数学建模 选修课策略模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科技大学

题目:选课策略数学模型

班级:

姓名:

学号:

摘要

本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。

特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。在不同的情况下建立不同的模型,最终计算出结果。

关键词0-1规划选修课要求多目标规划

模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。

模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。

模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。

一.问题的重述

某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计

算机。这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。那么,毕业时最少可以学习这些课程中的哪些课程。

如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?

二.模型的假设及符号说明

1.模型假设

1)学生只要选修就能通过;

2)每个学生都必须遵守规定;

2. 符号说明

1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);

三.问题分析

对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;

对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;

对于问题三,同时考虑两者,所占权重比一样,建立模型三;

四.模型的建立及求解

模型一

目标函数:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2* x8+3*x9)

约束条件:

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

模型的求解:

输入:

min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2* x8+3*x9;

);

x1+x2+x3+x4+x5>=2;

x3+x5+x6+x8+x9>=3;

x4+x6+x7+x9>=2;

2*x3-x1-x2<=0;

x4-x7<=0;

2*x5-x1-x2<=0;

x6-x7<=0;

x8-x5<=0;

2*x9-x1-x2<=0;

bin(x1);bin(x2);bin(x3);bin(x4);bin(x5);bin(x6);bin(x7);bin(x9);

输出:

Global optimal solution found.

Objective value: -2.800000

Extended solver steps: 0

Total solver iterations: 0

Variable Value Reduced Cost

X1 1.000000 -0.8000000

X2 1.000000 -0.5000000

X3 1.000000 -0.5000000

X4 1.000000 -0.2000000

X5 1.000000 -0.5000000

X6 1.000000 -0.2000000

X7 1.000000 0.1000000

X8 0.000000 0.1000000

X9 1.000000 -0.2000000

Row Slack or Surplus Dual Price

1 -2.800000 -1.000000

2 3.000000 0.000000

3 1.000000 0.000000

4 2.000000 0.000000

5 0.000000 0.000000

6 0.000000 0.000000

7 0.000000 0.000000

8 0.000000 0.000000

9 1.000000 0.000000

10 0.000000 0.000000

1.模型二:

目标函数:

min z=x1+x2+x3+x4+x5+x6+x7+x8+x9

约束条件:

X1+x2+x3+x4+x5>=2

X3+x5+x6+x8+x9>=3

X4+x6+x7+x9>=2

2*x3-x1-x2<=0

x4-x7<=0

2*x5-x1-x2<=0

x6-x7<=0

x8-x5<=0

相关文档
最新文档