【精编】中小学精品课件不等式性质的应用课件.ppt

合集下载

不等式及其性质ppt课件

不等式及其性质ppt课件

位置吗?
(不可随意互换位置)
(3)什么叫不等式?
(用不等号表示不等关系的式子叫不等式)
练习:
1.判断下列式子哪些是不等式?为什么?
√(1)3> 2 √(2)a2+1> 0 (3)3x2+2x
√(4)< 2x+1
(5)x=2x-5
√(6)x2+4x< 3x+1
√(7)a+b≠c
2.用“>”或“<”填空: (1)4>-6 (2)-1<0 (3)-8<-3 (4)-4.5<-4
小结: 1.掌握不等式是否成立的判断方法; 2.依题意列出正确的不等式. (留意:表示不等关系的词语要用
不等号来表示,“不大于〞即“≤”, “不小于〞即“≥” )
1.什么是等式? 2.等式的基本性质是什么? 3.用“>”或“<”填空:
7 + 3 >4 + 3 7 +(-3) >4 +(-3) 7×3 >4×3 7×(-3) < 4×(-3)
2.已知数值:-5, 0.5, 3, 0, 2, -2.5, 5.2 (1)判别:上述数值,哪些使不等式x+3<6
成立?哪些使之不成立? (2)说出几个使不等式x+3<6成立的x的值,
及使之不成立的x的值.
总结:判断不等式是否成立的方法-------不等号两边的大小关系是否与不等号一致
反馈练习:
1.当x取下列数值时,哪些是不等式 x+3>6解?
2.统计全班同学的年龄,年龄最大者为16岁, 可以知道全班每个同学的年龄都小于17岁;
若设物体A的重量为x克;某天的气温为 t℃; 本班某同学的年龄为a岁,上述不等关系能 用式子
思考教材的3个问题

不等式的性质PPT教学课件

不等式的性质PPT教学课件
例题解析
【解析】氢氧化钠(NaOH),俗称烧碱、火碱、 苛性钠,常温下是一种白色晶体,具有强腐蚀 性.易吸收空气中的水分易潮解可用作干燥剂和易 与空气中二氧化碳反应生成碳酸钠故密封干燥保 存.易溶于水,其水溶液呈强碱性,能使酚酞变红; 使紫色石蕊试液变蓝.由以上所知道的内容可判断 选项A、C、D错误。 故选B。
知识回顾
知识点2 稀酸的化学性质 1.酸与指示剂的反应
稀盐酸 稀硫酸
紫色石蕊溶液 变红色 变红色
2.酸与较活泼金属的反应
无色酚酞溶液 不变色 不变色
实验内容
现象
将镁、锌、 有气泡产生, 铁铝分别与 反应速率:镁 稀盐酸反应 >铝>锌>铁
化学方程式 ①Zn + 2HCl === ZnCl2 + H2↑ ②Mg + 2HCl === MgCl2 + H2↑ ③2Al + 6HCl === 2AlCl3 + 3H2↑ ④Fe + 2HCl === FeCl2 + H2↑
常见 的酸 和碱
稀酸的化 学性质
常见的碱
酸与较活泼金属反应 酸与金属氧化物的反应 酸与盐的反应
常见碱的物理性质及用途
碱溶液的 碱与非金属氧化物的反应 化学性质 碱与盐的反应
知识网络
知识回顾
知识点1 常见的酸 硫酸、盐酸、硝酸的物理性质及用途
酸 化学式
物理性质
主要用途
硫 酸 H2SO4 盐 酸 HCl 硝 酸 HNO3
【变式题】盐酸或稀硫酸常用作金属表面的清洁剂是 利用了它们化学性质中的( C )
A 、能与碱反应 B 、能与金属反应 C 、能与某些金属氧化物反应 D 、能与紫色石蕊试液反应
例题解析

1 2.1 等式性质与不等式性质ppt课件

1 2.1 等式性质与不等式性质ppt课件
栏目 导引
第二章 一元二次函数、方程和不等式
利用不等式的性质证明不等式的方法 (1)简单不等式的证明可直接由已知条件,利用不等式的性质, 通过对不等式变形得证. (2)对于不等号两边式子都比较复杂的情况,直接利用不等式的 性质不易得证,可考虑将不等式的两边作差,然后进行变形, 根据条件确定每一个因式(式子)的符号,利用符号法则判断最 终的符号,完成证明.
栏目 导引
第二章 一元二次函数、方程和不等式
因此菜园面积 S=x15-x2, 依题意有 S≥110,即 x15-x2≥110, 故该题中的不等关系可用不等式表示为 0<x≤18, x15-x2≥110.
栏目 导引
第二章 一元二次函数、方程和不等式
1.本例(2)中,若矩形的长、宽都不能超过 11 m,对面积没有 要求,则 x 应满足的不等关系是什么? 解:因为矩形的另一边 15-x2≤11,所以 x≥8,又 0<x≤18, 且 x≤11,所以 8≤x≤11. 2.本例(2)中,若要求 x∈N,则 x 可以取哪些值? 解:函数 S=x15-x2的对称轴方程为 x=15,令 S≥110,x∈ N,经检验当 x=13,14,15,16,17 时 S≥110.
栏目 导引
第二章 一元二次函数、方程和不等式
某工厂在招标会上,购得甲材料 x 吨,乙材料 y 吨,若维持
工厂正常生产,甲、乙两种材料总量至少需要 120 吨,则 x,y
应满足的不等关系是( )
A.x+y>120
B.x+y<120
C.x+y≥120
D.x+y≤120
答案:C
栏目 导引
第二章 一元二次函数、方程和不等式
栏目 导引
第二章 一元二次函数、方程和不等式

《不等式的性质》不等式与不等式组PPT优秀课件

《不等式的性质》不等式与不等式组PPT优秀课件
数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
小结:关键是两两间大小关系要先表示或判定出来.
4
精典范例
5.【例1】利用不等式的性质,填“>”或“<”.
(1)若x>y,则x-10 > y-10;
(2)若-1.25y<10,则y > -8;
(3)若a<b且k>0,则k+a < k+b;
(4)若-1m>-1n,则 m < n;
2
2
(5)若a>b,则2a+1 > 2b+1;
(6)若a<b且c>0,则ac+c < bc+c.
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.

基本不等式(共43张)ppt课件

基本不等式(共43张)ppt课件

解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1

不等式的应用教学课件ppt

不等式的应用教学课件ppt
判断电路稳定性
利用不等式可以表示电路中电压和电流的关系,通过比较这些不等式,可以判断 电路的稳定性。
05
不等式在化学中的应用
利用不等式解决化学平衡问题
总结词
化学平衡常数是表示化学反应限度的一个重要指标,利用不 等式可以解决与化学平衡常数相关的计算和分析问题。
详细描述
通过具体的案例,讲解如何利用不等式解决化学平衡常数的 计算、化学反应平衡移动的方向和大小等问题,以及如何利 用不等式进行反应条件的优化和控制。
利用不等式解决生物多样性保护问题
总结词
物种多样性、生态系统稳定性、环境变化、保护措施
详细描述
生物多样性是地球生态系统的重要组成部分,但人类 活动对生物多样性造成了严重威胁。为了保护生物多 样性,需要采取一系列措施。其中之一是通过建立不 等式来分析物种多样性的作用和生态系统稳定性之间 的关系。例如,物种多样性与生态系统稳定性呈正相 关关系,因为物种之间的相互作用可以调节生态系统 中的物质循环和能量流动
不等式在经济生活中的应用
价格比较
在购物时,人们经常需要比较不同商品的价格,通过不等式 的性质可以判断出性价比更高的商品。
投资决策
在投资领域,投资者需要分析不同项目的风险和收益,通过 不等式可以判断出最优的投资方案。
不等式在生产生活中的应用
资源分配
在生产过程中,经常需要将有限的资源分配给不同的部门或环节,通过不等 式可以确定资源分配的最优比例。
总结词
化学反应速率是化学反应快慢的一个重要指标,利用不等式可以解决与化学反应 速率相关的计算和分析问题。
详细描述
通过具体的案例,讲解如何利用不等式解决化学反应速率的计算、反应速率常数 的确定、反应速率方程的建立等问题,以及如何利用不等式进行反应条件的优化 和控制。

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)
栏目导航
9
4.设 M=a2,N=-a-1,则 M、 M>N [M-N=a2+a+1=
N 的大小关系为________.
a+122+34>0,
∴M>N.]
栏目导航
10
合作探究 提素养
栏目导航
11
用不等式(组)表示不等关系 【例 1】 京沪线上,复兴号列车跑出了 350 km/h 的速度,这个速 度的 2 倍再加上 100 km/h,不超过民航飞机的最低时速,可这个速度已经 超过了普通客车的 3 倍,请你用不等式表示三种交通工具的速度关系.
栏目导航
23
解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪 一个,然后再用作差法比较它们的大小即可.
栏目导航
24
3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如 果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅 游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家 旅行社价格更优惠?
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质 第1课时 不等关系与不等式
2
学习目标
核心素养
1.会用不等式(组)表示实际问题中 1. 借助实际问题表示不等式,提升
的不等关系.(难点) 2.会用比较法比较两实数的大 小.(重点)
数学建模素养. 2. 通过大小比较,培养逻辑推理素 养.
栏目导航
14
1.用一段长为 30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m, 要求菜园的面积不小于 216 m2,靠墙的一边长为 x m.试用不等式表示其 中的不等关系.
栏目导航
15
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以 0<x≤18,

课件:7.1.2 不等式的基本性质

课件:7.1.2  不等式的基本性质
你能用数轴上点的位置关系和具体的例子加以说 明吗?
2. 如果a>b ,那么-a<-b,这个式子可理解为:
a×(-1)<b×(-1) 这样,对于不等式a>b,两边同乘以-3,会 得到什么结果呢?
×(-1)
×3
a>b a×(-1)<b×(-1) a×(-3)<b×(-3).
×(-3)
3.如果a>b,c<0,那么ac与bc有怎样的大小关系?
第7章 一元一次不等式与不等式组
7.1 不等式及其基本性质
第2课时 不等式的基 本性质
1 课堂讲解 2 课时流程
不等式的基本性质1 不等式的基本性质2 不等式的基本性质3 不等式的基本性质4、5
逐点 导讲练
课堂 小结
作业 提升
上图的问题中,你认为ac是大于bc,还是小于bc? 用几个具体的例子试试看.
知识点 1 不等式的基本性质1
观察 如图,在一台天平两端的托盘中分别放置了质量为a,
b的物体,图中天平倾斜,这直观地说明a>b.
这时,如果在两端托盘中同时加上质量为c的物 体,天平的倾斜方向会改变吗?这反映的数量关系是 什么呢?
归纳
不等式有如下的基本性质: 性质1 不等式的两边都加上(或减去)同一个数或同
1 若a>b,且am≤bm,则一定有( ) A.m≥0 B.m<0 C.m>0 D.m≤0
2 下列不等式变形正确的是( )
A.由4x-1>2,得4x>1
B.由5x>3,得x> 3
C.由
y
5 >0,得y>2
2
D.由-2x<4,得x<-2
知识点 4 不等式的基本性质4、5
性质4 如果a>b,那么b<a. 例如,由3>x,可得x<3. 观察
一个整式,不等号的方向不变.即 如果a>b,那么a+c>b+c,a-c>b-c.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档