不是4的倍数,根据定义得出结论,不是“神秘数”.19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?【分析】(1)根据题意和a、b的值可以求得“机智数”c;(2)根据题意,可以求得a=m2+2m+1,b=m2+m时的“机智数”c;(3)根据(2)中的结论和分式有意义的条件可以求得m的值.【解答】解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.【分析】(1)根据题意可以判断52478和9115是否能被19整除,从而判断是否为灵异数;(2)根据题意.写出相应的式子,从而可以解答本题.【解答】解:(1)∵478﹣7×52=114,114÷19=6,∴52478能被19整除,是“灵异数”;∵115﹣7×9=52,52÷19=2…14,∴9115不能被19整除,不是“灵异数”;(2)设这个五位数的千位为a,则个位为2a,十位为b,则百位为8﹣b,∵[100(8﹣b)+10b+2a]﹣7×(10×1+a)=730﹣90b﹣5a,这个数恰好是灵异数,即能被19整除,a为正整数、b为非负整数,∴730﹣90b﹣5a能被19整除,解得,,,∴这个数为:11172或12084.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片2张,B类卡片3张,C类卡片1张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.(2)由图形可得;(3)由图形面积的两种表达形式可把多项式2a2+3ab+b2分解因式.【解答】解:(1)∵面积等于2a2+3ab+b2∴需要A类卡片2张,B类卡片3张,C类卡片1张;故答案为:2,3,1(2)如图:图形的面积=(2a+b)(a+b)(3)2a2+3ab+b2=(2a+b)(a+b)22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.【分析】(1)根据题意可判断;(2)利用平方差公式可证;(3)将“奇妙数”从小到大排列后,可求第12个奇妙数.【解答】解:(1)15和40是奇妙数,理由:15=42﹣12,40=72﹣32.(2)设这两个数为2n﹣1,2n+1∵(2n+1)2﹣(2n﹣1)2=8n∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19∴第12个奇妙数为1923.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.(2)通过完全平方公式可求平方和,即可证平方和是5的倍数;延伸:通过完全平方公式可求平方和,即可判断平方和是否被3整除.【解答】解:(1)∵(﹣1)2+02+12+22+32=1+0+1+4+9=15=5×3∴结果是5的3倍.(2)设五个连续整数的中间一个为n,则另四个整数为:n﹣2,n﹣1,n+1,n+2∴它们的平方和为(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2∵(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10=5(n2+2)∴它们的平方和是5的倍数延伸:不能被3整除,余数为2设中间的整数为n,∵(n﹣1)2+n2+(n+1)2=3n2+2∴不能被3整除,余数为224.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【分析】按照新概念的定义,进行验证即可.【解答】解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.【分析】(1)把18因式分解为1×18,2×9,3×6,再由定义即可得F(18),把24因式分解为1×24,2×12,3×8,4×6,再由定义即可得F(24);(2)根据吉祥数的定义,求出两位数的吉祥数,再根据F(t)的概念计算即可.【解答】解:(1)∵18=1×18=2×9=3×6,其中3与6的差的绝对值最小;∴F(18)=3+6+18=27;∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=4+6+24=34;(2)设t=10x+y,则新的两位是10y+x,∴(10y+x)﹣(10x+y)=27,即y﹣x=3,∵1≤x≤y≤9,x,y是自然数,∴t的值为14,25,36,47,58,69,∵F(14)=2+7+14=23,F(25)=5+5+25=35,F(36)=6+6+36=48,F(47)=1+47+47=95,F(58)=2+29+58=81,F(69)=3+23+69=94,∴吉祥数中F(t)的最大的值为95.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568是(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.。
八年级数学下册第四章因式分解1因式分解讲义(新版)北师大版
因式分解因式分解在整个初中学习中占有很重要的地位,它是解方程与不等式的基础,更是很多综合题目的重点,因此,今天和大家分享如何啃下因式分解这个骨头。
【基础知识查漏补缺】首先我们关于因式分解的基础知识一定要了然于胸,否则一切都是空谈。
基础知识有:1. 因式分解的定义:把一个多项式化成几个整式积的形式。
因式分解与整式乘法是互逆的恒等变形;因式分解的结果必须是几个整式乘积的形式。
2. 整式乘法的特点:单项式乘以多项式:m(a+b+c)=ma+mb+mc;多项式乘以多项式:(m+n)(a+b)=ma+mb+na+na,特殊情况(x+a)(x+b)=x2+(a+b)x+ab 【因式分解的基础方法】1.提取公因式法顾名思义,就是将多项式中各项相同的因式(公因式)提取出来,例如(x+1)a+(x+1)b-(x+1)c=(x+1)(a+b-c);判据(多项式具备什么特征选取这个方法):多项式的每一项有相同的因式;2.公式法说白了,就是套公式;平方差公式:a2-b2=(a+b)(a-b),完全平方公式:(a±b)2=a2±2ab+b2,主要就是这两个公判据:多项式的项数为2或3项3.十字相乘法就是类似形式x2+(a+b)x+ab=(x+a)(x+b);判据:a)多项式的项数为3项;b)看常数项分解成两个数乘积后,这两个数相加是否等于x项前面的系数;举例如下图:4.分组分解法简而言之,就是将多项式分成二或三组,分别分解,在提取公因式,如xy-x-y+1=(xy-x)-(y-1)=x(y-1)-(y-1)=(y-1)(x-1);判据:多项式项数在4项或以上注意:一定要理解并记住每一种方法的判据,它是我们确定解题方法的关键!【解题思路】当我们拿到一道因式分解题目的时候,有这么多方法,我们到底选哪一种呢?注意,这里我们千万不能碰运气式的随机尝试方法,我们选取方法是有先后顺序的,如下图:切记,解题时一定要按照这个顺序选取方法,尤其是对初学者而言,形成这样的解题思路非常重要,平时家长或老师可以给予适当引导。
北师大版八年级下册数学--第四章 因式分解复习课件
典例分析
例2:1.找出下列各多项式中各项的相同因式:
(1)2ab2+ 4abc
2ab
(2)-m2n3 -3n2m3
-m2n2
(3)2x(x+y)+6x2(x+y)2 2x(x+y)
2.用提公因式法分解因式
8a3b2-12ab3c
=4ab2 ∙2a2 - 4ab2 ∙ 3bc
m(a+b+c) 互逆
典例分析 一
例1 . 下列变形中是因式分解的是(D ).
A. x2+3x+4=(x+1)(x+2)+2 × 不是乘积形式 B . (3x-2)(2x+1)=6x2-x-2 × 是整式乘法 C . 6x2y3=3xy ·2xy2 × 单项式
D . 4ab+2ac=2a(2b+c)√
例7. 因式分解: (1) (a+b)(a-b)-a-b
解 = (a+b)(a-b)-(a+b) = (a+b)(a-b-1)
(3)(x—1)(x—3)+1
解 = (x2-4x+3)+1 = x2-4x+4 = (x-2)2
(2) (x—y)2-4(x—y—1)
解 = (x—y)2-4(x—y)+4 = (x-y-2)2
解 = (a-b)2(a2 -b2)
=(a2-ab-ab+b2)(a2-ab+ab-b2)
=(a-b)2(a-b)(a+b)
=(a2-2ab+b2)(a2-b2)
=(a-b)3(a+b)
=(a-b)2(a-b)(a+b) =(a-b)3(a+b)
第4章因式分解(教案)2023-2024学年八年级下册数学(教案)(北师大版)
-重点三:平方差公式与完全平方公式。使学生掌握平方差公式(a² - b² = (a + b)(a - b))和完全平方公式(a² + 2ab + b² = (a + b)²),并能应用于因式分解。
-重点四:交叉相乘法分解因式。让学生掌握交叉相乘法分解因式的步骤,并能够正确运用。
然而,我也注意到,在实践活动和小组讨论中,部分学生显得比较被动,参与度不高。为了提高这部分学生的积极性,我计划在接下来的教学中,针对他们的实际水平,设计一些更具挑战性和趣味性的任务,激发他们的学习兴趣。
另外,在课堂总结环节,我发现部分学生对于因式分解在实际问题中的应用仍然存在困惑。为了解决这个问题,我打算在下一节课中,增加一些与生活实际相关的例子,让学生更加直观地感受到因式分解在实际生活中的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解因式分解的基本概念。因式分解是将一个多项式分解为几个整式的乘积的过程。它在数学运算中非常重要,可以帮助我们简化计算,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。多项式x² + 3x + 2可以因式分解为(x + 1)(x + 2),这个案例展示了因式分解在实际中的应用,以及它如何帮助我们解决问题。
2.教学难点
-难点一:理解因式分解的概念,尤其是分解过程中保持等价关系的理解。
-难点二:正确识别多项式中的公因式,尤其是含有多个项的复杂多项式。
-难点三:熟练掌握平方差公式和完全平方公式的应用,尤其是变式题目的处理。
-难点四:在交叉相乘法分解因式时,正确判断乘积的符号,避免常见错误。
第4章 因式分解-最新北师大版八年级下册
___因_式__分_解_______.
4.下列各式从左到右的变形是因式分解的为( C )
A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2 C. x2-1=(x+1)(x-1) D. ax+bx+c=x(a+b)+c 5.下列各式从左到右的变形①15x2y=3x·5xy;②(x+y) (x-y)=x2-y2;③x2-6x+9=(x-3)2;④
2. 因式分解的思路: (1)有公因式时,应先提公因式; (2)没有公因式时,考虑是否符合公式的特征,能否用 公式法分解,可以则用公式法分解; (3)有些式子提完公因式后还能用公式,有些式子用了 公式后还能再用公式; (4)分解因式要彻底,要分解到不能再分解为止:
【例1】分别写出下列多项式的公因式:
(1)ax+ay:_________________; (2)3x3y4+12x2y:________________; (3)25a3b2+15a2b-5a3b3:_______________;
解析 先确定一个多项式有几项,再观察其中的每一项 都含有的相同因式是什么.
2. 因式分解:9+6a+a2=____(_3_+_a)__2 ________.
3. 因式分解(a-b)(a-4b)+ab的结果是
_(__a-_2_b)__2 _____.
新知3 因式分解的方法与思路总结
1. 因式分解的方法:
(1)提公因式法:ma+mb+mc=m(a+b+c);
(2)公式法:
北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
北师大版八年级数学下册第四章-分解因式-(基础+提高)
第四章分解因式考点一:分解因式的概念1、下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)考点二:因式分解1、下列分解因式中,正确的个数为()x2+2xy+x=x(x2+2y);x2+4x+4=(x+2)2;—x2+y2=(x+y)(x—y)A.3个B.2个C.1个D.0个2、下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y23、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌4、若分解因式x2+mx-24=(x+3)(x+n),则m的值为。
已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),另一个因式为。
5、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=_______6、因式分解9a2(x-y)+4b2(y-x) x2+2xy+y2-4(m+1)(m﹣9)+8m.x2+4xy﹣5y24x2+4xy+y2﹣4x﹣2y﹣3.考点三:利用因式分解计算1、2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()。
A.1 B.﹣1 C.4032 D.40312、3(4+1)(42+1)(44+1)+13、考点四:利用因式分解化简求值1、已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值为.2、a+1+a(a+1)+a(a+1)2+……+a(a+1)2014= .3、已知a2+b2+4a﹣2b+5=0,则的值为()A.3 B.C.﹣3 D.4、已知x2+x-1=0,则代数式x3+2x2+2014= .5、化简求值:(2x-1)2(3x+2)+(2x-1)(3x+2)2-x(1-2x)(3x+2),其中x=1.考点五:利用因式分解证明整除问题1、能被下列数整除的是( )A.3B.5C.7D.92、已知58-1能被20-—30之间的两个整数整除,则这两个整数是 .3、如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如:自然数12321,从最高位到个位排出的一串数字是:1,2,3,2,1,从个位到最高排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如:22,545,3883,34543,…,都是“和谐数".(1)请你直接写出3个四位“和谐数";请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数",设其个位上的数字为x(,x为自然数),十位上的数字为y,求y与x的函数关系式.考点六:利用因式分解解决几何问题1、若、、为的三边长,且满足,,则的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、设是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为.3、已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.4、已知是△ABC的三边长,是△ABC的最短边且满足,求的范围。
北师大版八年级数学下册第四章《因式分解》复习 教案
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
北师大版八年级下册第四章因式分解之因式分解
B
D x²-5x+6 =(x+2)(x+3)
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
(1)x²-x =x(x-1) 因式分解
(2)x²-1=(x+1)(x-1) 因式分解
(3) x(x-1)=x²-x 整式乘法
(4) (x+1)(x-1) =x²-1 整式乘法
判断下列各式哪些是整式乘法,
哪些是因式分解。
(1)x²-4y²=(x+2y)(x-2y) 因式分解
(2)(5a-1)²=25a²-10a+1 整式乘法
已知关于x的二次多项式2x²-ax+b因式分 解后的结果为(2x-1)(x+2),求a,b的值.
解 由题意知2x²-ax+b=(2x-1)(x+2) 又因为(2x-1)(x+2)=2x²+3x-2 所以2x²-ax+b= 2x²+3x-2 所以-a=3 b=-2 所以a=-3 b=-2
解这类题的步骤:第一利用整式的乘法得到 多项式;第二令得到的多项式与所求的多项 式相等;第三使其对应项的系数相等.
所以原式能被11整除.
试说明 32020 - 4 32019 7 32018
能被11整除.
32 52018 - 4332018 7 32018 32018 (32 - 4 3 7) 32018 4
北师大八年级数学下册第四章 因式分解
初中数学试卷第四章 因式分解知识点一:分解因式概念:例1.下列式子从左到右的变形中是分解因式的为( )。
A. 11(1))(()21(4414)3(4322222x x x y x y x y x x x x y y y y -=--+=--=+---=-- B.11(1))(()21(4414)3(4322222x x x y x y x y x x x x y y y y -=--+=--=+---=-- C.11(1))(()21(4414)3(4322222x x x y x y x y x x x x y y y y -=--+=--=+---=-- D.)11(1))(()21(4414)3(4322222x x x y x y x y x x x x y y y y -=--+=--=+---=-- 知识点二:利用提公因式法分解因式 例2.把下列各式分解因式⑴ ⑵知识点三:利用公式法分解因式例3.把下列各式分解因式 ⑴ ⑵ ⑶练一练:把下列各式分解因式(1)(a 2+4)2–16a 2 (2)知识点四:综合运用多种方法分解因式例4.把下列各式分解因式mn mn n m 1892722-+-23)1(2)1(4-+-b b b 22)()(n m n m --+4932++x x 25)(10)(2++-+y x y x 44222y x y x --⑴x x 43- ⑵)1(4)(2-+-+b a b a⑶)1()1(2)1(2222-+-+-y y x y x⑷xz z y x 449222++-知识点五:运用分解因式进行计算和求值例5.利用分解因式计算: ⑴ ⑵ ⑶(–2)101+(–2)100例6.已知 ,求的值。
例7.已知x +y =1,求222121y xy x ++的值.例8.计算下列各式:你能根据所学知识找到计算上面算式的简便方法吗?请你利用你找到的简便方法计算下式:222)119899(100++0232=-+x x x x x 46223-+.__________)411)(311)(211)(3(_________;)311)(211)(2(________;211)1(222222=---=--=-).11)...(1011)(911)...(411)(311)(211(222222n ------2002199819992⨯-达标检测1.3223129y x y x +中各项的公因式是_______.2、()mbm am =+;()-=--1x ;()-=+-a c b a . 3、多项式92-x 与962++x x 的公因式是 . 4、利用因式分解计算:=-22199201 .5、若()()2310x x x a x b --=++,则a =________,b =________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章因式分解讲义及中考题(北师大版)
一、因式分解
知识点一因式分解的概念:
把一个多项式化为几个整式的乘积形式,这种变形叫做因式分解。
掌握因式分解的概念注意:
1、因式分解必须是针对多项式而言,单项式不能进行因式分解
2、因式分解的结果必须是整式
3、因式分解要一直分解到不能再分解为止
知识点二、因式分解与整式乘法的关系:
因式分解特点是:由和差形(多项式)转化成整式的积的形式;
整式乘法特点是:由整式积的形式转化成和差形式(多项式)。
因式分解与整式乘法正好相反,是互逆运算。
二、提公因式法
知识点一、公因式
定义:把多项式各项都含有的相同因式叫做这个多项式的公因式
公因式可以是代数式中的常数项、单项式、多项式
确定公因式的方法:
1、找系数:取多项式中各项系数的最大公约数
2、找字母:取各项都含有的字母,并取相同字母的最低次幂
3、它们的积即为公因式
注意:若多项式的第一项的系数是负的,提取的公因式将负号一并提出
知识点二、用提公因式法因式分解
把公因式提出来,多项式ma+mb+mc就可以分解成两个因式m 和(a+b+c)的乘积了,像这种因式分解的方法,叫做提公因式法。
注意:1、若多项式的第一项的系数是负的,提取的公因式将负号一并提出
2、当多项式的某一项与公因式相同,在提取公因式后应补上1
3、注意一些隐含的公因式存在
三、公式法
利用和乘法公式对多项式进行因式分解,这种因式分解的方法就称为公式法
【巩固训练】
1、判断下列各式哪些是整式乘法,哪些是因式分解?(1)(2)
(3)(4)
(5)(a+3)(a-3)= -9 (6)
2.(2019江西南昌)下列因式分解正确的是().
A.
B.
C.
D.
3.(2019河北省)下列等式从左到右的变形,属于因式分解的是
A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1) 4.(2019年佛山市)分解因式的结果是( )
A. B.
C. D.
5. (2019青海西宁)下列分解因式正确的是( )
A.3x2-6x=x(3x-6) B.-a2+b2=(b+a)(b-a) C.4x2-y2=(4x+y)(4x-y) D.4x2-2xy+y2=(2x-y)2
6 (2019内蒙古呼和浩特)下列各因式分解正确的是( ) A.﹣x2+(﹣2)2=(x﹣2)(x+2) B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2 D.x2﹣4x=x(x+2)(x﹣2)7、(2019陕西省)分解因式:.
8.(2019广东广州)分解因式: =_______________.
9. (2019广东广州)分解因式:a3﹣8a= .
10、(2019浙江温州)把多项式a2-4a分解因式,结果正确的是( )
A.a (a-4)
B. (a+2)(a-2)
C. a(a+2)( a-2)
D. (a -2 ) 2-4
11、2019湖南益阳)因式分解: = .
12、(2019四川南充分)分解因式: = .
13、(湖南株洲)把多项式因式分解得,则, .
14、(2019湖北黄冈)分解因式:ab2-4a=.
15、(2019贵州安顺)分解因式:2a3-8a2+8a= .
16、(2019山东临沂)分解因式:4x-x3=
_________________.
17.(2019四川凉山州)已知可分解因式为,其中、均为整数,则 , = 。
18.(2019四川绵阳)因式分解: =
19、(2019黑龙江省哈尔滨)把多项式分解因式的结果是.
20、(2019江苏无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是( )
A.(x﹣1)(x﹣2) B. x2 C.(x+1)2 D.(x﹣2)2
21、(2019湖北恩施)a4b﹣6a3b+9a2b分解因式得正确结果为( )
A.a2b(a2﹣6a +9) B.a2b(a﹣3)(a+3)
C.b(a2﹣3)2 D.a2b(a﹣3)2
22(2019四川凉山)下列多项式能分解因式的是( ) A. B.
C. D.。