八年级数学上册第二章实数章末复习习题讲评课件新版北师大版

合集下载

新版北师大版八年级数学上册第二章实数全章课件

新版北师大版八年级数学上册第二章实数全章课件

所以BD DC,则BD AB
由勾股定理得 : h

h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
, 3 3 9 ..... . 2 2 4,
a
结果都为分数,所以a不可能是以2为分母的
分数.
二、新课讲解
, ,
...... , ,
a
(3)(9)2 的算术平方根等于 3 .
四、强化训练
2.求下列各数的值
(1) 64
8
(3) (5)
21 4
3 2
32 42
5
(2) 0.81
0.9
(4) 0
0
(6)
1.44
1.2
四、强化训练
3.求下列各式中的正数x的值:
二、新课讲解
例 下列各数中,哪些是有理数?哪些是无理数?
解:有理数有: 无理数有:
三、归纳小结
1.任何有限小数或无限循环小数也都是有理数. 2.无限不循环小数称为无理数.
四、强化训练
1.选择题
(1)、正三角形的边长为4,高h是( D ) A.整数 B.分数 C.有理数 D.无理数
(2)、如果一个圆的半径是2,那么该圆的周长与直径的和 是( B ) A.有理数 B.无理数 C.分数 D.整数

北师大版数学八年级上册第二章实数单元复习课课件

北师大版数学八年级上册第二章实数单元复习课课件

④8的立方根是___2____.
图Z2-2
6. (202X湘潭)在数轴上到原点的距离小于4的整数可以为
_3_(__答__案__不__唯__一__)____.(任意写出一个即可)
7. 下列数中:①-|-3|;②-0.3;③

⑦0;⑧1.202 002 000 2…(每两个2之间依次多一个0),⑨
无理数是__③__④__⑧___,整数是__①__⑥__⑦___,负分数是___②__⑨____.(
知识导航
无理数 概念:无限不循环小数
算术平方根

定义:一般地,如果一个正数x的平方等于a,即
数 平方根 x2=a,那么这个正数x就叫做a的算术平方根.
规定:0的算术平方根是0.
表示方法:正数a的算术平方根表示为 读作
“根号a”
续表
平方根 定义:一般地,如果一个数x的平方等于a,即x2 = a,那么这个 数叫做a 的平方根(二次方根). 平 性质: 实 方 ①一个正数有两个平方根,它们互为相反数; 数 根 ②0只有一个平方根,它是0本身; ③负数没有平方根
运算:实数的运算法则及运算律对二次根式仍然适用
专题1 平方根、立方根
1. (202X南京)3的平方根是( D )
A. 9
B.
C.
D. ±
2.
的算术平方根的倒数是( C )
A.
B. ±
C.
D. ±
3.有理数8的立方根为( B )
A.-2
B.2
C.±2
D.±4
4. 下列计算正确的是( D )
A.
=-3 B.
+(7-c)2=0,求-2a-b-c的立方根.
解:因为|a+3|+

2024八年级数学上册第二章实数全章热门考点整合应用习题课件新版北师大版

2024八年级数学上册第二章实数全章热门考点整合应用习题课件新版北师大版
点 O 两侧,且到原点的距离相等,以 AB 为边作正方形
ABCD . 若点 A 表示的数为1,正方形 ABCD 的面积为
7,则 B , E 两点之间的距离是(
1
A. +2
B. -2
C. +1
D. -1
2
3
4
5
6
7
8
9
10
11
12
A
13
14
)
15
16
17
18
19
20
思想2
整体思想

+a
18
19
20
【点拨】
A. 负数没有平方根,故原说法错误;
B. 100的平方根是±10,故原说法错误;
C. -16没有平方根,故原说法错误;
D. 0的算术平方根是0,故原说法正确.
【答案】 D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2. 若 x = − ,则 x ( x -5)- x2的值为(
是(
C
A.



)
.
C. . =
1
2
3
4
5


6
7
8
9
10
B.





D.

=3

11
12
13
14

15
16
17
18
19
20
考点5

北师大版数学八年级上册 第二章 实数 复习课件(共31张PPT)

北师大版数学八年级上册 第二章 实数 复习课件(共31张PPT)

例4:x取何值时, 4 x 有意义?
4 x 0, x 4
1、基本概念
算术平方根:如果一个正数x的平方等于a,那么这个正数 x叫做a的算术平方根;特别的,0的算术平方根是0; 平方根:如果一个数x的平方等于a,那么这个数x叫做a的 平方根; 立方根:如果一个数x的立方等于a,那么这个数x叫做a的 立方根。
同学们,不管你现在的成绩 怎么样,不管你现在的基础怎么样 ,只要坚定信念,超越自我,你就 有了努力的方向,你就有了奋斗的 目标,你就有了生活的动力,你就 有了成功的希望!
独立
知识的升华
作业
P
1 3 老3师期望:
习 悟 做完题目后,一定要“ ”到点东西,纳入到自
己的认知结构中去.
13. 9( y 3)2 1

4

解:( y 3)2 1
程:
36
1
y 3
36
y 3 1 6
y 19 或y 17
6
6
14. 2( 7 x 2)3 125 0
3
解: 27(x 2)3 125
3
(x 2)3 125
3
27
2 125
3、绝对值:整数的绝对值是其本身;0的绝对值是0;负数的绝对值是 其相反数。
易错 例1、 5 的相反数是
5
,倒数是
5 5 ,绝对值是
5

c 例2、 3.14 的值是(
)
A. 3.14- 2 B. 3.14 C. –3.14
D. 无法确定
常考 例3、已知 2 2x 1 y 22 4 z 0,
(4 4 3 3) 1 (4 4 3 3)

北师大版八年级数学上册-第二章实数(同步+复习)精品串讲课件

北师大版八年级数学上册-第二章实数(同步+复习)精品串讲课件
内蒙古包头瑞星教育原创精品课件——版权所有
第二章
实数
八年级(下)
第一单元:认识无理数
一.无理数的存在性探索
1. 探究:
① ② 什么是有理数:整数和分数统称为有理数。 不是有理数的数:π、正方形的面积为2、3、5、 6、7,13---时,它们的边长。--- 广泛存在。 X2=a(a ≥0),当我们知道a求x 时,结果可能 是有理数,也可能不是有理数。

二.算术平方根
1. 2. 定义:一个正数a有两个平方根±√a— ,其中 — 正的平方根√a叫做a的算术平方根。 — √a 表示a 的算术平方根。规定:0的算术平 方根是0。显然:负数没有算术平方根。 重要性质:
① ② ③ √a的非负性:a ≥0,√a≥0( 双非负)。 √a是非负数a的算术平方根;-√a是算术平方根的 相反数(另外一个平方根)。 √a开得尽是运算;开不尽可能就是个数(最写)
(5) 81
三.平方根与算术平方根的区别与联系
1. 2. 3. 4.
5.
a≥0时:√a,-√a,±√a的区别与联系。 区别一:正数有两个平方根,它们的和为零。 有一个算术平方根。 区别二:表示方法不同: √a; ±√a 区别三:取值范围不同:正数的算术平方根 一定是正数,平方根一正一负互为相反数。 联系:平方根包含算术平方根;被开方数都 必须是非负数;0的平方根和算术平方根都 是 0。
( 5) (- 4 )2的 算 术 平 方 根 是 _ _ 4 10 ( 6) 10的 算 术 平 方 根 是 _ _
1_ .2 36=_ _ 1.44=_
6
3 1 2 =_ _ 25=_ _ 2 4
5
【练习】 求下列各数的算术平方根:
(1)900; (4)14

新北师大版八上第二章《实数》单元复习课件

新北师大版八上第二章《实数》单元复习课件

0, 25 ,…
3 16 , 8 ,
0, 25 ,

0,
25 ,

二、平方根与算术平方根
1、算术平方根: 如果一个正数x的平方等于a, 那么这个正数x叫做a的算术平方根。
算术平方根等于它本身的数是 0和1 。 2、平方根:如果一个数x的平方等于a, 那么这个数x叫做a的平方根。 平方根的性质: 一个正数有 两个 平方根,它们互 为 相反数 ;0的平方根是 0 ;负数 没有 平方根。
a ⑶二次根式的除法 : a≥0,b>0 b b
(4)二次根式的乘方 :
a
a
2
a(a≥0)
注意平方差公式与完全平方公式的运用!
例3、化简下列二次根式:
27
54 75
28 56 80
32 60 88
40 63 90
45 68 96
52 72 98
1 8
3 5
18 7
3 5
1 6
a
3
3
a
3
a a
3
3
a a
3
例2、填空:
1、 8是
64
的平方根
2、 的平方根是 ±8 64
3、 64的值是
8
4、 64的平方根是 8
5、 64的立方根是
2
四、实数
有理数和无理数统称为实数 1、定义:
2、分类:
整数 有理数 分数 实 数 无理数 负无理数 正无理数 实 数
正有理数 正实数 负无理数 0 负有理数 负实数 负无理数
按属性分类
按符号分类
3、实数a的相反数是: -a ; 1 - (a≠0); 实数a的倒数是: a ;

(最新整理)数学:第二章实数复习课课件(北师大版八年级上)

(最新整理)数学:第二章实数复习课课件(北师大版八年级上)

a a (a0,b0) bb
2021/7/26
5
你能用前面的规律解这几个题 吗?
(1) 2× 8 = 2 8 16 4;
(2) 2×3×6= 236 36 6;
(3) 2 24 224 4 8 16 3
4 3
(4) 5 × 10 = 50
50 25 5.
2
2
2
2021/7/26
6
2021/7/26
9
实数与数轴上的点一一对应,实数可以比 较大小.实数有相反数,倒数,绝对值.有理 数的运算法则和运算律在实数范围内仍 然适用.
2021/7/26
10
在数轴上作出 5 对应的点。
5
2
-2
-1
0
1
25
2021/7/26
11
1.填空题:
(1). 9的算术平方根是 3 . (2). (-5)0的立方根是 1 . (3). 10-2的平方根是_±__0_._1_.
( 4 ) . 1 6的 平 方 根 是 2 .
(5 ).化 简 : 4 833 3 .
2021/7/26
12
1.填空题:
(6) 25 的算术平方根是__5___。
(7)( 4) 2的算术平方根是__4___。
(8)9的算术平方根是__3____。
1
(9)92的算术平方根是___9 __。
2021/7/26
(D)9的算术平方根是3
2021/7/26
15
3. 下列运算中,正确的是(A)。 (A) 1 25 1 1 144 12
(B) (4)2 4
( C ) 22222
(D) 11 11 9
2021/7/26

秋八年级数学上册北师大版(通用版)习题讲评课件:《实数》章末复习(共20张PPT)

秋八年级数学上册北师大版(通用版)习题讲评课件:《实数》章末复习(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/112021/9/112021/9/112021/9/119/11/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月11日星期六2021/9/112021/9/112021/9/11 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/112021/9/112021/9/119/11/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/112021/9/11September 11, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/112021/9/112021/9/112021/9/11
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/112021/9/11Saturday, September 11, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/112021/9/112021/9/119/11/2021 7:29:34 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/112021/9/112021/9/11Sep-2111-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/112021/9/112021/9/11Saturday, September 11, 2021
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档