江苏省苏州市2019-2020学年高三上学期期中数学试题

合集下载

专题19 立体图形的直观图(解析版)

专题19 立体图形的直观图(解析版)

专题19 立体图形的直观图一、单选题1.关于斜二测画法画直观图说法不正确的是A .在实物图中取坐标系不同,所得的直观图有可能不同B .平行于坐标轴的线段在直观图中仍然平行于坐标轴C .平行于坐标轴的线段长度在直观图中仍然保持不变D .斜二测坐标系取的角可能是135【试题来源】2021年高考一轮数学(文)单元复习一遍过 【答案】C【分析】根据斜二测画法的规则,平行关系不变,平行于x 、z 轴的线段长度不变,平行于y 轴的线段长度减半,直角变为45或135进行判断,即可得出结论.【解析】对于A 选项,在实物图中取坐标系不同,所得的直观图有可能不同,A 选项正确; 对于B 、C 选项,由平行于x 轴或z 轴的线段长度在直观图中仍然保持不变, 平行于y 轴的线段长度在直观图中是原来的一半,则B 选项正确,C 选项错误; 对于D 选项,在平面直角坐标系中,90xOy ∠=,在斜二测画法中,45x O y '''∠=或135,D 选项正确.故选C . 2.如图,水平放置的三角形的直观图,D 是A B ''边上的一点且13D A A B ''''=,//A B Y '''轴,//C D X '''轴,那么C A ''、C B ''、C D ''三条线段对应原图形中的线段CA 、CB 、CD 中A .最长的是CA ,最短的是CB B .最长的是CB ,最短的是CAC .最长的是CA ,最短的是CDD .最长的是CB ,最短的是CD【试题来源】河北省唐山市第十一中学2020-2021学年高二上学期期中 【答案】D【分析】直接利用斜二测画法求解. 【解析】因为//A B Y '''轴,//C D X '''轴, 所以在原图中,,2,AB CD AB A B CD C D ''''⊥==,所以22222222222,2CB CD BD CD B D CA CD AD CD A D ''''=+=+=+=+, 因为13D A A B ''''=,所以CB CA CD >>,故选D 3.如果一个正方形的边长为4,那么用斜二测画法画出其直观图的面积是A .B .C .8D .16【试题来源】山西省吕梁市汾阳中学、孝义中学、文水中学2020-2021学年高二上学期期中 【答案】B【分析】由斜二测画法的原则:横等纵半,,写出直观图面积即可.【解析】若斜二测画法所得正方形如下图A’B’C’D’,根据横等纵半知4A B C D ''''==,2A D B C ''''==且45A D C '''∠=︒,所以直观图的面积sin 45S A B A D ''''=⋅⋅︒=B .4.已知水平放置的ABC 是按“斜二测画法”得到如图所示的直观图,1B O C O ''''==,12A O ''=,那么原ABC 的面积是AB .12C .1D .2【试题来源】福建省三明市三地三校2020-2021学年高二上学期期中联考 【答案】C【分析】由直观图求出原图三角形的高,即可求解.【解析】由直观图中12A O ''=,2B C ''=知原图中1212AO =⨯=,且AO BC ⊥,2BC =,所以原ABC 的面积是面积为1121122BC OA ⨯⨯=⨯⨯=,故选C5.如图,一个正方形OABC 在斜二测画法下的直观图是个一条边长为1的平行四边形,则正方形OABC 的面积为A .1B .4C .1或4D .不能确定【试题来源】2020-2021学年高一数学单元测试定心卷(人教版必修2) 【答案】C【分析】由题意,111O A =或111O C =,可得正方形OABC 的边长为1或2,即可求出正方形OABC 的面积.【解析】由题意,111O A =或111O C =,所以正方形OABC 的边长为1或2, 所以正方形OABC 的面积为1或4.故选C6.如图直角'''O A B △是一个平面图形的直观图,斜边''4O B =,则原平面图形的面积是A .B .C .4D【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考【答案】A【分析】根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.【解析】由题意可知'''O A B △为等腰直角三角形,''4O B =,则O A ''=,所以原图形中,4OB =,OA =故原平面图形的面积为142⨯⨯=A7.如图是一个水平放置的直观图,它是一个底角为45,腰和上底均为1,1的等腰梯形,那么原平面图形的面积为A .2+B 122C .22+D .1+【试题来源】陕西省西安市阎良区2019-2020学年高一上学期期末 【答案】A【分析】先判断原平面图形为直角梯形,且直角腰长为2,上底边长为1,1,代入梯形的面积公式计算.【解析】平面图形的直观图是一个底角为45︒,腰和上底长均为11的的等腰梯形,∴原平面图形为直角梯形,且直角腰长为2,上底边长为1,梯形的下底边长为1+∴原平面图形的面积22S ==+A .8.如图,A B C '''是ABC 的直观图,其中//,//A B O x A C O y '''''''',且1A B A C ''''==,那么ABC 的面积是A .1B .C .8D 【试题来源】安徽省合肥市第六中学2020-2021学年高二上学期期末(文) 【答案】A【分析】根据斜二测画法的原则,确定原三角形的形状,以及边长,即可求出三角形的面积. 【解析】根据斜二测画法可得,原图形中,//AB Ox ,//AC Oy ,则AB AC ⊥, 又1AB A B ''==,22AB A C ''==,所以ABC 的面积是112ABCS AB AC =⨯=, 故选A .9.如图,正方形O A B C ''''的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长为A .4B .6C .8D .2+【试题来源】陕西省西安中学2020-2021学年高一上学期期末 【答案】C【分析】根据斜二测画法求解. 【解析】直观图如图所示:由图知原图形的周长为13138OA AB BC CO +++=+++=,故选C10.某水平放置的OAB 用斜二测画法得到如图所示的直观图O A B '''△,若O B A B '''=',则OAB 中A .90OBA ∠=︒B .OB BA =C .OB OA =D .OB OA >【试题来源】重庆市2020-2021学年高二上学期期末联合检测数学(康德卷)试题 【答案】D【分析】90OBA ∠≠,所以选项A 错误;OB BA ≠,所以选项B 错误; OB OA >,所以选项C 错误,选项D 正确.【解析】设O B A B x '''='=,所以45B A O '''∠=,所以O A ''=,所以在OAB 中,90,90BOA OBA ∠=∴∠≠,所以选项A 错误;由题得2OB x =,BA ==,所以OB BA ≠,所以选项B 错误;因为2,OB x OA ==,所以OB OA ≠,OB OA >所以选项C 错误,选项D 正确.故选D11.采用斜二测画法作一个五边形的直观图,则其直观图的面积是原来五边形面积的 A .12倍 B .14倍C .2倍 D 倍【试题来源】江苏省徐州市第一中学2020-2021学年高三上学期期末 【答案】D【分析】根据斜二测画法中原图形面积S 与直观图面积S '的关系式S ='即可得出答案.【解析】斜二测画法中原图形面积S 与直观图面积S '的关系式S ='所以S S '==故选D 12.如图,已知等腰三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是A .2B .1CD .【试题来源】江苏省苏州市工业园区园区三中2019-2020学年高一下学期期中 【答案】D【分析】利用斜二测画法,由直观图作出原图三角形,再利用三角形面积公式即可求解.【解析】因为O A B '''△是等腰直角三角形,2O B ''=,所以O A A B ''''==,所以原平面图形为且2OB O B ''==,OA OB ⊥,2OA O A ''==所以原平面图形的面积是122⨯⨯=D 13.在用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,则在直观图中∠A ′等于 A .45° B .135° C .90°D .45°或135°【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】D【分析】根据直角在直观图中有的成为45°,有的成为135°即可得答案【解析】因∠A 的两边分别平行于x 轴、y 轴,故∠A =90°,在直观图中,按斜二测画法规则知∠x ′O ′y ′=45°或135°,即∠A ′=45°或135°.故选D . 14.关于斜二测画法所得直观图,以下说法正确的是 A .等腰三角形的直观图仍是等腰三角形 B .正方形的直观图为平行四边形 C .梯形的直观图不是梯形D .正三角形的直观图一定为等腰三角形【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】B【分析】根据斜二测画法的方法:平行于y 轴的线段长度减半,水平长度不变即可判断.. 【解析】由于直角在直观图中有的成为45°,有的成为135°; 当线段与x 轴平行时,在直观图中长度不变且仍与x 轴平行, 当线段与x 轴平行时,线段长度减半,直角坐标系变成斜坐标系,而平行关系没有改变.故选B .15.如图,正方形O A B C ''''的边长为2cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是A .16cmB .12cmC .10cmD .18cm【试题来源】江西省吉安市省重点中学2020-2021学年高二年级(10月)联合考试(文) 【答案】A【分析】将直观图还原为平面图形是平行四边形,然后计算. 【解析】将直观图还原为平面图形,如图所示.2OB O B ''==2OA O A ''==,所以6AB ==,所以原图形的周长为16cm ,故选A .【名师点睛】本题考查斜二测画法,掌握斜二测画法的定义是解题关键.根据斜二测画法的定义才能根据直观图中直线的位置关系确定原图形中直线的位置关系,从而解决原图形中的问题.16.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于A .1B .2+C .122+D .12+【试题来源】宁夏贺兰县景博中学2020-2021学年高一上学期期末考试 【答案】B【分析】根据斜二测直观图的特点可知原图形为一直角梯形,根据梯形面积公式即可求解. 【解析】如图,恢复后的原图形为一直角梯形,所以1(11)222S =⨯=+B .17.如图,边长为1的正方形''''O A B C 是一个水平放置的平面图形OABC 的直观图,则图形OABC 的面积是A B .2C D .【试题来源】江西省南昌县莲塘第三中学2020-2021学年高二上学期第二次月考 【答案】D【分析】根据直观图画出原图可得答案.【解析】由直观图''''O A B C 画出原图OABC ,如图,因为''O B =OB =,1OA =,则图形OABC 的面积是 故选D18.已知用斜二测画法得到的某水平放置的平面图形的直观图是如图所示的等腰直角O B C ''',其中1O B ''=,则原平面图形中最大边长为A .2B .C .3D .【试题来源】重庆市南开中学2020-2021学年高二上学期期中【答案】D【分析】在斜坐标系中作A C B C ''''⊥交x '轴于A '点有2A C,根据斜二测法的画图原则:纵半横不变,得222AC A C ,1OA =,即可知最长边BC 的长度.【解析】由斜坐标系中作A C B C ''''⊥交x '轴于A '点,由1O B ''=,O B C '''等腰直角三角形,2A C由斜二测法的纵半横不变,可将直观图在直角坐标系中还原成原平面图形如下:所以222AC A C ,1OA =,所以最长边BC =,故选D 19.如图,A O B '''为水平放置的AOB 斜二测画法的直观图,且3,42''''==O A O B ,则AOB 的周长为A .9B .10C .11D .12【试题来源】广西崇左高级中学2020-2021学年高一12月月考【答案】D【分析】由斜二测画法的直观图与原图的关系,运算即可得解.【解析】由直观图可得,在OAB 中,23,4OA O A OB O B '''='===,且OA OB ⊥,所以5AB ==,所以OAB 的周长为34512++=.故选D .20.如图,平行四边形O A B C ''''是四边形OABC 的直观图.若3O A ''=,2O C ''=,则原四边形OABC 的周长为A .10B .12C .14D .16【试题来源】安徽省宿州市十三所重点中学2020-2021学年高二上学期期中联考(文)【答案】C【分析】按直观图画法可知原四边形的边长,进一步可求原四边形的周长.【解析】由直观图与原图形的关系,可知原四边形为矩形,边3OA =,边4OC =, 所以原四边形周长为14.故选C21.如图是水平放置的三角形的直观图,2AB BC ==,AB ,BC 分别与y '轴、x '轴平行,则ABC 在原图中的对应三角形的形状和面积分别为A B .等腰三角形;2C .直角三角形;4D .直角三角形;8【试题来源】浙江省台州市书生中学2020-2021学年高二上学期12月第三次月考【答案】C【分析】利用斜二测画法的定义和过程,可判断三角形的形状,以及利用边长求面积.【解析】根据斜二测的直观图的画法可知,原图中,AB BC ⊥,并且原图中2BC =,4AB =,所以ABC 在原图中的对应三角形的形状是直角三角形,面积12442S =⨯⨯=.故选C 22.已知水平放置的ABC 是按“斜二测画法”得到如图所示的直观图,其中1B O C O ''''==,A O ''=,那么原ABC 的面积是A B .2C .D .4 【试题来源】江西省余干县新时代学校2020-2021学年高一上学期阶段测试(二)【答案】C【分析】由直观图可以推得原三角形底边长及高,从而可得原三角形的面积.【解析】由直观图可知,原三角形BC 边长为2,BC 边上的高为所以ABC 的面积是122⨯⨯= C . 23.若边长为2的正111A B C △是水平放置的一个平面图形的直观图,则原图形的面积是ABC .D .【试题来源】【新东方】418【答案】D【分析】先画出该直观图,由题中条件,根据斜二测画法,求出原图形的高,以及底边长,进而可求出原图形的面积.【解析】因为直观图是由斜二测画法作出的,图中1145A OC ∠=,因为111A B C △是边长为2的正三角形,11120OA C ∠=,在11OA C 中,由正弦定理可得12sin120sin 45OC =,解得1OC =根据斜二测画法的特征,可得原水平放置的三角形的高为12OC =,底边长等于112A B =,所以原图形的面积为122⨯=D . 24.一个三角形用斜二测画法所作的直观图是一个边长为2的正三角形,则原三角形的面积为A BC .D .【试题来源】重庆市万州第三中学2020-2021学年高二上学期期中【答案】C【分析】在直观图中求出三角形的高,利用斜二测画法的规则求出原三角形中三角形的高后,利用面积公式可得结果.=角形的高为=122⨯=C 25.利用斜二测画法得到:①三角形的水平放置的直观图是三角形;②平行四边形的水平放置的直观图是平行四边形;③矩形的水平放置的直观图是矩形;④菱形的水平放置的直观图是菱形.以上结论正确的是A .①B .①②C .③④D .①②③④【试题来源】陕西省西安交大附中2019-2020学年高一上学期12月月考【答案】B【分析】根据斜二测画法的规则,平行关系不变,平行x 轴的线段长度不变,平行y 轴的线段长度减半,直角变为45或135判断.【解析】由斜二测画法的规则可知因为平行关系不变,所以①正确;因为平行关系不变,所以②是正确;因为直角变为45或135,所以矩形的直观图是平行四边形,所以③错误;因为平行于y 轴的线段长度减半,平行于x 轴的线段长度不变,所以④是错误,故选B . 26.一个平面图形的斜二测画法的直观图是一个直角边为a 的等腰直角三角形,则原图形的面积为A 2B .2C 2D 2 【试题来源】安徽省合肥市第十一中学2020-2021学年高二上学期期中(理)【答案】D【分析】先计算出直观图的面积,再根据原图面积S 与直观图的面积S '的关系为S =',即可求解. 【解析】平面图形的斜二测画法的直观图是一个直角边为a 的等腰直角三角形,212S a '∴=,则原图形的面积2212S a ==.故选D . 27.下列命题中正确的是A .正方形的直观图是正方形B .平行四边形的直观图是平行四边形C .有两个面平行,其余各面都是平行四边形的几何体叫棱柱D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【试题来源】2020-2021学年高一数学单元测试定心卷(人教版必修2)【答案】B【分析】选项A ,正方形的直观图是平行四边形;选项B ,由斜二测画法规则知平行性不变知②正确;选项C ,要注意棱柱的每相邻两个四边形的公共边互相平行;选项D ,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.【解析】选项A ,正方形的直观图是平行四边形,故A 错误;选项B ,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;选项C ,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C 错误;选项D ,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D 错误.故选B .28.若水平放置的四边形AOBC 按“斜二测画法”得到如图所示的直观图,其中//AC O B '''',A C B C ''⊥'',1A C ''=,2O B ''=,则原四边形AOBC 的面积为A .12B .6C .D 【试题来源】江西省景德镇一中2020-2021学年高一上学期期末考试(理)【答案】C【分析】根据图象,由“斜二测画法”可得,四边形AOBC 水平放置的直观图为直角梯形,进而利用相关的面积公式求解即可【解析】根据图象可得,四边形AOBC 水平放置的直观图为直角梯形,作A M O B '⊥'',则211O M '=-=,由'''4A O B π∠=,得''A O =2''AO A O ==,''1AC A C ==,''2OB O B ==,且AO OB ⊥,//AC OB ,所以,原四边形AOBC 的面积为11()(12)22S AC OB AO =+⨯=⨯+⨯=C29.已知水平放置的平面四边形ABCD ,用斜二测画法得到的直观图是边长为1的正方形,如图所示,则ABCD 的周长为A .2B .6C .2D .8【试题来源】河南省洛阳市2020-2021学年高一上学期期末【答案】D【分析】根据斜二测画法可换元原图形,根据原图形计算周长即可.【解析】由直观图可得原图形如图,根据斜二测画法可知,1AB CD ==,AC =在Rt ABC 中, 3BC ===,又AD BC =,所以四边形ABCD 的周长为23218⨯+⨯=,故选D30.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为A .32B .62C .322D .34【试题来源】【新东方】绍兴qw119【答案】A【分析】作出原平面图形,然后求出面积即可.【解析】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,所以2A B OB '''==O C C B ''''⊥,45C O B '''∠=︒,所以1B C ''=,在直角坐标系中作出原图形为梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = 所以其面积为1(21)22322S =+⨯=A 【名师点睛】本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '=. 二、多选题1.利用斜二测画法得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形;以上结论正确的是A .①B .②C .③D .④【试题来源】2021年新高考数学一轮复习学与练【答案】AB【分析】根据斜二测画法的概念选择.【解析】水平放置的n 边形的直观图还是n 边形,故①正确;因为斜二测画法是一种特殊的平行投影画法,所以②正确;因为斜二测画法中平行于纵轴的线段长度减半,所以③④错误,故选AB .【名师点睛】本题考查斜二测画法,属于基础题.2.水平放置的ABC 的直观图如图所示,其中1B O C O ''''==,A O ''=,那么原ABC 是一个A .等边三角形B .直角三角形C .三边互不相等的三角形D 【试题来源】人教A 版(2019) 必修第二册 过关斩将 第八章【答案】AD【分析】根据斜二测画法的规则还原图形的边角关系再求解即可.【解析】由题中图形知,在原ABC 中,AO BC ⊥.2A O ''=,AO ∴=1B O C O ''''==,2BC ∴=,2AB AC ==,ABC ∴为等边三角形.ABC ∴的面积为122⨯=AD . 3.如图所示是斜二测画法画出的水平放置的三角形的直观图,D ′为B ′C ′的中点,且A ′D ′∥y ′轴,B ′C ′∥x ′轴,那么在原平面图形ABC 中A .AB 与AC 相等B .AD 的长度大于AC 的长度C .AB 的长度大于AD 的长度D .BC 的长度大于AD 的长度【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册【答案】AC【分析】首先根据斜二测画法的直观图还原几何图形,根据实际图形的长度关系判断选项.【解析】根据斜二测画法的直观图,还原几何图形,首先建立平面直角坐标系xoy ,//BC x 轴,并且BC B C ''=,点D 是BC 的中点,并且作//AD y 轴,即AD BC ⊥,且2AD A D ''=,连结,AB AC ,所以ABC 是等腰三角形,AB AC =,AB 的长度大于AD 的长度,由图可知BC B C ''=,2AD A D ''=,由图观察,12A DBC ''''>,所以2B C AD ''''<,即BC AD <.故选AC【名师点睛】本题考查由直观图还原实际图形,判断长度关系,重点考查斜二测画法的规则,属于基础题型.三、填空题1.已知水平放置的四边形ABCD ,按照斜二测画法画出它的直观图A ′B ′C ′D ′如图所示,其中A ′D ′=2,B 'C '=4,A ′B ′=1,则DC 的长度是___________.【试题来源】备战2021年新高考数学一轮复习考点微专题【答案】【分析】根据直观图画出原图,并计算出DC 的长.【解析】画出原图如下图所示,由图可知DC ==【名师点睛】本题主要考查斜二测画法的直观图和原图的对应关系,属于基础题. 2.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x轴.已知四边形ABCD 的面积为2,则原平面图形的面积为___________.【试题来源】备战2021年新高考数学一轮复习考点微专题 【答案】28cm【分析】根据平面图形中,原图面积与直观图面积之间的关系即可求解. 【解析】设原图面积为S ,直观图面积1S ,根据直观图面积与原图面积的关系1S =,因为1S =容易解得8S =,故答案为28cm .【名师点睛】本题考查斜二侧画法中直观图与原图面积之间的关系,属基础题.3.如图所示,直观图四边形''''A B C D 是一个底角为45︒,腰和上底均为1的等腰梯形,那么原平面图形的面积是___________.【试题来源】四川省武胜烈面中学校2020-2021学年高二上学期开学考试(文)【答案】2+【分析】根据斜二侧画法可知,原图为直角梯形,上底为1,高为2,下底为1+梯形面积公式求解即可.也可利用原图和直观图的面积关系求解.【解析】根据斜二侧画法可知,原图形为直角梯形,其中上底1AD =,高2''2AB A B ==,下底为1BC =+22=+2+ 【名师点睛】本题考查水平放置的平面图形的直观图斜二测画法,比较基础. 4.水平放置的ABC ,用斜二测画法作出的直观图是如图所示的A B C ''',其中1O A O B ''''==,2O C ''=,则ABC 面积为___________.【试题来源】安徽省合肥168中学2019-2020学年高二(上)期中数学(文)试卷题【分析】把直观图还原为原图形,再计算对应图形的面积. 【解析】用斜二测画法作出的直观图,还原为原图形,如图所示;ABC 中,1OA O A ''==,1OB O B ''==,2OC O C ''==,且OC AB ⊥,所以ABC 的面积为11·222ABC S AB OC ∆==⨯= 【名师点睛】本题主要考查利用斜二测画法作直观图,考查直观图面积的计算,意在考查学生对这些知识的理解掌握水平.5.如图,梯形''''A B C D 是一平面四边形ABCD 按照斜二测画法画出的直观图,其中''//''A D B C ,''2A D =,''4B C =,''1A B =,则原图形DC 边的长度是___________.【试题来源】备战2021年高考数学(理)一轮复习考点一遍过【答案】.【分析】画出原图,根据斜二测画法,由边的关系,即可得解. 【解析】如图,做DH BC ⊥与H ,由题意可得2AD =,4BC =,2AB =,2,2DH HC ==,由勾股定理可得222228,DC DC =+==【名师点睛】本题考查了直观图和原图的关系,考查了斜二测画法,计算量不大,属于基础题.6.如图,平行四边形O A B C ''''是四边形OABC 的直观图.若3O A ''=,2O C ''=,则原四边形OABC 的周长为___________.【试题来源】安徽省宿州市十三所重点中学2020-2021学年高二上学期期中联考(理) 【答案】14【解析】因为平行四边形O A B C ''''是四边形OABC 的直观图,且'''45AO C ∠=︒,所以四边形OABC 是矩形,且3,4OA OC ==, 所以四边形OABC 的周长为2(34)14⨯+=,故答案为147.水平放置的ABC 的斜二测直观图'''A B C 如图所示,已知''3,''2A C B C ==,则ABC 的面积为___________.【试题来源】安徽省蚌埠市田家炳中学2020-2021学年高二上学期12月月考(文) 【答案】6【解析】由已知直观图根据斜二测化法规则画出原平面图形,如图所示;ABC ∴的面积为132262⨯⨯⨯=.故答案为6.8.利用斜二测画法得到: ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形.以上结论中,正确的是___________(填序号).【试题来源】【新教材精创】 练习 苏教版高中数学必修第二册 【答案】①②【分析】根据斜二测画法的特点进行判断即可.【解析】斜二测画法得到的图形与原图形中的线线相交、线线平行关系不会改变,有的边的长度会发生变化,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形. 故答案为①②9.四边形ABCD 的直观图是一个底角为45,腰和上底均为1的等腰梯形A B C D '''',那么四边形ABCD 的面积为___________.【试题来源】贵州省遵义市航天高级中学2020-2021学年高二上学期第一次月考【答案】2+【分析】根据四边形ABCD 的直观图是一个底角为45,腰和上底均为1的等腰梯形,可得原图是上底为1,下底为1+2的直角梯形,即可求出原图四边形ABCD 的面积.【解析】由题意知直观图如图:1A D ''=,1D C ''=,45D A B '''∠=,过点D 作D O A B '''⊥于点O ,所以2A O '=,所以121A B ''=+=,原图如图:1AB =2AD =,1CD =,所以梯形ABCD 面积为11222+⨯=+,故答案为2+【名师点睛】本题主要考查了斜二测画法作图规则,属于逆用题型.10.某水平放置的平面图形的斜二侧直观图是等腰梯形(如图所示),45ABC ∠=,112AD BC ==,则该平面图形的面积为___________.【试题来源】江西省赣州市会昌县会昌中学2020-2021学年高二上学期第一次月考(理)【答案】2【分析】根据题中条件,先求出直观图的高,得出直观图中的AB 的长,再由斜二测画法的特征,得出原图形为直角梯形,根据梯形面积公式,即可求出结果.【解析】在直观图中,过点A 作AE BC ⊥于点E ,过点D 作DF BC ⊥于点F , 因为45ABC ∠=,112AD BC ==,所以1EF AD ==,则12BE CF ==,因此2cos 452BE AB ==, 又根据斜二测画法的特征可得,在原图中,AB BC ⊥,//AD BC ,即原图为直角梯形,且高为直观图中AB 的2倍,所以该平面图形的面积为()11222S =⨯+=.故答案为2.【名师点睛】本题主要考查由直观图求原图的面积,熟记斜二测画法的特征即可,属于基础题型.11.已知ABC 的斜二测直观图如图所示,则ABC 的面积为___________.【试题来源】山西省朔州市怀仁县大地学校2019-2020学年高二上学期第一次月考 【答案】2【分析】求出斜二测直观图的面积,再由斜二测直观图的面积与原图的面积关系即可得解. 【解析】由题意,ABC 的斜二测直观图的面积1212sin 4522S '=⨯⨯⨯=,所以ABC 的面积22S '===.故答案为2. 12.如图,一个水平放置的平面图形的斜二测直观图为直角梯形O A B C '''',且2O A ''=,1O C ''=,A B ''平行于y '轴,则这个平面图形的面积为___________.【试题来源】安徽省马鞍山二中2020-2021学年高二上学期10月阶段考试(文)【答案】【分析】根据斜二测画法的规则原图是水平放置的一个直角梯形,画出图象求解即可. 【解析】根据斜二测画法的规则可知水平放置的图形OABC 为一直角梯形,如图:由题意可知上底为2OA =,高为AB =213BC =+=,所以该图形的面积()1322S =⨯+⨯=;故答案为 13.如图,A B C D ''''是一个平面图形ABCD 的水平放置的斜二测直观图,则这个平面图形ABCD 的面积等于___________.【试题来源】【新东方】杭州新东方高中数学试卷360【答案】。

江苏省苏州市吴江区2019-2020学年第一学期第一次月度质量调研试卷高三数学(有解析)

江苏省苏州市吴江区2019-2020学年第一学期第一次月度质量调研试卷高三数学(有解析)

数学试题2019.9 1.设集合M={﹣1,0,1},N={x|x2+x≤0},则M∩N=.2.复数z=(1﹣2i)(3+i),其中i为虚数单位,则|z|是.3.已知抛物线方程为y=4x2,则抛物线的焦点坐标为.4.函数f(x)的定义域为.5.函数的最小正周期为.6.已知θ是第三象限角,且,则sinθ+cosθ=.7.函数f(x)=log2(﹣x2+2)的值域为.8.已知(4x,2x),(1,),x∈R,若⊥,则.9.在平面直角坐标系中,曲线y=e x+2x+1在x=0处的切线方程是10.在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为,则AB 的长为.11.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.12.已知函数f(x)=sin(2x)(0≤x<π),且f(α)=f(β)(α≠β),则α+β=.13.已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为.14.已知函数,,>,若方程f(x)=a有四个不等的实根x1,x2,x3,x4,且满足x1<x2<x3<x4,则(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知向量(cosα,﹣1),(2,sinα),其中,,且.(1)求cos2α的值;(2)若sin(α﹣β),且,,求角β.16.(本小题满分14分)如图,在四棱锥P﹣ABCD中,AD∥BC,且AD=2BC,AD ⊥CD,PA=PD,M为棱AD的中点.(1)求证:CD∥平面PBM;(2)求证:平面PAD⊥平面PBM.17.(本小题满分14分)已知定义域为R的函数是奇函数.(1)求实数m的值;(2)解不等式f(x)+f(1+x)>0.18.(本小题满分16分)为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即∠AOB).现准备修建一条城市高架道路L,L在MO上设一出入口A,在ON上设一出入口B.假设高架道路L在AB部分为直线段,且要求市中心O与AB的距离为10km.(1)求两站点A,B之间距离的最小值;(2)公路MO段上距离市中心O30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?19.(本小题满分16分)已知函数f(x)=xlnx﹣(k+1)x,k∈R.(1)若k=﹣1,求f(x)的最值;(2)若对于任意x∈[e,e3],都有f(x)<4lnx成立,求实数k的取值范围;(3)对于任意x∈[2,e2],都有f(x)>﹣2x﹣k成立,求整数k的最大值.20.(本小题满分16分)已知函数f(x)=(x﹣m)lnx(x>0),m>0.(1)当m=1时,求函数f(x)在x=1处的切线方程;(2)当x∈[1,e]时恒有f(x)≤0成立,求满足条件的m的范围;(3)当m=e时,令方程f(x)=t有两个不同的根x1,x2,且满足x1<x2,求证:x2﹣x1.1.由N中不等式变形得:x(x+1)≤0,解得:﹣1≤x≤0,即N=[﹣1,0],∵M={﹣1,0,1},∴M∩N={﹣1,0}.答案:{﹣1,0}.2.复数z=(1﹣2i)(3+i),i为虚数单位,则|z|=|(1﹣2i)|×|(3+i)|=5.答案:5.3.由题意,x2,故其焦点在y轴正半轴上,p.∴焦点坐标为,,答案,.4.由题意,>,解得1<x≤3,答案:(1,3].5.函数的最小正周期为:T3π.答案:3π.6.已知θ是第三象限角,且,所以sinθ<0,cosθ<0,则,解得,所以sinθ+cosθ.答案:.7.∵0<﹣x2+22,∴x=0时,f(x)最大,f(x)=f(0),最大值答案:(﹣∞,].8.∵,∴且2x>0,∴解得2x=1,∴,,,,∴,,∴.答案:2.9.∵y=e x+2x+1,∴f′(x)=e x+2,∴在x=0处的切线斜率k=f′(0)=1+2=3,∴f(0)=1+0+1=2,∴y=e x+2x+1在x=0处的切线方程为:y﹣2=3x,∴y=3x+2,答案:y=3x+2.10.∵sin B=2sin A,由正弦定理可得,b=2a,∴s△ABC2,∴a=2,b=4,由余弦定理可得,c2=a2+b2﹣2ab cos C28,∴c=2,答案:2.11.若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].答案:(﹣∞,﹣3].12.解法一:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=sin(2α)=f(β)=sin(2β)∈(0,),(α≠β),不妨假设α<β,则2α∈(,π),2β∈(2π,),∴α∈(,),β∈(π,),∴α∈(,),β∈(,),∴α+β∈(,).再根据 sin(2α)﹣sin(2β)=2cos sin2cos(α+β)sin(α﹣β)=0,∴cos(α+β)=0,∴,或,则α+β(舍去)或α+β,答案:.解法二:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=f(β)(α≠β),则由正弦函数的图象的对称性可得2α2β2•,即α+β,答案:.13.由r=1,利用正弦定理可得:c=2r sin C=2sin C,b=2r sin B=2sin B,∵tan A,tan B,∴,∴sin A cos B=cos A(2sin C﹣sin B)=2sin C cos A﹣sin B cos A,即sin A cos B+cos A sin B=sin(A+B)=sin C=2sin C cos A,∵sin C≠0,∴cos A,即A,∴cos A,∴bc=b2+c2﹣a2=b2+c2﹣(2r sin A)2=b2+c2﹣3≥2bc﹣3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S bc sin A3,则△ABC面积的最大值为:.答案:.14.不妨设,,>,由题意,g(x)=a有四个不等实根,设为t1,t2,t3,t4,且t1<t2<t3<t4,t1=x1+1,t2=x2+1,t3=x3+1,t4=x4+1,作函数g(x)的图象,由图可知,﹣1<t1<0<t2<1<t3<2<t4,且,,,∴,,∴,设,,函数,则<,∴函数h(m)在(0,1)上为减函数,∴h(m)∈(h(1),h(0))=(﹣4,0),即(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为(﹣4,0).答案:(﹣4,0).15.(1)∵向量(cosα,﹣1),(2,sinα),其中,,且.∴2cosα﹣sinα=0,∴sin2α+cos2α=5cos2α=1,∴cos2α,∴cos2α=2cos2α﹣1.(2)∵cos2α,,,∴cosα,sinα,∵sin(α﹣β),且,,∴sinαcosβ﹣cosαsinβ,∴2cosβ﹣sinβ,∴sinβ=2cos,∴sin2β+cos2β=5cos2β﹣20,解得cosβ或cosβ(舍),∵,,∴β.16.证明:(1)因为AD∥BC,且AD=2BC,所以四边形BCDM为平行四边形,故CD∥BM,又CD⊄平面PBM,BM⊂平面PBM,所以CD∥平面PBM;(6分)(2)因为PA=PD,点M为棱AD的中点,所以PM⊥AD,又AD⊥CD,CD∥BM,故AD⊥BM,而PM∩BM=M,PM、BM⊂平面PBM,所以AD⊥平面PBM,又AD⊂平面PAD,所以平面PAD⊥平面PBM.(本小题满分14分)17.(1)由题意可得,f(﹣1)=﹣f(1),,∴m=2;(2)由(1)可得,f(x),设x1<x2,则f(x2)﹣f(x1)<0 ∴f(x)在R上单调递减∵f(x)+f(1+x)>0,∴f(x)>﹣f(1+x)=f(﹣1﹣x),∴1+x<﹣x,解可得,x<,综上可得,不等式的解集为(﹣∞,)18.(1)过点O作OE⊥AB于点E,则OE=10,设∠AOE=α,则<α<,所以∠BOEα,所以AB=AE+BE=10tanα+1+10tan(α);解得cosαcos(α)sin(2α);所以当α时,AB取得最小值为20(1);(2)以O为原点建立平面直角坐标系,如图所示;则圆C的方程为(x+30)2+y2=25,设直线AB的方程为y=kx+t,(k>0,t>0);∴10,∴5,解得t<20k或t>60k(舍),∴OA<20,又当AB∥ON时,OA→10,所以10<OA<20;综上知,当10<OA<20时,即设计出入口A离市中心O的距离在10km 到20km之间时,才能使高架道路L及其延伸段不经过保护区(不包括临界状态).19.(1)f(x)=xlnx,x>0.则f'(x)=1+lnx.当0<x<e﹣1时,f'(x)<0,f(x)单调递减;当x=e﹣1时,f'(x)=0;当x>e﹣1时,f'(x)>0,f(x)单调递增.所以当x=e﹣1时,f(x)取最小值f(e﹣1)=﹣e﹣1.(2)f(x)<4lnx⇔k+1>(1)lnx.令g(x)=(1)lnx,则g'(x).当x≥e时,x﹣4+4lnx≥e﹣4+4>0,所以g(x)在[e,e3]单调递增,g(x)=g(e3)=3.所以,所以k>31=2.(3)当x∈[2,e2]时,f(x)>﹣2x﹣k⇔k<.令h(x),h'(x).令u(x)=x﹣lnx﹣2,则u'(x)=1.因为x∈[2,e2],所以u'(x)≥1>0,u(x)单调递增,又u(3)=1﹣ln3<0,u(4)=2﹣2ln2>0,所以u(x)存在唯一的零点x0,且3<x0<4.当x∈[2,x0)时,u(x)<0,所以h'(x)<0,h(x)单调递减;当x=x0时,u(x)=0,h'(x)=0;当x∈(x0,e2]时,u(x)>0,所以h'(x)>0,h'(x)单调递增.所以k<,h(x)=h(x)x0∈(3,4),所以整数k的最大值为3.20.(1)解:由题意,当m=1时,f(x)=(x﹣1)lnx,x>0.f′(x)=lnx1,x>0.∵f′(1)=0,f(1)=0.∴函数f(x)在x=1处的切线方程为:y=0.(2)解:由题意,当x∈[1,e]时恒有f(x)≤0成立,即(x﹣m)lnx≤0对任意x∈[1,e]成立.∵当x∈[1,e]时,lnx≥0恒成立,∴x﹣m≤0对任意x∈[1,e]恒成立.∴m≥x max=e.∴m的取值范围为[e,+∞).(3)证明:由题意,当m=e时,f(x)=(x﹣e)lnx,x>0.f′(x)=lnx lnx+1,x>0.①令f′(x)=0,即lnx+1,根据下面图象:根据图,很明显交点的横坐标在1与e之间,设为x0,即f′(x)=0的解为x=x0,(1<x0<e),且lnx0+1.②令f′(x)<0,即lnx+1<,解得0<x<x0;③令f′(x)>0,即lnx+1>,解得x>x0.∴f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,在x=x0处取得极小值.∵f(1)=0,f(e)=0.∴根据题意,画图如下:由图,①设函数f(x)在x=1处的切线为l1,∵f′(1)=1﹣e.∴直线l1的直线方程:y=(1﹣e)(x﹣1),令y=t,解得x31;②设函数f(x)在x=e处的切线为l2,∵f′(e)=1.∴直线l2的直线方程:y=x﹣e,令y=t,解得x4=e+t.∴x2﹣x1≤x4﹣x3=e+t1=e﹣1.。

2022-2022学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一

2022-2022学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一

2022-2022学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一2022-2022学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)命题“ x∈R,x>x”的否定是_________ .2.(5分)已知集合M={x|﹣3<x≤5},N={y|﹣5<y <5},则M∩N= 3.(5分)设a,b都是实数,那么“a2>b2”是“a>b”的条件.4.(5分)函数5.(5分)求函数y=x+的值域.6.(5分)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的定义域为_________ .2的是_________ .7.(5分)已知函数8.(5分)设a=6﹣0.7则f(log32)的值为,b=log0.70.6,c=log0.67,则a,b,c从小到大的排列顺序为_________ .9.(5分)已知函数f(x)=x2﹣2x,x∈[1,2],则f(x ﹣1)= _________ .10.(5分)函数的单调减区间为_________ .11.(5分)设直线y=a分别与曲线y2=x和y=ex交于点M、N,则当线段MN取得最小值时a的值为_________ .12.(5分)下列说法:①当x>0且x≠1时,有;②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;③若对x∈R,有f(x﹣1)=﹣f(x),则f(x)的周期为2;④“若x2+x﹣6≥0,则x≥2”的逆否命题为真命题;⑤函数y=f(1+x)与函数y=f(1﹣x)的图象关于直线x=1对称.其中正确的命题的序号_________ .13.(5分)若函数y=ax2﹣2ax(a≠0)在区间[0,3]上有最大值3,则a的值是_________ .14.(5分)已知△ABC的面积为1,点D在AC上,DE∥AB,连接BD,设△DCE、△ABD、△BDE中面积最大者的值为y,则y的最小值为_________ .二、解答题(本大题共6小题,共90分)15.(14分)(1)已知a>b>1且(2)求16.(14分)已知集合A={x|y=(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.17.(14分)已知函数g(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=(1)求a、b的值;(2)若不等式f(2x)﹣k 2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.18.(16分)已知奇函数y=f(x)定义域是[﹣4,4],当﹣4≤x≤0时,y=f(x)=﹣x2﹣2x.(1)求函数f(x)的解析式;(2)求函数f(x)的值域;(3)求函数f(x)的单调递增区间.19.(16分)如图,有一块边长为1(百米)的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角∠PAQ 始终为45(其中点P,Q分别在边BC,CD上),设∠PAB=θ,tanθ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值.(2)问探照灯照射在正方形ABCD内部区域的面积S至少为多少(平方百米)?.},集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.的值.,求logab﹣logba的值.20.(16分)已知函数f(x)=e+ax,g(x)=elnx.(其中e为自然对数的底数),(Ⅰ)设曲线y=f(x)在x=1处的切线与直线x+(e﹣1)y=1垂直,求a的值;(Ⅱ)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;(Ⅲ)当a=﹣1时,是否存在实数x0∈[1,,e],使曲线C:y=g(x)﹣f(x)在点x=x0 处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.xx2022-2022学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)命题“ x∈R,x>x”的否定是x∈R,x222.(5分)已知集合M={x|﹣3<x≤5},N={y|﹣5<y <5},则M∩N= (﹣3,5).3.(5分)设a,b都是实数,那么“a2>b2”是“a>b”的4.(5分)函数的定义域为.5.(5分)求函数y=x+的值域(﹣∞,﹣2]∪[2,+∞).6.(5分)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是④ .7.(5分)已知函数则f(log32)的值为.8.(5分)设a=60.7,b=log0.70.6,c=log0.67,则a,b,c从小到大的排列顺序为.﹣9.(5分)已知函数f(x)=x2﹣2x,x∈[1,2],则f (x﹣1)= x2﹣4x+3,x∈[2,3] .10.(5分)函数的单调减区间为.11.(5分)设直线y=a分别与曲线y2=x和y=ex交于点M、N,则当线段MN取得最小值时a的值为.12.(5分)下列说法:①当x>0且x≠1时,有;②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;③若对x∈R,有f(x﹣1)=﹣f(x),则f(x)的周期为2;④“若x+x﹣6≥0,则x≥2”的逆否命题为真命题;⑤函数y=f(1+x)与函数y=f(1﹣x)的图象关于直线x=1对称.其中正确的命题的序号②③ .213.(5分)若函数y=ax﹣2ax(a≠0)在区间[0,3]上有最大值3,则a的值是1或﹣3 .214.(5分)已知△ABC的面积为1,点D在AC上,DE∥AB,连接BD,设△DCE、△ABD、△BDE中面积最大者的值为y,则y的最小值为.二、解答题(本大题共6小题,共90分)15.(14分)(1)已知a>b>1且(2)求,求logab﹣logba的值.的值.16.(14分)已知集合A={x|y=(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.},集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.17.(14分)已知函数g(x)=ax﹣2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=(1)求a、b的值;(2)若不等式f(2x)﹣k 2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.2.18.(16分)已知奇函数y=f(x)定义域是[﹣4,4],当﹣4≤x≤0时,y=f(x)=﹣x﹣2x.(1)求函数f(x)的解析式;(2)求函数f(x)的值域;(3)求函数f(x)的单调递增区间.。

江苏省苏州市部分学校2024届高三上学期期中数学试题

江苏省苏州市部分学校2024届高三上学期期中数学试题

江苏省苏州市部分学校2024届高三上学期期中数学试题1. 集合A ={−1,0,1},B ={y|y =sinx,x ∈R}则( )A . A ∩B =BB . A =BC . A ∪B =BD . C R A =B2. 复数z =11+i (i 为虚数单位)的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. 若cos(π4−α)=35,则sin2α=A . 725B . 15C . −15D . −7254. 利用诱导公式可以将任意角的三角函数值转化为0∘~90∘之间角的三角函数值,而这个范围内的三角函数值又可以通过查三角函数表得到.下表为部分锐角的正弦值,则tan1600∘的值为( )(小数点后保留2位有效数字)5. 定义在区间(0,π2)上的函数y =3cosx 与y =8tanx 的图象交点为P(x 0,y 0),则sinx 0的值为( )A . 13 B . √33C . 23D . 2√236. 已知OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 均为单位向量,且满足12OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ 的值为( ) A . 38B . 58C . 78D . 1987. 已知函数f(x)的定义域为R ,且f(x +2)=2−f(x),f(2−3x)为偶函数,若f(0)=0,∑n k=1f(k)=123,则n 的值为( ) A .117B .118C .122D .1238. 已知锐角ΔABC 中,角A,B,C 的对边分别为a,b,c,a 2=b 2+bc ,则tanAtanB 的取值范围为( )A . (1,+∞)B . (1,√3)C . (0,1)D . (√3,+∞)9. 若z 1,z 2为复数,则下列四个结论中正确的是( )A . |z 1−z 2|2=(z 1+z 2)2−4z 1z 2B . z 1−z 1̅ 是纯虚数或零C . |z 1−z 2|≤|z 1|+|z 2| 恒成立D .存在复数 z 1 , z 2 ,使得 |z 1z 2|<|z 1||z 2|10. 函数f(x)=tan(sinx +cosx),则下列说法正确的是( )A . f(x) 的定义域为 RB . f(x) 是奇函数C . f(x) 是周期函数D . f(x) 既有最大值又有最小值11. 在ΔABC 中,AC =3,AB =5,∠A =120∘,点D 是BC 边上一点,且AD ⃗⃗⃗⃗⃗ =xAC⃗⃗⃗⃗⃗ +yAB ⃗⃗⃗⃗⃗ ,则下列说法正确的是( )A . BC =7B .若 x =y =0.5 ,则 AD =√192C .若 AD =√192 ,则 x =y =0.5D .当 AD 取得最小值时, x =519812. 已知函数f(x)={x +2x ≤0|lgx|x >0,方程f 2(x)−mf(x)−1=0有4个不同的实数根,则下列选项正确的为( )A .函数 f(x) 的零点的个数为2B .实数 m 的取值范围为 (−∞,32]C .函数 f(x) 无最值D .函数 f(x) 在 (0,+∞) 上单调递增13. 已知向量a =(4,−3), b ⃗ =(x,6),且a //b ⃗ ,则实数x 的值为_____ 14. 若函数f(x)=sin(ωx +π6),(ω>0)图象的两条相邻的对称轴之间的距离为π2,且该函数图象关于点(x 0,0),(x 0>0)成中心对称,则x 0的最小值为______.15. 函数f(x)=2ax 2−ax ,若命题“∃x ∈[0,1],f(x)≤3−a ”是假命题,则实数a 的取值范围为___________.16. 设ΔABC 的三边a ,b ,c 所对的角分别为A ,B ,C .若b 2+3a 2=c 2,则tanCtanB =______,tanA 的最大值是______.17. 设α∈(0,π),已知向量a =(√3sinα,1),b ⃗ =(2,2cosα),且a ⟂b⃗ . (1)求sinα的值; (2)求cos(2α+7π12)的值.18. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2⟩的最小正周期为π,且点P(π6,2)是该函数图象上的一个最高点.(1)求函数f(x)的解析式;)个单位长度,得到函数g(x)的图象,g(x)在(2)把函数f(x)的图象向右平移θ(0<θ<π2]上是增函数,求θ的取值范围.[0,π419.已知z是复数,z+i和z都是实数,1−i(1)求复数z;(2)设关于x的方程x2+x(1+z)−(3m−1)i=0有实根,求纯虚数m.20.某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB的半径为200米,圆心角∠AOB=60∘,点Q在OA上,点M,N在OB上,点P 在弧AB上,设∠POB=θ.(1)若矩形MNPQ是正方形,求tanθ的值;(2)为方便市民观赏绿地景观,从P点处向OA,OB修建两条观赏通道PS和PT(宽度不计),使PS⟂OA,PT⟂OB,其中PT依PN而建,为让市民有更多时间观赏,希望PS+PT 最长,试问:此时点P应在何处?说明你的理由.21.ΔABC中,内角A,B,C所对的边分别为a,b,c,a=3√2,bsin B+C2=√52asinB.(1)求sinA;(2)如图,点M为边AC上一点,MB=MC,∠ABM=π2,求ΔABC的面积.22.已知二次函数y=f(x)的图象与直线y=−6只有一个交点,满足f(0)=−2且函数f(x−2)是偶函数.g(x)=f(x)x(1)求二次函数y=f(x)的解析式;(2)若对任意x∈[1,2],t∈[−4,4],g(x)≥−m2+tm恒成立,求实数m的范围;(3)若函数y=g(|x|+3)+k·2|x|+3−11恰好三个零点,求k的值及该函数的零点.。

江苏省苏州市部分学校2024届高三上学期期中数学试题(含答案解析)

江苏省苏州市部分学校2024届高三上学期期中数学试题(含答案解析)

江苏省苏州市部分学校2024届高三上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题三、填空题四、双空题五、解答题(1)若矩形MNPQ 是正方形,求tan θ的值;(2)为方便市民观赏绿地景观,从P 点处向,OA OB 修建两条观赏通道不计),使PS OA ⊥,PT OB ⊥,其中PT 依PN 而建,为让市民有更多时间观赏,希望PS PT +最长,试问:此时点P 应在何处?说明你的理由.21.ABC 中,内角,,A B C 所对的边分别为,,a b c ,32,sin 2B a b +=(1)求sin A ;(2)如图,点M 为边AC 上一点,π,2MB MC ABM =∠=,求ABC 22.已知二次函数()y f x =的图象与直线y =-6只有一个交点,满足(2)f x -是偶函数.()()f x g x x=(1)求二次函数()y f x =的解析式;(2)若对任意2[1,2],[4,4],()x t g x m tm ∈∈-≥-+恒成立,求实数m (3)若函数2(||3)11||3y g x k x =++⋅-+恰好三个零点,求k 的值及该函数的零点.参考答案:【详解】由余弦定理得2222BC AB BC AB =+-正确;0=.5,则()1,2AD AB AC =+∴ 正确;由图知函数()f x 有2个零点,故函数()f x 没有最值,故C 选项正确;函数()f x 在()0,1上单调递减,在由于方程()()21f x mf x --=令()t f x =则210t mt --=有因为2m 40∆=+>恒成立,设210t mt --=两个不等的实根为当13n =时,0x =;当24n =时,1;7x k =±∴=,函数的零点为0,1±。

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

2018-2019学年江苏省苏州市高二(上)期中数学试卷一、填空题(本大题共14小题,共70.0分)1.直线x+y+√3=0的倾斜角为______.2.在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.3.已知A(-1,-3),B(5,3),则以线段AB为直径的圆的方程为______.(写成标准方程)4.直线l经过点(1,1),且在两坐标轴上的截距相反,则直线l的方程是______.5.若直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,则m的值为______.6.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是______.7.圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的方程是______.8.正三棱锥P-ABC中,若底面边长为a,侧棱长为√2a,则该正三棱锥的高为______.9.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列命题:①若m⊂β,α∥β,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥α,β⊥α,m∥n,则n∥β;④若m⊥α,n⊥β,α∥β,则m∥n.其中正确的结论有______.(请将所有正确结论的序号都填上)10.设点A(-2,3),B(3,2)若直线ax+y+2=0与线段AB有公共点,则a的取值范围是______.11.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为______(结果用π表示).12.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为______.13.△ABC的一个顶点是A(3,-1),∠B,∠C的平分线分别是x=0,y=x,则直线BC的方程是______.14.已知定点M(0,2),N(-2,0),直线l:kx-y-3k+2=0(k为常数),对l上任意一点P,都有∠MPN为锐角,则k的取值范围是______.二、解答题(本大题共6小题,共80.0分)15.如图:在正方体ABCD-A1B1C1D1中,E为棱DD1的中点(1)求证:BD1∥平面AEC(2)求证:AC⊥BD1.16.设△ABC顶点坐标A(0,a),B(-√3a,0),C(√3a,0),其中a>0,圆M为△ABC的外接圆.(1)求圆M的方程(2)当a变化时,圆M是否过某一定点,请说明理由.17.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,BC⊥BC1,AB=BC1,E,F分别为线段AC1,A1C1的中点.(1)求证:EF∥面BCC1B1;(2)求证:BE⊥平面AB1C1.18.已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;√5的圆的方程.(2)以O为圆心且被l截得的弦长为8519.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=√2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V多面体PDCMA:V三棱锥M-ACB=2:1?(3)在M满足(2)的条件下,判断PD是否平行于平面AMC.20.如图,在平面直角坐标系xOy中,已知点A(0,3)和直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线.①求圆C的方程;②求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答案和解析1.【答案】135°【解析】解:直线x+y+=0的斜率为-1;所以直线的倾斜角为135°.故答案为135°.求出直线的斜率,即可得到直线的倾斜角.本题考查直线的有关概念,直线的斜率与直线的倾斜角的关系,考查计算能力.2.【答案】45°【解析】解:∵正方体ABCD-A1B1C1D1中,∴D1D⊥平面ABCD,∴直线AD是直线AD1在平面ABCD内的射影,∴∠D1AD=α,就是直线AD1平面ABCD所成角,在直角三角形AD1AD中,AD1=D1D,∴∠D1AD=45°故答案为:45°在正方体ABCD-A1B1C1D1中,证明D1D⊥平面ABCD,则∠D1AD=α,就是直线AD1平面ABCD所成角,解直角三角形D1AD即可.考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题3.【答案】(x-2)2+y2=18【解析】解:∵A(-1,-3),B(5,3),则以线段AB为直径的圆的圆心C(2,0),半径为AC==3,故圆的方程为(x-2)2+y2=18,故答案为:为(x-2)2+y2=18.先根据条件求出圆心坐标和半径,可得线段AB为直径的圆的方程.本题主要考查求圆的方程的方法,关键是求出圆心坐标和半径,属于基础题.4.【答案】x-y=0【解析】解:当直线l经过原点时,直线l在两坐标轴上截距均等于0,故直线l的斜率为1,∴所求直线方程为y=x,即x-y=0.当直线l不过原点时,设其方程+=1,又l经过点(1,1),则可得-=0≠1,此时不存在,故所求直线l的方程为x-y=0.故答案为x-y=0当直线l经过原点时,直线l在两坐标轴上截距均等于0,所求直线方程为y=x,当直线l不过原点时,此时a不存在.本题主要考查用点斜式、截距式求直线的方程,体现了分类讨论的数学思想,属于基础题.5.【答案】-7【解析】解:∵直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,∴,解得m=-7.∴m的值为-7.故答案为:-7.由直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,能求出m的值.本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】x-y+1=0【解析】解:易知点C为(-1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x-y+1=0.故答案为:x-y+1=0.先求圆心,再求斜率,可求直线方程.明确直线垂直的判定,会求圆心坐标,再求方程,是一般解题思路.7.【答案】(x+2)2+(y+1)2=1【解析】解:(x-2)2+(y-3)2=1的圆心为(2,3),半径为1点(2,3)关于直线x+y-1=0对称的点为(-2,-1)∴圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的圆心为(-2,-1),半径为1 即圆的方程为(x+2)2+(y+1)2=1故答案为:(x+2)2+(y+1)2=1先求出圆心和半径,然后根据对称性求出圆心关于直线x+y-1=0对称的圆的圆心,而圆对称形状不变,从而半径不变,即可求得圆的方程.本题主要考查了关于直线对称的圆的方程,同时考查了对称点的求解,属于基础题.8.【答案】√15a3【解析】解:如图,取BC中点D,连接AD,并取底面中心O,则O为AD的三等分点,且OA=,PA=,在Rt△POA中,求得OP=a,即该正三棱锥的高为,故答案为:.作出底面中心O,利用直角三角形POA容易求出高.此题考查了三棱锥高的求法,属容易题.9.【答案】①④【解析】解:①是正确命题,因为两个平面平行时,一个平面中的线与另一个平面一定没有公共点,故有线面平行;②不正确,因为一条直线平行于两个平行平面中的一个平面,则它与另一个平面的位置关系是平行或者在面内,故不正确;③不正确,因为由m⊥α,m∥n可得出n⊥α,再由β⊥α,可得n∥β或n⊂β,故不正确;④是正确命题,因为两个直线分别垂直于两个互相平行的平面,一定可以得出两线平行.综上,①④是正确命题故答案为①④本题研究空间中线面平行与线线平行的问题,根据相关的定理对四个命题进行探究,得出正误,即可得到答案,①②③由线面平行的条件判断,④由线线平行的条件判断,易得答案本题考查空间中直线与平面之间的位置关系,熟练掌握线面平行的方法与线线平行的方法是准确判断正误的关键,几何的学习,要先记牢定义与定理,再对应其几何特征进行理解培养出空间形象感知能力,方便做此类题 10.【答案】(-∞,-43]∪[52,+∞)【解析】解:∵直线ax+y+2=0恒过定点(0,-2),斜率为-a , 如图,,,∴若直线ax+y+2=0与线段AB 有交点, 则-a≥或-a≤-.即a≤-或a≥. 故答案为:(-∞,-]∪[,+∞). 由题意画出图形,数形结合得答案.本题考查了直线系方程的应用,考查了数形结合的解题思想方法,是基础题. 11.【答案】5π【解析】解:∵圆柱型铁管的高为3π,底面半径为1,又∵铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形如下图示:其中每一个小矩形的宽为圆柱的周长2πcm,高为圆柱的高3π,则大矩形的对称线即为铁丝的长度最小值.此时铁丝的长度最小值为:=5π故答案为:5π.本题考查的知识点是圆柱的结构特征,数形结合思想、转化思想在空间问题中的应用,由圆柱型铁管的高为3π,底面半径为1,铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形,然后根据平面上求两点间距离最小值的办法,即可求解.解答本题的关键是要把空间问题转化为平面问题,另外使用数形结合的思想用图形将满足题目的几何体表示出来,能更加直观的分析问题,进而得到答案.12.【答案】2√65【解析】解:如图,直线3x+4y+8=0与圆x2+y2-2x+2y+1=0相离,化圆x2+y2-2x+2y+1=0为(x-1)2+(y+1)2=1,圆心坐标为C(1,-1),半径为1.连接CA,CB,则CA⊥PA,CB⊥PB,则四边形PACB的面积等于两个全等直角三角形PAC与PBC的面积和.∵AC 是半径,为定值1,要使三角形PAC 的面积最小,则PC 最小, |PC|=,∴|PA|=.∴四边形PACB 面积的最小值为2×.故答案为:.由题意画出图形,可知要使四边形PACB 面积最小,则P 为过圆心作直线3x+4y+8=0的垂线得垂足,由点到直线的距离公式求得PC ,再由勾股定理得弦长,代入三角形面积公式得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.13.【答案】2x -y +5=0【解析】解:∵∠B 、∠C 的平分线分别是x=0,y=x ,∴AB 与BC 对于x=0对称,AC 与BC 对于y=x 对称. ∴A (3,-1)关于x=0的对称点A'(-3,-1)在直线BC 上, A 关于y=x 的对称点A''(-1,3)也在直线BC 上. 代入两点式方程可得,故所求直线BC 的方程:2x-y+5=0. 故答案为:2x-y+5=0分析题意,求出A 关于x=0,y=x ,的对称点的坐标,都在直线BC 上,利用两点式方程求解即可.本题考查点关于直线对称点的求法,直线方程的求法,属中档题.14.【答案】(-∞,4−√3014)∪(4+√3014,+∞) 【解析】解:由于对于l 上任意一点P ,∠MPN 恒为锐角,故以MN 为直径的圆与直线l :kx-y-3k+2=0相离.而MN的中点,即圆心为H(-1,1),则点H到直线l:kx-y-3k+2=0的距离大于半径MN=,即>,即(1-4k)2>2(1+k2),解得k<,或 k>,故答案为:(-∞,)∪(,+∞)由题意可得,以MN为直径的圆与直线l:kx-y-2k+2=0相离,故圆心H(-1,1)到直线l:kx-y-3k+2=0的距离大于半径,即>,由此解得k 的范围.本题主要考查点到直线的距离公式,直线和圆的位置关系,绝对值不等式的解法,体现了转化的数学思想,属于中档题.15.【答案】证明:(1)连接BD交AC于F,连EF.因为F为正方形ABCD对角线的交点,所长F为AC、BD的中点.在DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面EAC,所以BD1∥平面EAC.(2)由正方形的性质可得AC⊥BD又由正方体的几何特征可得:D1D⊥平面ABCD又∵AC⊂平面ABCD∴AC⊥D1D又∵D1D∩BD=D∴AC⊥平面D1DB∵BD1⊂平面D1DB∴AC⊥BD1【解析】(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;(2)根据正方形的性质及正方体的几何特征,结合线面垂直的性质,可得AC⊥BD,AC⊥D1D,由线面垂直的判定定理可得AC⊥平面D1DB,再由线面垂直的性质即可得到AC⊥BD1本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面垂直的性质,熟练掌握空间线线,线面垂直及平行的判定定理,性质定理及几何特征是解答此类问题的关键.16.【答案】解:(1)△ABC是等腰三角形,对称轴为x=0.外接圆的圆心肯定在x=0上.作AC的中垂线,垂足为D,交y轴于M,M即为外接圆的圆心.AC=a.因为A(0,a),C(√3a,0),故∠MAC=60°,AD=12△AMD又是一个∠MAD=60°的直角三角形.故AM=2a.所以,点M的坐标为(0,-a),圆的半径r=MA=MB=MC=2a.故圆M的方程为:x2+(y+a)2=4a2(a>0).(2)假设圆M过某一定点(x,y).那么当a变化时,圆M仍然过点(x,y),此点不会随着a的变化而变化.那么,现在令a变成了b,即a≠b.有x2+(y+b)2=4b2,两式相减化简得:(2y+a+b)(a-b)=4(a+b)(a-b).因为a≠b,即a-b≠0,所以,2y+a+b=4(a+b).得:y=3(a+b).2得出,y是一个根据a和b取值而变化的量.与我们之前假设的y是一个不随a变化而变化的定量矛盾,所以,圆M不过定点.【解析】(1)确定圆心与半径,即可求圆M的方程(2)利用反证法进行判断.本题考查圆的方程,考查反证法,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)∵E,F分别为线段AC1,A1C1的中点.∴EF是三角形AA1C1的中位线,∴EF∥AA1,又AA1∥BB1,∴EF∥BB1,∵EF⊄面BCC1B1,BB1⊂面BCC1B1,∴EF∥面BCC1B1.(2)∵AB⊥BC,BC⊥BC1,∴BC⊥面ABC1,∴BC⊥BE,同时BC∥B1C1,∵AB=BC1,E是线段AC1的中点.∴BC⊥AC1,∵AC1∩B1C1=C1,∴BE⊥平面AB1C1【解析】(1)根据线面平行的判定定理,证明EF∥BB1;从而证明EF∥面BCC1B1;(2)根据线面垂直的判定定理证明BE⊥平面AB1C1.本题主要考查空间直线和平面平行和垂直的判定,要求熟练掌握线面平行和垂直的判定定理.并能灵活应用.18.【答案】解:(1)依题意可设A (m ,n )、B (2-m ,2-n ),则{2(2−m)+(2−n)−6=0m−n+3=0,即{2m +n =0m−n=−3,解得m =-1,n =2.即A (-1,2),又l 过点P (1,1),用两点式求得AB 方程为y−12−1=x−1−1−1,即:x +2y -3=0. (2)圆心(0,0)到直线l 的距离d =|0+0−3|√1+4=3√5,设圆的半径为R ,则由R 2=d 2+(4√55)2, 求得R 2=5,故所求圆的方程为x 2+y 2=5.【解析】(1)依题意可设A (m ,n )、B (2-m ,2-n ),分别代入直线l 1 和l 2的方程,求出m=-1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l 的距离d ,设圆的半径为R ,则由,求得R 的值,即可求出圆的方程.本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.19.【答案】解:(1)因为PDCB 为等腰梯形,PB =3,DC =1,PA =1,则PA ⊥AD ,CD ⊥AD .又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD =AD ,CD ⊂面ABCD ,故CD ⊥面PAD .又因为CD ⊂面PCD ,所以平面PAD ⊥平面PCD . (2)所求的点M 即为线段PB 的中点,证明如下: 设三棱锥M -ACB 的高为h 1,四棱锥P -ABCD 的高为h 2当M 为线段PB 的中点时,ℎ1ℎ2=MB PB =12.所以V M−ACBVp−ABCD=13S MCB ℎ113S ABCD ℎ2=13所以截面AMC 把几何体分成的两部分V PDCMA :V M -ACB =2:1.(3)当M 为线段PB 的中点时,直线PD 与面AMC 不平行.证明如下:(反证法)假设PD ∥面AMC ,连接DB 交AC 于点O ,连接MO . 因为PD ⊂面PDB ,且面AMC ∩面PBD =MO ,所以PD ∥MO . 因为M 为线段PB 的中点时,则O 为线段BD 的中点,即DOOB =11. 面AB ∥DC ,故DOOB =DCAB =12,故矛盾.所以假设不成立,故当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 【解析】(1)证明平面与平面垂直是要证明CD ⊥面PAD ;(2)已知V 多面体PDCMA :V 三棱锥M-ACB 体积之比为2:1,求出V M-ACB :V P-ABCD 体积之比,从而得出两多面体高之比,从而确定M 点位置.(3)利用反证法证明当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 本题主要考查面面垂直的判定定理、多面体体积、线面平行判定以及反证法的应用,属于中等难度题.20.【答案】解:(1)由{y =x −1y=2x−4得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x -3)2+(y -2)2=1,显然切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx -y +3=0, ∴√k 2+1=1∴|3k +1|=√k 2+1,∴2k (4k +3)=0∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3.即y =3或者3x +4y -12=0.(2)∵圆C 的圆心在在直线l :y =2x -4上, 所以,设圆心C 为(a ,2a -4),则圆C 的方程为:(x -a )2+[y -(2a -4)]2=1, 又∵MA =2MO ,∴设M 为(x ,y )则√x 2+(y −3)2=2√x 2+y 2整理得:x 2+(y +1)2=4设为圆D , ∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点,∴1≤CD ≤3,∴|2−1|≤√a 2+[(2a −4)−(−1)]2≤|2+1|, 由5a 2-12a +8≥0得a ∈R , 由5a 2-12a ≤0得0≤a ≤125,综上所述,a 的取值范围为:[0,125]. 【解析】(1)求出圆心C 为(3,2),圆C 的半径为1,得到圆的方程,切线的斜率一定存在,设所求圆C 的切线方程为y=kx+3,即kx-y+3=0,利用圆心到直线的距离等于半径,求解k 即可得到切线方程.(2)设圆心C 为(a ,2a-4),圆C 的方程为:(x-a )2+[y-(2a-4)]2=1,设M 为(x ,y )列出方程得到圆D的方程,通过圆C和圆D有交点,得到1≤CD≤3,转化求解a的取值范围.本题考查直线与圆的方程的综合应用,圆心切线方程的求法,考查转化思想以及计算能力.。

江苏省苏州市2021届高三第一学期开学调研数学试卷

江苏省苏州市2021届高三第一学期开学调研数学试卷

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限 3.421(2)x x-的展开式中x 的系数为 A .﹣32B .32C .﹣8D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为 A .0.2 B .0.3 C .0.4 D .0.65.在△ABC 中,AB+AC=2AD ,AE+2DE=0,若EB=XAB+YAC ,则 A .y =2x B .y =﹣2x C .x =2y D .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Qlog 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为 A .1800 B .2700 C .7290 D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是 A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1 C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 1外接球半径为3 8.设a >0,b >0,且2a +b =1,则12a a a b++ A .有最小值为4B .有最小值为221+ C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()Ry f t ==sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有 A .()y f x =的图象不经过第三象限 B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点 12.数列{}n a 为等比数列 A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+=.14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为.15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k =. 16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2=3S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC 中,a =()3f π,且,求2b +c 的取值范围. 18.(本小题满分12分)已知各项均不相等的等差数列{}n a 的前4项和为10,且1a ,2a ,4a 是等比数列{}n b 的前 3项.(1)求{}n a ,{}n b ; (2)设1(1)n n n n c b a a =++,求{}n c 的前n 项和n S .19.(本小题满分12分)如图,在四棱锥S —ABCD 中,ABCD 是边长为4的正方形,SD ⊥平面ABCD ,E ,F 分别为AB ,SC 的中点.(1)证明:EF ∥平面SAD ;(2)若SD =8,求二面角D —EF —S 的正弦值.20.(本小题满分12分)某省2021年开始将全面实施新高考方案,在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A ,B ,C ,D ,E 共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)某校生物学科获得A 等级的共有10名学生,其原始分及转换分如表:现从这10名学生中随机抽取3人,设这3人中生物转换分不低于95分的人数为X ,求X 的分布列和数学期望;(2)假设该省此次高一学生生物学科原始分Y 服从正态分布N(75.8,36).若Y~N(μ,2σ),令Y μησ-=,则η~N(0,1),请解决下列问题:①若以此次高一学生生物学科原始分C 等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留整数)②现随机抽取了该省800名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记ξ为被抽到的原始分不低于71分的学生人数,求P(ξ=k )取得最大值时k 的值.附:若η~N(0,1),则P(η≤0.8)≈0.788,P(η≤1.04)≈0.85. 21.(本小题满分12分)如图,已知椭圆22221x y a b+=(a >b >0)的长轴两个端点分别为A ,B ,P(0x ,0y )(0y >0)是椭圆上的动点,以AB 为一边在x 轴下方作矩形ABCD ,使AD =kb (k >0),PD 交AB 于 E ,PC 交AB 于F .(1)若k =1,△PCD 的最大面积为12,离心率为3,求椭圆方程; (2)若AE ,EF ,FB 成等比数列,求k 的值.22.(本小题满分12分)已知函数()ln sin 1f x x x x =-++.(1)求证:()f x 的导函数()f x '在(0,π)上存在一零点; (2)求证:()f x 有且仅有两个不同的零点.。

2019-2020学年江苏省苏州市吴中区八年级下学期期中数学试卷 (解析版)

2019-2020学年江苏省苏州市吴中区八年级下学期期中数学试卷 (解析版)

2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列代数式中属于分式的是()A.B.C.D.a2.下列图案中,不是中心对称图形的是()A.B.C.D.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣64.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的5.下列分式是最简分式的()A.B.C.D.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.410.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).12.当x=时,分式无意义.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为.(用“<”连接)14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=.16.当m=时,解分式方程=会出现增根.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.20.解方程:=1.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C 类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足时,四边形EFGH是正方形.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填涂在答题卷相对应的位置上.)1.下列代数式中属于分式的是()A.B.C.D.a【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.解:、、a的分母中不含有字母,属于整式.的分母中含有字母,属于分式.故选:B.2.下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣6【分析】直接把点(3,﹣2)代入y=,然后求出k即可.解:把点(3,﹣2)代y=得﹣2×3=k,∴k=﹣6,故选:D.4.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【分析】依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.5.下列分式是最简分式的()A.B.C.D.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选:C.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称【分析】根据反比例函数的性质和题目中的函数解析式,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵反比例函数y=﹣,∴当x=1时,y=﹣4,即图象经过点(1,﹣4),故选项A正确;它的图象在第二、四象限,故选项B错误;当x>0时,y随x的增大而增大,故选项C正确;图象关于原点中心对称,故选项D正确;故选:B.8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.4【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.解:∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=16,∴EF=8,故选:C.10.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,∴S四边形ABMD=AM2,故④小题正确,综上所述,正确的是①②③④共4个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.12.当x=2时,分式无意义.【分析】根据分母等于0,分式无意义列式进行计算即可求解.解:根据题意得,x﹣2=0,解得x=2.故答案为:2.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为b<a.(用“<”连接)【分析】直接利用反比例函数的增减性分析得出答案.解:∵反比例函数y=中,k=4>0,∴在每个象限内,y随x的增大而减小,∵点A(1,a),B(3,b)都在反比例函数y=的图象上,且3>1,∴b<a,故答案为:b<a.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为60°.【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定,可得答案.解:由矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,得∠ABC=90°,∠BAO=90°﹣∠ACB=60°.由OA=OB,得△ABO是等边三角形,∠AOB=60°,故答案为:60°15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=﹣3.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.当m=2时,解分式方程=会出现增根.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.解:分式方程可化为:x﹣5=﹣m,由分母可知,分式方程的增根是3,当x=3时,3﹣5=﹣m,解得m=2,故答案为:2.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x 轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(+)×(2m﹣m)=.故答案为:.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=1﹣•=1﹣=.20.解方程:=1.【分析】因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解:方程两边同乘(x+1)(x﹣1),得:x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得:x=2.经检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解为:x=2.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【分析】(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x 的增大而增大,进而可得:m﹣5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=﹣x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=0.3,b=6;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【分析】(1)根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;(2)用类别为B的学生数所占的百分比乘以360°,即可得出答案;(3)用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:调查结果估计该校学生中类别为C的人数约为240名.23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?【分析】设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据数量=总价÷单价结合购进第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批饮料进货单价为8元.25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足AC⊥BD,且AC=BD时,四边形EFGH是正方形.【分析】(1)连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)①根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.根据邻边相等的矩形是正方形即可证明.解:(1)四边形EFGH是平行四边形,理由如下:如答图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)如答图2,连接BD.①当AC⊥BD时,四边形EFGH为矩形;理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.理由:∵EH=BD,EF=AC,BD=AC,∴EH=EF,∵当AC⊥BD时,四边形EFGH是矩形,∴四边形EFGH是正方形.故答案是:AC⊥BD,且AC=BD.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM =CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。

江苏省苏州市2023-2024学年高二上学期期中考试数学试题含解析

江苏省苏州市2023-2024学年高二上学期期中考试数学试题含解析

2023~2024学年第一学期高二期中调研试卷数学(答案在最后)注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页、包含单项选择题(第1题~第8题),多项选择题(第9题~第12题).填空题(第13题~第16题)、解答题(第17题~第22题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的学校、班级、姓名、考试号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效,作答必须用0.5毫米黑色墨水的签字笔,请注意字体工整,笔迹清楚.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应的位置上.1.直线320x y +-=的方向向量为()A.()1,3- B.()1,3 C.()3,1- D.()3,1【答案】A 【解析】【分析】根据直线的斜率得到直线的一个方向向量为()1,k ,再求其共线向量即可.【详解】由题意得直线320x y +-=的斜率为-3,所以直线的一个方向向量为()1,3-,又()()1,31,3-=--,所以()1,3-也是直线320x y +-=的一个方向向量.故选:A.2.等差数列{}n a 中,若39218a a +=,则263a a +的值为()A.36B.24C.18D.9【答案】B 【解析】【分析】由等差数列通项公式求基本量得5146d a a +==,再由2639532a a a a a +=++即可求值.【详解】令{}n a 的公差为d ,则3911122(2)831218a a a d a d a d +=+++=+=,即5146d a a +==,则2624683953218624a a a a a a a a a +=+++=++=+=.故选:B3.与直线3x﹣4y+5=0关于y 轴对称的直线方程是()A.3x+4y+5=0 B.3x+4y﹣5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0【答案】B 【解析】【分析】分别求出直线3450x y -+=与坐标轴的交点,分别求得关于y 轴的对称点,即可求解直线的方程.【详解】令0x =,则54y =,可得直线3450x y -+=与y 轴的交点为5(0,)4,令0y =,则53x =-,可得直线3450x y -+=与x 轴的交点为5(,0)3-,此时关于y 轴的对称点为5(,0)3,所以与直线3450x y -+=关于y 轴对称的直线经过两点55(0,),(,0)43,其直线的方程为15534x y +=,化为3450x y +-=,故选B .【点睛】本题主要考查了直线方程点的求解,以及点关于线的对称问题,其中解答中熟记点关于直线的对称点的求解,以及合理使用直线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.4.经过原点和点()3,1-且圆心在直线350x y +-=上的圆的方程为()A.()()22510125x y -++= B.()()22125x y ++-=C.()()22125x y -+-= D.2252539x y ⎛⎫-+=⎪⎝⎭【答案】D 【解析】【分析】令圆心为(,53)x x -,由圆所经过的点及两点距离公式列方程求出圆心坐标,即可写出圆的方程.【详解】由题设,令圆心为(,53)x x -,又圆经过原点和点()3,1-,所以()()()2222253363r x x x x =+-=-+-,整理可得53x =,故圆心为5(,0)3,所以半径平方2259r =,则圆的方程为2252539x y ⎛⎫-+= ⎪⎝⎭.故选:D5.设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,0n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由等差数列的通项公式和一次函数性质,结合充分、必要性定义判断条件间的推出关系即可.【详解】令{}n a 公差为d 且0d ≠的无穷等差数列,且11(1)()n n d a a a dn d =+-=+-,若{}n a 为递减数列,则0d <,结合一次函数性质,不论1a 为何值,存在正整数0N ,当0n N >时0n a <,充分性成立;若存在正整数0N ,当0n N >时0n a <,由于0d ≠,即{}n a 不为常数列,故1()n a dn a d =+-单调递减,即0d <,所以{}n a 为递减数列,必要性成立;所以“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,0n a <”的充分必要条件.故选:C6.已知点()4,3P ,点Q 在224x y +=的圆周上运动,点M 满足PM MQ =,则点M 的运动轨迹围成图形的面积为()A.πB.2πC.3πD.4π【答案】A 【解析】【分析】设(,)M x y ,00(,)Q x y ,由动点转移法求得M 点轨迹方程,由方程确定轨迹后可得面积.【详解】设(,)M x y ,00(,)Q x y ,由PM MQ =得M 是线段PQ 中点,∴002423x x y y =-⎧⎨=-⎩,又Q 在圆224x y +=上,22(24)(23)4x y -+-=,即223(2)()12x y -+-=,∴M 点轨迹是半径为1的圆,面积为πS =,故选:A .7.等比数列{}n a 中,123453a a a a a ++++=,222221234515a a a a a ++++=,则12345a a a a a -+-+=()A.5-B.1-C.5D.1【答案】C 【解析】【分析】由等比数列前n 项和公式写出已知与待求式后,进行比较,已知两式相除即得.【详解】设公比为q ,显然1q ≠±,则由题意得5121012(1)31(1)151a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,两式相除得51(1)51a q q +=+,所以551112345[1()](1)51()1a q a q a a a a a q q--+-+-+===--+,故选:C.8.过点()2,0P 作圆2241x y y +-=的两条切线,设切点分别为,A B ,则PAB 的面积为()A.8B.2C.8D.【答案】A 【解析】【分析】写出圆的标准方程得圆心为(0,2)C,半径r =,进而有||CP =,由圆的切线性质得||||BP AP ==,sin BPC BPC ∠=∠=,2BPA BPC ∠=∠,最后应用倍角正弦公式、三角形面积公式求PAB 面积.【详解】由题设,圆的标准方程为22(2)5x y +-=,圆心为(0,2)C,半径r =,所以||CP =,如下图示,切点分别为,A B,则||||BP AP ===,所以||||sin ||||BC BP BPC BPC CP CP ∠==∠==2BPA BPC ∠=∠,所以15sin sin 22sin cos 4BPA BPC BPC BPC ∠=∠=∠∠=,所以11||||sin 2248PAB S BP AP BPA =∠==.故选:A二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求、全部选对得5分,选对但不全得2分,选错或不答得0分,请把正确的选项填涂在答题卡相应的位置上.9.已知直线:0l x my m ++=,若直线l 与连接()()3,2,2,1A B -两点的线段总有公共点,则直线l 的倾斜角可以是()A.2π3 B.π2C.π4D.π6【答案】ABC 【解析】【分析】求出直线l 过的定点,从而求得,AC BC k k ,进而利用数形结合可得直线l 倾斜角的范围,由此得解.【详解】因为直线:0l x my m ++=可化为()10x y m ++=,所以直线l 过定点()0,1C -,又()()3,2,2,1A B -,所以()21130AC k --==---,()11120BC k --==-,故直线AC 的倾斜角为3π4,直线BC 的倾斜角为π4,结合图象,可知直线l 的倾斜角范围为π3π,44⎡⎤⎢⎥⎣⎦,故ABC 正确,D 错误.故选:ABC.10.设,n n S T 分别是等差数列{}n a 和等比数列{}n b 的前()*Nn n ∈项和,下列说法正确的是()A.若15160a a +>,15170a a +<,则使0n S >的最大正整数n 的值为15B.若5nn T c =+(c 为常数),则必有1c =-C.51051510,,S S S S S --必为等差数列D.51051510,,T T T T T --必为等比数列【答案】BCD 【解析】【分析】A 由已知可得129152d a d -<<-,且0d <,再应用等差数列前n 项和公式及0n S >得1201a n d<<-,即可判断;B 由等比数列前n 项和公式有11511n n n b b q T c q q =-=+--,即可判断;C 、D 根据等差、等比数列片段和的性质直接判断.【详解】令{}n a 的公差为d ,则11(1)()n n d a a a dn d =+-=+-,所以151611517122902300a a a d a a a d +=+>⎧⎨+=+<⎩,故129152d a d -<<-,且0d <,使211(1)()0222n n n d dS na d n a n -=+=+->,则1201a n d <<-,而122930a d <-<,即121(30,31)ad-∈,故030n <≤,所以使0n S >的最大正整数n 的值为30,A 错;令{}n b 的公比为q 且0q ≠,则()11115111nnn n b q b b q T c qq q-==-=+---(公比不能为1),所以1511q b q =⎧⎪⎨=-⎪-⎩,即1c =-,B 对;根据等差、等比数列片段和的性质知:51051510,,S S S S S --必为等差数列,51051510,,T T T T T --必为等比数列,C 、D 对.故选:BCD11.已知等比数列{}n a 的公比为q ,前()*Nn n ∈项和为nS,前()*Nn n ∈项积为nT ,若1132a=,56T T =,则()A.2q = B.当且仅当6n =时,n T 取得最小值C.()*11N ,11n n T T n n -=∈< D.n n S T >的正整数n 的最大值为11【答案】AC 【解析】【分析】根据56T T =确定6a ,561a q a =求出q 的值确定A ,根据数列项的变化,确定B ,利用等比数列的基本量运算判断C ,根据n n S T >转化二次不等式,从而确定正整数n 的最大值判断D.【详解】对于A ,因为56T T =,所以6651T a T ==,因为56132a q a ==,解得2q =,故A 正确;对于B ,注意到61a =,故15,Z n n ≤≤∈时,01n a <<,7,Z n n ≥∈时,1n a >,所以当5n =或6n =时,n T 取得最小值,故B 错误;对于C ,()()()21111215*221231222N ,11n n n nnn n n n T a a a a a q n n --+++--===⋅=∈< ,()()()()2111011111112105*221112111222N ,11n n n n nn n n n T a a a a q n n -----+++----===⋅=∈< ,所以()*11N ,11n n T T n n -=∈<,故C 正确;对于D ,()1512112n n n a q S q--==-,21122n n n T -=,因为n n S T >,所以211252212n nn -->,即211102212n n n -+->,所以211102212n n n -+->,即211102n n n -+>,所以131322n <<,正整数n 的最大值为12,故D 错误,故选:AC.12.已知圆22:4C x y +=,圆22:860M x y x y m +--+=()A.若8m =,则圆C 与圆M 相交且交线长为165B.若9m =,则圆C 与圆M 有两条公切线且它们的交点为()3,4--C.若圆C 与圆M 恰有4条公切线,则16m >D.若圆M 恰好平分圆C 的周长,则4m =-【答案】AD 【解析】【分析】A 、B 将圆M 化为标准形式,确定圆心和半径,判断圆心距与两圆半径的关系,再求相交弦长判断;C 由题意知两圆相离,根据圆心距大于两圆半径之和及圆的方程有意义求参数范围;D 由题意相交弦所在直线必过(0,0)C ,并代入相交弦方程求参数即可.【详解】A :8m =时圆22:(4)(3)17M x y -+-=,则(4,3)M,半径r =,而圆22:4C x y +=中(0,0)C ,半径2r '=,所以||5CM =,2||2CM -<<+,即两圆相交,此时相交弦方程为4360x y +-=,所以(0,0)C 到4360x y +-=的距离为65d =,故相交弦长为1625=,对;B :9m =时圆22:(4)(3)16M x y -+-=,则(4,3)M ,半径4r =,同A 分析知:42||42CM -<<+,故两圆相交,错;C :若圆C 与圆M 恰有4条公切线,则两圆相离,则||2CM r r r '>+=+,而圆22:(4)(3)25M x y m -+-=-,即r =所以250162525m m ->⎧⎪⇒<<⎨<⎪⎩,错;D :若圆M 恰好平分圆C 的周长,则相交弦所在直线必过(0,0)C ,两圆方程相减得相交弦方程为8640x y m +--=,将点代入可得4m =-,对.故选:AD三、填空题:本题共4小题,每小题5分,共20分,请把答案写在答题卡相应的位置上.13.若{}n a 是公差不为0的等差数列,248,,a a a 成等比数列,11a =,n S 为{}n a 的前()*Nn n ∈项和,则1210111S S S +++ 的值为___________.【答案】2011【解析】【分析】由等差数列中248,,a a a 成等比数列,解出公差为d ,得到n a ,求出n S ,裂项相消求1210111S S S +++ 的值.【详解】设等差数列{}n a 公差为d ,248,,a a a 成等比数列,由2428a a a =,则()()()211137a d a d a d +=++,即()()()213117d d d +=++,由0d ≠,得1d =,所以()11n a a n d n =+-=,则有()()1122n n n a a n n S ++==,得()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,所以121011111101111112021211221311S S S ⎛⎫⎛⎫+++=-+-++=-= ⎪ ⎪⎝⎭⎝⎭- .故答案为:201114.平面直角坐标系xOy 中,过直线1:7310l x y -+=与2:430l x y +-=的交点,且在y 轴上截距为1的直线l 的方程为_______________.(写成一般式)【答案】9550x y +-=【解析】【分析】设交点系方程,结合直线过(0,1)求方程即可.【详解】由题设,令直线l 的方程为731(43)0x y x y λ-+++-=,且直线过(0,1),所以031(043)02λλ-+++-=⇒=,故直线l 的方程为9550x y +-=.故答案为:9550x y +-=15.如图,第一个正六边形111111A B C D E F 的面积是1,取正六边形111111A B C D E F 各边的中点222222,,,,,A B C D E F ,作第二个正六边形222222A B C D E F ,然后取正六边形222222A B C D E F 各边的中点333333,,,,,A B C D E F ,作第三个正六边形,依此方法一直继续下去,则前n 个正六边形的面积之和为_______________.【答案】3414n ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦【解析】【分析】根据题设分析出前n 个正六边形的面积是首项为1,公比为34的等比数列,应用等比数列前n 项和公式求面积和.【详解】由题设知:后一个正六边形与前一个正六边形的边长比值为2,故它们面积比为34,所以前n 个正六边形的面积是首项为1,公比为34的等比数列,所以前n 个正六边形的面积之和31()344[1()]3414nn S -==--.故答案为:34[1()]4n-16.已知实数,,a b c 成等差数列,在平面直角坐标系xOy 中,点()4,1A ,O 是坐标原点,直线:230l ax by c ++=.若直线OM 垂直于直线l ,垂足为M ,则线段AM 的最小值为___________.【答案】【解析】【分析】由等差数列的性质及直线方程有:()(3)0l a x y c y +++=,求出直线所过的定点,结合已知M 在以||OB 为直径的圆上,且圆心33(,22C -,半径为2,问题化为求()4,1A 到该圆上点距离的最小值.【详解】由题设2b a c =+,则:()30l ax a c y c +++=,即:()(3)0l a x y c y +++=,令03303x y x y y +==⎧⎧⇒⎨⎨+==-⎩⎩,即直线l 恒过定点(3,3)B -,又OM l ⊥,所以M 在以||OB 为直径的圆上,且圆心33(,)22C -,半径为2,要求AM 的最小值,即求()4,1A 到该圆上点距离的最小值,而52||2CA =,所以min 22AM =-=四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知直线()1:2120l x a y ---=,()()()2:22130R l a x a y a ++++=∈.(1)若12l l ⊥,求实数a 的值;(2)若1//l 2l ,求12,l l 之间的距离.【答案】(1)1a =-或52;(2【解析】【分析】(1)由两线垂直的判定列方程求参数即可;(2)由两线平行的判定列方程求参数,注意验证是否存在重合情况,再应用平行线距离公式求距离.【小问1详解】由12l l ⊥,则2(2)(1)(21)0a a a +--+=,即22350a a --=,所以(25)(1)0a a -+=,可得1a =-或52.【小问2详解】由1//l 2l ,则22121a a a++=-,可得250a a +=,故0a =或5-,当0a =,则1:220l x y +-=,2:230l x y ++=,此时满足平行,且12,l l=;当5a =-,则1:310l x y +-=,2:310l x y +-=,此时两线重合,舍;综上,1//l 2l 时12,l l18.已知等差数列{}n a ,前()*Nn n ∈项和为n S ,又294,90a S ==.(1)求数列{}n a 的通项公式n a ;(2)设9n n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)2n a n =(2)()()228,14,N 832,5,N n n n n n T n n n n **⎧-≤≤∈⎪=⎨-+≥∈⎪⎩【解析】【分析】(1)根据等差数列的求和公式和等差数列的通项公式即得.(2)由992n n b a n =-=-,令920n c n =->求出n 的取值范围,再分段求出数列{}n b 的前n 项和nT 【小问1详解】设等差数列的公差为d ,首项为1a ,因为990S =,所以()199599902a a S a +===,所以510a =,由5231046a a d -==-=,解得2d =,又24a =,所以()()224222n a a n d n n =+-=+-⨯=;【小问2详解】992n n b a n=-=-设92n c n =-,{}n c 的前n 项和为n S ,得()279282n n S n n n +-=⨯=-,920n c n =->,得92n <当14n ≤≤时,0n c >,即n n b c =,所以214,8n n n T S n n≤≤==-当5n ≥时,得0n c <,所以n n b c =-,则()()12456n n T c c c c c c =+++-+++ ()()224442328832n n S S S S S n n n n =--=-=--=-+综上所述:()()228,14,N 832,5,N n n n n n T n n n n **⎧-≤≤∈⎪=⎨-+≥∈⎪⎩19.已知数列{}n a 的首项123a =,且满足121n n na a a +=+.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)设()11n n n b a --=,求数列{}n b 的前2n 项和2n S .【答案】(1)证明见解析(2)4134n n-⨯【解析】【分析】(1)121n n n a a a +=+,取倒数得1112n n n a a a ++=,化简整理即可判断11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)法一:将2n S 转化为()1111n n a +⎧⎫⎛⎫⎪⎪--⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和,结合(1)中结论即可得解;法二:结合(1)中结论得()1112n n n b -⎛⎫=--- ⎪⎝⎭,应用分组求和及等比数列的前n 项和公式即可得解.【小问1详解】因为1122,13n n n a a a a +==+,所以0n a ≠,所以11111222n n n n a a a a ++==+,所以1111122n n a a +-=-,即11111(1)2n na a +-=-因为11211,1032a a =-=≠,1111121n na a +-=-,所以11n a ⎧⎫-⎨⎬⎩⎭是以12为首项,12为公比的等比数列;【小问2详解】法一:21234212111111n n nS a a a a a a -=-+-++- 1234212111111111111n n a a a a a a -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---+---++-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭易知()1111n n a +⎧⎫⎛⎫⎪⎪--⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是以12为首项,12-为公比的等比数列,所以2221111122412133412n n n n n S ⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪- ⎪⎝⎭-⎢⎥⎣⎦⎝⎭===⨯⎛⎫-- ⎪⎝⎭;法二:由(1)1112n n a ⎛⎫-= ⎪⎝⎭,所以1112n n a ⎛⎫=+ ⎪⎝⎭,所以()()111112n nn n n b a ---⎛⎫==--- ⎪⎝⎭所以22211111224120133412n n n n n S ⎡⎤⎛⎫⎛⎫⎛⎫---⎢⎥ ⎪ ⎪- ⎪⎝⎭⎝⎭-⎢⎥⎣⎦⎝⎭=-==⨯⎛⎫-- ⎪⎝⎭.20.如图,等腰梯形ABCD 中,AB ∥CD ,28AB CD ==,,AB CD 间的距离为4,以线段AB 的中点为坐标原点O ,建立如图所示的平面直角坐标系,记经过,,,A B C D 四点的圆为圆M .(1)求圆M 的标准方程;(2)若点E 是线段AO 的中点,P 是圆M 上一动点,满足24PO PE ≥,求动点P 横坐标的取值范围.【答案】(1)2216524x y ⎛⎫+-= ⎪⎝⎭(2)652,2⎡⎢⎣⎦【解析】【分析】(1)根据圆所过点的坐标求解圆的方程即可.(2)根据P 是圆M 上一动点,满足24PO PE ≥,设P 点坐标带入化简求解,依据图像即可得出答案.【小问1详解】如图,因为28AB CD ==,,AB CD 间的距离为4,所以()()()()4,0,4,0,2,4,2,4A B C D --,经过,,,A B C D 四点的圆即经过,,A B C 三点的圆,法一:AB 中垂线方程即0x =,BC 中点为()3,2,04242BC k -==--,所以BC 的中垂线方程为()1232y x -=-,即1122y x =+,联立01122x y x =⎧⎪⎨=+⎪⎩,得圆心坐标10,2M ⎛⎫ ⎪⎝⎭,()2216540022MB ⎛⎫=-+- ⎪⎝⎭所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;法二:设圆M 的一般方程为()2222040x y Dx Ey F D E F ++++=+->,代入()()()4,0,4,0,2,4A B C -,4160416024200D F D F D E F -++=⎧⎪++=⎨⎪+++=⎩解得0116D E F =⎧⎪=-⎨⎪=-⎩,所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;法三:以AB 为直径的圆方程为()()2440x x y +-+=,直线:0AB y =,设圆M 的方程为()()2440x x y y λ+-++=,代入()2,4C ,解得1λ=-,所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;【小问2详解】()2,0E -,设圆M 上一点(),P x y ,()(),,2,PO x y PE x y =--=--- ,因为24PO PE ≥,所以()()()224x x y y ---+--≥,即222240x y x ++-≥,由222240x y x ++-≥对应方程为圆()22222240125x y x x y ++-=⇒++=所以P 点在圆()22125x y ++=上及其外部,22221602240x y y x y x ⎧+--=⎨++-=⎩解得122,4x x ==,所以两圆交点恰为()()4,0,2,4B C ,结合图形,当圆M 上一点纵坐标为12时,横坐标为342x =>,所以点P横坐标的取值范围是2,2⎡⎢⎣⎦..21.平面直角坐标系xOy 中,直线0:3213x y l +-=,圆M :22128480x y x y +--+=,圆C 与圆M 关于直线l 对称,P 是直线l 上的动点.(1)求圆C 的标准方程;(2)过点P 引圆C 的两条切线,切点分别为,A B ,设线段AB 的中点是Q ,是否存在定点H ,使得QH 为定值,若存在,求出该定点H 的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)存在;64,1313H ⎛⎫⎪⎝⎭【解析】【分析】(1)利用对称求出C 点坐标,即可得到圆C 的标准方程;(2)设P 点坐标,,A B 在以PC 为直径的圆N 上,由圆C 与圆N 求公共弦AB ,得直线AB 过定点T ,Q 点是在以CT 为直径的圆上,所以存在点H 是CT 的中点,使得QH 为定值.【小问1详解】圆M 化成标准方程为()()22644x y -+-=,圆心()6,4M ,半径为2,设圆心()00,C x y ,圆C 与圆M 关于直线l 对称,直线0:3213x y l +-=的斜率为32-,所以00004263643213022y x x y -⎧=⎪-⎪⎨++⎪⨯+⨯-=⎪⎩,解得0000x y =⎧⎨=⎩,所以()0,0C ,圆C 的方程为224x y +=.【小问2详解】因为P 是直线l 上的动点,设132,32P t t ⎛⎫- ⎪⎝⎭,,PA PB 分别与圆C 切于,A B 两点,所以,CA PA CB PB ⊥⊥,所以,A B 在以PC 为直径的圆N上,圆N 的方程()22221331334242t t x t y t ⎡⎤⎛⎫⎛⎫-+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即22132302x y tx t y ⎛⎫+-+-= ⎪⎝⎭AB 为圆C 与圆N 的公共弦,由222240132302x y x y tx t y ⎧+-=⎪⎨⎛⎫+-+-= ⎪⎪⎝⎭⎩,作差得AB 方程为1323402tx t y ⎛⎫---= ⎪⎝⎭即()1323402t x y y -+-=令23013402x y y -=⎧⎪⎨-=⎪⎩得1213813x y ⎧=⎪⎪⎨⎪=⎪⎩,设128,1313T ⎛⎫ ⎪⎝⎭,所以直线AB 过定点128,1313T ⎛⎫ ⎪⎝⎭,又Q 是AB 中点,所以CQ AB ⊥,则有Q 点是在以CT 为直径的圆上,所以存在点H 是CT 的中点,使得12QH CT =为定值,坐标为64,1313H ⎛⎫ ⎪⎝⎭.22.记首项为1的递增数列为“W -数列”.(1)已知正项等比数列{}n a ,前()*Nn n ∈项和为n S ,且满足:222n n a S +=+.求证:数列{}n a 为“W -数列”;(2)设数列{}()*Nn b n ∈为“W -数列”,前()*N n n ∈项和为n S ,且满足()32*1N n i n i b S n ==∈∑.(注:3333121n i n i bb b b ==+++∑ )①求数列{}n b 的通项公式n b ;②数列{}()*N n c n ∈满足33n n n b b c =,数列{}n c 是否存在最大项?若存在,请求出最大项的值,若不存在,请说明理由.(参考数据: 1.44≈≈)【答案】(1)证明见解析(2)①n b n =;②存在;最大项为31c =【解析】【分析】(1)利用等比数列中,n n a S 的关系求解;(2)利用等差数列的定义以及,n n a S 的关系求解,并根据数列的单调性求最值.【小问1详解】设正项等比数列{}n a 的公比为()0q q >,因为222n n a S +=+,则3122n n a S ++=+,两式相减得3212n n n a a a +++-=,即()()()2112210n n a q q a q q ++--=-+=,因为0,0n a q >>,所以2q =,222n n a S +=+中,当1n =时,有3122=+a a ,即11422a a =+,解得11a =,因此数列{}n a 为“W -数列”;【小问2详解】①因为()32*1N n i n i bS n ==∈∑所以3211b b =,又{}n b 为“W -数列”,所以11b =,且1n n b b +>,所以{}n b 各项为正,当2n ≥,321n i ni b S ==∑①,13211n i n i b S --==∑②,①一②得:3221n n n b S S -=-,即()()311n n n n n b S S S S --=-+,所以21n n n b S S -=+③,从而211n n n b S S ++=+④,④-③得:2211n n n n b b b b ++-=+,即()()111n n n n n n b b b b b b ++++-=+,由于{}n b 为“W -数列”,必有10n n b b ++>,所以11n n b b +-=,()2n ≥,又由③知2221b S S =+,即22122b b b =+,即22220b b --=得22b =或21b =-(舍)所以211b b -=,故()*11n n b b n N +-=∈所以{}n b 是以1为首项,公差是1的等差数列,所以n b n =;②303n n n c =>,所以31113n n c n c n ++⎛⎫= ⎪⎝⎭,令311113n n c n c n ++⎛⎫=< ⎪⎝⎭,得 2.27n >≈,。

江苏省苏州市常熟市2019-2020学年高二下学期期中数学试卷及解析

江苏省苏州市常熟市2019-2020学年高二下学期期中数学试卷及解析

江苏省苏州市常熟市2019-2020学年高二下学期期中数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知复数1z i =-(其中i 是虛数单位),则复数z 的虛部为( ) A.1-B.i -C.1D.i2.火车开出车站一段时间内,速度v (单位:m/s )与行驶时间t (单位:s )之间的关系是()20.40.6v t t t =+,则火车开出几秒时加速度为2.8m/s 2?( )A.32s B.2s C.52s D.73s 3.在正方体1111ABCD A B C D -中,平面1A BD 与平面ABCD 所成二面角的正弦值为( )D.134.有6个人排成一排拍照,其中甲和乙相邻,丙和丁不相邻的不同的排法有( ) A.240种B.144种C.72种D.24种5.若函数()332f x x bx =-+在区间()2,3内单调递增,则实数b 的取值范围是( ) A.4b ≤B.4b <C.4b ≥D.4b >6.如图,在圆锥PO 的轴截面PAB 中,60APB ∠=︒,有一小球1O 内切于圆锥(球面与圆锥的侧面、底面都相切),设小球1O 的体积为1V ,圆锥PO 的体积为V ,则1:V V 的值为( )A.13B.49C.59D.237.若函数()2x x f x ax e =-存在两个不同零点,则实数a 的取值范围是( )A.1,e ⎛⎫-∞ ⎪⎝⎭B.10,e ⎛⎫⎪⎝⎭C.()1,0e ⎧⎫-∞⋃⎨⎬⎩⎭D.()1,00,e ⎧⎫-∞⋃⎨⎬⎩⎭8.从0,1,2,3,…,9中选出三个不同数字组成一个三位数,其中能被3整除的三位数个数为( ) A.252B.216C.162D.228第II 卷(非选择题)二、填空题(题型注释)9.复数z 满足z i=(其中i 是虛数单位),则复数z 的模等于______. 10.设函数()f x 满足()()2311f x x f x '=++,则()3f 的值为______.11.用红、黄、蓝、绿四种颜色给图中五个区域进行涂色,要求相邻区域所涂颜色不同,共有______种不同的涂色方法.(用数字回答)三、解答题(题型注释)12.已知复数(),z a bi a b R =+∈满足3z i +为实数,2zi-为纯虚数,其中i 是虚数单位. (1)求实数a ,b 的值;(2)若复数()2125z z m m i =++-在复平面内对应的点在第四象限,求实数m 的取值范围.13.已知函数()ln f x ax bx x =+,()f x 在x e =处的切线方程是0x y e +-=,其中e 是自然对数的底数.(1)求实数a ,b 的值; (2)求函数()f x 的极值.14.某班有6名同学报名参加校运会的四个比赛项目,在下列情况下各有多少种不同的报名方法,(用数字回答)(1)每人恰好参加一项,每项人数不限; (2)每项限报一人,且每人至多参加一项;(3)每人限报一项,人人参加,且每个项目均有人参加.15.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =,M 是PD 上一点,且BM PD ⊥.(1)求异面直线PB 与CM 所成角余弦的大小; (2)求点M 到平面PAC 的距离.16.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,3AB AC AD ===,4PA CD ==,E 为线段AB 上一点,2AE EB =,M 为PC 的中点.(1)求证://EM 平面PAD ;(2)求直线AM 与平面PCE 所成角的正弦值. 17.已知()221()ln ,x f x a x x a R x-=-+∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.四、新添加的题型)A.若()2211x f x x -=+,则()()2241x f x x '=+ B.若()2x f x e =,则()2x f x e '=C.若()f x =()f x '=D.若()cos 23f x x π⎛⎫=- ⎪⎝⎭,则()sin 23f x x π⎛⎫'=-- ⎪⎝⎭19.下面四个命题中的真命题为( ) A.若复数z 满足1R z∈,则z R ∈ B.若复数z 满足2z ∈R ,则z R ∈ C.若复数1z ,2z 满足12z z R ∈,则12z z = D.若复数z R ∈,则z R ∈ 20.以下关于函数()21f x x x=+的说法正确的是( ) A.函数()f x 在0,上不单调B.函数()f x 在定义域上有唯一零点C.函数()f xD.x =()f x 的一个极值点21.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A.PC 与平面BCD 所成的最大角为45B.存在某个位置,使得PB CD ⊥--的大小为90时,PC=C.当二面角P BD CD.存在某个位置,使得B到平面PDC22.已知四面体ABCD的所有棱长均为a,则对棱AB与CD间的距离为______,该四面体的外接球表面积为______.参考答案1.A【解析】1.利用复数的除法运算化简,再得到复数z 的虛部.21i z i =-2(1)1(1)(1)i i i i i --==--+--,则复数z 的虛部为1-. 故选:A 2.B【解析】2.计算()'v t ,根据()'v t 的物理意义,代入() 2.8='v t ,简单计算可得结果. 由题可知:()20.40.6v t t t =+,所以()=0.4+1.2'v t t 则()2.8=0.4+1.22⇒=t t s 所以火车开出2s 时加速度为2.8m/s 2 故选:B 3.C【解析】3.连AC 交BD 于O ,连1A O ,证明BD ⊥平面11AAC C ,从而有1,AC BD AO BD ⊥⊥,1AOA ∠或(补角1A OC ∠)为平面1A BD 与平面ABCD 所成二面角的平面角,在1Rt AOA 中求出11,AO AA 关系, 即可得出结论.连接AC 交BD 于点O ,连1A O ,如下图所示, 因为1AA ⊥平面ABCD , 所以11,A AA BD AC BD A C A A ⊥⊥=,,BD ⊥平面111,AAC C AO ⊂平面111,AAC C BD AO ⊥, 所以1AOA ∠(或补角1A OC ∠)为平面1A BD 与平面ABCD 的平面角,在△A 1OA 中,设AA 1=a ,则AO 2=a ,12A O a =,1111sin sin2AAAOC AOAAO∠=∠===所以平面1A BD与平面ABCD.故选:C.4.B【解析】4.甲和乙相邻,捆绑法,丙和丁不相邻用插空法,即先捆甲和乙,再与丙和丁外的两人共“3人”排列,再插空排丙和丁.甲和乙相邻,捆绑在一起有22A种,再与丙和丁外的两人排列有33A种,再排丙和丁有24A种,故共有22A33A24A144=种.故选:B5.A【解析】5.先对函数求导,根据函数在区间()2,3内单调递增,转化为导函数大于等于0,然后分离常数b,根据最值求得b的取值范围.3()32f x x bx=-+,2()33f x x b'=-,∵函数()332f x x bx=-+在区间()2,3内单调递增,∴导函数2()33f x x b'=-0,(2,3)x≥∈恒成立,则2,(2,3)b x x≤∈恒成立,故4b≤.故选:A.6.B【解析】6.采用数形结合,假设小球1O 的半径为r ,圆O 的半径为R,然后计算=r R ,可得R =,然后根据体积公式简单计算,可得结果.如图设小球1O 的半径为r ,圆O 的半径为R 由1△△POB PMO 所以11=PO O MPB OB由60APB ∠=︒,所以tan tan 603=∠==OP R OBP R R2sin2==∠OBPB RAPB所以=r RR =所以3323141,3333πππ==⋅==r R V V R r所以149=V V , 故选:B 7.C【解析】7.首先能判断出0x=是函数的零点,问题转化为xxa e =有一个非零根,构造函数,研究其图象的走向,从而得出结果.函数()2x x f x ax e =-存在两个不同零点,等价于2x x ax e=有两个不同的解,0x =满足条件,所以xxa e =有一个非零根, 令()x x g x e =,21'()x x xx e xe xg x e e--==, 当1x >时,)'(0g x <,1x <时,'()0g x >,所以()g x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,且当(,1)x ∈-∞时,1()(,)f x e ∈-∞,当(1,)x ∈+∞时,1()(0,)f x e∈, 所以xx a e =有一个非零根时,实数a 的取值范围是()1,0e ⎧⎫-∞⋃⎨⎬⎩⎭, 故选:C. 8.D【解析】8.根据题意将10个数字分成三组:即被3除余1的有1,4,7;被3除余2的有2,5,8;被3整除的有3,6,9,0,若要求所得的三位数被3整除,则可以分类讨论:每组自己全排列,每组各选一个,再利用排列与组合的知识求出个数,进而求出答案.解:将10个数字分成三组,即被3除余1的有{1,4,7},被3除余2的有{2,5,8},被3整除的有{3,6,9,0}.若要求所得的三位数被3整除,则可以分类讨论:①三个数字均取自第一组{1,4,7}中,或均取自第二组{2,5,8}中,有33212A =个;②若三个数字均取自第三组{3,6,9,0},则要考虑取出的数字中有无数字0,共有324318A A -=个;③若三组各取一个数字,第三组中不取0,有11133333162C C C A ⋅⋅⋅=个, ④若三组各取一个数字,第三组中取0,有112332236C C A ⋅⋅⋅=个,这样能被3整除的数共有12+18+162+36228=个. 故选:D.【解析】9.利用复数的运算法则和模的计算公式即可得出结果. ∵3iz i-=, ∴223331131i i i i i z i i --+===---=,∴|z |=10.1【解析】10.先对函数求导,再令1x =,求出'(1)f 的值,代入原函数中,再令3x =可求出(3)f .由()()2311f x x f x '=++,得''()23(1)f x x f =+,令1x =,则''(1)23(1)f f =+,解得'(1)1f =-,所以()231=-+f x x x ,令3x =,则(3)9911f =-+=,解得(3)1f = 故答案为:1 11.240【解析】11.根据分步计数原理与分类计数原理,列出每一步骤及每种情况,计算即可. 从A 开始涂色,A 有4种方法,B 有3种方法, ①若E 与B 涂色相同,则,C D 共有23A 种涂色方法; ②若E 与B 涂色不相同,则E 有2种涂色方法,当,C E 涂色相同时,D 有3种涂色方法;当,C E 涂色不相同时,C 有2种涂法,D 有2种涂色方法.共有()2343432322240A ⨯⨯+⨯⨯⨯+⨯=种涂色方法.故答案为:240.12.(1)32a =-;3b =-;(2)34m <<【解析】12.(1)根据3z i +为实数,求得3b =-,利用复数的除法运算法则,化简2zi-,利用其为纯虚数,求得32a =-; (2)将所求值代入,确定出()213222z m m i ⎛⎫=-+- ⎪⎝⎭,根据其在复平面内对应的点在第四象限,列出不等式组,求得结果.(1)因为()33z i a b i +=++为实数,所以3b =-,因为()()()()()()32236322225a i i a a i z a i i i i i -+++--===---+为纯虚数, 所以32a =-. (2)332z i =--,332z i =-+,所以()213222z m m i ⎛⎫=-+- ⎪⎝⎭,因为复数1z 在复平面内对应的点在第四象限,所以2320220m m ⎧->⎪⎨⎪-<⎩,解之得34m << 13.(1)11a b =⎧⎨=-⎩;(2)极大值1;()f x 无极小值..【解析】13.(1)计算()f e ,()f e ',根据函数在x e =处的切线方程,简单计算可得结果. (2)根据(1)的结论,可得()ln f x x x x =-,然后利用导数,判断原函数的单调性,找到极值点,最后计算可得结果.(1)由()ln f x ax bx x =+,得()()1ln f x a b x '=++,由()f x 在x e =处的切线方程是0x y e +-=,知切点为(),0e ,斜率为1-,所以()()()021f e a b e f e a b ⎧=+=⎪⎨=+=-'⎪⎩,解之得11a b =⎧⎨=-⎩.(2)()ln f x x x x =-,()ln f x x '=-,令()0f x '=,得1x =,由表可知,当1x =时,f x 取得极大值1;)f x 无极小值. 14.(1)4096种;(2)360种;(3)1560种.【解析】14.(1)根据分步计数原理直接计算可得64,然后可得结果. (2)依据题意,计算46A ,可得结果.(3)先分组,可得22364622+C C C A ,后排列,可得2234646422⎛⎫+ ⎪⎝⎭C C C A A ,简单计算可得结果. (1)每人都可以从这四个项目中选报一项,各有4种不同的选法, 由分步计数原理知共有644096=种.(2)每项限报一人,且每人至多报一项,因此可由项目选人, 第一个项目有6种不同的选法,第二个项目有5种不同的选法, 第三个项目有4种不同的选法,第四个项目有3种不同的选法,由分步计数原理得共有报名方法466543360A =⨯⨯⨯=种.(3)每人限报一项,人人参加,且每个项目均有人参加,因此需将6人分成4组,有2236462215620652C C C A ⨯+=+=种. 每组参加一个项目,由分步计数原理得共有()22346464222045241560C C C A A ⎛⎫+=+⨯= ⎪⎝⎭种. 15.(1;(2.【解析】15.(1)连BD 交AC 于O ,连MO ,根据已知可得BP BD =,得出M 为PD 中点,从而有//OM PB ,OMC ∠(或补角)就为所求的角,分别求出,,OM OC MC ,即可得出结论;或建立空间直角坐标系,确定,,,P B M C 坐标,利用向量夹角公式,也可求解.(2)点M 到平面PAC 的距离等于点D 到平面PAC 距离的一半,由PA ⊥平面ABCD ,过D 做DN AC ⊥于N ,可证DN ⊥平面PAC ,即可求出结论;或求出,PAC ACD △△的面积,用等体积法也可求解;或建立空间直角坐标系,求出平面PAC的法向量,利用空间向量点到面的距离公式亦可求解. (1)连BD 交AC 于O ,连MO ,PA ⊥平面ABCD ,所以,PA AB PA CD ⊥⊥,在Rt PAB中,4,2,PA AB PB ====,又因为底面ABCD 是矩形,所以O 为BD 中点,2,4AB AD ==,所以BD PB ==,因为M 是PD 上一点,且BM PD ⊥, 所以M 为PD 中点,1//,2MO PB MO PB =, 所以OMC ∠(或补角)就为PB 与CM 所成的角, 因为,,PA CD AD CD PAAD A ⊥⊥=所以CD ⊥平面,PAD CD PD ⊥,MC ==,1122MO PB CO AC ====2cos MCOMC MO ∠===所以异面直线PB 与CM所成角余弦值为5; (2)解1:过D 做DN AC ⊥于N ,PA ⊥平面ABCD , 所以,PA DN PAAC A ⊥=,所以DN ⊥平面PAC ,DN 为点D 到平面PAC 的距离,在Rt ACD △中,CD DA DN AC ⋅==, 又M 是PD 中点,所以点M 到平面PAC. 解2:因为Rt BCE ,PA ⊥平面ABCD ,所以111162443323P ACD ACD V S PA -⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭△,在Rt ADC 中,AC ==11422PAC S AC PA =⋅=⨯=△设点D 到平面PAC 的距离为h ,则13D PAC PAC V S h -=⋅=△,由P ACD D PAC V V --=,得1633=,所以h =.又M 是PD 中点,所以点M 到平面PAC .解法二:分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,(1)()()()()()0,0,0,2,442,0,0,0,4,0,0,0,,0,A P C B D则()2,0,4PB =-,()2,4,4PC =-,()0,4,4PD =-, 设()01PM PD λλ=≤≤,则()0,4,4PM λλ=-, 所以()2,4,44BM PM PB λλ=-=--,由BM PD ⊥,知()0164440BM PD λλ⋅=+--=,所以12λ=,M 为PD 中点, 所以()0,2,2M ,()2,2,2CM =--,cos ,2PBCM PB CM PB CM⋅===.所以异面直线PB 与CM 所成角的余弦值为5. (2)()0,0,4AP =,()2,4,0AC =, 设平面PAC 的法向量为(),,n x y z =,由00AP n AC n ⎧⋅=⎨⋅=⎩,得40240z x y =⎧⎨+=⎩,所以0z =,取2x =,得1y =-,所以()2,1,0n =-是平面PAC 的一个法向量.所以点M 到平面PAC 的距离为22CM n n⋅-==. 16.(1)证明见解析;(2.【解析】16.(1)取PD 中点N ,连接AN ,MN ,证明//EM AN ,再证得//EM 平面PAD ; (2)连接PE ,先证CE AB ⊥,证得CE ⊥面PAB ,再作⊥AF PE 交PE 于F,连接MF ,证得AF ⊥面PEC ,则AMF ∠为直线AM 与平面PCE 所成角,再求出AMF∠的正弦值.(1)证明:取PD 中点N ,连接AN ,MN ,因为M 为PC 的中点,所以//MN CD 且12MN CD =, 又223AE AB ==,4CD =,且//AB CD ,则//MN AE ,且MN AE =, 所以四边形AEMN 为平行四边形,则//EM AN . 又因为EM ⊄平面PAD ,AN ⊂平面PAD , 所以//EM 平面PAD .(2)解:在ACD △中,22291692cos 22343AC CD AD ACD AC CD +-+-∠===⋅⨯⨯,因为//AB CD ,所以2cos 3BAC ∠=, 在ACE △中,22222cos 4922353CE AE AC AE AC BAC =+-⋅⋅∠=+-⨯⨯⨯=, 由222AE CE AC +=,知CE AB ⊥.因为PA ⊥底面ABCD ,CE ⊂底面ABCD ,所以CE PA ⊥, 又PAAB A =,PA ⊂平面PAB ,AB 平面PAB ,所以CE ⊥平面PAB .在平面PAB 内,过点A 作⊥AF PE ,交PE 于F ,连接FM , 则CE AF ⊥,又PECE E =,CE ⊂平面PCE ,PE ⊂平面PCE ,所以AF ⊥平面PCE ,所以FM 是AM 在平面PCE 内的射影, 则AMF ∠为直线AM 与平面PCE 所成角.在Rt PAC △中,M 为PC 的中点,所以1522AM PC ===,在Rt PAE 中,由PA AE PE AF ⋅=⋅,得5PA AE AF PE ⋅===,所以sin 25AF AMF AM ∠==所以直线AM 与平面PCE 所成角的正弦值为25. 17.(Ⅰ)见解析;(Ⅱ)见解析【解析】17.试题(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性; (Ⅱ)要证()3()'2f x f x +>对于任意的[]1,2x ∈成立,即证3()'()2f x f x ->,根据单调性求解. 试题解析: (Ⅰ)的定义域为;223322(2)(1)'()a ax x f x a x x x x--=--+=. 当,时,'()0f x >,单调递增;(1,),'()0x f x ∈+∞<时,单调递减.当时,3(1)22'()()()a x f x x x x a a-=+-. (1),,当或x ∈时,'()0f x >,单调递增;当x ∈时,'()0f x <,单调递减;(2)时,,在x ∈内,'()0f x ≥,单调递增;(3)时,,当或x ∈时,'()0f x >,单调递增;当x ∈时,'()0f x <,单调递减.综上所述, 当时,函数在内单调递增,在内单调递减; 当时,在内单调递增,在内单调递减,在内单调递增; 当时,在内单调递增; 当,在内单调递增,在内单调递减,在内单调递增.(Ⅱ)由(Ⅰ)知,时,22321122()'()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x =-++--,,令,.则()'()()()f x f x g x h x -=+, 由1'()0x g x x-=≥可得,当且仅当时取得等号.又24326'()x x h x x--+=, 设,则在x ∈单调递减,因为, 所以在上存在使得时,时,,所以函数()h x 在上单调递增;在上单调递减, 由于,因此,当且仅当取得等号, 所以3()'()(1)(2)2f x f xgh ->+=, 即3()'()2f x f x >+对于任意的恒成立。

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

专题01 集合及其运算【母题来源一】【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =__▲___.【答案】{}0,2【解析】根据集合的交集即可计算.∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =,故答案为:{}0,2.【名师点睛】本题考查了交集及其运算,是基础题型.【母题来源二】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则 A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源三】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B = ▲ .【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}A B x x A x B =∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系;③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.(2020届江苏省苏州市吴江区高三下学期五月统考数学试题)已知集合{}1,2,3,4A =,集合{}4,5B =,则AB =______.【答案】{}4【解析】因为集合{}1,2,3,4A =,集合{}4,5B =,所以{}4A B ⋂=.故答案为:{}4.【点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.2.(江苏省无锡市、常州市2019-2020学年高三下学期5月联考数学试题)已知集合{}012M =,,,集合{}0,2,4N =,则M N ⋃=__________.【答案】{}0,1,2,4 【解析】集合{}012M =,,,集合{}0,2,4N =, ∴{}0,1,2,4M N ⋃=.故答案为:{}0,1,2,4.【点睛】本题考查并集及其运算,属于基础题.3.(江苏省盐城中学2020届高三下学期第一次模拟数学试题)已知集合{}13A x =-<<,{}|2=≤B x x ,则A B =_________ .【答案】(-1,2]【解析】由题意{|12}A B x x =-<≤故答案为:(1,2]-.【点睛】本题考查集合的交集运算,掌握交集概念是解题关键.4.(2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第二次调研考试数学试题)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______.【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.5.(江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题)已知集合{}{}02,1,0,1,2M x x N =≤<=-,则MN =__________.【答案】{}0,1 【解析】因为{}{}02,1,0,1,2M x x N =≤<=-,所以{}0,1M N ⋂=. 6.(2020届江苏省高三高考全真模拟(六)数学试题)已知集合{1,0,2}A =-,{}0,1,2,3B =,则A B =______.【答案】{1,0,1,2,3}-【解析】由题意1,0,1{,2,}3A B =-.故答案为:{1,0,1,2,3}-.【点睛】本题考查集合的并集运算,属于简单题.7.(江苏省泰州市姜堰区、南通市如东县2020届高三下学期适应性考试数学试题)已知集合{1,3,}A a =,{4,5}B =.若{4}A B ⋂=,则实数a 的值为______.【答案】4【解析】{}4A B ⋂=4A ∴∈且4B ∈4a ∴=【点睛】本题考查了交集的定义,意在考查学生对交集定义的理解,属于基础题.8.(江苏省扬州中学2020届高三下学期6月模拟考试数学试题)集合{}0,3x A =,{}2,0,1B =-,若A B B ⋃=,则x =_________________.【答案】0【解析】∵A B B ⋃=,∴A B ⊆,又{}0,3x A =,{}2,0,1B =-,∴31x =,∴0x =,故答案为:0.【点睛】本题主要考查集合的并集运算的应用,属于基础题.9.(江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题)已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______【答案】{|12}x x <<【解析】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.10.(江苏省扬州市2020届高三下学期6月最后一卷数学试题)已知集合2{1,0,}A a =-,{1,1}B =-,则A B B =,则实数a 的值是_______.【答案】±1【解析】因为AB B =,所以B A ⊆,又2{1,0,}A a =-,{1,1}B =-,所以21a =,解得1a =±.故答案为:±1【点睛】本题主要考查集合间的基本关系,属于基础题.11.(2020届江苏省苏州市三校高三下学期5月联考数学试题)设集合{2,0,1,2}=-A ,{}|10B x x =-<,则A B =___________.【答案】{}2,0-【解析】由已知,{}|1B x x =<,所以AB ={}2,0-. 故答案为:{}2,0-【点睛】本题考查集合的交集运算,考查学生的基本计算能力,是一道基础题.12.(江苏省盐城市2020届高三下学期第四次模拟数学试题)若集合{}A x x m =≤,{}1B x x =≥-,且{}A B m =,则实数m 的值为_______.【答案】1- 【解析】∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =,∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.13.(江苏省苏州市2019-2020学年高三上学期期中数学试题)已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.【答案】{1,2} 【解析】集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}.【点睛】本题考查集合交集的运算,是基础题.14.(江苏省淮安市清浦中学2019-2020学年高三下学期5月阶段性检测数学试题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.15.(江苏省盐城市第一中学2020届高三下学期第一次调研考试数学试题)设全集{}0,1,2U =,集合{}0,1A =,则U C A =________.【答案】{}2【解析】{}{}0,1,2,0,1U A =={}2U C A ∴=故答案为:{}2【点睛】本题考查了补集的运算,属于基础题.16.(2020届江苏省苏州市常熟市高三阶段性抽测三数学试题)已知集合{}2A x x =≤,(){}40B x x x =-≤,则()A B =R ________.【答案】(]2,4 【解析】集合(){}{}4004B x x x x x =-≤=≤≤ 因为集合{}2A x x =≤ 所以{}2R A x x => 所以(){}(]242,4R A B x x ⋂=<≤=.故答案为:(]2,4.【点睛】本题考查解一元二次不等式,集合的补集、交集运算,属于简单题.17.(2020届江苏省南通市高三下学期5月模拟考试数学试题)已知集合{}1,2,3,4A =,{}2|log (1)2B x x =-<,则A B =____.【答案】{}2,3,4【解析】由题意可得:{}{}|014|15B x x x x =<-<=<< ,则{}2,3,4A B⋂=.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。

2019-2020学年江苏省苏州市常熟市八年级下学期期中数学试卷 (解析版)

2019-2020学年江苏省苏州市常熟市八年级下学期期中数学试卷 (解析版)

2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列调查方式中,最合适的是()A.为了解某品牌灯泡的使用寿命,采用普查的方式B.为了解我市八年级学生对在线学习课程的满意度情况,采用抽样调查的方式C.为了解某本书中的印刷错误,采用抽样调查的方式D.为了解我市居民的节水意识,采用普查的方式4.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形5.已知反比例函数y=的图象分别位于一、三象限,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣56.在平行四边形ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不能是()A.AF=CE B.AE=CF C.∠BEA=∠ECF D.∠BAE=∠FCD 7.如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E在同一条直线上.∠BAC=20°.则∠ADC的度数为()A.20°B.30°C.50°D.60°8.函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y3>y1>y2C.y2>y3>y1 D.y2>y1>y39.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.1610.如图,平行四边形ABCD的对角线AC、BD相交于点O,∠ABC=60°,点E是AB 的中点,连接CE、OE,若AB=2BC,下列结论:①∠ACD=30°;②当BC=4时,BD=4;③CD=4OE;④S△COE=S四边形ABCD,其中正确的个数有()A.1B.2C.3D.4二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上11.若代数式有意义,则x的取值范围是.12.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意模出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中大约有白球个.13.已知正方形的对角线长为5,则这个正方形的面积是.14.已知实数a,b满足0<a<b,则化简﹣|a|的结果是.15.如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.16.点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,则2a2b﹣ab2=.17.如图,菱形ABCD的两个顶点A、B在函数y=(x>0)的图象上,对角线AC∥x 轴,若AC=4,点A的坐标为(2,2),则菱形ABCD的周长为.18.如图,矩形ABCD中,AB=8,AD=4,E在CD边上,且DE=2,将△ADE沿直线AE折叠,得到△AFE,连接BF,则△ABF的面积为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1)2+3﹣+;(2)÷×(﹣).20.已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.21.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.22.码头工人往一艘轮船上装载货物,装完货物所需时间y(分钟)与装载速度x(吨/分钟)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)若要求在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,求装货速度的范围.23.某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生人,被调查的学生中,类别为C的学生有人;(2)求类别为A的学生数,并补全条形统计图;(3)求扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,3)和点B(1,﹣6),与y轴交于点C.(1)求一次函数和反比例函数表达式;(2)请直接写出关于x的不等式kx+b>的解集;(3)把点C绕着点O逆时针旋转90°,得到点C′,连接AC′,BC′,求△ABC′的面积.25.如图,矩形ABCD的对角线AC、BD相交于点O,E是OB的中点,过点B作BF∥AC交AE的延长线于点F,连接CF.(1)求证:△AOE≌△FBE;(2)求证:四边形BOCF是菱形.26.如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数y=(x>0)的图象经过点A,交BC于点D.(1)若OB=3,求k的值;(2)连接CO,若AB=BD,求四边形ABOC的周长.27.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M 的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应位置上.1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是中心对称图形,是轴对称图形,故此选项不合题意;B、不是中心对称图形,也不是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.解:A、=2,不符合题意;B、=,不符合题意;C、是最简二次根式,符合题意;D、=,不符合题意.故选:C.3.下列调查方式中,最合适的是()A.为了解某品牌灯泡的使用寿命,采用普查的方式B.为了解我市八年级学生对在线学习课程的满意度情况,采用抽样调查的方式C.为了解某本书中的印刷错误,采用抽样调查的方式D.为了解我市居民的节水意识,采用普查的方式【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解:A.为了解某品牌灯泡的使用寿命,适合采用抽样调查的方式;B.为了解我市八年级学生对在线学习课程的满意度情况,适合采用抽样调查的方式;C.为了解某本书中的印刷错误,适合采用全面调查的方式;D.为了解我市居民的节水意识,适合采用抽样调查的方式;故选:B.4.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形【分析】直接利用确定事件以及随机事件的定义分析得出答案.解:A、6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签,是随机事件,不合题意;B、抛掷1枚质地均匀的硬币反面朝上,是随机事件,不合题意;C、射击运动员射击一次,命中靶心,是随机事件,不合题意;D、长度分别是4,6,8的三条线段能围成一个三角形,是确定事件,符合题意;故选:D.5.已知反比例函数y=的图象分别位于一、三象限,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣5【分析】根据反比例函数的性质可得k﹣5>0,再解不等式即可.解:∵反比例函数y=的图象分别位于一、三象限,∴k﹣5>0,解得,k>5.故选:A.6.在平行四边形ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不能是()A.AF=CE B.AE=CF C.∠BEA=∠ECF D.∠BAE=∠FCD 【分析】根据平行四边形的性质和判定即可解决问题.解:A、∵四边形ABCD是平行四边形,∴AF∥EC,∵AF=EC,∴四边形AECF是平行四边形.故选项A不符合题意.B、根据AE=CF,所以四边形AECF可能是平行四边形,有可能是等腰梯形,故选项B符合题意.C、错误.∵∠BEA=∠FCE,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形.故选项C不符合题意.D、由∠BAE=∠FCD,∠B=∠D,AB=CD可以推出△ABE≌△CDF,∴BE=DF,∵AD=BC,∴AF=EC,∵AF∥EC,∴四边形AECF是平行四边形.故选项D不符合题意.故选:B.7.如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E在同一条直线上.∠BAC=20°.则∠ADC的度数为()A.20°B.30°C.50°D.60°【分析】由旋转的性质可得∠BAC=∠DAE=20°,AC=AE,∠CAE=90°,根据三角形的外角的性质可求∠ADC的度数.解:∵将△ABC绕点A顺时针旋转120°得到△ADE,∴∠BAC=∠DAE=20°,AC=AE,∠CAE=120°,∴∠E=∠ACE=30°,∵∠ADC=∠E+∠DAE=30°+20°=50°,故选:C.8.函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y3>y1>y2C.y2>y3>y1 D.y2>y1>y3【分析】先判断出函数图象所在的象限,再根据其坐标特点解答即可.解:∵﹣k2﹣4<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选:D.9.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.16【分析】延长BA交y轴于D,连接OB,如图,利用平行四边形的性质得到AB⊥y轴,S△AOB=S▱ABCO=4,再利用反比例函数k的几何意义得到S△AOD=k1,S△BOD=k2,从而得到k2﹣k1=4.解:延长BA交y轴于D,连接OB,如图,∵四边形ABCO为平行四边形,∴AB∥x轴,即AB⊥y轴,S△AOB=S▱ABCO=×8=4,∵S△AOD=|k1|=k1,S△BOD=|k2|=k2,∴k2﹣k1=4,∴k2﹣k1=8.故选:B.10.如图,平行四边形ABCD的对角线AC、BD相交于点O,∠ABC=60°,点E是AB 的中点,连接CE、OE,若AB=2BC,下列结论:①∠ACD=30°;②当BC=4时,BD=4;③CD=4OE;④S△COE=S四边形ABCD,其中正确的个数有()A.1B.2C.3D.4【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB =90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,可求出BO的长,进而可求出BD=4,故②正确;易证OE为△ABC的中位线,可得BC=2OE,又因为AB=2BC,所以可得CD=4OE,故③正确;根据等底同高的三角形面积相等可得S△AOE =S△COE,再由③可知S△AOE=S△ABC,进而可得S△COE=S四边形ABCD,故④错误.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵BC=4,∴AB=8,∴AC==4,∴OC=2,∴BO==2,∴BD=2BO=4,故②正确;∵O为AC中点,E为AB中点,∴OE为△ABC的中位线,∴BC=2OE,∵AB=2BC,∴CD=4OE,故③正确;∵AO=OC,∴S△AOE=S△COE,∵OE∥BC,OE=BC,∴S△AOE=S△ABC,∵S△ABC=S▱ABCD,∴S△COE=S四边形ABCD,故④错误.故选:C.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上11.若代数式有意义,则x的取值范围是x≥2.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.在一个不透明的袋子中,装有红球和白球共20个,这些球除颜色外都相同,搅匀后从中任意模出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到红球的频率逐渐稳定在0.3左右,则据此估计袋子中大约有白球6个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:设盒子中大约有红球x个,根据题意得:=0.3,解得:x=6,∴白球为20﹣6=14个,答:估计盒子中大约有白球14个.故答案为:14.13.已知正方形的对角线长为5,则这个正方形的面积是25.【分析】根据正方形的对角线长为5,可知正方形的面积等于对角线乘积的一半,然后代入数据计算即可.解:∵正方形的对角线长为5,∴正方形的面积是:=25,故答案为:25.14.已知实数a,b满足0<a<b,则化简﹣|a|的结果是﹣2a+b.【分析】根据二次根式的性质即可求出答案.解:原式=|a﹣b|﹣|a|,∵0<a<b,∴a﹣b<0,∴原式=﹣(a﹣b)﹣a=﹣a+b﹣a=﹣2a+b,故答案为:﹣2a+b.15.如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=10.【分析】根据三角形中位线定理求出DE,得到EF的长,根据直角三角形的性质计算,得到答案.解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=7,∴EF=DF﹣DE=5,在Rt△AFC中,AE=EC,∴AC=2EF=10,故答案为:10.16.点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,则2a2b﹣ab2=27.【分析】把点A(a,b)分别代入两个函数表达式,求出a﹣2b与ab的值,代入代数式进行计算即可.解:∵点A(a,b)是一次函数y=2x﹣3与反比例函数y=的交点,∴b=2a﹣3,ab=9,即2a﹣b=3,ab=9,∴原式=ab(2a﹣b)=9×3=27.故答案为:27.17.如图,菱形ABCD的两个顶点A、B在函数y=(x>0)的图象上,对角线AC∥x 轴,若AC=4,点A的坐标为(2,2),则菱形ABCD的周长为4.【分析】连接BD交AC于E,根据菱形的性质得到BD⊥AC,AE=CE,求得AE=CE =2,求得y=,得到E(4,2),求得B(4,1),根据勾股定理即可得到结论.解:连接BD交AC于E,∵四边形ABCD是菱形,∴BD⊥AC,AE=CE,∵AC=4,∴AE=CE=2,∵点A的坐标为(2,2),点A在函数y=(x>0)的图象上,∴k=2×2=4,∴y=,∵AC∥x轴,∴E(4,2),∴B点的横坐标为4,∵点B在函数y=(x>0)的图象上,∴B(4,1),∴AB==,∴菱形ABCD的周长为4,故答案为:4.18.如图,矩形ABCD中,AB=8,AD=4,E在CD边上,且DE=2,将△ADE沿直线AE折叠,得到△AFE,连接BF,则△ABF的面积为.【分析】过点F作MN∥BC交CE于点M,交AB于点N,证明△EMF∽△FNA,得出,设FM=x,则NF=4﹣x,得出,解得x=,求出FN,则可求出答案.解:过点F作MN∥BC交CE于点M,交AB于点N,则FM⊥EC,FN⊥AB,∴四边形ADMN为矩形,∴AD=MN,∵将△ADE沿直线AE折叠得到△AFE,∴∠D=∠AFE=90°,AD=AF=4,DE=EF=2,∴∠MEF+∠MFE=∠MFE+∠AFN=90°,∴∠MEF=∠AFN,∵∠EMF=∠ANF=90°,∴△EMF∽△FNA,∴,设FM=x,则NF=4﹣x,∵∠EMF=90°,∴EM2+MF2=EF2,∴EM==,∴,解得x=或x=0(舍去),∴FM=,∴FN=4﹣x=4﹣=,∴S△ABF=×AB×FN==.故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(1)2+3﹣+;(2)÷×(﹣).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解;(1)原式=2+﹣+=+2;(2)原式=﹣=﹣.20.已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.【分析】先计算出x+y与xy的值,再利用完全平方公式得到x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y),然后利用整体代入的方法计算.解:∵x=﹣2,y=+2,∴x+y=2,xy=﹣1,∴x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y)=(2)2﹣(﹣1)﹣2×2=12+1﹣4=13﹣4.21.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.【分析】(1)根据平移的性质即可将△ABC向右平移6个单位长度得到△A1B1C1;(2)根据中心对称的定义即可画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)根据旋转的性质即可将△ABC绕某一点旋转可得到△A2B2C2,进而写出旋转中心的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(﹣3,0).22.码头工人往一艘轮船上装载货物,装完货物所需时间y(分钟)与装载速度x(吨/分钟)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)若要求在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,求装货速度的范围.【分析】(1)根据函数图象可以设出函数的解析式,然后根据图象中的数据即可求得函数的解析式;(2)利用函数关系式,当装载时间120≤y≤150时,即120≤≤150,解不等式即可求解..解:(1)设y与x的函数关系式是y=,400=,得k=600,即y与x的函数关系式是y=;(2)当120≤y≤150时,即120≤≤150,解得4≤x≤5.故如果要在2小时至2.5小时内(包括2小时与2.5小时)装完这批货物,则装货速度至少为每分钟4≤x≤5吨.23.某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生200人,被调查的学生中,类别为C的学生有28人;(2)求类别为A的学生数,并补全条形统计图;(3)求扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?【分析】(1)根据类别为A的人数和所占的百分比,可以求得本次调查的人数,然后根据C占14%,即可计算出类别为C的人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出类别为A的人数,然后将条形统计图补充完整;(3)根据统计图中的数据,可以计算出扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)根据统计图中的数据,可以计算出该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人.解:(1)本次共调查了学生100÷50%=200(人),被调查的学生中,类别为C的学生有200×14%=28(人),故答案为:200,28;(2)类别为A的学生有:200﹣100﹣28﹣12=60(人),补充完整的条形统计图如右图所示;(3)扇形统计图中类别为D的学生数所对应的圆心角的度数为:360°×=21.6°;(4)1000×=800(人),即该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为800人.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,3)和点B(1,﹣6),与y轴交于点C.(1)求一次函数和反比例函数表达式;(2)请直接写出关于x的不等式kx+b>的解集;(3)把点C绕着点O逆时针旋转90°,得到点C′,连接AC′,BC′,求△ABC′的面积.【分析】(1)根据待定系数法,即可求解;(2)根据函数与不等式的关系,可得答案;(3)根据三角形面积的和差,可得答案.解:(1)将点B的坐标代入反比例函数表达式得:﹣6=,解得:m=﹣6,将点A的坐标代入反比例函数表达式并解得:n=﹣2,故点A(﹣2,3),将点A、B的坐标代入一次函数表达式得:,解得,故一次函数的表达式为:y=﹣3x﹣3;(2)从图象看,当0<x<1或x<﹣2时,kx+b>,故不等式的解集为0<x<1或x<﹣2;(3)设直线AB交x轴于点H,对于y=﹣3x﹣3,令x=0,则y=﹣3,令y=0,则x=﹣1,故点H、C的坐标分别为(﹣1,0)、(0,﹣3),∵点C绕着点O逆时针旋转90°,得到点C′,故其坐标为:(3,0),△ABC′的面积S=S△C′HB+S△C′HA=C′H×(y A﹣y B)=×(3+1)(3+6)=18.25.如图,矩形ABCD的对角线AC、BD相交于点O,E是OB的中点,过点B作BF∥AC交AE的延长线于点F,连接CF.(1)求证:△AOE≌△FBE;(2)求证:四边形BOCF是菱形.【分析】(1)由ASA即可得出△AOE≌△FBE;(2)由全等三角形的性质得出OA=BF,由矩形的性质得出OA=OB=OC=OD,则OC=BF,证四边形BOCF是平行四边形,由OB=OC,即可得出结论.【解答】证明:(1)∵BF∥AC,∴∠AOE=∠FBE,∵E是OB的中点,∴OE=BE,在△AOE和△FBE中,,∴△AOE≌△FBE(ASA);(2)由(1)得:△AOE≌△FBE,∴OA=BF,∵四边形ABD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB=OC=OD,∴OC=BF,∵BF∥AC,∴四边形BOCF是平行四边形,又∵OB=OC,∴四边形BOCF是菱形.26.如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数y=(x>0)的图象经过点A,交BC于点D.(1)若OB=3,求k的值;(2)连接CO,若AB=BD,求四边形ABOC的周长.【分析】(1)过A作AE⊥BC于E交x轴于F,则AF∥y轴,根据矩形的性质得到EF =OB=3,根据勾股定理得到AE==,求得A(2,),于是得到结论;(2)设OB=a,得到A(2,+a),D(,a),列方程得到2(+a)=a,求得OB=6,根据勾股定理得到OC===2,于是得到结论.解:(1)过A作AE⊥BC于E交x轴于F,则AF∥y轴,∵BC∥x轴,∴四边形BOFE是矩形,∴EF=OB=3,∵AB=AC=,BC=4,∴BE=BC=2,∴AE==,∴A(2,),∵反比例函数y=(x>0)的图象经过点A,∴k=2×=9;(2)设OB=a,∵BD=AB=,∴A(2,+a),D(,a),∵反比例函数y=(x>0)的图象经过点A,交BC于点D,∴2(+a)=a,解得:a=6,∴OB=6,∴OC===2,∴四边形ABOC的周长=AB+OB+OC+AC=11+2.27.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为6.【分析】(1)首先证明四边形FBHG是矩形,再证明FB=FG即可解决问题.(2)延长BC到J,使得CJ=AI.证明△IDE≌△JDE(SAS)即可解决问题.(3)证明△BIE的周长=2AB即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,∴四边形FBHG是正方形.(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M 的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.【分析】(1)ED=AD sin∠DAB=8×=4,同理AE=4,即可求解;(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),点D′M′都在函数上,则(a﹣8)×4=(a﹣4)×2,即可求解;(3)分B′C′是矩形的边、B′C′是矩形的对角线两种情况,分别求解即可.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=2=6,故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).。

江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析

江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析

2023~2024学年度第一学期高三年级期中抽测数学试题(答案在最后)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}1,2,3,4,5,1,3,1,2,5U A B ===,则()U A B =ð()A.{}1,3,4 B.{}1,3 C.{}1,2,5 D.{}1,2,4,5【答案】A 【解析】【分析】利用并集与补集的概念计算即可.【详解】由题意可知{}3,4U B =ð,所以(){}1,3,4U A B ⋃=ð.故选:A 2.若2i 1iz -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的乘法运算求得复数z ,即可得z ,可得其对应的点的坐标,即可得答案.【详解】由题意知2i 1iz -=+,故i(1i)21i z =++=+,故1iz =-则复数z 对应的点为(1,1)-,在第四象限,故选:D3.拋掷一枚质地均匀的骰子,将得到的点数记为a ,则,4,5a 能够构成钝角三角形的概率是()A.23B.12C.13D.16【答案】D 【解析】【分析】先确定a 可能的取值,再结合余弦定理判断三角形为钝角时a 的取值,根据古典概型的概率公式,即可求得答案.【详解】由题意拋掷一枚质地均匀的骰子,将得到的点数记为a ,则a 的取值可能为1,2,3,4,5,6,有6种可能;,4,5a 能够构成三角形时,需满足19a <<,若,4,5a 能够构成钝角三角形,当5所对角为钝角时,有2222450,9a a +-<∴<,此时2a =;当a 所对角为钝角时,需满足2222540,41a a +-<∴>,此时没有符合该条件的a 值,故,4,5a 能够构成钝角三角形的概率是16,故选:D4.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则⋅= ab ()A.2-B.52-C.2D.112【答案】A 【解析】【分析】根据投影向量定义及向量的数量积、向量的模计算即可.【详解】因为()()0,2,1,a b t =-=,所以向量b 在向量a上的投影向量为2142||||b a a t a a a a⋅-⋅==-,所以1t =,故2a b ⋅=-故选:A5.已知等比数列{}n a 的首项为3,则“911a a <”是“1114a a <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】结合等比数列的通项公式,由911a a <可得q 的取值范围,说明1q <-时不能推出1114a a <;继而说明1114a a <成立时推出1q >,即可推得911a a <,由此可判断答案.【详解】由题意知等比数列{}n a 的首项为3,设公比为q ,由911a a <,则81033q q <,即21,1q q >∴>或1q <-,当1q <-时,01114133(1)0q a a q -=->,即1114a a >,即“911a a <”不是“1114a a <”的充分条件;当1114a a <时,即1013,1q q q <∴>,则810q q <,即81033q q <,即911a a <,故“911a a <”是“1114a a <”的必要条件,故“911a a <”是“1114a a <”的必要不充分条件,故选:B 6.已知π4ππsin ,3536θθ⎛⎫+=-<< ⎪⎝⎭,则πtan 26θ⎛⎫+= ⎪⎝⎭()A.2425-B.2425C.724D.724-【答案】C 【解析】【分析】根据角的变换及诱导公式,二倍角的正切公式求解即可.【详解】因为ππ36θ-<<,所以ππ032θ<+<,所以3cos 5π3θ⎛⎫= ⎪⎭+⎝,故4tan 3π3θ⎛⎫= ⎪⎭+⎝,πππsin 2cos 232πππ13tan 2tan 2ππ632ππsin 2tan 2cos 23332θθθθθθθ⎡⎤⎛⎫⎛⎫+-+ ⎪⎢ ⎪⎡⎤⎛⎫⎛⎫⎝⎭⎣⎦⎝⎭+=+-==-=-⎪ ⎪⎢⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎣⎦+++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π161tan 17394π2422tan 33θθ⎛⎫-+-⎪⎝⎭=-=-=⎛⎫⨯+ ⎪⎝⎭,故选:C7.已知()1y f x =-为偶函数,当1x ≥-时,()()2ln 23f x x x =++.若()()12f x f x >,则()A.()()121220x x x x -+-< B.()()121220x x x x -+->C.()()121220x x x x -++< D.()()121220x x x x -++>【答案】D 【解析】【分析】利用偶函数的性质及复合函数的单调性计算即可.【详解】由()1y f x =-为偶函数可知()f x 的图象关于=1x -轴对称,又1x ≥-时,()222312u x x x =++=++单调递增,ln y u =单调递增,故()()2ln 23f x x x =++在()1,-+∞上单调递增,(),1-∞-上单调递减,即()()()()()()221212121212111120f x f x x x x x x x x x >⇒+>+⇒+-+=-++>.故选:D8.已知抛物线2:4C y x =的焦点为F ,过点()0,3的直线与C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点D ,若6AF BF +=,则ABD △的面积为()A.2B.C.2D.【答案】C 【解析】【分析】设AB 的中点为H ,A 、B 、H 在准线上的射影分别为A B H '''、、,由题意和抛物线的定义可得3HH '=,即2H x =,设()()1122,,,A x y B x y ,设直线AB 方程,联立抛物线方程,利用韦达定理求出直线AB 的斜率,求得H 的坐标,进而求出其中垂线方程,可得D 的坐标,结合弦长公式和三角形面积公式计算即可求解.【详解】设AB 的中点为H ,抛物线的焦点为(1,0)F ,准线为=1x -,设A 、B 、H 在准线上的射影分别为A B H '''、、,则1()2HH AA BB '''=+,由抛物线的定义可知,,,6AF AA BF BB AF BF ''==+=,所以6AA BB ''+=,得3HH '=,即点H 的横坐标为2,设直线AB :3y kx =+,代入抛物线方程,得22(64)90k x k x +-+=,由22(64)360k k ∆=-->,得13k <且0k ≠.设()()1122,,,A x y B x y ,则122464k x x k -+==,解得2k =-或12(舍去).所以直线AB :23y x =-+,(2,1)H -,所以AB 的中垂线方程为11(2)2y x +=-,令0y =,解得4x =,即(4,0)D ,则DH =又122994x x k==,所以AB =所以1122ABD S AB DH == .故选:C.Q二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为调研某地空气质量,连续10天测得该地PM 2.5(PM 2.5是衡量空气质量的重要指标,单位:3ug /m )的日均值,依次为36,26,17,23,33,106,42,31,30,33,则()A.前4天的极差大于后4天的极差B.前4天的方差小于后4天的方差C.这组数据的中位数为31或33D.这组数据的第60百分位数与众数相同【答案】AD 【解析】【分析】根据方差和极差判断A ,B 选项,根据中位数判断C 选项,根据百分位数和众数判断D 选项.【详解】前4天的极差361719-=,后4天的极差423012-=,A 正确;前4天的平均数25.5,方差222210.50.58.5 2.547.254+++=,后4天的平均数34,方差2222834122.54+++=,前4天的方差大于后4天的方差,B 选项错误;数据从小大排列17,23,26,30,31,33,33,36,42,106,这组数据的中位数为3133322+=,C 选项错误;这组数据的第60百分位数100.66⨯=是第6个数和第7个数的平均数3333332+=与众数33相同,D 选项正确.故选:AD.10.已知函数()()cos (0,0,0π)f x A x A ωϕωϕ=+>><<在5π12x =处取得极小值2-,与此极小值点相邻的()f x 的一个零点为π6,则()A.()2π2sin 23f x x ⎛⎫=+⎪⎝⎭B.π3y f x ⎛⎫=-⎪⎝⎭是奇函数C.()f x 在ππ,63⎛⎫- ⎪⎝⎭上单调递减D.()f x 在π5π,46⎡⎫⎪⎢⎣⎭上的值域为⎡-⎣【答案】ABD 【解析】【分析】对A ,根据极小值可得A ,再根据极值点与零点关系可得周期,进而可得ω,再代入极小值点求解即可;对B ,根据解析式判断即可;对C ,代入ππ,63⎛⎫- ⎪⎝⎭判断是否为减区间即可;对D ,根据正弦函数在区间上的单调性与最值求解即可.【详解】对A ,由题意2A =-,且周期T 满足5πππ12644T -==,故πT =,即2ππω=,2=ω,故()()2cos 2f x x ϕ=+.因为()f x 在5π12x =处取得极小值2-,故()5π2π2π,Z 12k k ϕ⨯+=+∈,即()π2π,Z 6k k ϕ=+∈,又0πϕ<<,故π6ϕ=,则()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭.由诱导公式()2ππππ2sin 22sin 22cos 23626f x x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 正确;对B ,ππππ2cos 22cos 22sin 23362y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对C ,ππ,63x ⎛⎫∈-⎪⎝⎭则ππ5π2,666x ⎛⎫+∈- ⎪⎝⎭,不为余弦函数的单调递减区间,故C 错误;对D ,π5π,46x ⎡⎫∈⎪⎢⎣⎭则1π22π1π,366x ⎡⎫∈⎪⎢⎣⎭+,故,πc 2os 216x ⎡⎫∈-⎪⎢⎪⎛⎫+ ⎪⎝⎣⎭⎭,则π2cos 26x ⎡∈-⎣⎛⎫+ ⎪⎝⎭,故D 正确.故选:ABD11.在棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱,BC CD 的中点,则()A.11B D 与EF 是异面直线B.存在点P ,使得12A P PF =,且BC //平面1APBC.1A F 与平面1B EB 所成角的余弦值为3D.点1B 到平面1A EF 的距离为45【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅=⋅,则1AF 与平面1B EB所成角的余弦值为3=,C 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111117A B n n ⋅==,D 错误.故选:BC12.已知函数()()()11ln ,f x a x x x a =-++∈R ,则下列说法正确的是()A.当1ln8a =时,()122f f ⎛⎫= ⎪⎝⎭B.当0a >时,()22f a a a <-C.若()f x 是增函数,则2a >-D.若()f x 和()f x '的零点总数大于2,则这些零点之和大于5【答案】ABD 【解析】【分析】直接代入即可判断A ,令()()()22a g a f a a =--,利用导数说明函数的单调性,即可判断B ,由()0f x '≥在()0,∞+上恒成立,利用导数求出()min f x ',即可求出a 的取值方程,即可判断C ,首先说明2a <-,得到()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,利用对数均值不等式得到121x x >,即可得到122x x +>,再说明()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x 且431x x =,最后利用基本不等式证明即可.【详解】对于A :当1ln 8a =时()()()11ln 1ln 8f x x x x =-++,则()12ln3ln23ln 23ln 208f =+=-+=,11111331ln 1ln ln 2ln 202282222f ⎛⎫⎛⎫⎛⎫=-++=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()122f f ⎛⎫=⎪⎝⎭,故A 正确;对于B :()()()()211ln 1ln f a a a a a a a a a =-++=-++,令()()()()()()222221ln 21ln a a a a a a a a a g a f a a a --+--=--+==++,则()112ln ln 21a a a a a a ag a '=+-++=-++,令()()1ln 21a a am a g a -+=+'=,则()2222217211214820a m a a a a a a a '⎛⎫--- ⎪--⎝⎭=--==<,所以()g a '在()0,∞+上单调递减,又()10g '=,所以当01a <<时()0g a '>,当1a >时()0g a '<,所以()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 110g a g ==-<,所以当0a >时,()22f a a a <-,故B 正确;对于C :()1ln 0x f x a x x+'=++≥在()0,∞+上恒成立,令()()1ln x h x f x a x x +'==++,则()22111x h x x x x-'=-=,所以当01x <<时()0h x '<,当1x >时()0h x '>,所以()f x '在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 120f x f a ''==+≥,解得2a ≥-,故C 错误;对于D :因为()10f =,即1为()f x 的一个零点,当2a =-时()0f x '≥,()0f x '=有且仅有一个根1,此时()f x 在()0,∞+上单调递增,所以()f x 和()f x '都只有1个零点,不符合题意;当2a >-时()0f x ¢>,则()f x '无零点,()f x 只有一个零点,不符合题意;当2a <-时()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,所以11221ln 101ln 10a x x a x x ⎧+++=⎪⎪⎨⎪+++=⎪⎩,所以211221ln ln x x x x x x -=>-,所以121x x >,所以122x x +>=,且()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,且()10f =,所以()10f x >,()20f x <,所以()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x ,又()()()11111111ln 11ln f a a x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-++=--++=-⎡⎤⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,所以431x x =,所以()123412*********x x x x x x x x ⎛⎫++++=++++>++= ⎪⎝⎭,故D 正确.ln ln a ba b-<-的证明如下:ln ln a b a b -<-,只需证ln ln ln aa b b -=⇔=1x =>,只需证12ln x x x <-,1x >,设1()2ln n x x x x=-+,1x >,则()22221(1)10x n x x x x-'=--=-<,可得()n x 在(1,)+∞上单调递减,∴1()(1)02ln n x n x x x<=⇒<-,得证.故选:ABD【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量()25,X N σ~,且(7)0.8P X <=,则(35)P X <<的值为__________.【答案】0.3##310【解析】【分析】根据正态分布的性质求得(7)P X ≥,根据正态分布的对称性求出(3)0.2P X ≤=,继而可求得答案.【详解】由题意知随机变量()25,X N σ~,且(7)0.8P X <=,则(7)10.80.2P X ≥=-=,故(3)0.2P X ≤=,故(35)0.5(3)0.50.20.3P X P X <<=-≤=-=,故答案为:0.314.已知52323a x x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为32,则展开式中的常数项为__________.【答案】270【解析】【分析】利用二项式定理计算即可.【详解】令()5523211332322a x x a a x ⎛⎫=⇒+=+=⇒=- ⎪⎝⎭,则()552233233a x x x x -⎛⎫+=- ⎪⎝⎭,设()5233x x --的通项为()()()5235102355C 3C 31rrrrrr r r r T x x x -----=-=⋅⋅-⋅,当2r =时,()55C 311027270rrr -⋅⋅-=⨯=,即展开式中的常数项为270.故答案为:27015.已知圆锥的母线长为5,侧面积为15π,则该圆锥的内切球的体积为__________.【答案】9π2【解析】【分析】根据圆锥的侧面积求出圆锥的底面半径,即可求得圆锥的高,继而利用圆锥的母线和高之间的夹角的正弦求得内切球半径,即可求得答案.【详解】设圆锥的底面半径为r ,圆锥内切球的半径为R ,则π515π,3r r ⨯⨯=∴=,则圆锥的高为22534h =-=,设圆锥的母线和高之间的夹角为π,(0,)2θθ∈,则33sin ,452R R R θ==∴=-,故该圆锥的内切球的体积为3439ππ(322⨯=,故答案为:9π216.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在C 上,且2PF x ⊥轴,过点2F 作12F PF ∠的平分线的垂线,与直线1PF 交于点A ,若点A 在圆222:O x y a +=上,则C 的离心率为__________.3【解析】【分析】由题意求出22||b PF a =,结合双曲线定义以及角平线性质推出1||2AF a =,从而推出1222cos 2cPF F b a a ∠+=,在1AOF △中,利用余弦定理可求得4224340a a c c -+=,结合齐次式求解离心率,即可得答案.【详解】由题意知2(,0)F c ,2PF x ⊥轴,故将x c =代入22221x ya b-=中,得22221c y a b -=,则2b y a =±,即22||b PF a=,不妨设P 在双曲线右支上,则12||||2PF PF a -=,故21||2b PF a a=+;设PQ 为12F PF ∠的平分线,由题意知2F A PQ ⊥,则2||||PA PF =,即2||b PA a =,而211||||||2b PF PA AF a a=+=+,故1||2AF a =,由点A 在圆222:O x y a +=上,得||OA a =;又1||OF c =,则1221212c ||os 2||F F PF b c PF F a a∠=+=,在1AOF △中,222111112||||||2||||cos OA OF AF OF AF PF F =+-⋅∠,即222224222ca c a c ab a a=+-⋅⋅⋅+,结合222b c a =-,即得4224340a a c c -+=,即42430e e -+=,解得23e =或21e =(舍),故3e =,即C 33【点睛】关键点睛:求解双曲线的离心率,关键是求出,,a b c 之间的数量关系式,因此解答本题时,要结合题中条件以及双曲线定义推出相关线段长,从而在1AOF △中,利用余弦定理求出,,a b c 的关系,化为齐次式,即可求得答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点2⎫⎪⎪⎭.(1)求C 的标准方程;(2)过点()1,0-的直线l 与C 交于,A B 两点,当165AB =时,求直线l 的方程.【答案】(1)22143x y +=(2)y =或y =-【解析】【分析】(1)根据离心率的定义和椭圆经过的点,列出方程组,解之即可求解;(2)易知直线l 的斜率不为0,设:(1)l y k x =+,()()1122,,,A x y B x y ,联立椭圆方程,利用韦达定理表示出1212,x x x x +,根据弦长公式化简可得2212(1)34k AB k +=+,结合165AB =计算求出k 的值即可求解.【小问1详解】由题意,222222212()21c e a a b a b c ⎧==⎪⎪⎪⎨⎪+=⎪⎪=+⎩,解得2243a b ⎧=⎨=⎩,所以椭圆C 的标准方程为22143x y +=.【小问2详解】易知直线l 的斜率不为0,设:(1)l y k x =+,即y kx k =+,()()1122,,,A x y B x y ,22143y kx kx y =+⎧⎪⎨+=⎪⎩,消去y ,得2222(34)84120k x k x k +++-=,22222(8)4(34)(412)990k k k k ∆=-+-=+>,221212228412,3434k k x x x x k k -+=-=++,2212(1)34k AB k+==+,又165AB=,所以2212(1)16534kk+=+,解得k=,所以直线l的方程为yy=-.18.在①()()21212n n nS S a n-+=+≥,②1na=+这两个条件中任选一个,补充在下面问题中,并解答下列问题.已知正项数列{}n a的前n项和为1,1nS a=,且__________,*Nn∈.(1)求{}n a的通项公式;(2)设11,n nn nb Ta a+=为数列{}n b的前n项和,证明:12nT<.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)21na n=-(2)证明见解析【解析】【分析】(1)若选择①,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;若选择②,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;(2)确定11122121nbn n⎛⎫=-⎪-+⎝⎭,再根据裂项求和法计算得到答案.【小问1详解】若选择①:()()21212n n nS S a n-+=+≥,则()21121n n nS S a+++=+,相减得到:()()()1112n n n n n na a a a a a++++=+-,0na>,故12n na a+-=,()122221S S a+=+,解得23a=,212a a-=,故数列{}n a为首项是1,公差为2的等差数列,故21na n=-;若选项②:1na=+,则()241n nS a=+,()21141n nS a++=+,相减得到:()()2211411n n n a a a ++=+-+,整理得到()()1120n n n n a a a a +++--=,0n a >,故120n n a a +--=,故数列{}n a 为首项是1,公差为2的等差数列,故21n a n =-;【小问2详解】()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,故()21111111112335212122211n T n n n ⎛⎫=-+-++-=- ⎪-++⎝<⎭ .19.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos cos 3cos 3b C c B b A c +=-.(1)求cos B ;(2)设角B 的平分线交AC 边于点D,且BD =,若b =ABC 的面积.【答案】(1)13-(2)【解析】【分析】(1)利用正弦定理边化角结合两角和的正弦公式化简已知等式,可得cos B ,即得答案;(2)根据同角三角函数关系求出sin 3B =,设π,(0,)2ABD θθ∠=∈,由二倍角余弦公式求出cos 3θ=,利用等面积法推出()32a c ac +=,结合余弦定理即可求得12ac =,从而利用三角形面积公式求得答案.【小问1详解】由题意cos cos 3cos 3b C c B b A c +=-可得sin cos sin cos 3sin cos 3sin B C C B B A C +=-,即sin()3sin cos 3sin()B C B A A B +=-+,即sin 3sin cos 3(sin cos cos sin )3sin cos A B A A B A B A B =-+=-,而(0,π),sin 0A A ∈∴>,故1cos 3B =-;【小问2详解】由(0,π)B ∈,1cos 3B =-可得sin 3B =,角B 的平分线交AC 边于点D ,设π,(0,)2ABD θθ∠=∈,则213cos 2cos 1cos 33B θθ=-=-∴=,111sin sin sin 2222ABC S c a ac θθθ=⋅+=⋅ ,()32323ac a c ac =⋅∴+=,由b =22212483b a c ac ⎛⎫=+-⋅-= ⎪⎝⎭,即()24483a c ac +-=,则()()224448,129093a c ac ac ac -=∴-+=,则12ac =(负值舍去),故21s in 11232ABC ac B S =⨯⨯== 20.设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的5个球,其中甲箱有3个蓝球和2个黑球,乙箱有4个红球和1个白球,丙箱有2个红球和3个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X 表示最后摸出的2个球的分数之和,求X 的分布列及数学期望.【答案】(1)4495(2)分布列见解析,24475【解析】【分析】(1)求出甲箱中摸出2个球颜色相同的概率,继而求得最后摸出的2个球颜色不同的概率,再求出最后摸出的2个球是从丙箱中摸出的概率,根据条件概率的计算公式即可得答案.(2)确定X 的所有可能取值,求出每个值相应的概率,即可得分布列,根据期望公式即可求得数学期望.【小问1详解】从甲箱中摸出2个球颜色相同的概率为223225C C 2C 5P +==,记事件A 为最后摸出的2个球颜色不同,事件B 为这2个球是从丙箱中摸出的,则()()()|P AB P B A P A =,()111111113342222665661242C C C C C C C C 21433855C 5C 55C 5C 7523P A ⎛⎫⎛⎫=⨯⨯+⨯+⨯+⨯= ⎪⎝⎭⎝⎭,()111143223663C C C C 2148855C 5C 375P AB ⎛⎫=⨯⨯+⨯= ⎪⎝⎭,所以()8844375|389575P B A ==;【小问2详解】X 的所有可能取值为2,3,4,则()222342226662C C C 214333255C 5C 55C 25P X ⎛⎫==⨯⨯+⨯+⨯⨯= ⎪⎝⎭,()38375P X ==,()2222322542226666C C C C 2143228455C 5C 55C 5C 753P X ⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯+= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列如表:X 234P32538752875故()33828181141122442342575757575E X ++=⨯+⨯+⨯==.【点睛】难点点睛:本题解答的难点在于求分布列时,计算每个值相应的概率,要弄清楚每个值对应的情况,分类求解,注意计算量较大,要十分细心.21.如图,在三棱锥-P ABC 中,侧面PAB 是锐角三角形,PA BC ⊥,平面PAB ⊥平面ABC .(1)求证:AB BC ⊥;(2)设2,4PA PB AC ===,点D 在棱BC (异于端点)上,当三棱锥-P ABC 体积最大时,若二面角C PAD --大于30 ,求线段BD 长的取值范围.【答案】(1)证明见解析(2)46(0,9【解析】【分析】(1)过点P 作PE AB ⊥,根据面面垂直的性质定理,证得PE ⊥平面ABC ,进而证得BC ⊥平面PAB ,即可得到BC AB ⊥;(2)设2,2AB a BC b ==,得到22(4)3P ABC V a a -=-,令()22(4)3f a a a =-,利用导数求得函数的单调性,得到233a =时,三棱锥-P ABC 的体积最大,以B 为原点,建立空间直角坐标系,设BD m =,求得平面CPA 与PAD 的法向量分别为12,1)n = 和246(2,1)3n m= ,结合向量的夹角公式和题设条件,列出不等式,求得m 的取值范围即可.【小问1详解】证明:过点P 作PE AB ⊥于点E ,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,且PE ⊂平面PAB ,所以PE ⊥平面ABC ,又因为PA BC ⊥,且PE PA P = ,所以BC ⊥平面PAB ,因为AB ⊂平面PAB ,所以BC AB ⊥.【小问2详解】解:设2,2AB a BC b ==,因为BC AB ⊥,可得222AB BC AC +=,即224416a b +=,所以224a b +=,所以b =,又由PE ==所以2112222(4)3233P ABC V a b a a -=⨯⨯⨯==-,令()22(4)3f a a a =-,可得()22(43)3f a a '=-,令()0f a ¢=,解得233a =,当03a <<时,()0f a '>,()f a 单调递增;当23a <<时,()0f a '<,()f a 单调递减,所以当3a =时,即,33AB BC ==时,三棱锥-P ABC 的体积最大,以B 为原点,,BC BA 所在的直线分别为,x y 轴,以过点B 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图所示,设BD m =,可得4643232643(,,0),(0,,(,33333CA PA DA m =-=-=- ,则(,0,0),(,0,0),(0,,(0,,0)3333D m C P A ,设平面CPA 与平面PAD 的法向量分别为11112222(,,),(,,)n x y z n x y z == ,由11114643033033x y y z ⎧-+=⎪⎪⎨⎪-=⎪⎩,令1y =,可得111,1x z ==,所以1n = ,又由2222232603303y z mx y ⎧-=⎪⎪⎨⎪-+=⎪⎩,令1y =,可得22,13x z m ==,所以2()3n m = ,设二面角C PA D --的平面角的大小为θ,所以12123cos cos302n n n n θ⋅===,解得09m <<,所以BD 的长的取值范围为(0,9.22.已知函数()2e 32sin 1,xf x a ax x a =-+-∈R .(1)当01a <<时,求曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值;(2)当0x =时,函数()f x 取得极值,求a 的值.【答案】(1)38(2)2a =或1a =【解析】【分析】(1)求出曲线()y f x =在点()()0,0f 处的切线方程,然后求出与x 轴,y 轴的交点,表示出切线与两坐标轴围成的三角形面积,然后利用导数求最大值即可;(2)令()00f '=求出a 的值,然后验证a 的值使函数()f x 在0x =处取到极值.【小问1详解】由已知()2e 32cos xf x a a x '=-+,01a <<则()2320f a a '=-+,()201f a =-,曲线()y f x =在点()()0,0f 处的切线方程为()22321y a a x a =-++-,01a <<当0x =时,21y a =-,当0y =时,12a x a +=--,设线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积为()h a ,则()()221111112222a a a a a a h a ++=-=-⋅--,01a <<()()()()()()()()()23222321211213112222h a a a a a a a a a a a a +---+-∴-+-=⋅=--'-,令()0h a '>,则102a <<,即()h a 在10,2⎛⎫ ⎪⎝⎭上单调递增,令()0h a '<,则112a <<,即()h a 在1,12⎛⎫ ⎪⎝⎭上单调递减,即()max 111132112481222h a h +⎛⎫=-⋅= ⎪⎛⎫= ⎪-⎝⎝⎭⎭,即曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值为38;【小问2详解】由(1)()2e 32cos x f x a a x '=-+,因为当0x =时,函数()f x 取得极值,得()20032f a a '=-+=,解得2a =或1a =,当2a =时,()4e 62cos x f x x '=-+,设()()4e 62cos xg x f x x '==-+,则()4e 2sin x g x x -'=,令()()4e 2sin xr x g x x =-'=,则()4e 2cos x r x x -'=,明显()4e 2cos x r x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()()02r x r ''∴>=,即()4e 2sin x g x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()4g x '∴>,即()4e 62cos x f x x '=-+在π0,2⎛⎫⎪⎝⎭上单调递增,()4620f x '∴>-+=,即函数()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增又明显()4e 2sin 0x g x x -'=>在π,02⎛⎫- ⎪⎝⎭上恒成立,则()4e 62cos x f x x '=-+在π,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ''∴<=,即函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,所以当0x =时,函数()f x 取得极值,当1a =时,()e 32cos x f x x '=-+,设()()e 2cos 3xt x f x x '=+-=,则()e 2sin xt x x -'=,当π,02x ⎛⎫∈- ⎪⎝⎭时,明显()0t x '>,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,因为e 1,sin x x x x ≥+≥,()()()e 2sin 12sin sin 1sin 0x t x x x x x x x '∴-=≥+=-+-≥-()e 2sin 0x t x x -'∴=≥在ππ,22⎛⎫- ⎪⎝⎭上恒成立,()e 32cos x f x x '∴=-+在ππ,22⎛⎫- ⎪⎝⎭上单调递增,又()00f '=,∴函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,在π0,2⎡⎫⎪⎢⎣⎭上单调递增,所以当0x =时,函数()f x 取得极值,故2a =或1a =.现证明e 1x x ≥+,设()=e 1x m x x --,则()=e 1xm x '-,令()0m x '>,得0x >,()m x 在()0,∞+上单调递增,令()0m x '<,得0x <,()m x 在(),0∞-上单调递减,()()00m x m ∴≥=,即e 1x x ≥+,现证明πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭,设()sin n x x x =-,则()1cos 0n x x ='-≥在π0,2⎡⎫⎪⎢⎣⎭上恒成立即()n x 在π0,2⎡⎫⎪⎢⎣⎭上单调递增,()()00n x n ∴≥=,即πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭.。

2022-2023学年江苏省苏州中学高一上学期期中数学试题(解析版)

2022-2023学年江苏省苏州中学高一上学期期中数学试题(解析版)

2022-2023学年江苏省苏州中学高一上学期期中数学试题一、单选题1.已知集合{}{}231,340x A x B x x x =≥=-->,则A B =( )A .{}1x x <-B .{}04x x <≤C .{}4x x >D .{10x x -<≤或}4x >【答案】C【分析】利用指数函数图象可得[)0A =+∞,,根据一元二次不等式可得B =4∞∞(,+)(-,-1),进而求出A B ⋂.【详解】[)0A =+∞,,B =4(,+)(-,-1)∞∞,A B =4+∞(,) 故选:C.2.已知命题p :x R ∃∈,23210ax ax ++≤是假命题,则实数a 的取值范围是( ) A .(](),03,-∞+∞ B .()(),03,-∞+∞ C .()0,3 D .[)0,3【答案】D【分析】根据一元二次不等式恒成立求解实数a 的取值范围. 【详解】由题意得p ⌝是真命题,即x R ∀∈,23210ax ax ++>, 当=0a 时,10>符合题意;当0a ≠时,有0a >,且2(2)430a a ∆=-⋅<,解得0<<3a . 综上所述,实数a 的取值范围是[)0,3. 故选:D.3.已知函数()y f x =的定义域为[]8,1-,则函数()()212f xg x x +=+的定义域是( )A .()(],22,3-∞--B .[)(]8,22,1---C .9,22⎡⎤--⎢⎥⎣⎦D .(]9,22,02⎡⎫---⎪⎢⎣⎭【答案】D【分析】根据抽象函数和具体函数的定义域可得出关于x 的不等式组,由此可解得函数()g x 的定义域.【详解】因为函数()y f x =的定义域为[]8,1-,对于函数()()212f xg x x +=+,则有821120x x -≤+≤⎧⎨+≠⎩,解得922x -≤<-或20x -<≤.因此,函数()g x 的定义域为(]9,22,02⎡⎫---⎪⎢⎣⎭.故选:D. 4.已知函数41xf xa (a >0且a ≠1)的图象恒过定点A ,若点A 的坐标满足关于x y ,的方程()400mx ny m n +=>>,,则12m n+的最小值为( ) A .9 B .24C .4D .6【答案】C【分析】由题意可得22m n +=,利用基本不等式求最值即可. 【详解】因为函数4()1(0,1)x f x a a a -=+>≠图象恒过定点(4,2) 又点A 的坐标满足关于x y ,的方程()400mx ny m n +=>>,, 所以424m n +=,即22m n += 所以12112(2)(2)m n m n m n+=++142(4)m n n m =++ 1)2(424m nm +=,当且仅当4m n n m=即21n m ==时取等号; 所以12m n+的最小值为4. 故选:C .5.已知关于x 的不等式103mx x ->+的解集为()m n ,,则+m n 的值为( ) A .5- B .103- C .4- D .5-或103-【答案】B【分析】分析可知0m <,且m 、n 为方程()()130mx x -+=的两根,分类讨论,求出m 、n 的值,即可得解.【详解】因为关于x 的不等式103mx x ->+的解集为()m n ,,则0m <, 而方程()()130mx x -+=的两根分别为1x m=,3x =-.若1==3<m m n m n -⎧⎪⎪⎨⎪⎪⎩,无解;若=31=<m n m m n -⎧⎪⎪⎨⎪⎪⎩,解得=31=3m n --⎧⎪⎨⎪⎩.因此,103m n +=-. 故选:B.6.若不等式210x ax -+≥对一切10,2x ⎛⎫∈ ⎪⎝⎭都成立,则a 的最大值为( )A .0B .2C .3D .52【答案】D【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式210x ax -+≥对一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,所以对一切10,2x ⎛⎫∈ ⎪⎝⎭,21ax x ≤+,即21x a x+≤恒成立.令()21110,2x g x x x x x +⎛⎫==+∈ ⎪⎫⎪⎭⎝⎛ ⎭⎝. 易知()1g x x x =+在10,2⎛⎫ ⎪⎝⎭内为减函数.所以()15>()=22g x g , 故52a ≤,所以a 的最大值是52.故选:D7.已知函数()()()21,143,1x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩.若()()0f f m ≥,则实数m 的取值范围是( ).A .[]22-,B .[][)2,23,-⋃+∞ C.2,2⎡-⎣D.[)2,24,⎡-⋃+∞⎣【答案】D【分析】解不等式()0f x ≥得[][)1,13,-+∞,将问题转化为()[][)1,13,f m ∈-+∞,进而作出函数()f x 的图像,数形结合求解即可.【详解】解:当1x ≤时,()10f x x =-≥,解得11x -≤≤,当1x >时,()2430f x x x =-+≥,解得3x ≥,所以,当()()0f f m ≥时,()[][)1,13,f m ∈-+∞,令()1f x =-时,2x =-或2;令()3f x =时,4x =;令()1f x =时,0x =或22+, 所以,作出函数()f x 的图像如图, 当()[][)1,13,f m ∈-+∞时,实数m 的取值范围是[)2,224,⎡⎤-+⋃+∞⎣⎦.故选:D8.已知函数()2f x x a =+,()261g x x x =-+.若存在[]11,1x ∈-,[]21,1x ∈-,使得()()21g x f x =,则实数a 的取值范围是( ) A .[]6,10-B .()6,10-C .(][),610,-∞-⋃+∞D .()(),610,-∞-⋃+∞【答案】A【分析】先求出()f x 与()g x 值域,A B ,由题意可知A B ⋂≠∅,由此即可求解 【详解】()[]2,1,1f x x a x =+∈-时单调递增函数,f x 的值域是[]2,2A a a =-+,()261g x x x =-+的对称轴是3x =,在[]1,1x ∈-上,函数单调递减,()g x ∴的值域是[]4,8B =-,因为存在[]11,1x ∈-,[]21,1x ∈-,使得()()21g x f x =, 所以A B ⋂≠∅,若A B ⋂=∅,则28a ->或24a +<-, 解得10a >或6a <-,所以当610a -≤≤时,A B ⋂≠∅, 故选:A二、多选题9.下列命题为真命题的是( ) A .若0a b >>,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b >>且0c <,则22c c a b> D .若15x y -≤<≤,则60x y -≤-< 【答案】BCD【分析】根据已知条件,结合特殊值法和作差法,即可依次求解. 【详解】对于A ,当0c 时,22ac bc =,故A 为假命题, 对于B ,0a b <<,0a b ∴-<,2()0a ab a a b ∴-=->,2()0=->-b a b ab b ,22a ab b ∴>>,故B 为真命题,对于C ,0a b >>, 220a b ∴>>,即2211a b <, 0c <,∴22c ca b>,故C 为真命题, 对于D ,15x y -≤<≤,∴当=1x -,5y =时,取得最小值为6-,且0x y -< ∴60x y -≤-<故D 为真命题. 故选:BCD .10.(多选)下列关于函数()f x = ) A .单调递增区间是[]1,1- B .单调递减区间是[)1,+∞ C .最大值为2 D .没有最小值【答案】AC【分析】先求()f x 的定义域排除选项B ,再利用一元二次函数的性质与复合函数的单调性求得()f x 的单调性,进而求其最值.【详解】要使函数有意义,则2230x x -++≥,得13x -≤≤,故B 错误;函数()f x ()f u ()222314u x x x =-++=--+复合而成,当[]1,1x ∈-时,223u x x =-++单调递增,当[]1,3x ∈时,223u x x =-++单调递减,又()f u [)0,∞+上单调递增,所以()f x []1,1-上单调递增,在[]1,3上单调递减,故()()max 12f x f ==,又()()130f f -==,所以()min 0f x =,故A ,C 正确,D 错误. 故选:AC.11.若4455x y x y ---<-,则下列关系正确的是( )A .x y <B .33y x -->C D .133yx -⎛⎫< ⎪⎝⎭【答案】AD【分析】构造函数()45x xf x -=-,利用函数()f x 的单调性可得出x 、y 的大小关系,利用函数的单调性、中间值法可判断各选项的正误.【详解】由4455x y x y ---<-,得4545x x y y ---<-,令()45x xf x -=-,则()()f x f y <. 因为()4xg x =,()5x h x -=-在R 上都是增函数,所以()f x 在R 上是增函数,所以x y <,故A 正确;因为()3G x x -=在()0,∞+和(),0∞-上都单调递减,所以当0x y <<时,33x y -->,故B 错误;当0x <,0y <无意义,故C 错误;因为13xy ⎛⎫= ⎪⎝⎭在R 上是减函数,且x y <,所以1133yx⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即133yx -⎛⎫< ⎪⎝⎭,故D 正确.故选:AD .12.已知定义在R 上的奇函数()f x 满足(2)()f x f x -=,且当[0,1]x ∈时,()2f x x =,则( ) A .关于x 的方程1()2f x =在区间[0,5]上的所有实数根的和为254B .关于x 的方程1()2f x =在区间[0,5]上的所有实数根的和为174C .若函数()g x ax =与()y f x =的图象恰有5个不同的交点,则25a =或2237a -<<- D .若函数()g x ax =与()y f x =的图象恰有5个不同的交点,则25a =-或2273a <<【答案】AC【分析】根据所给函数性质作出函数的大致图象,利用函数图象,数形结合求解即可. 【详解】定义在R 上的奇函数()f x 满足(2)()f x f x -=,所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=,即函数的周期4T =, 又函数为定义在R 上的奇函数,所以(0)0f =, 又(2)()f x f x -=,所以函数关于1x =对称, 当[0,1]x ∈时,1()22f x x ==,解得14x =,作函数的大致图象,如图,由图可知方程1()2f x =在区间[0,5]上的所有实数根的和为1252344+⨯=,故A 正确,B 错误;若函数()g x ax =与()y f x =的图象恰有5个不同的交点, 当0a >时,由图象可知,直线()g x ax =过点(5,2)时,即25a =时,满足题意, 当a<0时,找出两个临界情况,当直线y ax =过(3,2)-时,23a =-,有3个交点当直线y ax =过(7,2)-时,27a =-有3个交点,由图象知,当2237a -<<-时,直线y ax =与()y f x =的图象有5个交点.综上,当25a =或2237a -<<-时,函数()g x ax =与()y f x =的图象恰有5个不同的交点,故C 正确D 错误.故选:AC三、填空题 13.化简()312113321(0,0)4(0.1)a b a b---⎛⎫>>= ⎪⎝⎭⋅___________.【答案】85##1.6【分析】先将根式化为分数指数幂,然后由幂的运算化简可得.【详解】()311331133222222213333133222221(2)28(2)245(0.1)1010a b a b a ba ba b---------⎛⎫===⎪⎝⎭⋅ 故答案为:8514.已知()539f x ax bx cx =++-,且(3)12f -=,那么(3)f =___________【答案】30-【分析】设()53g x ax bx cx =++,得到()()9f x g x =-,且求得()321g =-,进而求得()3f 的值,得到答案.【详解】设()53g x ax bx cx =++,则()()9f x g x =-,易得定义域为R ,又()()5353()()()g x a x b x c x ax bx cx g x -=-+-+-=---=-,所以函数()g x 为奇函数,又因为(3)12f -=,即()3912g --=,可得()321g -=,所以()321g =-, 则(3)(3)921930f g =-=--=-. 故答案为:30-.15.已知0x >,0y >,若26x y xy ++=,则2x y +的最小值为_____________. 【答案】4【分析】因为0x >,0y >,将26x y xy ++=化为2122(2)x y x y ⋅=-+,利用基本不等式,转化为关于2x y +的一元二次不等式解决.【详解】因为0x >,0y >,且26x y xy ++=,所以6(2)xy x y =-+,即222122(2)2x y x y x y +⎛⎫⋅=-+≤ ⎪⎝⎭,化简得,2(2)8(2)480x y x y +++-≤,解得:24x y +≥或212x y +≤-,因为0x >,0y >,所以24x y +≥,当且仅当2x y =时,取“=”,所以2x y +的最小值为4. 故答案为:416.已知函数()()21,9321x x x x f x g x t -==-⋅+,若存在实数,a b 同时满足()()0f a f b +=和()()0g a g b +=,则实数t 的取值范围为___________. 【答案】[)1,+∞【分析】根据奇偶性定义求得()f x 为奇函数,从而可得=-b a ,从而可将()()0g a g a +-=整理为:()23322333333aaa a a aa at ----+-==+-++,令()332a a m m -=+≥,则2t m m=-在[)2,+∞有解,通过求解函数()()22h m m m m=-≥的值域可得到t 的取值范围. 【详解】()f x 的定义域是R ,且()()21221112x xx x f x f x ----===-++-,f x 为R 上的奇函数,又()()0f a f b +=b a ∴=-()()0g a g a ∴+-=93930a a a a t t --∴-⋅+-⋅=有解,即()()2333320a a a a t --+-+-=有解, 即()23322333333a aa a a aa a t ----+-==+-++ 令()332a am m -=+≥,则2t m m=-在[)2,+∞有解, 令()()22h m m m m=-≥,则()2210h m m '=+>,()h m ∴在[)2,+∞上单调递增, ()()22212h m h ∴≥=-=, 所以1t ≥,所以实数t 的取值范围为[)1,+∞, 故答案为:[)1,+∞四、解答题17.已知集合12324xA x ⎧⎫=≤≤⎨⎬⎩⎭,{}22440,B x x x m m =-+-≤∈R .(1)若3m =,求A B ⋃;(2)若存在正实数m ,使得“x A ∈”是“x B ∈”成立的 ,求正实数m 的取值范围. 从“①充分不必要条件,②必要不充分条件”中任选一个,填在上面空格处,补充完整该问题,并进行作答. 【答案】(1)[2,5]A B =-(2)答案见解析【分析】(1)分别求解两个集合,再求并集;(2)若选①,则A 是B 的真子集.若选②,则B 是A 的真子集,根据集合的包含关系,列不等式,即可求解m 的取值范围.【详解】(1)[]12322,54xA x ⎧⎫=≤≤=-⎨⎬⎩⎭因0m >,则()(){}[]220,2,2B x x m x m m R m m ⎡⎤⎡⎤=---+≤∈=-+⎣⎦⎣⎦. 当3m =时,[1,5]B =-,所以[2,5]AB =-.(2)选① 因“x A ∈”是“x B ∈”成立的充分不必要条件,则A 是B 的真子集.所以[)002244,253m m m m m m m ∞>>⎧⎧⎪⎪-≤-⇒≥⇒∈+⎨⎨⎪⎪+≥≥⎩⎩.经检验“=”满足.所以实数m 的取值范围是[4,)+∞.选② 因为“x A ∈”是“x B ∈”成立的必要不充分条件 所以B 是A 的真子集.所以(]002240,3253m m m m m m m >>⎧⎧⎪⎪-≥-⇒≤⇒∈⎨⎨⎪⎪+≤≤⎩⎩,经检验“=”满足.所以实数m 的取值范围是(0,3].18.定义在R 上的函数f(x)满足:f(m +n)=f(m)+f(n)-2对任意m ,n ∈R 恒成立,当x >0时,f(x)>2.(1)证明:f(x)在R 上是增函数,(2)已知f(1)=5,解关于t 的不等式f(t -1)≤8.【答案】(1)见解析;(2){|3}t t ≤【分析】(1) 根据定义判断函数单调性的步骤判断即可.(2) 根据f(1)=5,利用表达式求得f(2)=8,将不等式化为f(t -1)≤f(2).,进而根据函数的单调性即可求得t 的范围.【详解】(1)任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0.∴f(x 2-x 1)>2,f(x 1)-f(x 2)=f(x 1)-f(x 2-x 1+x 1)=f(x 1)-f(x 2-x 1)-f(x 1)+2=2-f(x 2-x 1)<0.∴f(x 1)<f(x 2),∴f(x)在R 上是增函数.(2)∵f(1)=5,∴f(2)=f(1)+f(1)-2=8.由f(t -1)≤8得f(t -1)≤f(2).∵f(x)在R 上为增函数,∴t -1≤2,即t≤3.∴不等式的解集为{t|t≤3}.【点睛】本题考查了利用定义判断函数的单调性,根据函数的单调性解相关的不等式问题,属于基础题.19.已知函数2()|2|f x x x x a =+-,其中a 为实数.(1)当1a =-时,求函数()f x 的最小值;(2)若()f x 在[1,1]-上单调递增,求实数a 的取值范围.【答案】(1)12- (2)2a ≤-或0a >.【分析】(1)首先去绝对值,表示为分段函数,再分别求两段的最小值,即可求函数的最小值; (2)分0a >,0a =和a<0三种情况讨论函数的单调性,再根据函数在区间[1,1]-上单调递增,列式求实数a 的取值范围.【详解】(1)当1a =-时,()2222,222,2x x x f x x x x x x ⎧+≥-=++=⎨-<-⎩ , 221122222y x x x ⎛⎫=+=+- ⎪⎝⎭,2x ≥-,此时当12x =-时函数取得最小值12-; 当<2x -时,函数2y x =-的值域是()4,+∞, 所以函数的最小值是12-; (2)()222,22,2x ax x a f x ax x a ⎧-≥=⎨<⎩, 当0a =时,()22,00,0x x f x x ⎧≥=⎨<⎩,不满足函数在[]1,1-单调递增;当0a >时,222y x ax =-在[)2,a +∞单调递增,2y ax =也是单调递增函数,且在2x a =处连续,所以函数在R 上单调递增,符合题意;当a<0时,函数在,2a ⎛⎫-∞ ⎪⎝⎭,在,2a ⎡⎫+∞⎪⎢⎣⎭单调递增,若()f x 在[1,1]-上单调递增,所以12a ≤-,得2a ≤-, 综上可知,a 的取值范围是2a ≤-或0a >.20.为响应国家扩大内需的政策,某厂家拟在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用()0t t ≥万元满足421k x t =-+(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2021年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家2021年的年促销费用投入多少万元时厂家利润最大?【答案】(1)()1827021y t t t =--≥+;(2)该厂家2021年的年促销费用投入2.5万元时,厂家利润最大.【分析】(1)根据题意,当0=t 时,x =1,进而代入已知等式解出k ,然后求出每件产品的销售价格,最后得到函数的解析式;(2)根据(1)中的式子,结合基本不等式即可得到答案.【详解】(1)由题意,当0=t 时,x =1,则1431k k =-⇒=,于是3421x t =-+,所以()61231.56123636421x y x x t x t t x t +⎛⎫=⋅⋅-+-=+-=+-- ⎪+⎝⎭()1827021t t t =--≥+. (2)由(1),()1892727.50.527.521.5210.5y t t t t ⎡⎤=--=-++≤-=⎢⎥++⎣⎦, 当且仅当90.5 2.50.5t t t =+⇒=+时“=”成立. 所以,该厂家2021年的年促销费用投入2.5万元时,厂家利润最大.21.已知定义在R 上的函数14()4x x b f x a+-+=+是奇函数. (1)求,a b 的值:(2)当1(,1)2x ∈时,不等式4()30x mf x +->恒成立,求实数m 的取值范围. 【答案】(1)4a =,1b =;(2)(,12]-∞-.【解析】(1)由题意利用函数的奇偶性的性质,求出a 、b 的值.(2)根据题意转化为14344(41)x x x m -⋅>-+恒成立,进而转化为44()m t t<⨯-恒成立,再根据函数4()4()h t t t=⨯-在区间(3,1)--上是减函数,求出1()h -的值,可得m 的范围. 【详解】(1)因为函数14()4x x b f x a+-+=+是定义在R 上的奇函数, 可得1(0)04b f a -==+,解得1b =,所以114()4xx f x a+-=+, 又由(1)(1)f f -=-,可得11144116a a --=-++,解得4a =, 所以函数的解析式为14()4(41)xx f x -=+. (2)不等式4()30x mf x +->恒成立,即14344(41)xx x m -⋅>-+恒成立, 因为1(,1)2x ∈,可得1404(41)x x -<+,所以(34)4(41)14x x xm -⋅+<-, 令14x t -=,则(3,1)t ∈--,且2(34)4(41)(2)4(2)4(4)44()14x x x t t t t t t t-⋅++⨯⨯--===⨯--. 所以44()m t t <⨯-恒成立, 令4()4()h t t t =⨯-,则函数4()4()h t t t=⨯-在区间(3,1)--上是减函数, 因为(1)12h -=-,所以m 12≤-.即实数m 的取值范围(,12]-∞-.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.22.已知函数()f x =(1)求函数()f x 的值域;(2)设2()()2()2a F x f x f x ⎡⎤=-+⎣⎦(a<0),求()F x 的最大值()g a ; (3)对于(2)中的()g a,若22()m nm g a -+在[1,1]n ∈-上恒成立,求实数m 的取值范围.【答案】(1)2⎤⎦;(2)()11,2212,02a g a a a a a a ≤⎪⎪=--<<-⎨⎪⎪+-≤<⎪⎪⎩; (3)(][){},22,0-∞-⋃+∞⋃.【分析】(1)先求定义域,进而先求出()2f x 的范围,最后求出函数的值域;(2)求出()F x ,设()t f x =,进而讨论函数()212t at t a ϕ=+-,2t ⎤∈⎦的最大值,然后讨论a与定义域2⎤⎦的位置关系,最后得出答案; (3)将问题转化为220m nm -≥在[]1,1n ∈-上恒成立,进而讨论m 为0和不为0两种情况,最后求得答案.【详解】(1)由10x +≥且10x -≥,得11x -≤≤.()[]()[]222210,1,2,4f x x f x =+-∈∴∈,且()0f x >,得()f x ⎤∈⎦,则函数()f x的值域为2⎤⎦.(2)()()()222a F x f x f x⎡⎤=-+=⎣⎦ 令()t f x =2112t -,2t ⎤∈⎦,所以2211122a t t at t a ⎛⎫=-+=+- ⎪⎝⎭, 令()212t at t a ϕ=+-,2t ⎤∈⎦,则()g a 为函数()212t at t a ϕ=+-,2t ⎤∈⎦的最大值. 易得函数212y at t a =+-的图象是开口向下的抛物线,且其对称轴为直线1t a =-. ①若(1t a =-∈,即a ≤()g a ϕ= ②若)12t a =-∈,即12a <<-,则()112g a a a a ϕ⎛⎫=-=-- ⎪⎝⎭; ③若[)12,t a =-∈+∞,即102a -≤<,则()()22g a a ϕ==+. 综上可得()11,2212,02a g a a a a a a ≤⎪⎪=--<-⎨⎪⎪+-≤<⎪⎪⎩. (3)由(2)易得()min g a =要使()22m nm g a -+在[]1,1n ∈-上恒成立,即使()2min 2m nm g a -+[]1,1n ∈-恒成立,所以220m nm -≥在[]1,1n ∈-上恒成立.令()22h n m nm =-,[]1,1n ∈-,若0m =,则()00h n =≥对任意[]1,1n ∈-恒成立;若0m ≠,则有()()1010h h ⎧-≥⎪⎨≥⎪⎩,即222020m m m m ⎧+≥⎨-≥⎩, 解得2m ≥或2m ≤-.综上,实数m 的取值范围是(][){},22,0-∞-⋃+∞⋃.【点睛】关键点点睛:本题对()F x =这时候需要找到三个根式之间的关系,在通过(1进而通过换元法进行处理.。

江苏省苏州市南京航空航天大学苏州附属中学2024-2025学年高三上学期10月期中适应性练习数学试题

江苏省苏州市南京航空航天大学苏州附属中学2024-2025学年高三上学期10月期中适应性练习数学试题

江苏省苏州市南京航空航天大学苏州附属中学2024-2025学年高三上学期10月期中适应性练习数学试题一、单选题1.已知集合{}230,{013}A xx B x x =-<=<+<∣∣,则A B = ()A .(-B .()2C .(D .()1,2-2.“11x<”是“21x >”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件3.设1z ,2z 为复数,且120z z ≠,则下列结论不正确的是()A .1212z z z z =B .1212z z z z +=+C .若12z z =,则2212z z =D .1212z z z z ⋅=⋅4.已知正三棱台111ABC A B C -的体积为AB =11A B =则1A A 与平面ABC 所成角的正切值为()A .12B .1C .2D .35.将函数()*π()cos N 12g x x ωω⎛⎫=+∈ ⎪⎝⎭的图象上所有点的横坐标变为原来的12,纵坐标变为原来的2倍,得到函数()f x 的图象,若()f x 在π0,2⎛⎫⎪⎝⎭上只有一个极大值点,则ω的最大值为()A .2B .3C .4D .56.已知()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有(4)()f x f x +=,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若在区间(2,6]-内函数()()log (2)(1)a g x f x x a =-+>有三个不同的零点,则实数a 的取值范围为()A .(1,2]B .C .2)D .(2,)+∞7.已知数列{}n a 满足:11a =,()()2212121n n n a n a ++=-(*n ∈N ).正项数列{}n c 满足:对于每个*n ∈N ,21n n c a -=,且21n c -,2n c ,21n c +成等比数列,则21n c ⎧⎫⎨⎬⎩⎭的前n 项和为()A .1n n +B .221n n +C .21n n +D .21n n -8.已知0x 为函数222()e e ln 2e x f x x x =+-的零点,则00ln x x +=()A .1B .2C .3D .4二、多选题9.下列四个命题为真命题的是().A .在ABC 中,角,,ABC 所对的边分别为,,a b c,若a =2b =,A θ=,要使满足条件的三角形有且只有两个,则π0,6θ⎛⎫∈ ⎪⎝⎭B .若向量()5,0a =,()2,1b = ,则a 在b 上的投影向量为()4,2C .已知向量()cos ,sin a αα= ,()2,1b = ,则a b -1D .在ABC 中,若sin sin AB AC AO AB B AC C λ⎛⎫ ⎪=+ ⎪⎝⎭ (λ∈R ),则动点O 的轨迹一定通过ABC ∆的重心10.数列前n 项和为n S ,且满足11a =,112,2,n n n n na n a a n ++⎧-=⎨+⎩为奇数为偶数,则()A .41a =-B .21,1,n n n a n ⎧-=⎨-⎩为奇数为偶数C .21213262n n S n ++=--D .数列(){}1nn a -的前2n 项和为()2413n --11.如图,正方体1111ABCD A B C D -棱长为2,P 、Q 分别是棱1CC ,棱BC 的中点,点M 是其侧面11ADD A 上的动点(含边界),下列结论正确的是()A .沿正方体的表面从点A 到点PB .过点A ,P ,Q 的平面截该正方体所得的截面面积为98C.当PM =M 的轨迹长度为2π3D .保持PM 与1BD 垂直时,点M三、填空题12.用与球心距离为2的平面去截球,所得的截面面积为π,则球的体积为.13.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c 且2cos a B c a =-.当3c ab+取最小值时,则A =.14.如图,对于曲线G 所在平面内的点O ,若存在以O 为顶点的角α,使得对于曲线G 上的任意两个不同的点A B ,,恒有AOB ∠α≤成立,则称角α为曲线G 的相对于点O 的“界角”,并称其中最小的“界角”为曲线G 的相对于点O 的“确界角”.已知曲线C :12e 1011016x x x y x x -⎧+>⎪=⎨+≤⎪⎩,,(其中e 是自然对数的底数),O 为坐标原点,曲线C 的相对于点O 的“确界角”为β,则e β=.四、解答题15.已知m =(b sin x ,a cos x ),n =(cos x ,﹣cos x ),()f x m n a =⋅+ ,其中a ,b ,x ∈R .且满足()26f π=,(0)f '=(1)求a 和b 的值;(2)若关于x 的方程3()log 0f x k +=在区间[0,23π]上总有实数解,求实数k 的取值范围.16.如图,四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,侧面PAB 是正三角形,M 是PD 上一动点,N 是CD 的中点.(1)若PC ∥平面BMN ,求证:M 是PD 的中点;(2)若平面PAB ⊥平面ABCD ,求线段PC 的长;(3)是否存在点M 、使得PC BM ⊥?若存在,求出PMMD的值;若不存在,请说明理由.17.在ABC V 中,角,,A B C 的对边分别为,,a b c .)sin sin cos cos sin B A B A C -=.(1)求角C 的大小;(2)若ABC V 的面积S =3r =,求c ;(3)若ACB ∠的平分线交AB 于D ,且2CD =,求ABC V 的面积S 的最小值.18.已知数列{}n a 中,21a =,前n 项和为n S ,且1()2n n n a a S -=.(1)求1a ,3a 的值;(2)证明:数列{}n a 是等差数列,并写出其通项公式;(3)设1310n n a n b +=(*n ∈N ),试问是否存在正整数p ,q (其中1)p q <<,使得1b ,p b ,qb 成等比数列?若存在,求出所有满足条件的数对(,)p q ;若不存在,请说明理由.19.凸函数是数学中一个值得研究的分支,它包括数学中大多数重要的函数,如2x ,e x 等.记()f x ''为()y f x '=的导数.现有如下定理:在区间I 上()f x 为凸函数的充要条件为()()0f x x I ''≥∈.(1)证明:函数()31f x x x=-为()1,+∞上的凸函数;(2)已知函数()2()2ln ln g x ax x x x a =--∈R .①若()g x 为[)1,+∞上的凸函数,求a 的最小值;②在①的条件下,当a 取最小值时,证明:()()31()223231x xx g x x -+≥+-+,在[)1,+∞上恒成立.。

苏州市2024-2025学年高三上学期9月期初阳光调研数学试题(原卷版)

苏州市2024-2025学年高三上学期9月期初阳光调研数学试题(原卷版)

苏州市2024-2025学年高三上学期期初阳光调研试卷数学2024.9一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 是虚数单位,则2ii-= A.12i -B.12i --C.12i +D.12i -+2.已知集合{}26A x x =≤<,{}240B x x x =-<,则A B =A.()0,6B.()4,6C.[)2,4D.()[),02,-∞+∞3.将函数()sin f x x =的图象先向左平移4π个单位,再将所得图象上所有点的纵坐标保持不变,横坐标变为原来的12,得到函数()y g x =的图象,则2g π⎛⎫= ⎪⎝⎭A.2-B.1C.2D.-14.已知向量()1,1a =-,()22,b x x =-,则“2x =-”是“a b ∥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.“绿水青山就是金山银山”的理念深入人心,人民群众的生态环境获得感、幸福感、安全感不断提升.某校高一年级举行环保知识竞赛,共500人参加,若参赛学生成绩的第60百分位数是80分,则关于竞赛成绩不小于80分的人数的说法正确的是 A.至少为300人B.至少为200人C.至多为300人D.至多为200人6.已知正四棱锥的侧面积是底面积的2倍,则该正四棱锥侧棱和底面所成角的余弦值为B.127.已知函数()()e e 1xf x x a =+--(e 为自然对数的底数),()()l ne xg x x a =-的零点分别为1x ,2x ,则12x x 的最大值为 A.eB.1eC.1D.2e8.在平面直角坐标系xOy 中,A ,B 为双曲线22:1C x y -=右支上两点,若6AB =,则AB 中点横坐标的最小值为A.C.3D.163二、选择题:本题共3小题,每小题6分,共18分。

在每小题给出的选项中,有多项符合题目要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前江苏省苏州市2019-2020学年高三上学期期中数学试题试卷副标题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明 一、填空题1.已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.2.已知复数z 满足2zi i=+(i 为虚数单位),则复数z 的实部为___________. 3.已知向量(,2)a x =,(2,1)b =-,且a b ⊥,则实数x 的值是___________. 4.函数y =___________. 5.等比数列{}n a 中,11a =,48a =,n S 是{}n a 的前n 项和,则5S =_________. 6.已知tan 2α=,则sin cos 2sin ααα+的值为_________.7.“2x >”是“1x >”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的某一个)8.已知函数sin 2y x =的图象上每个点向左平移(0)2πϕϕ<<个单位长度得到函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,则ϕ的值为_______.9.设函数,0()21,0x e x f x x x ⎧≥=⎨+<⎩,则不等式()2(2)f x f x +>的解集为_______.10.已知函数()ln mf x x =-的极小值大于0,则实数m 的取值范围为_________.11.已知各项都为正数的等差数列{}n a 中,53a =,则37a a 的最大值为_________. 12.已知菱形ABCD 的棱长为3,E 为棱CD 上一点且满足2CE ED =,若6AE EB ⋅=-,则cos C _________.13.若方程3cos 265x π⎛⎫-= ⎪⎝⎭在(0,)π的解为1x ,2x ,则()12cos x x -=___________. 14.已知函数23()3f x x x =-,1()ln x g x e a x -=--,若对于任意1(0,3)x ∈,总是存在两个不同的2x ,3(0,3)x ∈,使得()()()123f x g x g x ==,则实数a 的取值范围为_____________. 二、解答题15.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,120C ︒=,7c =,2a b -=. (1)求a ,b 的值; (2)求sin()A C +的值.16.已知向量(cos )a x x =,(cos ,sin )b x x =. (1)若//a b ,0,2x π⎡⎤∈⎢⎥⎣⎦,求x 的值; (2)若()f x a b =⋅,0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最大值及相应x 的值. 17.已知等比数列{}n a 满足22a =,且2a ,31a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)设21n n b a n =-+,求数列{}n b 的前n 项和为n T .18.如下图所示,某窑洞窗口形状上部是圆弧CD ,下部是一个矩形ABCD ,圆弧CD 所在圆的圆心为O ,经测量4AB =米,BC =米,COD 120︒∠=,现根据需要把此窑洞窗口形状改造为矩形EFGH ,其中E ,F 在边AB 上,G ,H 在圆弧CD 上.设OGF θ∠=,矩形EFGH 的面积为S .…………○…………线…………○……考号:___________…………○…………线…………○……(1)求矩形EFGH 的面积S 关于变量θ的函数关系式; (2)求cos θ为何值时,矩形EFGH 的面积S 最大? 19.已知函数()f x =(1)求()f x 的图像在1x =处的切线方程; (2)求函数()()F x f x x =-的极大值;(3)若()ln af x x ≤对(0,1]x ∈恒成立,求实数a 的取值范围.20.已知数列{}n a 满足*11(1),n n n a na a n N +-=-∈.(1)证明:数列{}n a 为等差数列;(2)设数列{}n a 的前n 项和为n S ,若211a a -=,且对任意的正整数n ,都有12311111433n S S S S <++++<,求整数1a 的值; (3)设数列{}n b 满足310n n b a =+,若2115a a -=,且存在正整数s ,t ,使得s t ab +是整数,求1a 的最小值. 21.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦.(1)求矩阵M ;…外…………○…………装……※※请※※不※※要※※在※…内…………○…………装……(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程. 22.已知曲线C 的极坐标方程为2cos ραα=+(α为参数),直线1的参数方程为1cos sin x t y t ββ=+⎧⎨=⎩(t 为参数,02πβ<<),若曲线C 被直线1求β的值.23.选修4-2:不等式选讲设正数,,a b c 满足1a b c ++=,求证:32a b c b c c a a b ++≥+++. 24.某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是34,甲、丙二人都没有击中目标的概率是112,乙、丙二人都击中目标的概率是14.甲乙丙是否击中目标相互独立.(1)求乙、丙二人各自击中目标的概率;(2)设乙、丙二人中击中目标的人数为X ,求X 的分布列和数学期望.25.如图,在直三棱柱111ABC A B C -中,90BAC ︒∠=,AB AC a ==,1AA b =,点E ,F 分别在1BB ,1CC ,且113BE BB =,1113C F CC =.设baλ=.(1)当3λ=时,求异面直线AE 与1A F 所成角的大小; (2)当平面AEF ⊥平面1A EF 时,求λ的值.参考答案1.{1,2} 【解析】 【分析】根据交集的运算可直接得出结果. 【详解】 解:集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}. 【点睛】本题考查集合交集的运算,是基础题. 2.1- 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详解】 解:由2zi i=+,得(2)12z i i i =+=-+, ∴复数z 的实部为−1, 故答案为:−1. 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.1 【解析】 【分析】由题意两个向量垂直,利用向量垂直的坐标运算,列方程求出x 的值. 【详解】解:∵向量(,2)a x =,(2,1)b =-,且a b ⊥, ∴220x -=,解得1x =, 故答案为:1.本题主要考查向量垂直的坐标运算,属于基础题. 4.(1,2) 【解析】 【分析】根据对数的真数大于零,分母不为零,被开方数不小于零,列不等式求解即可. 【详解】 解:由已知得1020x x ->⎧⎨->⎩,解得12x <<,函数的定义域为(1,2), 故答案为:(1,2). 【点睛】本题考查函数定义域的求法,是基础题. 5.31 【解析】 【分析】利用等比数列的通项公式与求和公式即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,48a =,3418a q a ∴==,解得2q ,则前5项和55213121S -==-,故答案为:31. 【点睛】本题考查了等比数列的通项公式与求和公式,考查了学生的计算能力,属于基础题. 6.25【解析】分子分母同时除以cos α,可将目标式转化为用tan α来表示,再代入tan α的值即可求得结果. 【详解】解:sin sin cos cos 2si ta n cos 2sin 12o n t s an c αααααααααα==+++, 代入tan 2α=得,原式22145==+, 故答案为:25.【点睛】本题考查同角三角函数基本关系的运用,当目标式是分式且分子分母均为sin α,cos α的齐次式时,可分子分母同时除以cos α,达到变形的目的,本题是基础题. 7.充分不必要 【解析】试题分析:因为211,1x x x >>⇒>>时2x >不一定成立,所以“2x >”是“1x >”的充分不必要条件. 考点:充要关系 8.12π【解析】 【分析】将函数sin 2y x =平移后的解析式和函数sin 26y x π⎛⎫=+ ⎪⎝⎭比较,列方程求解. 【详解】解:把函数sin 2y x =的图象上每个点向左平移(0)2πϕϕ<<个单位长度,得到函数sin 2sin(22)6y x x πϕ⎛⎫=+=+ ⎪⎝⎭的图象, 26πϕ∴=,则12πϕ=,故答案为:12π.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,属于基础题. 9.(1,2)- 【解析】 【分析】对2x +分20x +<和20x +≥讨论,分别求出解集,再取并集,即得所求. 【详解】解:当20x +<时,由()2(2)f x f x+>得:22(2)1x x e++>,20x +<,2(2)11x ∴++<,又201x e e ≥=,22(2)1x x e ∴++>无解;当20x +≥时,由()2(2)f x f x+>得:22x x ee +>,22x x ∴+≥,解得:12x -<<,∴不等式()2(2)f x f x +>的解集为(1,2)-,故答案为:(1,2)-. 【点睛】本题考查分段函数的应用,指数不等式的解法,是基础题.10.1,e ⎛⎫-∞- ⎪⎝⎭【解析】 【分析】对()f x 求导,求出极小值点,然后判断()f x 的单调性求出极小值,再由()f x 的极小值大于0,建立关于m 的不等式,求出m 的范围. 【详解】解:由()ln m f x x x =-,得2()(0)x m f x x x '+=>, 令()0f x '=,则x m =-, 因为()ln mf x x x=-的极小值大于0, 必有极小值点0m ->,故0m <,所以当x m >-时,()0f x '>,当0x m <<-时,()0f x '<, 所以()f x 在(0,)m -上单调递减,在(,)m -+∞上单调递增, 所以()f x 极小值()ln()10f m m =-=-+>,所以1m e<-, 综上,m 的取值范围为1,e ⎛⎫-∞- ⎪⎝⎭,故答案为:1,e ⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查了利用导数研究函数的单调性和极值,考查了运算能力,属中档题. 11.9 【解析】 【分析】因为等差数列{}n a 各项都为正数,利用237372a a a a +⎛⎫≤ ⎪⎝⎭可求其最大值. 【详解】解:依题意,等差数列{}n a 各项都为正数, 所以370,0a a >>,所以()223737592a a a a a +⎛⎫≤== ⎪⎝⎭. 当且仅当373a a ==时等号成立.故答案为:9. 【点睛】本题考查了等差中项的性质,考查了基本不等式,属于基础题. 12.13【解析】 【分析】利用E 为三等分点结合向量加减法把所给数量积转化为,CD CB 之间的关系即可解决. 【详解】 解:如图,2CE ED =,CE 2ED ∴=,由6AE EB ⋅=-得()()6DE DA CB CE -⋅-=-, 得6DE CB DE CE DA CB DA CE ⋅-⋅-⋅+⋅=-, 得296ED CB CB CE -⋅+-+⋅=-,得(1CE ED CB -⋅=),即1ED CB ⋅=,即113CD CB ⋅=133cos 13C ∴⨯⨯=, 1cos 3C ∴=,故答案为13. 【点睛】此题考查了向量数量积的定义,向量加减法法则,难度不大.13.35【解析】 【分析】由已知可得1276x x π+=,得到1276x x π=-,则()1227cos cos 26x x x π⎛⎫-=- ⎪⎝⎭,结合已知得答案. 【详解】解:由方程3cos 265x π⎛⎫-= ⎪⎝⎭在(0,)π的解为1x ,2x , 得123cos 2cos 2665x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,(0,),x π∈112,666x πππ⎛⎫∴-∈- ⎪⎝⎭, 1222662x x πππ-+-∴=,1276x x π∴=-, ()1227cos cos 26x x x π⎛⎫∴-=- ⎪⎝⎭,又23cos 265x π⎛⎫-= ⎪⎝⎭, ∴()122273cos cos 2cos 2665x x x x ππ⎛⎫⎛⎫-=-=--=- ⎪ ⎪⎝⎭⎝⎭, 故答案为:35. 【点睛】本题考查Acos()y x ωϕ=+型函数的图象与性质,特别是对称性的应用是关键,是中档题. 14.)21,ln34e ⎡--⎣【分析】利用导数求出23()3f x x x =-在(0,3)x ∈上的值域A ,利用导数求出1()ln x g x e a x -=--在(0,3)x ∈上不同的x 对应相同y 的y 的范围B ,根据题意可得A B ⊆,列不等式即可求得实数a 的取值范围. 【详解】解:23()3f x x x =-,(0,3)x ∈,2()633(2)f x x x x x '=-=-,可得:函数()f x 在(0,2]上单调递增,在(2,3)上单调递减. 而(0)(3)0,(2)4f f f ===.()(0,4]f x A ∴∈=.1()ln ,(0,3)x g x e a x x -=--∈,11()x g x e x'-=-在(0,3)x ∈上单调递增, 又(1)0g '=,∴函数()g x 在(0,1]上单调递减,在(1,3)上单调递增.0x +→时,2();(1)1,(3)ln 3g x g a g e a →+∞=-=--.令)21,ln3B a e a ⎡=---⎣.对于任意1(0,3)x ∈,总是存在两个不同的23,(0,3)x x ∈, 使得()()()123f x g x g x A B ==⇔⊆.10a ∴-≤,且24ln 3e a <--.解得214ln 3a e ≤<--. ∴实数a 的取值范围为)21,ln34e ⎡--⎣,故答案为:)21,ln34e ⎡--⎣.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.15.(1)5a =,3b =(2)14【解析】 【分析】(1)由已知利用余弦定理可得2249a b ab ++=,结合2a b -=,即可解得a ,b 的值. (2)由(1)及余弦定理可求cos B ,根据同角三角函数基本关系式可求sin B 的值,利用两角和的正弦函数公式,诱导公式可求sin()A C +的值. 【详解】解:(1)由余弦定理得22222222cos 2cos 49120c a b ab C a b ab a b ab ︒=+-=+-=++=,2a b -=,22(2)(2)49b b b b ∴++++=整理得:22150b b +-=, 因为0b >,解得:3b =,5a =, 综上:5a =,3b =.(2)由(1)知5a =,3b =,7c =,所以22213cos 214a cb B ac +-==,因为B 为ABC ∆的内角,所以sin 14B ==,因为sin()sin()sin A C B B π+=-==所以sin()A C + 【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 16.(1)2x π=或3x π=.(2)最大值为32,此时6x π=. 【解析】 【分析】(1)根据向量平行的坐标运算,列方程求解;(2)根据数量积的坐标运算,利用三角公式,将()f x 变形为sin()A x ωϕ+的形式,利用三角函数的性质求最值. 【详解】解:(1)因为,(cos )a x x =,(cos ,sin )b x x =.,//a b ,所以2cos sin x x x =,所以cos (sin )0x x x -=,所以cos 0x =或sin 0x x -=,即cos 0x =或tan x =因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以2x π=或3x π=;(2)因为(cos )a x x =,(cos ,sin )b x x =,所以2()cos sin f x a b x x x =⋅=1cos 21sin 2sin 22262x x x π+⎛⎫=+=++ ⎪⎝⎭, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以3()0,2f x ⎡⎤∈⎢⎥⎣⎦, 所以()f x 的最大值为32,此时6x π=. 【点睛】本题是向量背景下的三角运算问题,考查三角函数的恒等变换,以及三角函数的图像和性质,难度不大,但综合性较强.17.(1)12n na . (2)20,11,22,323,4n n n n T n n n =⎧⎪=⎪=⎨=⎪⎪-+≥⎩【解析】 【分析】(1)由已知列式求得等比数列的公比,进一步求得首项,则数列{}n a 的通项公式可求;(2)设121221n n n c a n n -=-+=-+,作差可得当4n ≥时,0n c >,即4n ≥时,1221n n n b c n -==-+,再求出数列{}n b 的前3项,然后分类利用数列的分组求和求数列{}n b 的前n 项和为nT.【详解】解:(1)设等比数列{}n a 的公比为q (不为0),2a ,31a +,4a 成等差数列,()32421a a a ∴+=+,22a =,所以22(21)22q q +=+,解得2q 或0q =(舍),211a a q∴==, ∴数列{}n a 的通项公式为12n na ;(2)设121221n n n c a n n -=-+=-+,()11122(1)122122n n n n n c c n n --+∴-=-++--+=-,∴当3n ≥,1n n c c +>,又410c =>,所以4n ≥时,0n c >,即4n ≥时,1221n n n b c n -==-+,因为10c =,21c =-,31c =-,所以10b =,21b =,31b =, 所以10T =,21T =,32T =,当4n ≥时,123445(011)n n n T b b b b b b b b =+++++=++++++()3412222(7921)n n -=++++-+++-()3322127212(3)23122n n n n n --+-=+-⋅-=-+-,综上20,11,22,323,4n n n n T n n n =⎧⎪=⎪=⎨=⎪⎪-+≥⎩.【点睛】本题考查等差数列与等比数列的通项公式及前n 项和,考查数列的函数特性,是中档题. 18.(1)8(4cos 1)sin 3S θθ=-,πθ0,3(2)cos θ=【解析】 【分析】(1)结合几何图形计算的直角三角形勾股定理,找出矩形EFGH 的面积S 关于变量θ的函数关系式;(2)对S 关于变量θ的函数关系式进行求导分析,算出0S '=时的cos θ的值,三角计算即可得出结果. 【详解】解:(1)如图,作OP CD ⊥分别交AB ,GH 于M ,N , 由四边形ABCD ,EFGH 是矩形,O 为圆心,120COD ︒∠=, 所以OMAB ⊥,ON GH ⊥,P ,M ,N 分别为CD ,AB ,GH 中点,60CON ︒∠=,在Rt COP ∆中,2CP =,60COP ︒∠=,所以OC =OP =所以OM OP PM OP BC =-=-=在Rt ONG ∆中,GON OGF θ∠=∠=,OG OC ==所以GN θ=,ON θ=,所以2GH GN θ==,3GF MN ON OM θ==-=-,所以8(4cos 1)sin 3S GF GH θθθθ=⋅==-⎭,πθ0,3, 所以S 关于θ的函数关系式为:8(4cos 1)sin 3S θθ=-,πθ0,3(2)由(1)得:()()222884cos 4sin cos 8cos cos 433S θθθθθ'=--=-- 因为πθ0,3, 所以1cos ,12θ⎛⎫∈⎪⎝⎭,令0S '=,得11cos ,1162θ+⎛⎫=⎪⎝⎭,设00,3πθ⎛⎫∈ ⎪⎝⎭,且0cos θ=, 所以0S '>,得00θθ<<,即S 在()00,θ单调递增,0S '<,得03πθθ<<,即S 在0,3πθ⎛⎫⎪⎝⎭单调递减 所以当0θθ=时,S 取得最大值,所以当cos θ=EFGH 的面积S 最大. 【点睛】本题主要考查根据图形进行计算,掌握运用直角三角形勾股定理知识,三角函数的计算,函数的一阶导数分析能力,本题属难题. 19.(1)1y x =-.(2)-1;(3)1a ≥ 【解析】 【分析】(1)由函数()f x=,可得()f x ',求出(1)f '和切点坐标,利用点斜式即可得出切线方程.(2)由()()(0)F x f x x x x=-=->,求得()F x ',分析()F x '在(0,)+∞上单调性和零点,即可得出()F x 单调性与极值.(3)令()ln ()ln ,(0,1]g x x af x x a x=-=-∈,求出()g x ',对a 分类讨论,利用导数研究其单调性即可得出实数a 的取值范围. 【详解】解:(1)因为()f x=所以()f x '=(1)1f '=,因为()y f x =经过(1,0),所以()f x 的图像在1x =处的切线方程为1y x =-;(2)因为()F x x=-,0x >, 所以()1F x '=, 又()F x '在(0,)+∞递减,(1)0F '=,所以在(0,1)x ∈,()0F x '>,即()F x 在(0,1)递增; 在(1,)x ∈+∞,()0F x '<,即()F x 在(1,)+∞递减, 所以在1x =处,()F x 取极大值,(1)1F =-;(3)设()ln ()ln g x x af x x a=-=-,(0,1]x ∈,所以21()2a g x x '=-= ①0a ≤时,()0g x '>对(0,1]x ∈恒成立, 所以()g x 在(0,1]递增, 又(1)0g =,所以0(0,1)x ∃∈时,()00g x <,这与()ln af x x ≤对(0,1]x ∈恒成立矛盾,舍去;②1a ≥时,设2()x a a ϕ=-+,(0,1]x ∈,2440a ∆=-≤, 所以()0x ϕ≤,(0,1]x ∈, 所以()0g x '≤对(0,1]恒成立, 所以()g x 在(0,1]递减, 又(1)0g =,所以()(1)0g x g ≥=对(0,1]x ∈恒成立, 所以1a ≥成立;③01a <<时,设2()x a a ϕ=-+,(0,1]x ∈,2440a ∆=->,解()0x ϕ=得两根为1x ,2x 11a=>,(0,1)==,所以101x <<,21>x ,所以()1,1x x ∈,()0x ϕ>,()0g x '>, 所以()g x 在()1,1x 递增, 又(1)0g =,所以()1()01x g g <=,这与()ln af x x ≤对(0,1]x ∈恒成立矛盾,舍去, 综上:1a ≥. 【点睛】本题考查了利用导数研究函数的单调性、极值与最值、方程与不等式的解法、方程的实数根与判别式的关系、分类讨论方法,考查了推理能力与计算能力,属于难题. 20.(1)证明见解析;(2)2;(3)120【解析】 【分析】(1)令11(1)n n n a na a +-=-中的n 为1n -,又得一式,将两式做差变形,利用等差中项进行证明;(2)利用放缩法和裂项相消法在数列求和中的应用进行证明. (3)利用假设法的应用和存在性问题的应用求出最小值. 【详解】解:(1)因为11(1),n n n a na a +-=-①所以2n ≥时,11(2)(1),n n n a n a a --=-- ②①-②得11(1)2(1)(1)0n n n n a n a n a +----+-=,所以1120,n n n a a a +--+=即112,n n n a a a +-+=所以数列{}n a 为等差数列;(2)因为211a a -=,所以{}n a 的公差为1,因为对任意的正整数n ,都有12311111433n S S S S <++++<, 所以111433S <<,所以1334S <<,即1334a <<, 所以11a =或2,当11a =时,22a =,11S =,23S =,所以121114133S S +=+=,这与题意矛盾,所以11a ≠, 当12a =时,1n a n =+, (3)02n n n S +=>, 111123S =>,123111113n S S S S ++++>恒成立, 因为121133n S n n ⎛⎫=- ⎪+⎝⎭, 1231111211111111111134253621123n S S S S n n n n n n ⎛⎫∴++++=-+-+-++-+-+- ⎪-+-++⎝⎭211111114132312393n n n ⎛⎫=++---<< ⎪+++⎝⎭, 综上,1a 的值为2.(3)因为2115a a -=,所以{}n a 的公差为15, 所以11(1)5n a a n =+-, 所以111510n b a n =++, 由题意,设存在正整数s ,t ,使得s t a b l +=,l Z ∈, 则111155510s t a a l +-+++=,即1202(5)1a l s t =--+, 因为5l s t Z --∈,所以2(5)l s t --是偶数, 所以1201a ≥, 所以1120a ≥, 当1120a =时,41920b =, 所以存在141a b Z +=∈, 综上,1a 的最小值为120. 【点睛】本题考查的知识要点:等差数列的证明和通项公式的应用,裂项相消法在数列求和中的应用和放缩法的应用,假设法在数列的通项公式的应用,主要考查学生的运算能力和转换能力及思维能力,难度较大.21.(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =- 【解析】【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程.【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩, 所以2130M ⎡⎤=⎢⎥⎣⎦; (2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''', 则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+,所以曲线C 的方程为292y x x =-.【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.22.3πβ=.【解析】【分析】首先利用转换关系式的应用,把参数方程极坐标方程和直角坐标方程之间进行转换,进一步利用点到直线的距离公式和垂径定理求出结果.【详解】解:以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,则曲线C 的极坐标方程化为直角坐标系下的方程为22(1)(4x y -+-=,直线l 的参数方程1cos ,sin x t y t ββ=+⎧⎨=⎩(t 为参数,02πβ<<)在直角坐标系下的方程为(1)(tan )y k x k β=-=,因为圆C 被直线1d ==,2=,k ∴= 因为02πβ<<,所以tan k β==所以3πβ=.【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.23.见证明【解析】【分析】 把不等式左边化为1113b c c a a b++-+++,再利用柯西不等式得到11192b c c a a b ++≥+++,从而不等式得到证明. 【详解】因为,,0a b c >,1a b c ++=,所以a b c b c c a a b+++++ 1111113b c c a a b b c c a a b b c c a a b------=++=++-++++++ 由[]2=2()=()+()+()a b c a b b c c a +++++,由柯西不等式,得[]111()()()b c c a a b b c c a a b ⎛⎫+++++⋅++ ⎪+++⎝⎭ 29≥+= 所以11192b c a c a b ++≥+++,即93322a b c b c a c a b ++≥-=+++. 【点睛】多变量不等式的证明,可根据不等式的特点选择均值不等式或柯西不等式等来证明,如果不等式是和与积的形式,可考虑前者,如果是平方和与对应乘积和的关系,则考虑后者,必要时需对原有不等式变形化简,使之产生需要的结构形式.24.(1)38,23.(2)分布列见解析,数学期望2524. 【解析】【分析】(1)设甲、乙、丙击中目标分别记为事件,,A B C ,则3()4P A =,且1()()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩,由此能求出乙、丙二人各自击中目标的概率.(2)由题意X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和E (X ).【详解】解:(1)设甲、乙、丙击中目标分别记为事件A 、B 、C ,则3()4P A =,且有 1()(),121()(),4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩即311[1()],4121()().4P C P B P C ⎧⎛⎫--= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩解得3()8P B =,2()3P C =, 所以乙、丙二人各自击中目标的概率分别为38,23; (2)由题意,X 的可能取值为0,1,2,1(2)4P X ==, 515(0)()()8324P X P B P C ===⨯=, 13(1)1(0)(2)24P X P X P X ==-=-==. 所以随机变量X 的分布列为513125()0122424424E X =⨯+⨯+⨯= 所以X 的数学期望为2524. 【点睛】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中档题.25.(1)60°(2)32λ=【解析】【分析】(1)推导出1AA ⊥平面ABC ,11,AB AA AA ⊥⊥AC ,建立分别以AB ,AC ,1AA 为,,x y z 轴的空间直角坐标系,利用法向量能求出异面直线AE 与1A F 所成角.(2)推导出平面AEF 的法向量和平面1A EF 的一个法向量,由平面AEF ⊥平面1A EF ,能求出λ的值.【详解】解:因为直三棱柱111ABC A B C -,所以1AA ⊥平面ABC ,因为,AB AC ⊂平面ABC ,所以1AA AB ⊥,1AA AC ⊥,又因为90BAC ︒∠=,所以建立分别以AB ,AC ,1AA 为,,x y z 轴的空间直角坐标系A xyz -.(1)设1a =,则1AB AC ==,13AA =,各点的坐标为(0,0,0)A ,(1,0,1)E ,1(0,0,3)A ,(0,1,2)F .(1,0,1)AE =,1(0,1,1)A F =-. 因为1||||2AE A F ==11AE A F ⋅=-, 所以1111cos ,2||||2AE A F AE A F AE A F ⋅〈〉===-. 所以向量AE 和1A F 所成的角为120°,所以异面直线AE 与1A F 所成角为60°; (2)因为,0,3b E a ⎛⎫ ⎪⎝⎭,20,,3b F a ⎛⎫ ⎪⎝⎭, ,0,3b AE a ⎛⎫∴= ⎪⎝⎭,20,,3b AF a ⎛⎫= ⎪⎝⎭ 设平面AEF 的法向量为1(,,)n x y z =,则10AE n ⋅=,且10AF n ⋅=.即03bz ax +=,且203bz ay +=. 令1z =,则3b x a =-,23b y a =-. 所以122,,1,,13333b b a a n λλ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭是平面AEF 的一个法向量.同理,222,,1,,13333b b n a a λλ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭是平面1A EF 的一个法向量. 因为平面AEF ⊥平面1A EF ,所以120n n ⋅=,22221099λλ∴--+=, 解得32λ=. 所以当平面AEF ⊥平面1A EF 时,32λ=. 【点睛】本题考查异面直线所成角的大小、实数值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.。

相关文档
最新文档