高三数学-【数学】山东省临沂市2018届高三上学期期中考试试题(理) 精品
山东省日照第一中学2018-2019学年上学期高三期中数学模拟题
山东省日照第一中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1122. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 3. 若直线:1l y kx =-与曲线C :1()1ex f x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.4. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 5. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 7. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.8. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.9. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.10.在ABC ∆中,10a =,60B =,45C =,则等于( )A .10B .1)C 1D .11.487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣2012.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________.【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题(本大共6小题,共70分。
推荐-山东省临沂市2018-2018学年高三上学期期中考试数学试卷(理工类)及答案 精品
山东临沂2018-2018学年高三上学期期中考试数学试卷(理工类)第Ⅰ卷 选择题(60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3U =,集合{}3,5A =,{}1,3,7B =,则A ⋂(UB )等于A .{}5B .{}3,5C .{}1,5,7D .{}∅2.下列函数中,为增函数的是A .21()(0)f x x x => B .()f x =C .1()f x x x=-+D .2()69(3)f x x x x =-+≥3.化简3a +得A 2aBC .D .2a4.设函数()log a f x x =(a>0,且a ≠1),若122007()f x x x ⋅⋅⋅=8,则222122007()()()f x f x f x ++⋅⋅⋅+的值等于 A .4B .8C .16D .2log 8a5.已知35abA ==,则112a b+=则A 等于A .15BC .D .2256.已知01cos(75)3a +=,且0018090a -<<-,则0cos(15)a -的值为A .3-B .3C .3D .37.设0x 是方程log xa a x =的一个实根,其中0<a<1,b>1,则有A .0(1,1)x ∈-B .0(0,)x b ∈C .0(,1)(0,1)x b ∈--⋃D .0(,1)(1,)x b b ∈--⋃8.若过定点M (1,0)且斜率为k 的直线与圆22450x y x +--=在第二象限内的部分有交点则k 的取值范围是A .0k <<B .0k <C .0k <<D .05k <<9.已知m 、n 是两条直线,a β、是两个平面,有下列4个命题:①若//,m n n a ⊂②若,,m n m a n a ⊥⊥⊄,则//n a ③若,,,a m a n ββ⊥⊥⊥则m n ⊥④若m n 、异面,,,//,//m a n m n βββ⊂⊂则 其中正确的命题有 A .①②B .②③C .③④D .②④10.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连接A '',它是一条弦,它的长度小于或等于半径长度的概率为A .12B .2C .13 D .1411.如图,水平地面上有一个大球,现作如下方法测量的大小;用一个锐角为060的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,P 为三角板与球的切点,如果测得PA =5,则球的表面积为A .200πB .300πC .D .12.已知直线:4l y x =和点P (3,2),点Q 是l 上的第一象限内的点,直线QP 交x 轴与点M ,则 OMQ 的面积的最小值是A .10B .20C .30D .40第Ⅱ卷 非选择题 (90分)二.填空题:本大题共4小题,每小题4分,共16分。
高三数学上期第三次月考试题(理科附答案)
2019届高三数学上期第三次月考试题(理科附答案) 2019届高三数学上期第三次月考试题(理科附答案)总分150分,考试用时120分钟。
一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知全集集合集合,则集合为( )A. B. C. D.2.已知点,则与同方向的单位向量是( )A. B. C. D.3.命题对随意都有的否定是( )A.对随意,都有B.不存在,使得C.存在,使得D.存在,使得4.已知函数的定义域为,则的定义域为( )A. B. C. D.5.已知角的终边上一点坐标为,则角的最小正值为( )A. B. C. D.6.已知函数的导函数为,且满意关系式,则的值等于( )A.2B.C.D.7.已知向量,,则与夹角的余弦值为( )A. B. C. D.8.已知点在圆上,则函数的最小正周期和最小值分别为( )A. B. C. D.9.函数有零点,则实数的取值范围是( )A. B. C. D.10.设分程和方程的根分别为和,函数,则( )A. B.C. D.二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡上.11.已知,则的值为13. 中,,,三角形面积,14.已知函数在处取得极值10,则取值的集合为15.若关于的方程有实根,则实数的取值范围是三、解答题:本大题共6小题,共75分.请在答题卡指定区域内作答,解答应写出必要的文字说明.证明过程或演算步骤.16.(本小题满分12分)17.(本小题满分12分)已知函数,其中为使能在时取得最大值的最小正整数.(1)求的值;(2)设的三边长、、满意,且边所对的角的取值集合为,当时,求的值域.18.(本小题满分12分)中,设、、分别为角、、的对边,角的平分线交边于, .(1)求证: ;(2)若,,求其三边、、的值.19.(本小题满分12分)工厂生产某种产品,次品率与日产量 (万件)间的关系( 为常数,且 ),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元(1)将日盈利额 (万元)表示为日产量 (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注: )20.(本小题满分13分)已知,当时, .(1)证明 ;(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.21.(本小题满分14分)已知函数 ( 为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对随意的,在上存在两个不同的使得成立,求的取值范围.数学(理)参考答案答案DADCBDBBCA11. 12. 13. 14. 15.16.若命题为真明显或故有或5分若命题为真,就有或命题或为假命题时, 12分17.(1) ,依题意有即的最小正整数值为25分(2) 又即即 8分10分故函数的值域是 12分18.(1)即5分(2) ① 7分又② 9分由①②解得 10分又在中12分19.(1)当时,, 2分当时,4分日盈利额 (万元)与日产量 (万件)的函数关系式为5分(2)当时,日盈利额为0当时,令得或 (舍去)当时,在上单增最大值 9分当时,在上单增,在上单减最大值 10分综上:当时,日产量为万件日盈利额最大当时,日产量为3万件时日盈利额最大20.(1) 时4分(2)由得到5分又时即将代入上式得又8分又时对均成立为函数为对称轴 10分又12分13分21.(1) 时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不行能故要使在上无零点,只要对随意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当改变时,,的改变状况如下0+↘最小值↗时,,随意定的,在区间上存在两个不同的使得成立,当且仅当满意下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④ 当时对随意,在上存在两个不同的使成立2019届高三数学上期第三次月考试题就共享到这里了,更多相关信息请接着关注高考数学试题栏目!。
高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (5)
[考案5]第五章 综合过关规范限时检测(时间:120分钟 满分150分)一、单选题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.数列32,-54,78,-916,…的一个通项公式为( D )A.a n =(-1)n·2n +12nB.a n =(-1)n ·2n +12nC.a n =(-1)n +1·2n +12n D.a n =(-1)n +1·2n +12n【试题解答】 该数列是分数形式,分子为奇数2n +1,分母是指数2n ,各项的符号由(-1)n+1来确定,所以D 选项正确.2.(2020·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( D )A.8B.2C.3D.7【试题解答】 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,整数项为4,9,49,64,144,169,…,所以数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,…,因为2 019=4×504+3,所以b 2 019的末位数字为7.故选D.3.(2020·贵州贵阳监测)如果在等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( C ) A.14 B.21 C.28D.35【试题解答】 由题意得3a 4=12,则a 4=4,所以a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.故选C.4.(2020·山东潍坊期末)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =28,a 2m a m =2m +21m -2,则数列{a n }的公比为( B )A.2B.3C.12D.13【试题解答】 设数列{a n }的公比为q ,由题意知q ≠1,因为S 2m S m =28,a 2m a m =2m +21m -2,所以1+q m =28,q m =2m +21m -2,所以m =3,q =3.故选B.5.设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( B ) A.6 B.7 C.8D.13【试题解答】 根据S 13>0,S 14<0,可以确定a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0.所以a 7>0,a 8<0,则S n 取最大值时n 的值为7.故选B.6.(2020·江西南昌三中模拟)在等比数列{a n }中,已知对任意的正整数n ,a 1+a 2+a 3+…+a n =2n +m ,则a 21+a 22+…+a 2n =( A )A.13(4n -1) B.2n -1 C.13(2n -1) D.4n -1【试题解答】 通解:设{a n }的公比为q ,∵a 1+a 2+a 3+…+a n =2n +m 对任意的正整数n 均成立,∴a 1=2+m ,a 2=2,a 3=4.∵{a n }是等比数列,∴m =-1,a 1=1,q =2,∴a 21+a 22+…+a 2n=1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A. 优解:∵a 1+a 2+a 3+…+a n =2n +m ,∴当n ≥2时,a n =2n -1,又a 1=2+m ,满足上式,∴m =-1,即等比数列{a n }的首项为1,公比为2,∴a n =2n -1,∴a 21+a 22+…+a 2n =1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A.7. (2020·河北六校第三次联考)“泥居壳屋细莫详,红螺行沙夜生光.”是宋代诗人欧阳修对鹦鹉螺的描述.假设一条螺旋线是用以下方法画成(如图):△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别是以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的弧,曲线CA 1A 2A 3称为螺旋线,再以A 为圆心,AA 3为半径画弧,……如此画下去,则所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为( A )A.310πB.1103πC.58πD.110π【试题解答】 根据弧长公式知,弧CA 1,A 1A 2,A 2A 3,…,A n -2A n -1,A n -1A n 的长度分别为23π,2×23π,3×23π,…,(n -1)×23π,n ×23π,该数列是首项为23π,公差为23π的等差数列,所以该数列的前n 项和S n =π3n (n +1),所以所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为S 30=π3×30×(30+1)=310π.故选A.8.(2020·河北衡水中学调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n为数列{a n }的前n 项和,则2S n +16a n +3的最小值为( B ) A.3 B.4 C.23-2D.92【试题解答】 由已知有a 23=a 1a 13,所以有(a 1+2d )2=a 1(a 1+12d ),d =2(d ≠0),数列{a n }通项公式a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,所以2S n +16a n +3=n 2+8n +1=(n +1)+9n +1-2≥4,当且仅当n +1=9n +1,即n =2时等号成立.故选B. 二、多选题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分)9.等比数列{a n }的前三项和S 3=14,若a 1,a 2+1,a 3成等差数列,则公比q =( AD ) A.2 B.13 C.3D.12【试题解答】 由a 1,a 2+1,a 3成等差数列, 得2(a 2+1)=a 1+a 3,即2(1+a 1q )=a 1+a 1q 2, 即a 1(q 2-2q +1)=2,①又S 3=a 1+a 2+a 3=a 1(1+q +q 2)=14,② ①÷②得:q 2-2q +11+q +q 2=214,解得q =2或q =12.另解:由2(a 2+1)=a 1+a 3,得3a 2+2=a 1+a 2+a 3=S 3=14,解得a 2=4, 则S 3=4q +4+4q =14,解得q =2或q =12.故选A 、D.10.若数列{a n }满足对任意n ≥2(n ∈N )都有(a n -a n -1-2)·(a n -2a n -1)=0,则下面选项中正确的是( ABD )A.{a n }可以是等差数列B.{a n }可以是等比数列C.{a n }可以既是等差数列又是等比数列D.{a n }可以既不是等差数列又不是等比数列 【试题解答】 因为(a n -a n -1-2)(a n -2a n -1)=0, 所以a n -a n -1-2=0或a n -2a n -1=0, 即a n -a n -1=2或a n =2a n -1,当a n ≠0,a n -1≠0时,{a n }是等差数列或等比数列;当a n =0或a n -1=0时,{a n }可以不是等差数列,也可以不是等比数列,比如数列,2,0,0,0,…….故选A 、B 、D.11.已知等比数列{x n }的公比为q ,若恒有|x n |>|x n +1|,且x 11+q =12,则首项x 1的取值范围可以是( AC ) A.(12,1) B.(0,1) C.(0,12)D.(1,2)【试题解答】 由|x n |>|x n +1|,得1>|x n +1x n|=|q |,故-1<q <0或0<q <1.0<1+q <1或1<1+q <2,又x 11+q =12,所以x 1=1+q 2,所以x 1∈(0,12)∪(12,1).故选A 、C.12.(2020·山东十校联考)设数列{a n }和{b n }分别是等差数列与等比数列,且a 1=b 1=4,a 4=b 4=1,则以下结论不正确的是( BCD )A.a 2>b 2B.a 3<b 3C.a 5>b 5D.a 6>b 6【试题解答】 设等差数列的公差、等比数列的公比分别为d ,q ,则由题设得⎩⎪⎨⎪⎧4+3d =1,4q 3=1,解得⎩⎨⎧d =-1,q =314,则a 2-b 2=3-316>3-327=0;故A 正确.同理,其余都错,故选B 、C 、D.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2020·云南师大附中月考)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,则S 4=__85__. 【试题解答】 a n +1=3S n +1①,a n =3S n -1+1(n ≥2)②,①-②得:a n +1=4a n (n ≥2),又a 1=1,a 2=3a 1+1=4,∴{a n }是首项为1,公比为4的等比数列,∴S 4=1-441-4=85.或S 4=a 1+a 2+a 3+a 4=1+4+16+64=85.14.(2020·福建莆田月考)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=__18__. 【试题解答】 设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=(a 1+a 9)×92=2a 5×92=18.15.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =__2n-1__.【试题解答】 因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n , 两式相减得,a n +1=2a n +1, 所以a n +1+1=2(a n +1),即a n +1+1a n +1=2. 又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1.故填2n -1.16.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意的n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为 [23,+∞) .【试题解答】 因为数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),所以当n ≥2时,a 1a 2a 3…a n -1=2(n -1)2,则a n =22n -1,a 1=2也适合,所以1a n =122n -1,数列{1a n }是首项为12,公比为14的等比数列,则1a 1+1a 2+…+1a n =12(1-14n )1-14=23(1-14n )<23,则实数t 的取值范围为[23,+∞).故填[23,+∞). 四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .【试题解答】 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2,∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n+1-4n +2.又当n =1时,上式也满足. ∴当n ∈N *时,S n =2n +1-4n +2.18.(本小题满分12分)(2020·山东省济南第一中学期中考试)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式;(2)设b n =a n3n ,记数列{b n }的前n 项和为T n ,求T n .【试题解答】 (1)∵S 3=12,即a 1+a 2+a 3=12, ∴3a 2=12,所以a 2=4, 又∵2a 1,a 2,a 3+1成等比数列,∴a 22=2a 1·(a 3+1),即a 22=2(a 2-d )·(a 2+d +1), 解得,d =3或d =-4(舍去),∴a 1=a 2-d =1,故a n =3n -2. (2)b n =a n 3n =3n -23n =(3n -2)·13n ,∴T n =1×13+4×132+7×133+…+(3n -2)×13n ,①①×13得13T n =1×132+4×133+7×134+…+(3n -5)×13n +(3n -2)×13n +1.②①-②得23T n =13+3×132+3×133+3×134+…+3×13n -(3n -2)×13n +1=13+3×132(1-13n -1)1-13-(3n -2)×13n +1=56-12×13n -1-(3n -2)×13n +1,∴T n =54-14×13n -2-3n -22×13n =54-6n +54×13n .19.(本小题满分12分)(2020·河南洛阳孟津二中月考)在数列{a n }中,设f (n )=a n ,且f (n )满足f (n +1)-2f (n )=2n (n ∈N *),a 1=1.(1)设b n =a n2n -1,证明:数列{b n }为等差数列;(2)求数列{3a n -1}的前n 项和S n .【试题解答】 (1)由已知得a n +1=2a n +2n ,得 b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1,∴b n +1-b n =1,又a 1=1,∴b 1=1, ∴{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n2n -1=n ,∴a n =n ·2n-1,3a n -1=3n ·2n -1-1.∴S n =3×1×20+3×2×21+3×3×22+…+3(n -1)×2n -2+3n ×2n -1-n , 两边同时乘以2,得2S n =3×1×21+3×2×22+…+3(n -1)×2n -1+3n ×2n -2n ,两式相减,得-S n =3×(1+21+22+…+2n -1-n ×2n )+n =3×(2n -1-n ×2n )+n =3(1-n )2n -3+n , ∴S n =3(n -1)2n +3-n .20.(本小题满分12分)(2020·河北衡水模拟)数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列b n 的通项公式.【试题解答】 (1)当n =1时,a 1=S 1=2; 当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n , 易知a 1=2满足上式,所以数列{a n }的通项公式为a n =2n . (2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1),①a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1,②②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1),故b n =2(3n +1)(n ≥2).又a 1=b 13+1=2,即b 1=8,也满足上式,所以b n =2(3n +1)(n ∈N *).21.(本小题满分12分)(2020·广东广州一测)已知数列{a n }的前n 项和为S n ,数列{S nn }是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,求数列{b n }的前n 项和T n .【试题解答】 (1)因为数列{S nn }是首项为1,公差为2的等差数列,所以S nn =1+2(n -1)=2n -1,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n 2-2)-[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=1也符合上式,所以数列{a n }的通项公式为a n =4n -3. (2)当n =1时,a 1b 1=12,所以b 1=2a 1=2.当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,①得a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)(12)n -1.② ①-②,得a n b n =(4n -3)(12)n .因为a n =4n -3,所以b n =4n -3(4n -3)(12)n=2n (当n =1时也符合),所以b n +1b n =2n +12n =2,所以数列{b n }是首项为2,公比为2的等比数列,所以T n =2(1-2n )1-2=2n +1-2.22.(本小题满分12分)已知正项数列{a n }的前n 项和S n 满足4S n =a 2n +2a n+1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =a n3n ,求数列{b n }的前n 项和T n ;(3)在(2)的条件下,若b n1-T n≤λ(n +4)-1对任意n ∈N *恒成立,求实数λ的取值范围.【试题解答】 (1)由已知得4S n =(a n +1)2,① 当n =1时,4S 1=(a 1+1)2=4a 1,解得a 1=1. 当n ≥2时,4S n -1=(a n -1+1)2.② ①-②得,4a n =(a n +1)2-(a n -1+1)2, 则(a n +a n -1)(a n -a n -1-2)=0. 因为a n >0,所以a n -a n -1=2,即数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1. (2)由(1)知b n =2n -13n ,则T n =1·13+3·(13)2+5·(13)3+…+(2n -3)·(13)n -1+(2n -1)·(13)n .13T n =1·(13)2+3·(13)3+5·(13)4+…+(2n -3)·(13)n +(2n -1)·(13)n +1, 两式相减得23T n =13+2[(13)2+(13)3+…+(13)n ]-(2n -1)(13)n +1=23-2n +23·(13)n ,所以T n =1-n +13n .(3)由b n1-T n≤λ(n +4)-1得, 则λ≥3n (n +1)(n +4)=3n +4n +5,因为n +4n≥2n ·4n=4, 所以当且仅当n =2时,3n +4n +5有最大值13,即λ≥13.。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
二项式定理(1)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
届高三数学(理)第一次月考模拟试卷及答案
届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
山东省临沂市2018届高三统一质量检测(一模)数学(文)试题Word版含解析
山东省临沂市2018届高三统一质量检测(一模)数学(文)试题第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集2{|9,},{1,2},{2,1,2}I x x z Z A B =<∈==--,则()I A C B =A .{}1B .{}1,2C .{}2D .{}0,1,22、已知z 是z 的共轭复数,若1(z i i =+是虚数单位),则2z= A .1i - B .1i + C .1i -+ D .1i -- 3、已知R λ∈,向量(3,),(1,2)a b λλ==- ,则“35λ=”是“a b ⊥ ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、中国有个名句“运筹帷幄之中,决胜千里之外”,其中“筹”原意识指“孙子算经”中记载点算筹,古代是用算筹来进行计算,算筹是将几寸的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数码时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式,十位、千位、十万位用横式表示,依次类推,例如6613用算筹 表示就是,则8335用算筹可表示为5、已知输入x 的值为1,执行如右图所示的程序框图,则输出的结果为A .1B .3C .7D .156、已知1,1x y >>,且lg ,2,lg x y 成等差数列,则x y +有A .最小值20B .最小值200C .最大值20D .最大值200,7、要得到函数的图象2cos y x =,只需将2sin()3y x π=-的图象 A .向右平移56π个单位 B .向右平移3π个单位 C .向左平移56π个单位 D .向左平移3π个单位 8、某几何体的三视图如右图所示,则该几何体的体积为A .883π+B .1683π+C .8163π+D .16163π+ 9、定义在R 上的奇函数()f x 满足()(2)2f x f x +=-,且()11f =,则()2017f =A .0B .1C .-1D .-210、已知0,0a b >>,双曲线22122:1(0,0)x y C a b a b-=>>,圆22223:204C x y a x a +-+=,若双曲线1C 的渐近线与圆2C 相切,则双曲线1C 的离心率是A.3B.2 D第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..11、函数()ln(2)f x x =+的定义域为 12、已知变量,x y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为ˆ 1.31yx =-,则m =13、若,x y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为14、已知抛物线2:8,C y x O =为坐标原点,直线x m =与抛物线C 交于,A B 两点,若AOB ∆的重心为抛物线C 的焦点F ,则AF =15、已知函数()()23231,12323x x x x f x x g x x =+-+=-+-,设函数()()()F x f x g x =且函数()F x 的零点均在区间[],(,,)a b a b a b Z <∈内,则b a -的最小值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤16、(本小题满分12分)某滑雪场开业当天共有500人滑雪,滑雪服务中心根据他们的年龄分成[)[)[)10,20,20,30,30,40, [)[]40,50,50,60五个组,现按分层抽样的方法选取20人参加有奖活动,这些人的样本数据的频率分布直方图如下图所示,从左往右分别为一组、二组、三组、四组、五组.(1)求开业当天所有滑雪的人年龄在[)20,30有多少人?(2)在选取的这20人样本中,从年龄不低于30岁的人中任选两人参加抽奖活动,求这两个人来自同一组的概率.17、(本小题满分12分)已知函数()sin(2)cos(2)sin 2(),()23612f x x x m x m R f πππ=++++∈= . (1)求m 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2,()2B b f A B C ==求ABC ∆的周长.18、(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是菱形,PA ⊥平面,3,ABCD PA F =是棱PA 上一个动点,E 为PD 的中点.(1)求证:平面BDF ⊥平面PCF ;(2)若AF=1,求证://CE 平面BDF.19、(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知111,32,n n a S S n N ++==+∈ .(1)求数列{}n a 的通项公式;(2)若18n n n n b a a +=-,求数列{}n b 的前n 项和n T .20、(本小题满分13分)已知函数()41,()ln ,a f x x g x a x a R x=+-=∈. (1)若函数()()()h x f x g x =-在[]1,3上为减函数,求a 的最小值;(2)若函数3()(2)( 1.718828xp x x e e =-⋅= 为自然对数的底数),()()2g x q x x =+,对于任意的12,(0,1)x x ∈,恒有12()()p x q x >成立,求a 的范围.22、(本小题满分14分)已知椭圆2222:1(0)x y a b a bΓ+=>>的左焦点为1F ,右顶点为1A ,上顶点为1B ,过111,,F A B 三点的圆P的圆心坐标为. (1)求椭圆的方程;(2)若直线:(,l y kx m k m =+为常数,0k ≠)与椭圆Γ交于不同的零点M 和N.①当直线l 过(1,0)E ,且20EM EN += 时,求直线l 的方程;②当坐标原点到直线l MON ∆l 的倾斜角.山东省临沂市2018届高三统一质量检测(一模)数学(文)试题答案。
高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题
某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。
山东省济宁市2024届高三上学期期中考试数学含答案
2023~2024学年度第一学期期中教学质量检测高三数学试题2023.11本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.作选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、单项选择题:本题共8个小题,每小题5分,共10分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数()()12i 2i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}28xA x =<,{}240B x x x =-<,则A B = ().A .{}03x x <<B .{}04x x <<C .{}3x x <D .{}4x x <3.设等差数列{}n a 的前n 项和为n S ,已知3718a a +=,24621a a a ++=,则8S =().A .32B .64C .80D .1284.若曲线()1xy ax e =+在点()0,1处的切线方程是210x y -+=,则a =().A .3B .2C .1D .05.已知实数0a b >>,则下列结论正确的是().A .ac bc>B .11a b a b +>+C .a bc a c b>--D .22222a b a b++<+6.已知函数()f x 的定义域为R ,满足()()()2023f x y f x f y +-+=⎡⎤⎣⎦,则下列说法正确的是().A .()f x 是偶函数B .()f x 是奇函数C .()2023f x +是偶函数D .()2023f x +是奇函数7.在ABC △中,点D ,E 是线段BC 上的两个动点,且2y AD AE xAB AC +=+ ,则12x y +的最小值为().A .23B .43C .2D .88.已知函数()()22,01ln ,0f x x x x x x x ⎧-+≥⎪=⎨-+<⎪⎩,则函数()1y f f x =-⎡⎤⎣⎦的零点个数是().A .2B .3C .4D .5二、多项选择题:本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是().A .命题“x ∀∈R ,210x x ++>”的否定形式是“x ∃∈R ,210x x ++≤”B .当()0,πx ∈时,4sin sin y x x=+的最小值为4C .“()ππ4k k θ=±∈Z ”是“()π4k k θ=∈Z ”的充分不必要条件D .tan 25tan 20tan 25tan 201︒+︒+︒︒=10.音量的大小用声强级η(单位:dB )表示,声强级η与声强I (单位:2W m )之间的关系是:10lg II η=,其中0I 指的是人能听到的最低声强.人能承受的最大声强为21W m ,对应的声强级为120dB .若学生早读期间读书的声音的声强级范围为[]70,80(单位:dB ),则下列选项中正确的是().A .12010I -=(单位:2W m )B .学生早读期间读书的声强范围为5410,10--⎡⎤⎣⎦(单位:2W m )C .如果声强变为原来的2倍,则对应声强级也变为原来的2倍D .如果声强级增加10dB ,则声强变为原来的10倍11.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则().A .()3π4f x f ⎛⎫≤⎪⎝⎭B .π12y f x ⎛⎫=-⎪⎝⎭为偶函数C .2π2π033f x f x ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭D .函数()y f x =在[]0,a 内有且仅有三条对称轴,则a 的取值范围为17π23π,1212⎡⎤⎢⎥⎣⎦12.已知函数()2ln x f x x =,()()12xg x ae a x=-∈R ,则下列说法正确的是().A .函数()f x 的极大值为12eB .当1a =时,用二分法求函数()g x 在区间()0,1内零点的近似值,要求误差不超过0.01时,所需二分区间的次数最少为6C .若函数g ()x 在区间(),0-∞上单调递增,则a 的取值范围为2,8e ⎡⎫-+∞⎪⎢⎣⎭D .若函数()()f x g x ≤在区间()0,+∞上恒成立,则a 的取值范围为1,2e ⎡⎫+∞⎪⎢⎣⎭三、填空题:本题共4个小题.每小题5分,共20分,其中,多空题1空2分,第2空3分.13.已知向量()2,1a =-,()1,b t =- ,若a b ∥ ,则实数t =______.14.已知π1cos 125α⎛⎫-= ⎪⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭______.15.已知函数()()22log 4x f x x a x-=+-关于直线x b =对称,则22a b+=______.16.已知数列{}n a 满足12121333n n n n n a a a a S ---++++=L ,若2nn a =,则n S =______;若1n a ≥-,10a ≠,n a ∈Z ,0n S =,则当3n =时,满足条件的2a 的所有项组成的集合为______.四、解答题(本大题共6个小题,共70分.解答要写出必要的文字说明、证明过程或演算步骤.)17.(本小题10分)已知函数()()2ππsin 2022f x x x ϕϕϕ+⎛⎫⎫=+++<<⎪⎪⎝⎭⎭,且π2x =-是()f x 的极值点.(Ⅰ)求ϕ的值;(Ⅱ)若将()f x 的图象向右平移π6个单位长度后,得到函数()g x 的图象,求()g x 在区间π0,4⎡⎤⎢⎥⎣⎦上的值域.18.(本小题12分)已知对任意平面向量(),AB x y = ,把AB绕其起点逆时针方向旋转θ角得到向量()cos sin ,sin cos AP x y x y θθθθ=-+,叫做把点B 绕点A 沿逆时针方向旋转θ角得到点P .(Ⅰ)已知平面内点()1,2A ,点(12B ++,若把点B 绕点A 沿顺时针方向旋转π4得到点P ,求点P 的坐标;(Ⅱ)已知()1,1AB = ,把点B 绕点A 沿逆时针方向旋转θ角得到点P ,其中π,π2θ⎛⎫∈ ⎪⎝⎭,()2,6CD =,若AP CD ⊥,求sin 2θ的值.19.(本小题12分)某市城郊由3条公路围成的不规则的一块土地(其平面图形为图1所示).市政府为积极落实“全民健身”国家战略,准备在此地块上规划一个体育馆.建立图2所示的平面直角坐标系,函数()f x 的图象由曲线段OA 和直线段AB 构成,已知曲线段OA 可看成函数()2f x kx =的一部分,直线段6OB =(百米),体育馆平面图形为直角梯形BCDE (如图2所示),π2BCD ∠=,BC DE ∥.10≈)(Ⅰ)求函数()f x 的解析式;(Ⅱ)在线段OB 上是否存在点C ,使体育馆平面图形面积最大?若存在,求出该点C 到原点O 的距离;若不存在,请说明理由.20.(本小题12分)记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为1S ,2S ,3S ,且123ABC S S S S +-=△.(Ⅰ)求角C 的大小;(Ⅱ)若M 为边AB 上一点(不包含端点),且满足2AMC ABC ∠=∠,求AMBM的取值范围.21.(本小题12分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且13a =,14n n n S a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}3nn a 的前n 项和nT .22.(本小题12分)已知函数()()sin 1xf x e a x a =--∈R .(Ⅰ)当1a =时,讨论函数()()xf xg x e =在π3π,22⎛⎫-⎪⎝⎭上的单调性;(Ⅱ)当3a =-时,证明:对()0,x ∀∈+∞,有()212xxf x e x e-<++-.高三期中数学试题参考答案2023.11一、单选题(本大题共10个小题,每小题5分,共40分)题号12345678答案AABCDDCD二、多选题(本大题共4个小题,每小题5分,部分答对得2分,共2分)题号9101112答案ACDABDBCACD三、填空题(本大题共4个小题,每小题5分,共20分)13.1214.2325-15.65816.()232n n-;{}1,0,1,2,3-三、解答题(本大题共6个小题,共70分)17.解:(Ⅰ)因为()()2sin 22f x x x ϕϕ⎛⎫=+++-⎪⎝⎭()()sin 2cos 21x x ϕϕ=++++⎡⎤⎣⎦()()sin 22x x ϕϕ=+++π2sin 23x ϕ⎛⎫=++ ⎪⎝⎭.因为π2x =-是()f x 的极值点,所以π2π2sin 223f ϕ⎛⎫⎛⎫-=-=± ⎪ ⎪⎝⎭⎝⎭.即2πππ32k ϕ-=+,k ∈Z .所以得π6ϕ=.(Ⅱ)由(Ⅰ)得()2cos 2f x x =,()f x 向右平移π6个单位长度后得()π2cos 23g x x ⎛⎫=- ⎪⎝⎭.因为π0,4x ⎡⎤∈⎢⎥⎣⎦,所以πππ2,336x ⎡⎤-∈-⎢⎥⎣⎦,即π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,所以()[]π2cos 21,23g x x ⎛⎫=-∈ ⎪⎝⎭.故()g x 的值域为[]1,2.18.解:(1)由题意知AB =,()ππππ5,34444AP ⎫⎛⎫⎛⎫⎛⎫⎛⎫=----+-= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎭ ,所以点P 的坐标为()6,5.(Ⅱ)由题意得:()cos sin ,sin cos AP θθθθ=-+.因为AP CD ⊥ ,所以0AP CD ⋅=,所以()()2cos sin 6sin cos 0θθθθ-++=,整理得:8cos 4sin 0θθ+=,①又22sincos 1θθ+=,②因为π,π2θ⎛⎫∈⎪⎝⎭,cos 0θ<,sin 0θ>,由①②解得:cos π5=-,sin 5θ=.所以4sin 22sin cos 5θθθ==-.19.解:(Ⅰ)因为()2,4A 在曲线()2f x kx =上,即()244f k ==,1k =,所以02x ≤≤,()2f x x =.又因为()2,4A ,()6,0B ,所以线段AB 方程为()404226y x --=--,所以6y x =-+,26x ≤≤.所以函数()f x 的解析式为()2,026,26x x x x f x ⎧≤≤=⎨-+<≤⎩.(Ⅱ)设C 点坐标为(),0t ,则()2,D t t.又26t x =-+,26x t =-,E 点坐标为()226,t t -,所以直角梯形BCDE 的面积()()()221662S t t t t t ⎡⎤=--+-⋅⎣⎦,即()()()4321212062S t t t t t =--+<<,所以()()3223122312S t t t t t t t 2=--+=-+-.令()0S t '=,解得3744t -+=≈.当704t <<时,()0S t '>;当764t <<时,()0S t '<.所以()S t 在70,4⎛⎫ ⎪⎝⎭上单调递增,在7,64⎛⎫ ⎪⎝⎭上单调递减.所以74t =时,函数()S t 取得最大值.故在线段OB 上存在点C ,使体育馆平面图形面积最大,且C 到O 的距离74(百米).20.解:(Ⅰ)由三角形面积公式得:()2221234S S S a b c +-=+-,1sin 2ABC S ab C =△.又因为123ABC S S S S +-=△,所以()2221sin 42a b c ab C +-=.①在ABC △中,由余弦定理得:2222cos c a b ab C =+-,②将②代入①得:sin C C =,所以tan C =又()0,πC ∈,故π3C =.(Ⅱ)由2AMC ABC ∠=∠得:BCM AMC ABC ABC ∠=∠-∠=∠,所以BM CM =.设BCM θ∠=,由π3BCM ACB ∠<∠=,得:π30,θ⎛⎫∈ ⎪⎝⎭.在AMC △,π3ACM θ∠=-,2π3CAM θ∠-=,所以sin sin sin π2π2π333AM CM BM θθθ--==⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝-⎭⎝⎭⎝⎭,所以31sin cos sin 22sin π32π3AM BM θθθθ⎛⎫- ⎪⎝⎭==⎛⎫ ⎪⎝-⎭-又π30,θ⎛⎫∈ ⎪⎝⎭,所以(tan θ∈()10,1-∈.故AMBM的取值范围为()0,1.21.解:(Ⅰ)由14n n n S a a +=,①得114n n n S a a --=,2n ≥,②②-①得:()114n n n n a a a a +-=-,又0n a >,所以()1142n n a a n +--=≥.因为13a =,所以24a =.所以数列{}n a 奇数项、偶数项分别成等差数列.当n 为奇数时,134212n n a n -=+=+;当n 为偶数时,24422n n a n -=+=.所以21,2,n n n a n n +⎧=⎨⎩为奇数为偶数.(Ⅱ)由(Ⅰ)知21,2,n n n a n n +⎧=⎨⎩为奇数为偶数,当n 为偶数时,()123413343738321323n n n T n n -=⋅+⋅+⋅+⋅++-⋅+⋅L ,①()2345133343738321323n n n T n n +=⋅+⋅+⋅+⋅++-⋅+⋅L ,②①-②得224466123333333323nnn n T n +-=++++++++-⋅+L ,()1913222319n n n T n +--=-⋅-,193388n n T n +⎛⎫=+- ⎪⎝⎭.当n 为奇数时,()19113321388nnn n n n T T a n n -⎛⎫=+=+-++ ⎪⎝⎭,191388n n T n +⎛⎫=+- ⎪⎝⎭.故11933,88913,88n n n n n T n n ++⎧⎛⎫+- ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+- ⎪⎪⎝⎭⎩为偶数为奇数.22.解:(Ⅰ)当1a =时,()sin 1sin 11x x x e x x g x e e --+==-,()π1cos sin 14x xx x x g e x e ⎛⎫+- ⎪--⎝⎭'=-=-,当π2π2π2k x k -+<<,k ∈Z 时,()0g x '<,()g x 单调递减;3π2π2π2k x k <<+,k ∈Z 时,()0g x '>,()g x 单调递增.所以()g x 在π2π,2π2k k ⎛⎫-+ ⎪⎝⎭,k ∈Z 单调递减,在3π2π,2π2k k ⎛⎫+ ⎪⎝⎭,k ∈Z 单调递增.(Ⅱ)证明:要证()212xxf x e x e -<++-,只要证23sin 22xx x e---<-,即证()23sin 22xex x --<-.令()()23sin 2xF x ex x =--,()()26sin 23cos 5x F x e x x x '=-+-.当0x >时,令()sin h x x x =-,()1cos 0h x x '=-≥,所以()h x 在()0,+∞单调递增,所以()()00h x h >=,即sin x x >,从而22sin x x -<-.所以()()()226sin 23cos 56sin 2sin 3cos 5xx F x ex x x e x x x '=-+-<-+-,()()224sin 3cos 55sin 50x x e x x e x ϕ=+-=+-≤⎡⎤⎣⎦,所以()F x 在()0,+∞单调递减,即()()02F x F <=-.故()212xxe xf x e-<++-成立.。
山东省临沂市2018届高考数学一模试卷(理科)Word版含解析
山东省临沂市2018届高考一模试卷(理科数学)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.7.如图所示的程序框图,输出S的值为()A.B.C.D.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.39.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与三棱锥D﹣PAC 的体积比为()A.1:2 B.1:8 C.1:6 D.1:310.已知抛物线x2=4y,直线y=k(k为常数)与抛物线交于A,B两个不同点,若在抛物线上存在一点P(不与A,B重合),满足,则实数k的取值范围为()A.k≥2 B.k≥4 C.0<k≤2 D.0<k≤4二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为_______.12.二项式的展开式中,常数项等于_______(用数字作答).13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=_______.14.若a>0,b>0,则的最小值是_______.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K 的最小值是_______.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E(ξ).18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求二面角B﹣CE﹣D的余弦值.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.山东省临沂市2018届高考一模试卷(理科数学)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅【考点】交、并、补集的混合运算.【分析】求出全集中y的值确定出U,再由B利用补集的定义求出B的补集,找出A与B补集的交集即可.【解答】解:由全集U中y=log2x,x=,1,2,16,得到y=﹣1,0,1,4,即全集U={﹣1,0,1,4},∵A={﹣1,1},B={1,4},∴∁U B={﹣1,0},则A∩(∁U B)={﹣1},故选:B.2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小【考点】众数、中位数、平均数.【分析】根据平均数与中位数的定义,分析这组数据,即可得出正确的结论.【解答】解:根据题意得,数据x1,x2,x3,…,x50,是某班50个学生的体重,其平均数应在50公斤左右,再增加一个数据500,这51个数据的平均数一定增大,而中位数有可能不变,如:按大小顺序排列后,第25、26个数据相等时,其中位数相等.故选:B.3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义;函数的零点;古典概型及其概率计算公式.【分析】函数f(x)=x2+2x+ξ不存在零点,可得ξ>1,根据随机变量ξ服从正态分布N(1,σ2),可得曲线关于直线x=1对称,从而可得结论.【解答】解:∵函数f(x)=x2+2x+ξ不存在零点,∴△=4﹣4ξ<0,∴ξ>1∵随机变量ξ服从正态分布N(1,σ2),∴曲线关于直线x=1对称∴P(ξ>1)=故选C.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】要判断“a<1”是“|x﹣2|+|x|>a恒成立”的条件,我们可先构造函数y=|x﹣2|+|x|并求出函数的值域,然后转化为一个恒成立的判断与性质问题,最后结合充要条件的定义,进行判断.【解答】解:函数y=|x﹣2|+|x|的值域为[2,+∞)则当a<1时,|x﹣2|+|x|>a恒成立反之若,|x﹣2|+|x|>a,则说明a小于函数y=|x﹣2|+|x|的最小值2恒成立,即a<2故“a<1”是“|x﹣2|+|x|>a恒成立”的充分不必要条件故选:A.5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】根据题目给出的函数定义,写出分段函数f(x)=min{x2, },由图象直观看出所求面积的区域,然后直接运用定积分求解阴影部分的面积.【解答】解:由=x2,得:x=1,又当x<0时,<x2,所以,根据新定义有f(x)=min{x2, }=,图象如图,所以,由函数f(x)的图象与x轴、x=2直线所围成的封闭图形为图中阴影部分,其面积为S=x2dx+dx=|+lnx|=+ln2,故选:C.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用余弦定理可得|PF1|=2c,再由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,运用离心率公式计算即可得到所求值.【解答】解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,即有|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2F1=4c2+4c2﹣2•4c2•(﹣)=12c2,即有|PF1|=2c,由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,即有c=a,可得e==.故选:A.7.如图所示的程序框图,输出S的值为()A.B.C.D.【考点】程序框图.【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求2n cosnπ的和,n从1取到100,利用等比数列求和公式即可计算得解.【解答】解:通过分析知该算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,由于2cosπ+22cos2π+23cos3π+…+2100cos100π=﹣2+22﹣23+24﹣…+2100==.故选:C.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A(﹣2,﹣2),代入目标函数z=|x +2y |得z=2×2+2=6 故选:C .9.如图,四棱锥P ﹣ABCD 的底面ABCD 为平行四边形,NB=2PN ,则三棱锥N ﹣PAC 与三棱锥D ﹣PAC 的体积比为( )A .1:2B .1:8C .1:6D .1:3【考点】棱柱、棱锥、棱台的体积.【分析】根据两个棱锥的底面和高与棱锥P ﹣ABC 的底面与高的关系得出两棱锥的体积与棱锥P ﹣ABC 的关系,得出答案.【解答】解:∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD . ∴V D ﹣PAC =V P ﹣ACD =V P ﹣ABC .∵NB=2PN ,∴NB=PB ,∴V N ﹣ABC =V P ﹣ABC ,∴V N ﹣PAC =V P ﹣ABC ﹣V N ﹣ABC =V P ﹣ABC .∴.故选:D .10.已知抛物线x 2=4y ,直线y=k (k 为常数)与抛物线交于A ,B 两个不同点,若在抛物线上存在一点P(不与A ,B 重合),满足,则实数k 的取值范围为( ) A .k ≥2 B .k ≥4 C .0<k ≤2 D .0<k ≤4 【考点】抛物线的简单性质.【分析】由题意可得设A(2,k),B(﹣2,k),P(m,),运用向量的数量积的坐标表示,由换元法可得二次方程,由判别式大于等于0和两根非负的条件,运用韦达定理,解不等式即可得到所求范围.【解答】解:由y=k(k>0),代入抛物线x2=4y,可得x=±2,可设A(2,k),B(﹣2,k),P(m,),由,可得(2﹣m,k﹣)•(﹣2﹣m,k﹣)=0,即为(2﹣m)(﹣2﹣m)+(k﹣)2=0,化为m4+m2(1﹣)+k2﹣4k=0,可令t=m2(t≥0),则t2+t(1﹣)+k2﹣4k=0,可得△=(1﹣)2﹣(k2﹣4k)≥0,即1≥0恒成立,由韦达定理可得﹣(1﹣)≥0,k2﹣4k≥0,解得k≥4.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为i.【考点】复数代数形式的乘除运算.【分析】利用复数相等,求出m,n然后求解复数的代数形式.【解答】解:m,n∈R,且m+2i=2﹣ni,可得m=2,n=﹣2,====﹣i.它的共轭复数为i.故答案为:i.12.二项式的展开式中,常数项等于1215(用数字作答).【考点】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项【解答】解:展开式的通项公式为,由6﹣3k=0得k=2,所以常数项为,故答案为1215.13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=cosπx.【考点】正弦函数的图象.【分析】由函数的最值求出A,由函数的奇偶性求出φ的值,由周期求出ω,可得函数的解析式.【解答】解:由题意可得A=,φ=2kπ+,k∈Z,再结合0<φ<π,可得φ=,函数f(x)=sin(ωx+)=cosωx.再根据•=,可得ω=π,函数f(x)=cosπx,故答案为:cosπx.14.若a>0,b>0,则的最小值是2+3.【考点】基本不等式.【分析】化简可得=++3,从而利用基本不等式求解即可.【解答】解:=2+++1=++3≥2+3,(当且仅当=,即a=b时,等号成立);故答案为:2+3.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是.【考点】向量的线性运算性质及几何意义.【分析】y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|,再利用基本不等式的性质即可得出.【解答】解:y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=+﹣+2[λx1+(1﹣λ)x2]=,|x1﹣x2|≤|1﹣2|=1,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|≤=,由于|≤K恒成立,∴,∴K的最小值为.故答案为:.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f(A)=解出A,利用余弦定理和基本不等式得出bc的最大值,代入面积公式得出面积的最大值.【解答】解:(I)f(x)=cos2ωx﹣[﹣cos(2ωx﹣)]=cos(2ωx﹣)﹣cos2ωx=﹣cos2ωx+sin2ωx=sin(2ωx﹣).令2ωx﹣=+kπ,解得x=.∴f(x)的对称轴为x=,令=π解得ω=.∵<w<1,∴当k=1时,ω=.∴f (x )=sin (x ﹣).∴f (x )的最小正周期T=.(2)∵f ()=sin (A ﹣)=,∴sin (A ﹣)=.∴A=.由余弦定理得cosA===.∴b 2+c 2=bc +1≥2bc ,∴bc ≤1.∴S △ABC ==≤.∴△ABC 面积的最大值是.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E (ξ). 【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(Ⅰ)甲、乙两人所付费用相同即为0,40,80元,求出相应的概率,利用互斥事件的概率公式,可求甲、乙两人所付租车费用相同的概率;(Ⅱ)确定变量的取值,求出相应的概率,即可求得ξ的分布列与数学期望. 【解答】解:(Ⅰ)甲、乙两人所付费用相同即为0,40,80元.…都付0元的概率为P 1==,都付40元的概率为P 2==,都付80元的概率为P 3=(1﹣)(1﹣)=,故所付费用相同的概率为P=P 1+P 2+P 3=.(Ⅱ)由题意甲、乙两人所付的滑雪费用之和ξ的可能取值为0,40,80,120,160,P (ξ=0)==,P (ξ=40)==,P (ξ=80)=+=,P (ξ=120)=+=,P (ξ=160)=(1﹣)(1﹣)=,ξ 0 40 80 120 160数学期望E (ξ)=+=80.18.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2,E 为PA 的中点.(Ⅰ)设面PAB ∩面PCD=l ,求证:CD ∥l ; (Ⅱ)求二面角B ﹣CE ﹣D 的余弦值.【考点】二面角的平面角及求法;棱锥的结构特征. 【分析】(Ⅰ)根据线面平行的判定定理以及性质定理即可证明CD ∥l ;(Ⅱ)建立空间直角坐标系,求出对应平面的法向量,利用向量法进行求解即可. 【解答】证明:(Ⅰ)取CD 的中点H ,∵AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2, ∴AH ⊥CD ,∠CAH=∠CAB=45°, 即∠BAH=90°,即四边形ABCH 是矩形, 则AB ∥CH ,AB ∥CD∵CD ⊄面PAB ,AB ⊂面PAB , ∴CD ∥面PAB ,∵CD ⊂面PCD ,面PAB ∩面PCD=l , ∴根据线面平行的性质得CD ∥l .(Ⅱ)∵AC=2,∴AB=BC=AH=,DH=,建立以A 为原点,AH ,AB ,AP 分别为x ,y ,z 轴的空间直角坐标系如图:则A (0,0,0),B (0,,0),C (,,0),P (0,0,2),E (0,0,1),D (,﹣,0),=(﹣,﹣,1),=(,0,0),=(0,﹣2,0)设平面BPC的一个法向量为=(x,y,z),则,则x=0,令y=,则z=2,即=(0,,2),设平面PCD的一个法向量为=(x,y,z),,则y=0,令x=,则z=2,=(,0,2),则cos<,>====,即二面角B﹣CE﹣D的余弦值是.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由,可得=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得a n,S n.可得2n+1=T n+2,利用递推关系可得b n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.可得:c1=﹣12,c2=﹣2,n≥3,c n>0.n≥3,W n=c1+c2+…+c n ﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)∵,∴=T1+2=2+2=4=22,∴+1=2,解得a1=1.∴a n=1+(n﹣1)×2=2n﹣1.∴S n==n2.∴2n+1=T n+2,∴当n≥2时,2n+1﹣2n=T n+2﹣(T n+2)=b n,﹣1∴b n=2n,当n=1时也成立.∴b n=2n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.∴c1=﹣12,c2=﹣2,n≥3,c n>0.∴n≥3,W n=﹣c1﹣c2+c3+…+c n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,2Q n=1×22+3×23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,∴﹣Q n=2(2+22+…+2n)﹣2﹣(2n﹣1)•2n+1=2×﹣2﹣(2n﹣1)•2n+1=(3﹣2n)•2n+1﹣6,∴Q n=(2n﹣3)•2n+1+6.∴W n=.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,运用直线斜率公式和斜率之积为﹣1,可得m,再由直线MA与椭圆求得交点P;(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,运用韦达定理,解得P的坐标;同理求得Q的坐标,运用直线的斜率公式可得PQ的斜率,由点斜式方程可得PQ的方程,再由恒过定点思想,即可得到所求定点.【解答】解:(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,可得k BH•k MA=﹣1,即有•=﹣1,可得m=,由MA的方程:y=(x+2),代入椭圆方程,可得8x2+4x﹣48=0,解得x=﹣2,或,即有P(,);(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,可得(36+m2)x2+4m2x+8m2﹣288=0,由﹣2x P=,可得x P=,y P=(x P+2)=;又MB:y=(x﹣2),代入椭圆方程,可得(4+m2)x2﹣4m2x+8m2﹣32=0,由2+x Q=,可得x Q=,y Q=(x Q﹣2)=﹣,即有直线PQ的斜率为k==,则直线PQ:y﹣=(x﹣),化简即有y=(x﹣1),由x﹣1=0,解得x=,y=0.故直线PQ恒过定点(,0).21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式求出a的范围即可;(Ⅱ)求出h(x)的导数,解关于导函数的不等式求出h(x)的单调区间,从而求出h(x)的最大值即可;(Ⅲ)构造函数f(x)=ln(1+x)﹣x,利用导数法可证得ln(1+x)≤x(当x≠0时,ln(1+x)<x),令x=,利用对数函数的运算性质及累加法求和即可证得结论成立.【解答】解:(Ⅰ)f(x)=sinx﹣ax,f′(x)=cosx﹣a,若对于x∈(0,1),f(x)>0恒成立,即a<cosx在(0,1)恒成立,故a≤0;(Ⅱ)a=1时,h(x)=lnx﹣x+1,(x>0),h′(x)=﹣1=,令h′(x)>0,解得:0<x<1,令h′(x)<0,解得:x>1,∴h(x)在(0,1)递增,在(1,+∞)递减,∴h(x)的最大值是h(1)=0;证明:(Ⅲ)构造函数g(x)=ln(1+x)﹣x,则g′(x)=﹣1=,当﹣1<x<0时,g′(x)>0,g(x)在(﹣1,0)上单调递增;当x>0时,g′(x)<0,g(x)在(0,+∞)上单调递减;所以,当x=0时,g(x)=ln(1+x)﹣x取得极大值,也是最大值,所以,g(x)≤g(0)=0,即ln(1+x)≤x,当x≠0时,ln(1+x)<x.令x=,则ln(1+)=ln(n+1)﹣lnn<,即ln(n+1)﹣lnn<,∴ln2﹣ln1<1,ln3﹣ln2<,…,lnn﹣ln(n﹣1)<,ln(n+1)﹣lnn<,以上n个不等式相加得:ln(n+1)﹣ln1<1+++…+,即.。
2018年度山东临沂中考数学试卷(规范标准答案解析版)
2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( ) A .﹣3 B .﹣1 C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( )A .(y +12)2=1B .(y ﹣12)2=1C .(y +12)2=34D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( )A .5B .4C .3D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元 45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是( ) A .平均数和众数 B .平均数和中位数 C .中位数和众数 D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC=BD ,则四边形EFGH 为矩形; ②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分; ④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等. 其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分) 15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= . 17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
山东省临沂市2018届高三第三次高考模拟考试数学(理)试题有答案
2018年普通高考模拟考试理科数学2018.5本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}x x a >,B={}232x x x -+>0,若A ∪B=B ,则实数a 的取值范围是(A) (),1-∞ (B) (],1-∞ (C) ()2,+∞(D) [)2,+∞2.欧拉公式cos sin ix e x i x =+ (i 为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,3i e 表示的复数在复平面中位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.给出以下三种说法:①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+<”; ②已知,p q 为两个命题,若p q ∨为假命题,则()()p q ⌝∧⌝为真命题; ③命题“,a b 为直线,α为平面,若//,//,a b αα,则//a b ”为真命题. 其中正确说法的个数为 (A)3个 (B)2个 (C)1个 (D)0个4.已知4cos 45πα⎛⎫-=⎪⎝⎭,则sin 2α= (A) 725- (B) 15- (C) 15 (D) 7255.直线40x y m ++=交椭圆2116x y +=于A ,B 两点,若线段AB 中点的横坐标为l ,则,m= (A)-2 (B)-1 (C)1 (D)2 6.执行如图所示的程序框图,则输出的a = (A)6.8 (B)6.5 (C)6.25 (D)67.已知定义域为R 的奇函数()f x 在(0,+∞)上的解析式为()()()23log 5,0233,,2x x f x f x x ⎧-<≤⎪⎪=⎨⎪->⎪⎩则()()32018f f +=(A)-2(B)-1 (C)1(D)28.一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“▂”组成.已知在一个显示数字8的显示池中随机取一点A ,点A 落在深色区域内的概率为12,若在一个显示数字0的显示池中随机取一点B ,则点B 落在深色区域内的概率为(A)67(B)37 (C) 34 (D) 389.记不等式组10,330,10x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,所表示的平面区域为D ,若对任意点(00,x y )∈D ,不等式0020x y c -+≤恒成立,则c 的取值范围是 (A) (],4-∞- (B) (],1-∞-(C) [)4,-+∞(D) [)1,-+∞10.如图是某几何体的三视图,则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为F 1,F 2,点A 为双曲线C 虚轴的一个端点,若线段AF 2与双曲线右支交于点B ,且112::AF BF BF =3:4:2,则双曲线C 的离心率为(A)(B)10(C)(D) 1012.在△ABC 中,D 为边BC 上的点,且满足∠DAC=90°,sin ∠BAD=13,若S △ADC =3S △ABD ,则cosC=(A)(B)6 (C)23(D)23二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校2018届高三招生全国统一考试仿真卷(三)数学理
2
B. 0, 2
C. 1,2
D. 1,2
7.在 △ABC 中,内角 A , B , C 的对边分别为,,,若函数
f x 1 x3 bx2 a2 c2 ac x 1无极值点,则角 B 的最大值是(
)
3
A. 6
B. 4
C. 3
D. 2
8.公元 263 年左右, 我国数学家刘徽发现当圆内接正多边形的边数无限增加时,
2B 铅笔将答题卡上试卷类型
A 后的方框涂黑。
2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
号
场
3 、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题
考
卷、草稿纸和答题卡上的非答题区域均无效。
绝密 ★ 启用前
2018 年普通高等学校招生全国统一考试仿真卷
理科数学(三)
本试题卷共 2 页, 23 题(含选考题)。全卷满分
150 分。考试用时 120 分钟。
号
位 座
★ 祝考试顺利 ★
注意事项:
1 、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形
码粘贴在答题卡上的指定位置。用
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用
2B 铅笔涂黑。答案写
在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
号
一、选择题:本大题共
12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
证
合题目要求的。
潍坊市2023届高三上学期期中考试模拟数学试题试题(含答案)
数 学 试 题 2022.10一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|24}A x x ,集合2|320B x x x ,则R A C B A.{|14}x xB.{|12}x xC.{|24}x xD.2.设x R ,则“sin 0x ”是“cos 1x ”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知随机变量 服从正态分布22,N ,且(4)0.7P ,则(02)P A.0.1B.0.2C.0.3D.0.44.函数321)(xxe x x f x的图像大致为( )5.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A.540种B.180种C.360种D.630种6.若关于x 的不等式22(4)(2)10a x a x 的解集不为空集,则实数a 的取值范围为( )7.设函数)('x f 是奇函数)()(R x x f 的导函数,0)1( f ,当0 x 时,0)()(' x f x xf ,则使得0)( x f 成立的x 的取值范围是( )A .),1()1,(B .)1,0()0,1(C .)1,0()1,(D .),1()0,1(高三上学期期中考试模拟考试8.已知数列{}n a 和{}n b 首项均为1,且11(2),n n n n a a n a a ,数列{}n b 的前n 项和为S n ,且满足1120n n n n S S a b ,则S 2019=( )二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若121()(),()933P AB P A P B ,,则事件A 与B 的关系错误是( ) A.事件A 与B 相互独立 B.事件A 与B 对立C.事件A 与B 互斥D.事件A 与B 既互斥又独立10.已知2112n x x的展开式中第二项与第三项的系数的绝对值之比为1:8,则A.4nB.展开式中所有项的系数和为1C.展开式中二项式系数和为42 D.展开式中不含常数项 11.函数())0,||2f x x的部分图像如图所示,则下列说法中正确的有 A.()f x 的最小正周期T 为B.()f x 向右平移38个单位后得到的新函数是偶函数 C.若方程()1f x 在(0,)m 上共有4个根,则这4个根的和为72D.5()0,4f x x图像上的动点M 到直线240x y 的距离最小时,M 的横坐标为4.12.若过点(1,)P 最多可作出*n n N 条直线与函数()(1)e xf x x 的图象相切,则 A.n 可以取到3B.4nC.当1n 时, 的取值范围是4,eD.当2n 时,存在唯一的 值三、填空题:本题共4小题,每小题5分,共20分。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
2012届高三上学期期中考试(数学理)
2012届高三上学期期中考试试题数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 .若集合{},{}x A x x B xx-2=-1≤2+1≤3=≤1,则B A =A. {}x x -1≤<0B. {}x x 0<≤1C. {}x x 0≤≤2D. {}x x 0≤≤1 2.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >3.已知函数⎩⎨⎧≤>=)0(2)0(log)(2x x x x f x,若21)(=a f ,则实数a 的值为A .-1 B.2 C .-1或2 D .1或2-4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .45.函数y =ln1|2x -3|的大致图象为()6.在平行四边形ABCD 中,AE →=13AB →,AF →=14AD →,CE 与BF 相交于G 点.若AB →=a ,AD →=b ,则 AG →=A.27a +17bB.27a +37bC.37a +17bD.47a +27b 7.设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则221y x ++的最大值是A. 5B. 6C. 8D. 108.函数11x y x +=-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B . 4C . 6D .8二.填空题:本大题共6小题,考生做答6小题,每小题5分, 共30分. (一)必做题(9~12题)9.不等式212-<-x x 的解集为 .10.若6x x ⎛- ⎝⎭展开式的常数项为60,则常数a 的值为 . 11 .已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且C c A b B a sin cos cos =+,则角B = .12.已知8,0,0=++>>ab b a b a ,,则b a +的最小值是 .13.如图,M 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,给出下列四个命题:①过M 点有且只有一条直线与直线AB ,B 1C 1都相交; ②过M 点有且只有一条直线与直线AB ,B 1C 1都垂直; ③过M 点有且只有一个平面与直线AB ,B 1C 1都相交; ④过M 点有且只有一个平面与直线AB ,B 1C 1都平行. 其中真命题是是 _______.(填写真命题的序号) (二)选做题:(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线C 的极坐标方程为3)6sin(=-πθρ,点)3, 2(πA 到曲线C 上点的距离的最小值 .15.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320,则∠A 的大小为 .三.解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c , 已知4A π=,4cos 5B =.(I )求cos C 的值;(II )若10,B C D =为A B 的中点,求CD 的长.17.(本题满分12分)图乙图甲M 已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式; (II )求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.18. (本题满分14分)如图甲,直角梯形ABCD 中,//AB CD ,2D AB π∠=,点M 、N 分别在A B ,CD 上,且MN AB ⊥,MC CB ⊥,2BC =,4M B =,现将梯形ABCD 沿MN 折起,使平面AMND 与平面MNCB 垂直(如图乙).(Ⅰ)求证://AB 平面DNC ;(Ⅱ)当DN 的长为何值时,二面角D BC N --的大小为30︒?19. ((本题满分14分)本着健康、低碳的生活理念,租自行车骑游的人越来越多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临沂市2018届高三期中考试数 学(理工农医类)本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟 注意事项:1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如果需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.2.非选择题必须用0.5毫米的黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.的结果等于计算︒︒-︒︒14sin 44cos 14cos 44sin (A )21(B )33(C )22(D )23 2.若集合则,x x A ⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫≤=21log |21 R A= (A )(] ⎝⎛⎪⎪⎭⎫+∞∞-,220,(B ) ⎝⎛⎪⎪⎭⎫∞-22,(C )(]⎪⎪⎭⎫⎢⎢⎣⎡+∞∞-,220,(D )⎥⎥⎦⎤ ⎝⎛∞-22, 3.如图,向量a-b 等于 (A )2142e e -- (B )2124e e -- (C )213e e -(D )213e e +-4.下列函数中,既是奇函数,又在区间[-1,1]上单调递减的是 (A )x x f sin )(=(B )1)(+-=x x f (C ))(21)(x x a a x f -+=(D )xxx f +-=22ln)( 5.设312.0212,)31(,3log ===c b a ,则(A )c b a << (B )a b c << (C )b a c << (D )c a b <<6.函数π)0(sin ln <<=x x y 的大致图象是7.已知a 为实数,函数))(23()(2a x x x f ++=,若函数f(x)的图象上有与x 轴平行的切线,则a 的取值范围是(A )[)+∞--∞,2)223,((B )(]),223(2,+∞-∞- (C )⎥⎦⎤ ⎝⎛-∞-223,(D )),223(223,+∞⎥⎦⎤ ⎝⎛-∞- 8.设0>ω,函数3)4πcos(++=x y ω的图象向左平移π34个单位后与原图象重合,则ω的最小值是(A )23 (B )32 (C )34 (D )39.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是(A )1(B )2(C )2(D )22 10.已知定义在R 上的函数)(x f y =满足下列三个条件: ①对于任意的x ∈R 都有)()4(x f x f =+②对于任意的121202()()x x f x f x ≤<≤<都有;③函数)2(+=x f y 的图象关于y 轴对称,则下列结论正确的是 (A ))5.15()5()5.6(f f f >> (B ))5.15()5.6()5(f f f << (C ))5.6()5.15()5(f f f <<(D ))5.6()5()5.15(f f f >>11.动点),(y x A 在圆122=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间0=t 时,)23,21(的坐标是点A ,则当120≤≤t 时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递减区间是(A )[0,1] (B )[1,7] (C )[7,12] (D )[0,1]和[7,12]12.设方程123|lg()|,x x x x =-的两个根为,则 (A )021<x x(B )021=x x(C )121>x x(D )1021<<x x第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把正确答案填在答题纸给定的横线上.13.已知向量a =(3,-1),b =(-1,m),c =(-1,2),若(a +b )⊥c ,则m= .14.⎰=-=-4π0,22)cos (sin a dx x a x则实数 .15.已知)34()34(,0,1)1(.0,32)(-+ ⎝⎛>+-≤+=f f x x f x x x f 则的值为 .16.下列命题:①命题“∈∃x R ,012=++x x ”的否定是“∈∃x R ,210x x ++≠”;②若{}0>=x x A ,{}1-≤=x x B ,则 A ( R B )=A ;③函数()sin()(0)f x x ωϕω=+>是偶函数的充要条件是2ππ+=k ϕ(∈k Z );④若非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则1=λ. 其中正确命题的序号有 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知912cos -=C .其中C 为锐角.(Ⅰ)求C sin 的值;(Ⅱ)当的值及求时c b A C a ,sin 5sin 2,2==. 18.(本小题满分12分)已知函数412sin 21)(),3πcos()3πcos()(-=-+=x x g x x x f .(Ⅰ)求函数)(x f 的最大值,并求使的集合取得最大值的x x f )(; (Ⅱ)设函数[]上的图象在画出π,0)(),()()(x h x g x f x h -=. 19.(本小题满分12分)已知O 为坐标原点,向量(sin ,1),(cos ,0),(sin ,2)OA OB OC ααα===-,点P 满足AB BP =.(Ⅰ)记函数()f PB CA α=,求函数()f α的最小正周期; (Ⅱ)若O ,P ,C 三点共线,求OA OB +的值.20.(本小题满分12分)桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占总面积为S 平方米.(Ⅰ)试用x 表示S ;(Ⅱ)当x 取何值时,才能使得S 最大?并求出S 的最大值. 21.(本小题满分12分)函数()(2)()f x x f x kf x +=对任意实数均有,其中k 为已知的正常数,且()f x 在区间[0,2]上有表达式()(2)f x x x =-. (Ⅰ)求(1),(2.5)f f -的值;(Ⅱ)写出()f x 在[-2,3]上的表达式,并讨论函数()f x 在[-2,3]上的单调性; (Ⅲ)求函数()f x 在[-2,3]上的最大值与最小值,并求出相应的自变量的值. 22.(本小题满分14分)已知a ∈R ,函数2()()exf x x ax -=-+.(x ∈R ,e 为自然对数的底数)(Ⅰ)当2a =-时,求函数()f x 的单调递减区间; (Ⅱ)若函数()(1,1)f x -在内单调递减,求a 的取值范围;(Ⅲ)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明理由.数学试题(理)参考答案及评分标准2018.11 说明:一、本解答只给出了一种或两种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准酌情赋分.二、当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容与难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答案应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(每小题5分,满分60分)1.(A )2.(B )3.(D )4.(D )5.(A )6.(C )7.(D )8.(A )9.(C ) 10.(A ) 11.(B ) 12.(D )二、填空题:(每小题4分,满分16分)②③ 三、解答题:17.解:(Ⅰ)21cos212sin 9C C =-=-,……………………………………………………1分21159sin 29C +∴==,……………………………………………………2分π0,sin 2C C <<∴=………………………………………………4分(Ⅱ)2sin C A =由,sin A C =得,………………………………………………………………………5分由正弦定理2,2sin sin sin a c cA C C C =∴=, (6)分 解得c =…………………………………………………………………………………………7分π2sin cos 323C C C =<<=由得.…………………………………………………………8分又由余弦定理2222cos c a b ab C =+-,得22854,38303b b b b =+---=即………………………………………………………………10分0,3b b >=又解得.………………………………………………………………………………11分3,b c ==故……………………………………………………………………………………12分 18.解:(Ⅰ)ππ()cos()cos()33f x x x =+-11(cos )(cos )22x x x x =-+…………………………………………………1分2213cos sin 44x x =- 1cos233cos288x x +-=-……………………………………………………………………2分11cos 224x =-…………………………………………………………………………………3分22π(x k k ∴=∈当Z ),即π,x k k =∈Z 时,1()4f x 取得最大值.………………………5分此时,对应的x 的集合为{}π,Z x x k k =∈.………………………………………………6分(Ⅱ)11()()()cos2sin 222h x f x g x x x =-=-π)4x =+.…………………………………………………………………………7分………………9分 19.解:(Ⅰ)(cos sin ,1),(,),AB OP x y αα=--=设则(cos ,)BP x y α=-,………………………………………………………………………………1分2cos sin ,1AB BP x a y α==-=-由得,(2cos sin ,1)OP αα=--故.……………………………………………………………………2分(sin cos ,1),(2sin ,1)PB CA ααα=-=-,……………………………………………………3分()(sin cos ,1)(2sin ,1)f αααα∴=--…………………………………………………………4分22sin 2sin cos 1ααα=--………………………………………………………………………4分(sin2cos2)αα=-+π)4α=+…………………………………………………………………………………5分()πf T α∴=的最小正周期.……………………………………………………………………6分(Ⅱ)由O ,P ,C 三点共线可得(1)(sin )2(2cos sin )ααα-⨯-=⨯-,…………………………………………………………7分 得4tan 3α=,………………………………………………………………………………………8分2222sin cos 2tan 24sin 2sin cos 1tan 25ααααααα===++,…………………………………………………10分(sin OA OB +===……………………………………………………………………………12分20.解:(Ⅰ)由图形知,36a x +=,……………………………………………………………1分63x a -∴=. 则总面积18001800(4)2(6)S a a x x =-+-………………………………………………………4分 5400(16)a x=-65400(16)3x x-=-10800161832()3xx =-+.…………………………………………………………………………6分即10800161832()(0)3xS x x =-+>.……………………………………………………………7分(Ⅱ)由10800161832()3xS x =-+, 得18323S ≤- (9)分183222401352=-⨯=…………………………………………………………………………10分 当且仅当10800163xx =,此时,45x =.………………………………………………………11分即当x 为45米时,S 最大,且S 最大值为1352平方米.………………………………………12分 21.解:(Ⅰ)(2)()f x kf x += 111(1)(12)(1)f f f k k k ∴-=-+==-,…………………………………………………………1分113(2.5)(0.52)(0.5)(2)224f f kf kk =+==-=-…………………………………………3分 (Ⅱ)[]()(2),0,2f x x x x =-∈,设20,022x x -≤<≤+<则,(2)(2)(2)()f x x x f x kf x ∴+=++=又()(2)kf x x x ∴=+1()(2)f x x x k∴=+………………………………………………………………………………4分当23,021x x <≤<-≤时,(2)(2)(4)f x x x ∴-=--又()(2)f x kf x =-()(2)(4)f x k x x ∴=--.…………………………………………………………………………5分1(2),20,()(2),02,(2)(4),2 3.x x x k f x x x x k x x x ⎧+-≤<⎪⎪∴=-≤≤⎨⎪--<≤⎪⎩……………………………………………………………6分0k >,结合二次函数的图象得.[][][]()2,1,0,1,2,3f x --在上是减函数…………………………………………………………7分 在[][]1,0,1,2-上是增函数…………………………………………………………………………8分(Ⅲ)由函数[]()f x 在-2,3上的单调性知,()202f x x x x =-==在或或时取得最大值0,…………………………………………………9分 而在113x x x =-==或或处取得极小值.,(1)1,(3)f f f k k=-=-1(-1)=-.………………………………………………………………10分故有:①1k >时,()3f x x k =在处取得最小值-, ②1k =时,()1,1,3f x x x x =-==在处都取得最小值-1. ③101()1k f x x k<<=--时,在处取得最小值.……………………………………………12分注:本题由2018年广东卷(文)20题改编. 22.解:(Ⅰ)当2a =-时,2-1()(2)e f x x x =--2-1()(2)e f x x '∴=-………………………………………………………………………………1分令()f x '20,20,x x <-<<<得……………………………………………………2分∴函数的单调递减区间是(.(注:写成⎡⎣也对) ……………………………………………………………………3分 (Ⅱ)2-()()e x f x x ax =-+-2-()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e xx a x a ⎡⎤-++⎣⎦. …………………………………………………………………………4分()()f x 要使在-1,1上单调递减,则()0f x '≤ 对(1,1)x ∈- 都成立,2(2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立 (5)分令2()(2)g x x a x a =-++,则(1)0,(1)0.g g -≤⎧⎫⎨⎬≤⎩⎭……………………………………………………………………………………7分1(2)01(2)0a a a a +++≤⎧∴⎨-++≤⎩32a ∴≤-. (注:不带等号扣1分) …………………………………………………………8分 (Ⅲ)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立即2-(2)e 0x x a x a ⎡⎤-++≤⎣⎦ 对x ∈R 都成立.…………………………………………………9分2e 0,(2)0x x a x a ->∴-++≤ 对x ∈R 都成立……………………………………………10分令2()(2)g x x a x a =-++,图象开口向上 ∴不可能对x ∈R 都成立 ……………………………………………………11分②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立,即2-(2)e 0x x a x a ⎡⎤-++≥⎣⎦ 对x ∈R 都成立,e 0,x -> 2(2)0x a x a ∴-++≥ 对x ∈R 都成立.…………………………………………12分22(2)440a a a ∆=+-=+>故函数()f x 不可能在R 上单调递增.……………………………………………………………13分综上可知,函数()f x 不可能是R 上的单调函数 ………………………………………………14分。