八年级上册数学知识点-实数
八年级上册数学《实数》(含答案)
![八年级上册数学《实数》(含答案)](https://img.taocdn.com/s3/m/1f066c069e3143323868936d.png)
第1节 实数、平方根【基本知识】1、 有理数 包括有限小数和循环小数,有理数都可以表示为分数形式;2、 无限不循环小数,成为 无理数 ;3、平方根:(1)定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
(2)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)算术平方根:正数a 的正的平方根叫做a 。
(4)一个非负数x 有两个平方根a 和b ,则a+b = 0(5)运算:2a = ||a 2)(a = a ;2)(a -= a类型1A :【求下列各数的平方根】(1)324 (2)9624 (3)3.61 (4)971 (5)289【答案】(1)18± (2)21± (3)9.1± (4)34± (5)17±类型1B :【求下列各数的算术平方根】(1)64 (2)2)3(- (3)49151(4) 21(3)- 【答案】(1)8 (2)3 (3)78 (4)31类型2:【已知平方数或平方根,求数】(1)平方等于256的数是 16±(2)若3是x 的一个平方根,则x = 9(3)若一个正数的平方根为12-a 和a -4,则a = -3 ,这个正数为 49 .(4)一个数的平方等于9,则这个数是 3±(5)一个负数的平方等于100,则这个负数是 10-(6)已知2a -1的平方根是3±,3a+b -1的平方根是4±,则a = ,b = 2 5类型3:【开平方,求下列各式中x 的值】(1)09252=-x (2)x 2-144 = 0 (3)(2x )2 = 16【解】 (1)53±=x (2)12±=x (3)2±=x(4)32-=x (5)32=x (6)225360x -=【解】(4)无实根 (5)3±=x (6)56±=x(7)9x 2-1= 0 (8)16)1(2=+x (9)(21x )2 = 1【解】(7)31±=x (8)35或-=x (9)2±=x类型4:【计算】(1)= 3= 5= 7(2) =-2)4( 4 =2)182( 91 =2)5( 5(3)94±=32±-169.= -1.3102-=101(4)81±= 9± 16-= -4 259= 53(5)44.1= 1.2 36-= -6 4925± =75±(6)2)25(-= 25 2)4(-= 4类型5:【化简】(1)已知|x -4|+y x +2= 0,那么x =_______4_,y =________-8(2)=________π-4,)2x ≤=________x -2类型6:【根式的意义】1、如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为 8.类型6:【平方数与平方根相关训练】(1)21++a 的最小值是 ________2,此时a 的取值是 ________-1(2)如果一个正数的两个平方根为1a +和27a -,则这个正数是 9(3)若2+x = 2,则2x + 5的平方根是 3±(4)若14+a 有意义,则a 能取的最小整数为 0类型7:【能力提升训练】(1)已知501.6=x ,650.12 = 422630,则x = 42.263(2)已知2+x =3,则2)2(+x 等于 81(3)已知12++-b a =0,则a +b 的值是 1(4)一个自然数的算术平方根是x(5)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 22+m(6)自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =,有一铁球从19.6米高的建筑物上自由下落,到达地面需要 2 秒(7)若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,则a b +的平方根 为 0或1±类型8:【比较实数大小】1、平方法:(1; (2)534< 11; (3) 2、求差法:215- < 13、求商法:23平方根 (作业)一、写出下列各数的平方根:(1)2)6(- (2)2)36(- (3)8116(4)16 (5)2)7(-【解】(1)6± (2)6± (3)94±(4)2± (5)7± 二、已知平方数或平方根,求数:(1)一个数的平方为719,这个数为 34±(2)一个数x 的平方根为9±,则x = 81(3)若一个正数的平方根是12-a 和2+-a ,则a = -1 ,这个正数是 9三、开平方,求下列各式中x 的值:(1)2732=x (2)2516902x -= (3)()12892-=x【解】(1)3±=x (2)513± (3)1816或-=x(4)(x +5)2 = 144 (5)009.02=-x【解】(4)177-=或x (5)3.0±=x(6)(x +1)2=36 (7)27(x +1)3=64【解】(6)75-=或x (7)31=x四、化简:1、若x <2,化简|3|)2(2x x -+-的正确结果是 x 25-2、当21≤a 时,化简|12|4412-++-a a a = a 42-3、已知实数a 、b 在数轴上表示的点如上图,b a ++2)1(+-b a = 12-b化简五、平方数与平方根相关训练:(1)若2m -10与3m 是同一个数的平方根,则m 的值是 2(2)使3+-x 有意义的x 的取值范围是 3≤x。
初二数学上册:实数知识点
![初二数学上册:实数知识点](https://img.taocdn.com/s3/m/d59addf818e8b8f67c1cfad6195f312b3169eb61.png)
初二数学上册:实数知识点初二数学上册:实数知识点?1、加法:(1)同号两数相加,取原先的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上那个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以那个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
6、实数的运算顺序:唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。
八年级上册实数的知识点
![八年级上册实数的知识点](https://img.taocdn.com/s3/m/01e16bdb9a89680203d8ce2f0066f5335a8167e5.png)
八年级上册实数的知识点实数是指包括有理数和无理数在内的所有实数的集合。
实数在数学中占有非常重要的地位。
本文将会介绍八年级上册学习的实数知识点。
一、实数的类别实数可以分为有理数和无理数两类。
有理数是指形如 $\dfrac{p}{q}$ 的数,其中 $p$ 和 $q$ 均为整数且$q$ ≠ 0 。
有理数包括整数、正有理数、负有理数、零和分数等。
例如,-2,$\dfrac{3}{4}$,和 0.5 都是有理数。
无理数是指不能表示为有理数形式的实数。
无理数包括无限不循环小数和无限循环小数。
例如,$\sqrt{2}$ 和$\pi$ 都是无理数。
二、实数的比较在实数中,有大小之分。
不同的实数可以通过比较大小来确定它们之间的大小关系。
下面提出了几个规则来比较实数的大小:1.正数大于负数。
2.对于同号的两个实数,绝对值大的数更大。
3.对于不同号的两个实数,正数比负数大。
4.如果 $a > b$ 且 $b> c$ ,那么 $a> c$ 。
这被称为传递性。
三、实数的运算实数具有加、减、乘和除四种基本运算。
1.加法和减法:实数加法和减法之间满足交换律和结合律,即:交换律: $a+b=b+a$, $a-b=-b+a$结合律:$(a+b)+c=a+(b+c)$,$(a-b)-c=a-(b+c)$2.乘法和除法:二个实数之间的乘法和除法也满足交换律和结合律,并且它们的乘积和商也是实数。
交换律:$ab=ba$,$a÷b ≠b÷a$结合律:$(ab)c=a(bc))$,$a÷(bc) ≠ (a÷b) c$可以通过乘方表达式来快速表示乘积,例如 $a^3$ 可以代替$a×a×a$。
四、立方根和平方根1.立方根:如果一个数 $a$ 可以表示为 $b$ 的立方,即$a=b^3$ ,那么 $b$ 就是 $a$ 的立方根。
例如,立方根 $\sqrt[3]{8}$ 就是 2,因为 $2^3 = 8$。
八年级数学上册 第二章 实数
![八年级数学上册 第二章 实数](https://img.taocdn.com/s3/m/56addec2ad51f01dc281f1e2.png)
第二章实数目录第二章实数 (1)第一课时:实数的认识 (1)知识要点一:认识无理数 (1)知识要点二:平方根 (1)知识要点四:算术平方根 (2)拓展:随机的n (3)知识要点五:立方根 (4)知识要点五:估算无理数的大小 (4)知识要点六:实数的概念 (5)知识要点七:实数的性质 (5)知识要点八:实数与数轴 (7)知识要点九:实数的比较大小 (8)知识要点10:实数的运算 (9)总练习题 (9)C 基础巩固 (9)B 能力提升 (10)A 拔尖训练 (11)第二课时:二次根式的性质、化简与运算 (13)知识要点一:二次根式的概念 (13)知识要点二:二次根式有意义的条件 (13)知识要点三:二次根式的性质与化简 (14)知识要点四:最简二次根式 (14)知识要点五:分母有理化 (15)知识要点六:二次根式的乘除法 (16)知识要点七:同类二次根式 (17)知识要点八:二次根式的加减法 (18)知识要点九:二次根式的混合运算 (18)知识要点十:二次根式的化简求值 (19)知识要点十一:二次根式的应用 (20)总练习题 (20)C 基础巩固 (20)B 能力提升 (21)A 拔尖训练 (22)第一课时:实数的认识知识要点一:认识无理数伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m 等于多少?是整数呢,还是分数?这个问题引起了学派成员希帕斯的兴趣,他花费了很多的时间去钻研,最终希帕斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数.希帕斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们残忍地将希帕斯扔进地中海.这样,无理数的发现人被谋杀了!定义1 无限不循环小数叫做无理数。
常见的无理数的类型:(1)有规律但不循环的小数;(2)有特定意义的符号,如π;(3)方开不尽的数(见知识要点二之开方的概念)。
八年级数学实数知识点
![八年级数学实数知识点](https://img.taocdn.com/s3/m/c63b8092ba4cf7ec4afe04a1b0717fd5360cb20f.png)
八年级数学实数知识点八年级数学是学生们数学学习中的一个阶段,涉及到很多实用的数学知识和技能。
其中实数是一个重要的知识点。
实数是指所有的有理数和无理数的集合,是数学中的基本概念之一。
下面我们来详细了解一下八年级数学实数知识点。
一、实数概念实数是指所有的有理数和无理数的集合。
其中有理数是可以表示为两个整数之比的数,无理数是不能表示为有限小数或者分数的数。
实数在数学中具有很重要的地位,它们包含了我们所熟知的所有数,并且提供了基本的数学运算法则。
二、实数基本运算法则实数基本运算法则包括加法、减法、乘法和除法。
这些运算法则在实数中是适用的,可以通过这些法则来进行数学计算。
实数加、减法可以通过数轴的正负进行研究,而乘法和除法则需要注意除数不能为零。
三、实数绝对值实数的绝对值是这个数到原点的距离,绝对值是一个非负数。
正数的绝对值与它本身相等,负数的绝对值是它本身的相反数。
绝对值有很多应用,如求解不等式、导数的定义等。
四、实数的比较实数的比较需要注意大小关系,可以通过大小比较符号进行判断。
对于任意两个实数a和b,如果a<b,则称a小于b;如果a>b,则称a大于b;如果a=b,则称a等于b。
五、实数的分类实数可以根据有理数和无理数进行分类,有理数包括整数、分数和小数,而无理数则包括无限不循环小数和代数无理数。
有理数和无理数在数学中都有重要的应用,如证明勾股定理等。
六、实数的近似实数的近似是指通过一定的方法将复杂的数进行简化,以便于计算。
常见的近似方法包括四舍五入、截断和近似成一定的形式等。
近似方法在实际运用中很常见,如测量长度和面积、统计数据等。
总之,实数在八年级数学中是一个非常重要的知识点。
了解实数的概念、基本运算法则、绝对值、比较、分类和近似方法可以帮助我们更好地掌握数学相关知识,提高数学应用能力。
在学习实数这一知识点时,要注意理解概念,掌握方法,提高思维能力,才能在数学学习中获得更多的收益。
八年级上册数学实数知识点
![八年级上册数学实数知识点](https://img.taocdn.com/s3/m/96ed9ee5aff8941ea76e58fafab069dc51224756.png)
八年级上册数学实数知识点在我们上学期间,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
掌握知识点是我们提高成绩的关键!以下是店铺收集整理的人教版八年级上册数学实数知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
数学的学习思维方法1、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
2、公式法运用定律、公式、规则、法则来解决问题的.方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。
但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
八年级数学上实数知识点
![八年级数学上实数知识点](https://img.taocdn.com/s3/m/9663386366ec102de2bd960590c69ec3d5bbdbc4.png)
八年级数学上实数知识点实数是数学中一个非常重要的概念,也是数学学习的基础,因此在初中数学中也有相关知识点,下面本文将为大家介绍八年级数学上实数相关的知识点。
一、实数的定义实数是由有理数和无理数组成的数集。
其中有理数是可以表示为两个整数之比的数,无理数则不能用两个整数的比表示。
二、实数的分类实数可以分为有理数和无理数两类。
其中有理数可以分为正有理数、负有理数和零三类。
无理数则不可表示为两个整数之比。
三、实数的运算1.实数加减法加减法是实数运算中最基本的运算。
实数加减法遵循结合律、交换律和分配律,可以通过实数的相反数将减法转化为加法。
例如,对于实数a、b和c,有:①a+(b+c)=(a+b)+c②a+b=b+a③a×(b+c)=(a×b)+(a×c)④a-(b+c)=a-b-c2.实数乘除法乘除法也是实数运算中常用的运算方法。
实数乘除法也遵循结合律、交换律和分配律。
例如,对于实数a、b和c,有:①a×(b×c)=(a×b)×c②a×b=b×a③a÷(b×c)=a÷b÷c④a÷(b÷c)=a×c÷b四、实数的性质实数有许多重要的性质,这些性质对于解决实际问题非常重要。
本文只介绍实数的一些基本性质。
1.实数的传递性对于任意的实数a、b和c,如果a<b<b,则a<c,这就是实数的传递性。
2.实数的对称性对于实数a和b,如果a=b,则b=a。
3.实数的不等式性质实数的不等式性质包括四则运算的不等号关系和绝对值不等式。
其中四则运算的不等号关系指的是:①如果a<b,则a+c<b+c;②如果a<b 且 c>0,则ac<bc;③如果a<b 且 c<0,则ac>bc;④如果a>b,则a-c>b-c。
4.3实数(十大题型)(解析版) 八年级数学上学期
![4.3实数(十大题型)(解析版) 八年级数学上学期](https://img.taocdn.com/s3/m/9922fb9f9fc3d5bbfd0a79563c1ec5da50e2d6d1.png)
八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。
八年级上册实数知识点讲解
![八年级上册实数知识点讲解](https://img.taocdn.com/s3/m/874f2a5a1fd9ad51f01dc281e53a580216fc50e4.png)
八年级上册实数知识点讲解在数学学科中,实数是非常重要的一个概念。
它是指所有普通数字的集合,包括正数、负数和零。
在八年级上册中,实数也是重点学习内容之一。
本文将对八年级上册实数的知识点进行全面讲解,以便帮助学生加深对实数的理解。
一、实数的基础概念实数是指所有常见的数字集合,包括正数、负数和零。
实数的表示方法可以用数轴来表示。
其中,数轴的正方向表示正数,反方向表示负数,原点表示零。
在数轴上,任何一个实数都可以表示为一个唯一的点。
二、绝对值的概念绝对值是一个实数的非负值,表示这个数到零的距离。
比如绝对值为5的实数表示这个数与零的距离为5。
绝对值的表示方法可以用两个竖线(如|4|表示4的绝对值为4)来表示。
三、实数的运算1. 实数的加法实数的加法满足交换律、结合律和分配律。
具体表示为:①交换律:a + b = b + a②结合律:(a + b) + c = a + (b + c)③分配律:a * (b + c) = a * b + a * c2. 实数的减法实数相减,可以转换为实数相加,即 a - b = a + (-b)。
其中,-b 表示b的相反数。
实数的减法满足结合律和分配律,但不满足交换律。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律。
具体表示为:①交换律: a * b = b * a②结合律: (a * b) * c = a * (b * c)③分配律: a * (b + c) = a * b + a * c4. 实数的除法实数的除法用分数表示。
若b不为0,则a/b = a * (1/b)。
其中,1/b表示b的倒数。
实数的除法满足结合律和分配律,但不满足交换律。
四、实数的大小比较实数的大小比较可以通过比较它们的绝对值大小来实现。
其中,绝对值越大的实数,其大小越大;绝对值相等的实数,需要进一步比较它们的正负。
五、实数的平方与平方根实数的平方是该实数与自身相乘的结果,即a² = a * a。
八年级上册数学各章知识点总结
![八年级上册数学各章知识点总结](https://img.taocdn.com/s3/m/9d011425178884868762caaedd3383c4bb4cb424.png)
《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于 , 那么这个数就叫做 的平方根。
即 , 叫做 的平方根。
2.平方根的性质与表示⑴表示: 正数 的平方根用 表示, 叫做正平方根, 也称为算术平方根, 叫做 的负平方根。
⑵一个正数有两个平方根: (根指数2省略) 0有一个平方根, 为0, 记作 , 负数没有平方根 ⑶平方与开平方互为逆运算⑷a 的双重非负性例: 得知⑸如果正数的小数点向右或者向左移动两位, 它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后, 得 3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 *若 , 则(二)立方根和开立方1. 立方根的定义如果一个数的立方等于 , 呢么这个数叫做 的立方根, 记作 2.立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3.开立方与立方开立方: 求一个数的立方根的运算。
()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
(三)推广: 次方根1.如果一个数的 次方( 是大于1的整数)等于 ,这个数就叫做 的 次方根。
当为奇数时, 这个数叫做的奇次方根。
当为偶数时, 这个数叫做的偶次方根。
2.正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实数1.实数: 有理数和无理数统称为实数实数的分类:①按属性分类: ②按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应, 即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法: 画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数, 如②尺规不可作的无理数 , 只能近似地表示, 如π, 1.010010001……思考:(1)-a2一定是负数吗?-a一定是正数吗?(2)大家都知道是一个无理数, 那么-1在哪两个整数之间?(3)的整数部分为a,小数部分为b, 则a= , b= 。
北师版八年级数学上册第二章 实数6 实数
![北师版八年级数学上册第二章 实数6 实数](https://img.taocdn.com/s3/m/1e626b205bcfa1c7aa00b52acfc789eb172d9eda.png)
按性质分
无理数常
(1)无限不循环小数;(2)π 及含有 π 的数,
见的三种
π
如 ;(3)开不尽的方根,如 2 ,
2
类型
5等
感悟新知
知1-讲
特别提醒
1. 0既不是正实数,也不是负实数 .
2.不能看到带根号的数,就认为是无理数,也
不能看到有分数线的数,就认为是有理数 .
感悟新知
知1-讲
特别解读
1.在实数范围内,一个数不是有理数,那么它
右边的点表示的实数总比左边的点表示的实数大 .
知4-练
例 4 用“<”连接下列各数:-1, 3,-2 2,2.5,0.
2
解题秘方:比较一组实数的大小和比较一组有理数的
大小一样,可先将这些数在数轴上表示出
来,然后根据“数轴上右边的点表示的数
总比左边的点表示的数大”求解.
知4-练
解:将各数的大致位置在数轴上表示出来,如图2-6-2.
<π.
4
实数
数轴
有理数
定义
无理数
实数
性质
运算
三“查”——检查过程和结果是否正确.
知3-练
例 3 计算:|1- 2|+| 3- 2|+ ( 3-2)2.
解题秘方:在进行实数的运算时,有理数的运算法则
及运算性质等同样适用.
解:原式= 2-1+ 3- 2+2- 3=1.
去绝对值符号和开方时,一定要注意代数式符号 .
感悟新知
知3-练
3-1.计算: 5×
相反数;一个数的倒数与它本身的正负一致 .
知2-练
例2
[母题 教材P40习题T2 ]求下列各数的相反数、倒数和
绝对值.
八年级数学上册实数知识点
![八年级数学上册实数知识点](https://img.taocdn.com/s3/m/9c6826932dc58bd63186bceb19e8b8f67c1cef06.png)
八年级数学上册实数知识点在八年级数学课程中,实数是重要的概念之一。
实数包括有理数和无理数,是数学中的基本概念之一。
本文将重点介绍实数的相关知识。
一、实数的定义实数是可以用数轴上的点来表示的数。
它包括有理数和无理数。
具体来说,有理数是可以表示为两个整数的比值的数,而无理数则不能表示为两个整数的比值。
二、实数的表示1、数轴上的表示实数可以用数轴上的点来表示。
数轴上的零点表示0,正数表示在零点右侧的数,负数表示在零点左侧的数。
2、小数的表示小数是实数的一种常见表示形式。
它的整数部分表示数轴上的整数部分,小数部分表示数轴上的小数部分。
三、实数的基本性质实数具有以下基本性质:1、对于任意实数a,b,c,满足交换律、结合律和分配律。
2、实数有加法逆元和乘法逆元。
对于任意实数a,存在一个实数-b,使得a+b=0;对于任意非零实数a,存在一个实数1/a,使得a×1/a=1。
3、实数的四则运算仍为实数。
特别的,除数为0时,除法没有意义。
四、实数的关系运算实数之间可以进行大小比较。
常用的关系运算有以下几种:1、大于:设a,b为实数,若a>b,则a在数轴上位于b的右侧。
2、小于:设a,b为实数,若a<b,则a在数轴上位于b的左侧。
3、大于等于:设a,b为实数,若a≥b,则a在数轴上位于b 的右侧或位于同一点上。
4、小于等于:设a,b为实数,若a≤b,则a在数轴上位于b 的左侧或位于同一点上。
五、实数的应用实数在生活中的应用广泛。
例如,将数轴上的点和实际情况对应,可以用来表示温度、海拔高度、经纬度等物理量。
六、实数的拓展除了有理数和无理数以外,还有复数等拓展概念。
复数包括实部和虚部,是实数和虚数的和。
虚数有单位虚数i,满足i²=-1。
七、总结实数是数学中的基本概念之一,包括有理数和无理数。
实数有数轴上的表示和小数的表示两种方式,还具有四则运算、大小比较等基本性质。
实数的应用非常广泛,还有复数等拓展概念。
八年级上册数学实数知识点
![八年级上册数学实数知识点](https://img.taocdn.com/s3/m/e4a1aa5f0a1c59eef8c75fbfc77da26925c59698.png)
八年级上册数学实数知识点
一、实数的概念
实数包括有理数和无理数两部分,其中有理数可以表示为分数形式,而无理数则不能。
实数集是数学中最重要的基础,同时也是数学的一个研究方向。
二、实数的分类
实数的分类是按照其性质来划分的。
实数可以分为无限小数和有限小数两类。
无限小数指的是无限循环的小数,而有限小数则是有限位的小数。
另外,实数还可以根据其大小来分类,可以分为正数、负数、零。
三、实数的运算
实数的基本运算有加法、减法、乘法和除法四种,它们都符合四则运算法则,即加法交换律、结合律、乘法交换律、结合律、分配律等等。
实数的运算还包括绝对值和幂运算,其中绝对值是指一个实数离原点的距离,幂运算则是指一个数乘以自己的若干次方。
四、实数的比较
实数的大小可以用于比较,可以用大于号(>)、小于号(<)和等于号(=)来表示大小的关系。
实数的比较还包括绝对值比较和对数比较,其中绝对值比较是指比较两个实数的绝对值的大小,对数比较则是指比较两个实数的对数的大小。
五、实数的性质
实数具有很多重要的性质,如传递性、对称性、存在性等等。
这些性质在数学研究中都起到了非常重要的作用。
六、实数的应用
实数在生活中有着广泛的应用,如在金融领域、工程领域、物理学等多个领域中都有应用。
实数的应用可以变得非常复杂,需要学生掌握较高的数学知识才能进行有效的应用。
七、总结
八年级上册数学实数知识点包含了实数的概念、分类、运算、比较、性质和应用等方面的内容。
对于学生而言,掌握这些知识可以帮助他们更好地理解数学的基础,并有效地应用到生活中。
八年级上册数学实数知识总结
![八年级上册数学实数知识总结](https://img.taocdn.com/s3/m/2ea91bd185868762caaedd3383c4bb4cf6ecb778.png)
实数一、实数的概念及分类1.实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2.无理数: 无限不循环小数叫做无理数。
在理解无理数时, 要抓住“无限不循环”这一时之, 归纳起来有四类:(1)开方开不尽的数, 如等;(2)有特定意义的数, 如圆周率π, 或化简后含有π的数, 如+8等;(3)有特定结构的数, 如0.1010010001…等;(4)某些三角函数值, 如sin60o等二、实数的倒数、相反数和绝对值1.相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b, 反之亦成立。
2.绝对值在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a≥0;若|a|=-a, 则a≤0。
3.倒数如果a与b互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4.数轴规定了原点、正方向和单位长度的直线叫做数轴解题时要真正掌握数形结合的思想, 理解实数与数轴的点是一一对应的, 并能灵活运用。
5.估算三、平方根、算数平方根和立方根1.算术平方根: 一般地, 如果一个正数x的平方等于a, 即x2=a, 那么这个正数x就叫做a的算术平方根。
特别地, 0的算术平方根是0。
表示方法: 记作“”, 读作根号a。
性质: 正数和零的算术平方根都只有一个, 零的算术平方根是零。
2.平方根: 一般地, 如果一个数x的平方等于a, 即x2=a, 那么这个数x就叫做a的平方根(或二次方根)。
表示方法: 正数a的平方根记做“”, 读作“正、负根号a”。
性质:一个正数有两个平方根, 它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算, 叫做开平方。
八年级数学上册第二章实数知识点总结+练习
![八年级数学上册第二章实数知识点总结+练习](https://img.taocdn.com/s3/m/6b2bf3c184254b35eefd3430.png)
第二章:实数【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-π是无理数 (4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根是3,即39=。
特别规地,0的算术平方根是0,即00=,负数没有算术平方根2.算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。
(2)算术平方根本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
八年级上册数学第二章实数知识点
![八年级上册数学第二章实数知识点](https://img.taocdn.com/s3/m/9a6eb5bf0342a8956bec0975f46527d3240ca6db.png)
八年级上册数学第二章实数知识点
数学八年级上册第二章实数知识点主要包括以下内容:
1. 实数的概念:实数是指有理数和无理数的统称,包括所有实数。
2. 有理数的概念:有理数包括整数和分数两类,可以用分数表示成两个整数的比,可以是正数、负数或零。
3. 无理数的概念:无理数是指无法表示为两个整数比的实数,如根号2、根号3等。
4. 实数的比较和排序:实数可以通过大小比较进行排序,可以使用相等、大于或小于等符号进行表示。
5. 实数的运算:实数的四则运算包括加法、减法、乘法和除法。
加法和乘法满足交换律、结合律和分配律,减法和除法也有相应的规律。
6. 绝对值的概念和性质:绝对值是一个非负实数,表示一个数到原点的距离,用符号表示为|a|。
7. 实数的相反数和倒数:实数a的相反数是-b,满足a + (-a) = 0;实数a的倒数是1/a,满足a × (1/a) = 1。
8. 有理数的数轴表示和无理数的近似表示:有理数可以用数轴表示,数轴上有0和正负方向,无理数可以通过近似表示,取一定精度的有理数作为其近似值。
9. 实数的绝对值不等式:对于任意实数a,有|a| ≥ 0,且对于任意实数a和b,有|ab| = |a| × |b|。
10. 实数的乘方:实数的乘方运算定义为一个实数自乘若干次,例如a^n表示a自乘n次。
以上是八年级上册数学第二章实数的主要知识点,希望对你有帮助!。
八年级上册数学第四章知识点
![八年级上册数学第四章知识点](https://img.taocdn.com/s3/m/33b93f5115791711cc7931b765ce0508763275a3.png)
八年级上册数学第四章知识点第四章:平方根和实数1. 平方根的定义:一个数的平方根是指能使它的平方等于这个数的数。
2. 平方根的性质:- 非负数的平方根是一个非负数。
- 0 的平方根是 0。
- 任何正数的平方根都是两个数,一个是正的,一个是负的。
3. 平方根的表示方法:- 符号√表示平方根。
- √a表示非负的平方根,即√a ≥ 0。
- -√a表示负的平方根,即-√a ≤ 0。
4. 平方根的性质:- 如果 a > b,则√a > √b 。
- 如果 a > 0 ,则√a > 0 。
- 如果 a > 1,且 a > b > 0 ,则√a > √b 。
5. 实数的定义:实数是有理数和无理数的总称。
6. 无理数:无理数是不能表示成两个整数的比例的数。
7. 无理数的表示方法:无理数可以用无窗尺寸小数或根号表示。
8. 无理数的例子:π(圆周率)、e(自然对数的底数)、√2(2 的平方根)。
9. 实数的运算性质:- 实数的加法、减法、乘法、除法仍是实数。
- 实数的加法、乘法满足交换律和结合律。
- 实数的加法和乘法满足分配律。
10. 绝对值的定义:一个实数的绝对值是它到 0 的距离。
11. 绝对值的表示方法:符号 |a| 表示 a 的绝对值。
12. 绝对值的性质:- 当 a ≥ 0 时,|a| = a。
- 当 a < 0 时,|a| = -a。
- |a * b| = |a| * |b|。
- |a + b| ≤ |a| + |b|。
八年级实数所有知识点归纳总结
![八年级实数所有知识点归纳总结](https://img.taocdn.com/s3/m/f701968a4128915f804d2b160b4e767f5acf80d2.png)
八年级实数所有知识点归纳总结在八年级数学中,实数是一个非常重要的内容。
实数包括有理数和无理数,是数轴上的全部点。
对于实数的学习,我们需要了解实数的性质、运算规则以及实数的表示方法等知识点。
在本文中,我们将对八年级实数相关的知识点进行归纳总结。
一、实数及其分类实数是可以用小数或分数表示的有理数和不能用分数形式表示的无理数的统称。
实数可以根据其性质分为有理数和无理数两类。
1. 有理数有理数是可以表示为两个整数的比值形式的数,包括正整数、负整数、零以及分数形式的数。
- 正整数:例如 1、2、3,它们在数轴上位于原点右侧。
- 负整数:例如 -1、-2、-3,它们在数轴上位于原点左侧。
- 0:位于原点上的数。
- 分数形式的数:例如 1/2、3/4,可以用两个整数的比值表示。
2. 无理数无理数是不能表示为两个整数的比值形式的数,它们包括无限不循环小数和根号形式的数。
- 无限不循环小数:例如π、√2,它们的小数部分是无限不循环的。
- 根号形式的数:例如√3、√5,它们的根号表示形式是无法化简的。
二、实数的大小比较在实数中,我们可以通过数轴来进行实数的大小比较。
对于两个实数的大小关系,可以通过以下规则判断:1. 正数之间的大小比较:数值大的正数大于数值小的正数。
2. 负数之间的大小比较:数值大的负数小于数值小的负数。
3. 正数与负数之间的比较:正数大于负数,且绝对值大的负数小于绝对值小的正数。
4. 零与其他数的比较:零小于任何正数,零大于任何负数。
三、实数的运算规则实数的运算包括加法、减法、乘法和除法。
下面我们分别来看每种运算的规则:1. 加法规则:- 相同符号的实数相加,取绝对值相加,并保留它们的原有符号。
- 不同符号的实数相加,取绝对值较大的数,然后减去绝对值较小的数,并保留绝对值较大的数的符号。
2. 减法规则:将减号转化为加一个负数的运算,根据加法规则进行运算。
3. 乘法规则:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学知识点:实数
八年级上册数学知识点:实数1
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)
一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
实数知识点
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
八年级上册数学知识点:实数2
1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
数学的学习思维方法
1、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
2、公式法
运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特殊的演绎思维。
公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。
但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
初中数学重点知识点
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的`,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。