乘法公式与因式分解教案

合集下载

初中乘法公式专题教案

初中乘法公式专题教案

初中乘法公式专题教案教学目标:1. 理解并掌握乘法公式,包括平方差公式和完全平方公式。

2. 能够运用乘法公式进行简便计算和因式分解。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 平方差公式的推导及应用。

2. 完全平方公式的推导及应用。

教学难点:1. 对公式中字母的广泛含义的理解及正确运用。

2. 学生在运用公式进行计算和因式分解时出现的错误。

教学准备:1. 教师准备相关例题和练习题。

2. 学生准备笔记本和文具。

教学过程:一、导入(5分钟)1. 教师通过复习整式乘法,引导学生思考如何简化计算过程。

2. 学生分享自己在计算整式乘法时遇到的问题和困惑。

二、新课讲解(15分钟)1. 教师介绍平方差公式和完全平方公式的定义和结构。

2. 教师通过示例演示平方差公式的推导过程,让学生理解并掌握公式的运用方法。

3. 教师引导学生观察和总结完全平方公式的特征,让学生自主推导完全平方公式。

三、课堂练习(15分钟)1. 学生独立完成教师提供的练习题,巩固对乘法公式的理解和运用。

2. 教师选取部分学生的作业进行点评,指出常见的错误和问题,并进行讲解和指导。

四、拓展提高(10分钟)1. 教师提供一些综合性的题目,让学生运用乘法公式进行计算和因式分解。

2. 学生合作讨论,共同解决问题,教师进行指导和解答。

五、总结与反思(5分钟)1. 教师引导学生总结乘法公式的特点和运用方法。

2. 学生分享自己在学习过程中的收获和体会。

教学评价:1. 通过课堂练习和拓展提高环节的题目,评估学生对乘法公式的理解和运用能力。

2. 观察学生在课堂中的参与程度和合作意识,评估学生的学习态度和团队协作能力。

教学反思:教师在课后对自己的教学进行反思,分析学生的学习情况和教学效果。

根据学生的反馈和表现,调整教学方法和策略,以提高学生的学习兴趣和能力。

同时,教师应及时给予学生反馈和指导,帮助学生巩固知识,提高解决问题的能力。

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。

因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文第一章:整式的乘法1.1 教学目标理解整式乘法的基本概念掌握整式乘法的基本法则能够正确进行整式乘法运算1.2 教学内容整式乘法的定义和基本概念整式乘法的基本法则整式乘法的运算步骤1.3 教学方法通过示例和练习,让学生理解整式乘法的概念和法则使用多媒体教学工具,展示整式乘法的运算过程提供充足的练习机会,让学生巩固整式乘法的运算技巧1.4 教学评估通过课堂练习和作业,检查学生对整式乘法的理解和掌握程度设计一些综合性的题目,评估学生对整式乘法的应用能力第二章:整式的除法2.1 教学目标理解整式除法的基本概念掌握整式除法的基本法则能够正确进行整式除法运算2.2 教学内容整式除法的定义和基本概念整式除法的基本法则整式除法的运算步骤2.3 教学方法通过示例和练习,让学生理解整式除法的概念和法则使用多媒体教学工具,展示整式除法的运算过程提供充足的练习机会,让学生巩固整式除法的运算技巧2.4 教学评估通过课堂练习和作业,检查学生对整式除法的理解和掌握程度设计一些综合性的题目,评估学生对整式除法的应用能力第三章:因式分解3.1 教学目标理解因式分解的基本概念掌握因式分解的基本方法能够正确进行因式分解运算3.2 教学内容因式分解的定义和基本概念因式分解的基本方法因式分解的运算步骤3.3 教学方法通过示例和练习,让学生理解因式分解的概念和法则使用多媒体教学工具,展示因式分解的运算过程提供充足的练习机会,让学生巩固因式分解的运算技巧3.4 教学评估通过课堂练习和作业,检查学生对因式分解的理解和掌握程度设计一些综合性的题目,评估学生对因式分解的应用能力第四章:多项式的乘法4.1 教学目标理解多项式乘法的基本概念掌握多项式乘法的基本法则能够正确进行多项式乘法运算4.2 教学内容多项式乘法的定义和基本概念多项式乘法的基本法则多项式乘法的运算步骤4.3 教学方法通过示例和练习,让学生理解多项式乘法的概念和法则使用多媒体教学工具,展示多项式乘法的运算过程提供充足的练习机会,让学生巩固多项式乘法的运算技巧4.4 教学评估通过课堂练习和作业,检查学生对多项式乘法的理解和掌握程度设计一些综合性的题目,评估学生对多项式乘法的应用能力第五章:多项式的除法5.1 教学目标理解多项式除法的基本概念掌握多项式除法的基本法则能够正确进行多项式除法运算5.2 教学内容多项式除法的定义和基本概念多项式除法的基本法则多项式除法的运算步骤5.3 教学方法通过示例和练习,让学生理解多项式除法的概念和法则使用多媒体教学工具,展示多项式除法的运算过程提供充足的练习机会,让学生巩固多项式除法的运算技巧5.4 教学评估通过课堂练习和作业,检查学生对多项式除法的理解和掌握程度设计一些综合性的题目,评估学生对多项式除法的应用能力第六章:平方差公式与完全平方公式6.1 教学目标理解平方差公式和完全平方公式的基本概念掌握平方差公式和完全平方公式的运用能够运用平方差公式和完全平方公式进行整式的运算6.2 教学内容平方差公式的定义和基本概念完全平方公式的定义和基本概念平方差公式和完全平方公式的运用6.3 教学方法通过示例和练习,让学生理解平方差公式和完全平方公式的概念使用多媒体教学工具,展示平方差公式和完全平方公式的运用过程提供充足的练习机会,让学生巩固平方差公式和完全平方公式的运用技巧6.4 教学评估通过课堂练习和作业,检查学生对平方差公式和完全平方公式的理解和掌握程度设计一些综合性的题目,评估学生对平方差公式和完全平方公式的应用能力第七章:分式的乘除法7.1 教学目标理解分式乘除法的基本概念掌握分式乘除法的运算方法能够正确进行分式乘除法的运算7.2 教学内容分式乘除法的定义和基本概念分式乘除法的运算方法分式乘除法的运算步骤7.3 教学方法通过示例和练习,让学生理解分式乘除法的概念和方法使用多媒体教学工具,展示分式乘除法的运算过程提供充足的练习机会,让学生巩固分式乘除法的运算技巧7.4 教学评估通过课堂练习和作业,检查学生对分式乘除法的理解和掌握程度设计一些综合性的题目,评估学生对分式乘除法的应用能力第八章:分式的化简与分解8.1 教学目标理解分式化简与分解的基本概念掌握分式化简与分解的方法能够正确进行分式的化简与分解运算8.2 教学内容分式化简与分解的定义和基本概念分式化简与分解的方法分式化简与分解的运算步骤8.3 教学方法通过示例和练习,让学生理解分式化简与分解的概念和方法使用多媒体教学工具,展示分式化简与分解的运算过程提供充足的练习机会,让学生巩固分式化简与分解的运算技巧8.4 教学评估通过课堂练习和作业,检查学生对分式化简与分解的理解和掌握程度设计一些综合性的题目,评估学生对分式化简与分解的应用能力第九章:整式与分式的综合应用9.1 教学目标理解整式与分式的综合应用的基本概念掌握整式与分式的综合应用的方法能够正确进行整式与分式的综合应用运算9.2 教学内容整式与分式的综合应用的定义和基本概念整式与分式的综合应用的方法整式与分式的综合应用的运算步骤9.3 教学方法通过示例和练习,让学生理解整式与分式的综合应用的概念和方法使用多媒体教学工具,展示整式与分式的综合应用的运算过程提供充足的练习机会,让学生巩固整式与分式的综合应用的运算技巧9.4 教学评估通过课堂练习和作业,检查学生对整式与分式的综合应用的理解和掌握程度设计一些综合性的题目,评估学生对整式与分式的综合应用的应用能力第十章:复习与提高10.1 教学目标巩固本单元所学知识提高学生解决实际问题的能力培养学生的数学思维和综合运用能力10.2 教学内容复习整式、分式的乘除法、因式分解、平方差公式、完全平方公式等基本概念和运算方法通过实际问题,引导学生运用所学知识解决实际问题总结本单元的重点知识和难点知识10.3 教学方法通过练习题和实际问题,让学生巩固所学知识使用多媒体教学工具,展示实际问题的解决过程组织小组讨论,培养学生的合作学习和解决问题的能力10.4 教学评估通过课堂练习和作业,检查学生对复习内容的掌握程度设计一些综合性的题目重点解析本文全面介绍了整式的乘除法、因式分解、平方差公式、完全平方公式、分式的乘除法、分式的化简与分解、整式与分式的综合应用等基本概念、运算方法和实际应用。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

因式分解教案4篇

因式分解教案4篇

因式分解教案4篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.2-4=()();3.2-2y+y2=()2.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究(1)下列各式从左到右的变形是否为因式分解:①(+1)(-1)=2-1;②a2-1+b2=(a+1)(a-1)+b2;③7-7=7(-1).(2)在下列括号里,填上适当的项,使等式成立.①92(______)+y2=(3+y)(_______);②2-4y+(_______)=(-_______)2.四、随堂练习,巩固深化课本练习.计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知下列从左到右的变形是否是因式分解,为什么?(1)22+4=2(2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)2+4y-y2=(+4y)-y2;(4)m(+y)=m+my;(5)2-2y+y2=(-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式42-和y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在42-中的公因式是,在y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法多项式42-86,16a3b2-4a3b2-8ab4各项的公因式是什么?提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学把-42yz-12y2z+4yz分解因式.解:-42yz-12y2z+4yz=-(42yz+12y2z-4yz)=-4yz(+3y-1)分解因式,3a2(-y)3-4b2(y-)2观察所给多项式可以找出公因式(y-)2或(-y)2,于是有两种变形,(-y)3=-(y-)3和(-y)2=(y-)2,从而得到下面两种分解方法.解法1:3a2(-y)3-4b2(y-)2=-3a2(y-)3-4b2(y-)2=-[(y-)23a2(y-)+4b2(y-)2]=-(y-)2 [3a2(y-)+4b2]=-(y-)2(3a2y-3a2+4b2)解法2:3a2(-y)3-4b2(y-)2=(-y)23a2(-y)-4b2(-y)2=(-y)2 [3a2(-y)-4b2]=(-y)2(3a2-3a2y-4b2)用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学把下列各式分解因式:(投影显示或板书)(1)2-9y2;(2)164-y4;(3)12a22-27b2y2;(4)(+2y)2-(-3y)2;(5)m2(16-y)+n2(y-16).在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.分四人小组,合作探究.解:(1)2-9y2=(+3y)(-3y);(2)164-y4=(42+y2)(42-y2)=(42+y2)(2+y)(2-y);(3)12a22-27b2y2=3(4a22-9b2y2)=3(2a+3by)(2a-3by);(4)(+2y)2-(-3y)2=[(+2y)+(-3y)][(+2y)-(-3y)] =5y (2-y);(5)m2(16-y)+n2(y-16)=(16-y)(m2-n2)=(16-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知1.分解因式:(1)-92+4y2;(2)(+3y)2-(-3y)2;(3) 2-0.01y2.因式分解教案篇2学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

乘法公式与因式分解单元教学设计

乘法公式与因式分解单元教学设计

单元备课八上第2章乘法公式与因式分解临清市京华中学齐欣2011-2-14一、教材分析1、内容分析第2章“乘法公式与因式分解”的内容分为两部分,即乘法公式和因式分解。

本章内容属于多项式最常用的恒等变形,是“数与代数”方面的基本知识和基本技能。

今后遇到适合乘法公式条件的乘式,可以直接用乘法公式写出乘积,不必再按多项式乘多项式的法则来做。

本章教科书分4节。

第2.1节先通过实例引导学生得出(m+1)(m-1)=m2-1,再由(a+b)(a-b)推导出平方差公式。

然后,教科书借助于图形给出了a>b>0时平方差公式的几何解释,以加强对公式的理解。

第2.2节根据乘法的意义和多项式乘法法则,得到了完全平方公式(a+b)2=a2+2ab+b2,又利用图形面积的计算,对公式进行了直观的说明。

教科书没有将(a-b)2=a2-2ab+b2作为公式列出,而是将(a-b)2看作[a+(-b)]2,进行了统一处理。

这样安排既有利于减轻学生的记忆负担,又有利于学生运用转化的思想认识完全平方公式。

平方差公式和完全平方公式都叫做乘法公式,对于乘法公式,要求同学们都能独立推导出来,并能作出几何解释,会利用公式进行简单的计算。

第2.3节和第2.4节首先给出了因式分解的定义,接着依次介绍了提取公因式法和运用公式法。

不仅要求同学们能熟练利用这两种方法进行因式分解,还要认识到因式分解与整式乘法互为逆过程。

2、任务分析乘法公式与因式分解是下一章《分式》运算的基础。

在解一元二次方程时,因式分解是用于降次的重要解法。

在高中学习三角函数恒等变形、解一元二次不等式、对数运算中也经常用到。

本章突出了由特殊到一般的认识过程和由一般到特殊的应用过程。

学习本章的意义并不..在于让学生记忆几个公式和套用固定的模式...................,重要的是通过探求公式和应用公式的活动,提高学生观察问题、探索问题、分析问题和解决问题的能力。

二、学情分析学生在学习乘法公式与因式分解时,往往分辨不清什么样的结果是整式的乘法的结果,什么样的结果是因式分解的结果。

复习教案-初二-整式的乘法与因式分解(教师版)

复习教案-初二-整式的乘法与因式分解(教师版)

A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)2.设b>0,a2﹣2ab+c2=0,bc>a2,则实数a、b、c的大小关系是(A)A.b>c>a B.c>a>b C.a>b>c D.b>a>c3.若(x+2)是多项式4x2+5x+m的一个因式,则m等于( A )A.–6B.6C.–9D.9三、课堂练习1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于(D)A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(A)A.25B.20C.15D.103.已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则(D)A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥04.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .5.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=19 .6.已知x2﹣2x﹣1=0,则3x2﹣6x= 3 ;则2x3﹣7x2+4x﹣2019=-2022 .7.已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=15 .8.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 3 .9.已知2x2﹣ax﹣2=0,则下列结论中正确的是124 .①其中x的值不可能为0;②当x=2时,;③若a=1时,;④若a=2时,x3﹣4x2+2x=﹣3.10.设n为整数,则(2n+1)2﹣12.5一定能被(B)A.2整除B.4整除C.6整除D.8整除11.248﹣1能被60到70之间的某两个整数整除,则这两个数是(B)A.61和63B.63和65C.65和67D.64和6712.对于算式20183﹣2018,下列说法错误的是(C)A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除13.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是a3-b3.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式(a-b)(a2+ab+b2)=a3-b3.14.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是直角三角形或等腰三角形或等腰直角三角形三角形.16.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,则△ABC的形状是等边三角形三角形.17.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)所得结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=.18.阅读理解材料一:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也能够成立.材料二:两位数p和三位数q,它们各个数位上的数字都不为0,将数p任意一个数位上的数字作为一个新的两位数的十位数字,将数q的任意一个数位上的数字作为该新数的两位数的个位数字,技照这种方式产生的所有新的两位数的和记为T(p,q)例如:T(12,123)=11+12+13+21+22+23=102,T(33,456)=34+35+36+34+35+36=210.(1)填空T(15,345)=.(2)求证:当q能够被3整除时T(p,q)一定能够被6整除.(3)若一个两位数m=2la+b,一个三位数n=12la+b+199,(其中1≤a≤4,1≤b≤5,a,b为整数),交换三位数n的百位数字和个位数字得到新数n′,当m的个位数字的3倍与n′的和能被11整除时,称这样的两个数m和n为“和谐数对”,求所有和谐数对中T(m,n)的最大值.四、课堂小结重难点:多项式乘多项式;乘法公式;因式分解的方法。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案教案主题:整式的乘法与因式分解一、教学目标:1. 了解整式的乘法与因式分解的定义和性质;2. 掌握整式的乘法与因式分解的基本方法;3. 能够灵活运用整式的乘法与因式分解求解实际问题。

二、教学重点与难点:1. 整式的乘法的性质与运算方法;2. 整式的因式分解的基本步骤与方法。

三、教学过程:1. 导入新课:通过简单的代数表达式相加、相减等练习,引导学生思考整式的性质和运算法则。

2. 整式的乘法:a. 讲解整式的乘法的定义和性质,包括同底数相乘、同指数相乘、不同底数相乘、几个常见特殊情况的乘法性质等;b. 通过实例演示整式的乘法的具体计算方法;c. 练习:学生完成一些简单的整式乘法计算题,加深对整式乘法规则的理解。

3. 整式的因式分解:a. 讲解整式的因式分解的定义和性质,包括提取公因式、配方法、特殊公式等;b. 通过实例演示整式的因式分解的具体步骤和方法;c. 练习:学生完成一些简单的整式因式分解题,加深对整式因式分解的掌握。

4. 综合运用:a. 学生运用整式的乘法与因式分解方法,解决一些实际相关问题;b. 教师引导学生总结整式的乘法与因式分解的应用场景和意义。

四、教学方法:1. 演讲讲解:通过讲解整式的定义、性质和运算法则,引导学生理解整式的乘法与因式分解的思想与方法。

2. 实例演示:通过实例演示整式的乘法与因式分解的具体计算过程,帮助学生掌握乘法的规则和因式分解的步骤。

3. 练习操作:通过练习题目,提高学生对整式的乘法与因式分解的运用能力和问题解决能力。

4. 问题引导:通过引导学生解决实际问题,提高学生的综合运用能力和创造性思维。

五、教学评估:1. 教师通过课堂观察,评估学生的学习态度和参与度;2. 教师布置作业,评估学生对整式乘法与因式分解的掌握程度;3. 教师组织课堂小测验,评估学生对整式乘法与因式分解的运用能力和问题解决能力。

六、教学拓展:教师可以引导学生扩展整式乘法与因式分解的应用,例如多项式乘法与多项式因式分解、整式的乘法公式与因式分解等内容,拓宽学生的知识广度。

整式乘法与因式分解的教案设计

整式乘法与因式分解的教案设计

本教案的主要目的是帮助学生深入掌握整式乘法和因式分解的概念和方法,以便能够在数学学习中更有效地应用这些知识。

本教案设计分为以下几个部分:教学目标、教学内容、教学方法以及教学反思。

一、教学目标本教学计划的主要教学目标如下:1.理解整式乘法的概念,能够独立进行两个多项式的乘法运算;2.理解因式分解的概念,掌握不同类型的多项式因式分解方法;3.能够在实际问题中应用整式乘法和因式分解解决问题。

二、教学内容教学内容主要包括以下三个部分:1.整式乘法整式乘法是指多项式与多项式之间相乘。

对于形如(a+b)(c+d)的式子,我们可以用分配律展开乘积:(a+b)(c+d)=ac+ad+bc+bd。

同样的方法,对于多项式的乘法,我们也可以用分配律来求得它们的乘积。

但是,对于较为复杂的多项式,用分配律来展开乘积需要很多的计算,因此我们需要掌握更为高效的方法。

其中最为重要的是单项式相乘的运算法则:x^m * x^n = x^(m+n) (其中^表示为指数之意)这个运算法则可以帮助我们快速地计算出多项式的乘积,从而作为整合因式分解的基础知识。

2.因式分解因式分解是把一个多项式写成若干个因子的乘积的过程。

它是实际问题中经常会遇到的一种运算,需要用到多项式除法和因式分解的相关知识,除法的原理如下:a *b = ca and c have a greatest common divisor d, and this divisor divides both a and c称c是由a和b的最大公因数d乘上d的商得到。

因式分解的步骤根据不同的多项式类型而异,主要有以下三种情况:①一元二次多项式一元二次多项式的一般形式为ax^2 + bx + c,其中a、b、c是已知数,x是未知数。

对于一元二次多项式,因式分解的方法主要有两种:1)分解因式法:可以分解成形如(a1x+b1)(a2x+b2)的乘积。

分解因式法的主要思路是把一元二次多项式划分成两个一次多项式相乘的形式,进而求出这两个一次多项式。

第十四章整式的乘法与因式分解大单元(教案)

第十四章整式的乘法与因式分解大单元(教案)
-练习:提供不同类型的因式分解题目,训练学生灵活运用方法。
2.教学难点
(1)多项式乘法的运算顺序和法则记忆。
-难点分析:学生容易混淆不同类型的乘法法则,忘记分配律。
-解决方法:通过直观图示和反复练习,加深记忆。
(2)完难点分析:学生难以区分两个公式,以及何时使用哪个公式。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘法与因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-练习:应用完全平方公式进行乘法和因式分解。
(3)平方差公式:a^2-b^2=(a+b)(a-b)。
-举例:解释公式中a和b的含义,展示公式的应用。
-练习:设计平方差公式的应用题目,加强理解。
(4)因式分解方法:提公因式法、公式法、十字相乘法。
-举例:详细讲解每种方法的步骤,如提取公因式时如何找到最大公因式。
第十四章整式的乘法与因式分解大单元(教案)
一、教学内容
第十四章整式的乘法与因式分解大单元(教案)
1.多项式乘以多项式
-乘法法则
-举例说明
-练习
2.单项式乘以多项式
-乘法法则
-举例说明
-练习
3.多项式乘以单项式
-乘法法则
-举例说明
-练习
4.完全平方公式
-公式推导
-应用实例
-练习
5.平方差公式
-公式推导
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

第十四章整式乘法与因式分解单元教学精选全文完整版

第十四章整式乘法与因式分解单元教学精选全文完整版

可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。

小结复习。

一、教学内容:14.1整式的乘法。

14.2乘法公式。

二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。

三、教学重点:掌握整式的乘法公式。

四、教学难点:掌握因式分解的方法。

五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。

14.2乘法公式3课时。

14.3因式分解3课时。

小结复习2课时。

第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案

第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。

学生:三角尺、练习本、铅笔、钢笔。

六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 单项式乘以单项式教学目标:了解单项式乘以单项式的运算法则。

掌握单项式乘以单项式的计算方法。

教学重点:单项式乘以单项式的运算法则。

教学难点:如何正确计算单项式乘以单项式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整数乘法的运算法则。

讲解:讲解单项式乘以单项式的运算法则,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

1.2 单项式乘以多项式教学目标:了解单项式乘以多项式的运算法则。

掌握单项式乘以多项式的计算方法。

教学重点:单项式乘以多项式的运算法则。

教学难点:如何正确计算单项式乘以多项式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整数乘法的运算法则。

讲解:讲解单项式乘以多项式的运算法则,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

第二章:因式分解2.1 提公因式法教学目标:了解提公因式法的概念。

掌握提公因式法的运用。

教学重点:提公因式法的概念和运用。

教学难点:如何正确运用提公因式法进行因式分解。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整式的乘法。

讲解:讲解提公因式法的概念和运用,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

2.2 公式法教学目标:了解公式法的概念。

掌握公式法的运用。

教学重点:公式法的概念和运用。

教学难点:如何正确运用公式法进行因式分解。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾整式的乘法。

讲解:讲解公式法的概念和运用,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

第六章:十字相乘法6.1 十字相乘法的原理教学目标:理解十字相乘法的原理。

掌握十字相乘法的步骤。

教学重点:十字相乘法的原理和步骤。

如何正确运用十字相乘法分解因式。

教学准备:教材、黑板、投影仪。

教学过程:导入:回顾提公因式法和公式法。

讲解:讲解十字相乘法的原理和步骤,举例说明。

练习:学生独立完成练习题,教师批改并讲解。

因式分解教案(优秀9篇)

因式分解教案(优秀9篇)

因式分解教案(优秀9篇)因式分解教案篇一教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)。

x2-4y2=(x+2y)(x-2y)因式分解(2)。

2x(x-3y)=2x2-6xy整式乘法(3)。

(5a-1)2=25a2-10a+1整式乘法(4)。

x2+4x+4=(x+2)2因式分解(5)。

(a-3)(a+3)=a2-9整式乘法(6)。

m2-4=(m+4)(m-4)因式分解(7)。

2πR+2πr=2π(R+r)因式分解2、。

规律总结(教师讲解):分解因式与整式乘法是互逆过程。

分解因式要注意以下几点:(1)。

分解的对象必须是多项式。

(2)。

分解的结果一定是几个整式的乘积的形式。

(3)。

要分解到不能分解为止。

3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。

初中因式分解方法教案

初中因式分解方法教案

一、教学目标1. 知识与技能:让学生掌握因式分解的基本概念和方法,能够运用因式分解解决一些实际问题。

2. 过程与方法:通过学生的自主探究、合作交流,培养学生的动手操作能力、逻辑思维能力和数学素养。

3. 情感态度与价值观:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的自信心。

二、教学内容1. 因式分解的定义与意义2. 常用的因式分解方法:提公因式法、公式法、十字相乘法、分组分解法等。

3. 因式分解的应用三、教学重点与难点1. 教学重点:让学生掌握因式分解的基本方法和技巧。

2. 教学难点:如何引导学生灵活运用因式分解的方法解决实际问题。

四、教学过程1. 创设情境:让学生计算一些简单的多项式,从而引出因式分解的概念。

2. 自主探究:让学生通过小组合作,探究并总结因式分解的方法。

3. 讲解与示范:教师对每种因式分解方法进行讲解和示范,让学生清晰地了解因式分解的步骤。

4. 练习与巩固:让学生通过课堂练习,加深对因式分解方法的理解。

5. 拓展与应用:让学生运用因式分解解决一些实际问题,提高学生的应用能力。

6. 总结与反思:让学生回顾本节课所学内容,总结因式分解的方法和技巧。

五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,是否能够主动探究、提出问题。

2. 知识掌握程度:通过课堂练习和课后作业,检查学生对因式分解方法和应用的掌握情况。

3. 合作与交流:评价学生在小组合作中的表现,是否能够有效沟通、共同解决问题。

4. 情感态度:观察学生在学习过程中的自信心和兴趣,是否能够积极面对挑战。

六、教学资源1. 教材:人教版《数学》七年级下册。

2. 教具:黑板、粉笔、多媒体课件。

3. 学具:练习本、文具。

七、教学时间1课时因式分解是初中数学的重要内容,通过本节课的教学,希望学生能够掌握因式分解的基本方法,并在实际问题中能够灵活运用。

在教学过程中,要注意激发学生的学习兴趣,培养学生的动手操作能力和逻辑思维能力,为今后的数学学习打下坚实的基础。

因式分解教案5篇

因式分解教案5篇

The process of constantly discovering that the previous self was a fool is growth.勤学乐施积极进取(页眉可删)因式分解教案5篇因式分解教案篇1第十五章整式的乘除与因式分解根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.15.1.2 整式的加减(3)x-(1-2x+x2)+(-1-x2)(4)(8x-3x2)-5x-2(3x-2x2)四、提高练习:1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B +C=0,问C是什么样的多项式?2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》因式分解教案篇2知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

因式分解教案

因式分解教案

因式分解教案教学目标:1.学生能够理解因式分解的概念和方法。

2.学生能够独立完成简单的因式分解计算。

3.学生能够灵活运用因式分解解决实际问题。

教学重点:1.因式分解的基本概念和方法。

2.因式分解的应用。

教学难点:1.灵活运用因式分解解决实际问题。

教学准备:1.教师准备教材《数学7年级上册》、小黑板、彩色粉笔等。

2.学生准备教材、作业本。

教学过程:一、导入(5分钟)教师出示一个算式:2x+4,引导学生寻找其中的规律。

让学生发现“2”既是2x的系数,又是4的因数。

提问:“观察发现,4除以2等于2,2乘以2等于4,那么2x+4可以化简成什么样的式子呢?”让学生用自己的话进行回答。

1.引入因式分解的概念,解释因式、分解的概念。

板书公式“a(b+c)=ab+ac”并解释。

然后通过例题进行解释说明。

2.讲解因式分解的方法:提取公因式、分解差、分解和。

三、讲解并练习(20分钟)1.板书例题:12x+15、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。

2.板书例题:16x-8、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。

3.板书例题:5a+10b。

提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。

四、归纳总结(10分钟)让学生通过练习题进行总结,并列出因式分解的基本方法。

最后,教师给予肯定和鼓励。

五、巩固练习(15分钟)教师出示练习题,让学生独立完成并相互核对。

六、拓展延伸(10分钟)举一些实际问题,让学生用因式分解的方法解决。

七、课堂小结(5分钟)教师进行课堂小结,并与学生互动,检查学生的学习情况。

布置课后作业,要求学生完成相关作业题,并预告下一节课内容。

九、教学反思(2分钟)教师进行教学反思,总结本节课的教学过程,回顾教学的亮点和不足之处。

高一数学初高中数学衔接《乘法公式、因式分解(1)》教学案

高一数学初高中数学衔接《乘法公式、因式分解(1)》教学案

1江苏省泰兴中学初高中数学衔接教学案(一)乘法公式、因式分解(1)班级 姓名一、引入新课1.分解因式:把一个多项式化成几个整式的积的形式,叫分解因式.2.乘法公式我们在初中已经学习过了下列一些乘法公式:⑴平方差公式 22()()a b a b a b +-=-;⑵完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:⑴立方和公式2233()()a b a ab b a b +-+=+; ⑵立方差公式2233()()a b a ab b a b -++=-; ⑶三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;⑷两数和完全立方公式 33223()33a b a a b ab b +=+++; ⑸两数差完全立方公式 33223()33a b a a b ab b -=-+-3.因式分解的方法(1)提取公因式法:把各项都含有的公因式提到括号外面;(2)运用公式法:逆用乘法公式;(3)分组分解法:利用分组分解法,关键是选择适当的、合理的分组方法;(4)求根法,我们将在下一讲专门讲解(5)十字相乘法二、例题精讲例1:计算:⑴、)749)(7(2x x x +-+⑵、)93)(3(2++-y y y⑶、)1)(1)(1)(1(22+-+++-a a a a a a例2:⑴、已知4)2()2(2-=---b a a a ,求代数式ab b a -+222的值。

⑵、已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。

2例3:因式分解:⑴、bc ac ab a -+-2 ⑵、ay ax y x ++-22 ⑶、122-+x x⑷、2244y xy x -- ⑸、652+-x x⑹、1242-+x x⑺、15)(2)(2-+++b a b a ⑻、2220y xy x --例4:因式分解:⑴、3722+-x x ⑵、5762--x x⑶、22865y xy x -+⑷、654222-+--+y x y xy x。

乘法公式因式分解教案

乘法公式因式分解教案

同学个性化教学设计年级:教师:陈福龙科目:班主任:日期:20XX年月日时段:课题教学目标1.通过图形面积的计算,感受乘法公式的直观解释.2.能说出平方差公式及其结构特征;能正确的运用平方差公式进行计算。

3.了解公因式的意义,并能准确的确定一个多项式各项的公因式;4.掌握因式分解的概念,会用提公因式法把多项式分解因式.重难点考点知识点剖析序号知识点预估时间掌握情况1 min2 min3 min4 min教学内容1情景如右图:你能通过不同的方法计算大正方形的面积吗?从而你发现了什么?2.完全平方公式:________________________________3.你能说出这两个公式的特点吗?____________________________________________________________四、【合作探究】你能用多项式的乘法法则推导公式(a+b)2 =a2+2ab+b2吗?(a+b)2= (a+b) (a+b)=a2+ab+ba +b2= a2+2ab+b2你能用同样的方法计算(a-b)2吗?(a-b)2= (a-b) (a-b)=a2-ab-ba +b2= a2-2ab+b2即:(a-b)2 =a2-2ab+b2。

,这是我们要学习的另一个完全平方公式。

完全平方公式:(a+b)2 =a 2+2ab+b 2(a-b)2 =a 2-2ab+b 2你能用文字语言叙述这两个公式吗?例题学习例 利用完全平方公式或平方差公式计算:(1)(5+3p ) 2 (2)(2x-7y)2(3)(-2a-5)2 (4) 2998五、【达标巩固】1.纠 错 练 习:下面的计算是否正确?如有错误,请改正: (1) (x +y )2=x 2+y 2; (2) (-m +n )2=-m 2 +n 2;2.用乘法公式计算:(1)21001 (2)(3-a)2 (3)(-3a+b )23、下列各式中,计算结果是222n m mn --的是( ) A .2)(n m -B .2)(n m -- C.2)(n m +-D .2)(n m +4、下列计算中正确的是 ( ) A 、222)(n m n m -=-B 、22263)3(q pq p q p +-=+- C 、21)1(222-+=-xx x x D .22242)2(b ab a b a ++=+ 5、下列各式中,形如222b ab a +±形式的多项式有 ( ) ①412+-a a , ②22y xy x ++, ③11612++m m , ④2241y xy x +-,⑤mn n m 2422++, A .2个B .3个 C .4个 D .5个 6.已知a+b=2,ab=1, 求a 2+b 2、(a -b)2的值.⑥141224+-b a b a总结 9.4 乘法公式(a+b)2= (a+b) (a+b)=a2+ab+ba +b2= a2+2ab+b2(a-b)2= (a-b) (a-b)=a2-ab-ba +b2= a2-2ab+b2完全平方公式:(a+b)2 =a2+2ab+b2(a-b)2 =a2-2ab+b2(1)(5+3p ) 2 (2)(2x-7y)2998(3)(-2a-5)2(4)21、填空(1)a2-8ab+( )=( )2(2)(2x-)2=()-12xy+()(3)(3x+2)2=____________ (4)(-a-3b)2=(5)(7+3x)(7-3x)= (6)(a+2b)(a-2b)= _____________2、如图,求两个图形中的草坪的面积(阴影部分),比较它们的大小,你发现了什么?四、【合作探究】将右图剪开并拼成一个长方形,计算这两个图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式与因式分解教案
总体说明:
本节课时是通过回顾初中乘法公式的知识进而引出接下来我们高中所要学习的因式分解,通过所学平方差公式和完全平方公式进而引出因式分解所需要掌握的方法,如十字相乘法和分组分解法。

加深对整式的乘法和因式分解互逆关系的印象,通过深入浅出的讲解,让同学们逐步熟悉运用因式分解的基本技能,加强因式分解在生活中的运用,加强学生的应用能力和逆向思维能力,通过本节课的教学使同学们对因式分解能有更深的认识和更强的数学能力和数学素养。

学生知识状况分析:
学生技能基础:学生已经学习了因式分解的两种方法,提公因式法和公式法,逐步认识到整式与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深。

学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、讨论等活动的方法,获得了解决数学问题所必要的一些经验基础,并且已具备了一些合作与交流的能力。

教学任务目标:
①让同学们回忆起乘法公式的运用。

②让同学们理解整式的乘法和因式分解互逆的关系,体验矛盾的对立统一规律。

③使同学们了解因式分解的概念意义以及因式分解的常用方法(十字相乘法与分组分解法)
④发展学生对乘法公式与因式分解的应用能力,提高学生因式分解的基本运用技能并能熟悉掌握。

⑤在探究因式分解的方法时,让同学们敢于发表自己的观点,并尊重他人的见解,能从交流中获益。

⑥通过探究因式分解的的概念,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。

⑦注重学生对因式分解的理解,发展学生分析问题能力和推理能力。

⑧通过本节课,提高学生的观察、分析问题的能力,培养学生的开放意识;
教学重点:
①学会用乘法公式中延展出来的公式解题。

②学会运用因式分解不同方法来解题。

③理解整式乘法与因式分解之间的互逆关系,锻炼逆向思维。

④让学生对本节内容进行回顾和思考,旨在把学生头脑中零散的知识点用一条线有机的组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺瓜摸藤地找到对应及相关知识,同时能把这些知识灵活运用。

教学过程分析
本节课设计了环节:
回顾(乘法公式)------因式分解-----十字相乘----分组分解---------练一练------课堂总结-------反馈练习
第一环节:回顾
活动内容:初中我们学了什么乘法公式,从而引出在高中更多我们需要掌握的乘法公式,便于我们在高中的学习。

初中学习的(1)平方差公式
(2)完全平方公式
延展出来的(1)完全立方公式3()a b +
3()a b -
(2)
333()()a b a ab b +-+ 33()()a b a ab b -++
(3)三项完全平方公式
3()a b c ++ 接下来提出一道例题,来巩固以上所讲的完全立方公式,并强调大家学会理解乘法公式的结构特征来解题。

化简:33
(1)(1)x x +--
第二环节:因式分解
活动内容:提问什么是因式分解,讲出因式分解的概念,意义以及运用方法。

1.让同学们思考因式分解与整式的乘法之间有怎样的联系。

2.回忆初中时所学习运用的因式分解的方法(提取公因式法和平方差乘法公式)而用例题引出我们高中要学因式分解的方法(十字相乘法和分组分解法)
活动目的:
学生通过回顾和思考,对因式分解的两种方法有了更深层次的认识,加深了对因式分解与整式乘法互逆关系的认识和理解,发展学生的逆向思维能力。

写出几道练习给大家个巩固
(1)3x x - (2)22x x -+
(3)254x x ++ (4)2232x x --
第三环节:十字相乘法
通过习题来介绍十字相乘法:X ²+5X+4=(X+1)(X+4)
2X ²-3X-2=(2X+1)(X-2) 讲出十字相乘法的关键是交叉相乘再相加。

得出(X+P )(X+q)=X ²+(P+q )X+Pq 并且这个过程是互逆的。

继而再做两道练习题巩固一下。

(1)276x x -+
(2)(2)2133x x x ++
第四环节:介绍分组分解法
十字相乘法主要是应用于二次三项式,但是我们遇到的式子总是多种多样的,继而介绍分组分解法(即将多项式分解因式的方法)
通过练习
(1)321x x x -+-
(2)224(1)4x xy y +-+
第五环节:练一练
巩固并牢记今日所新介绍的两种因式分解方法,做几道练习题
(1)234x x --
(2)3322x y x y xy --+
(3)2321x x +- 变式一:3x ²+2ax-a ²=(x+a )(3x-a )
变式二:3(x ³+2x+1)[3(x ³+2x )-1]
这里把x ²+2x 看作一个整体来解题。

第六环节:课堂总结
① 深层介绍数学思想,转换思想和整体代换思想,由我们不熟悉转换成我们所熟悉所能掌握的,任何一件事情都不是一蹴而就的,我们能做的的便是着手自己眼前的力所能及的,继而毅然向前,会发现慢慢的路途也会变得明朗起来,我们也到了终点站。

② 让学生对本节内容进行回顾和思考,旨在把学生头脑中零散的知识点用一条线有机的组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺瓜摸藤地找到对应及相关知识,同时能把这些知识灵活运用。

第七环节:反馈练习
7.(1)化简:2(2)a b c +-=
(2)已知:13a a +
= 221a a
+= 分解因式: (1)25216x x --
(2)X ³-5X ²+6X
(3)421m m +-
(4)X ²+X-(a ²-a)
教学反思:
① 任何一件事情都不是一蹴而就的,我们能做的的便是着手自己眼前的力所能及的,继而毅然向前,会发现慢慢的路途也会变得明朗起来,我们也到了终点站。

就如同解数学题一样,刚开始我们可能无从下手,但是,只要我们尽自己所能迈出第一步,接下来的问题便会迎难而解。

② 在传统教育中,,人们都感觉数学并没有很大的用途,数学与生活是脱节的,在我们教学中,很难找到生活的影子,我们的学生只会用所学知识来解答课本上的一些习题,缺乏应用所学地数学知识去解决生活中的一些实际问题的主动性和能力,以至于在学生的头脑中数学与实际生活经验构成了两个互不相干的认知场,正是这种人为的将数学与生活隔离开,使得很多学生对数学产生了畏惧心理。

数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学数学只是去解决一些生活中的实际问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”。

作为教师,我们应该培养学生去留心观察我们周围的生活、强调将生活问题带进数学,同时也尝试让学生将数学带进生活,唯有如此,才能更好的培养学生初步的创新精神和实践能力,才能使学生在对数学的情感态度和知识素养方面得到充分发展。

相关文档
最新文档