解直角三角形2

合集下载

解直角三角形(2)

解直角三角形(2)

45°
O
B
O
B
新人教版九年级数学(下册)第二十八章
§28.2 解直角三角形(2)
解直角三角形 常用关系:
知新
B
a
a2+b2=c2
解直角 三角形
三角函数 关系式
A
a b sin A ,sin B c c
b
┌ C
b a cos A , cos B c c a b tan A , tan B b a
视线
仰角 水平线
俯角 视线
合作与探究
【例1】如图,直升飞机在跨江大桥AB的上方P 点处,此时飞机离地面的高度PO=450米,且A、 B、O三点在一条直线上,测得大桥两端的俯角 分别为α=30°,β=45°,求大桥的长AB .
解:由题意得,在Rt△PAO与Rt△PBO中
PAO 30, PBO 45 PO PO tan 30, tan 45 P OA OB
P
答案: (200 3 200) 米
45° 30°
O
B
400米
A
合作与探究
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
P
30°
A
200米
答案: (100 3 300) 米
45°
O
B
合作与探究
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .
图2
当堂反馈
3.如图3,从地面上的C,D两点测得树顶A仰角分别是 45°和30°,已知CD=200m,点C在BD上,则树高 AB等于 100( 3 1)m(根号保留).

2020浙江新中考数学一轮复习第25讲 解直角三角形 第2课时

2020浙江新中考数学一轮复习第25讲 解直角三角形 第2课时

类型一 解直角三角形中一个常见的模型
例1 如图 1,某社会实践活动小组实地测量两岸互相平行的一段河的宽 度,在河的南岸边点 A 处,测得河的北岸边点 B 在其北偏东 45°方向,
然后向西走 60m 到达 C 点,测得点 B 在点 C 的北偏东 60°方向,如图 2.
(1)求∠CBA 的度数;
(2)求出这段河的宽(结果精确到 1m,备用数据 2≈1.41, 3≈1.73).
同一平面上. (1)转动连杆 BC,CD,使∠BCD 成平角,∠ABC=150°,如图 2,求连杆端点 D 离桌面 l 的高度 DE; (2)将(1)中的连杆 CD 再绕点 C 逆时针旋转,使∠BCD=165°, 如图 3,问此时连杆端点 D 离桌面 l 的高度是增加还是减少?
增加或减少了多少?(精确到 0.1cm,参考数据: 2≈1.41,
问:校门打开了多少米?(结果精确到 1 米,参考数据:sin5°≈ 0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848)
【分析与解】先求出校门关闭时,20 个菱形的宽即大门的宽;再求出校门打 开时,20 个菱形的宽即伸缩门的宽;然后将它们相减即可. 如图,校门关闭时,取其中一个菱形 ABCD. 根据题意,得∠BAD=60°,AB=0.3 米. ∵在菱形 ABCD 中,AB=AD, ∴△BAD 是等边三角形,∴BD=AB=0.3 米, ∴大门的宽是:0.3×20=6(米); 校门打开时,取其中一个菱形 A1B1C1D1. 根据题意,得∠B1A1D1=10°,A1B1=0.3 米. ∵在菱形 A1B1C1D1 中,A1C1⊥B1D1,∠B1A1O1=5°, ∴在 Rt△A1B1O1 中,B1O1=sin∠B1A1O1·A1B1=sin5°×0.3≈0.02616(米), ∴B1D1=2B1O1≈0.05232 米, ∴伸缩门的宽是:0.05232×20=1.0464 米; ∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了 5 米.

解直角三角形的应用(2)--仰角、俯角问题

解直角三角形的应用(2)--仰角、俯角问题

一、课题:解直角三角形的应用(2)——仰角、俯角问题二、学习目标:1.掌握仰角、俯角的定义。

2.会利用仰角、俯角解决一些实际问题。

三、教学重点、难点1.重点:仰角、俯角的定义。

2.难点:构造直角三角形,解决问题。

四、知识准备1.三角函数的定义。

2.特殊角的三角函数值。

3.解直角三角形的方法。

五、预习案1.预习指导:什么是仰角、俯角?例1:如图,为了测量电线杆的高度AB,在离电线杆22.7米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°。

求电线杆AB的高。

(精确到0.1米)例2:如图,在高楼前D点测得楼顶的仰角为30°,向前走60米到C点,又测得仰角为45°,求该高楼的高度为多少米?例3:如图,两个建筑物的水平距离为20米,从A点测得D点的俯角为45°,测得C点的俯角为60°,求较低建筑物CD的高为多少米?2.预习测试:(1) 从A点看B点的仰角是55°,则从B点看A点的俯角是_______。

(2) 两高楼A楼和B楼,从A楼顶端看B楼底端所成的角是______,从B楼底端看A楼顶端所成的角是______,它们的关系是_____。

(3)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机看地面控制点B的俯角α=30°。

求飞机A到控制点B的距离。

(精确到1米)(4)两建筑物AB与CD,其地面距离AC=50米。

从AB的顶端B测得CD的顶部D的仰角β=30°,测得其底部C的俯角α=45°。

求两座建筑物AB与CD的高。

(精确到0.1米)3.我的疑惑:六、探究案:探究过程(讲解例题,解答疑惑)。

七、小结通过这一节的学习,大家掌握了什么是仰角,什么是俯角,并且能利用仰角、俯角解决一些实际问题,希望大家能够做到举一反三、触类旁通。

八、知识拓展仰角、俯角在实际生活中有更广泛的应用,抽空我们再作进一步探究。

第七章第6课时 解直角三角形(2)

第七章第6课时 解直角三角形(2)

BCD第6课时 解直角三角形(2)班级 姓名 学号 [学习目标]1、能综合应用直角三角形边角关系的知识解直角三角形,进一步体会三角函数的意义与作用;2、经历研讨直角三角形边角关系以及利用这些关系解直角三角形的过程,发展归纳整理知识的能力和计算能力。

[学习过程]问题1、(1)如图,AB 表示地面上一段斜坡的坡面,BC 表示斜面上点B 相对于水平地面AC 的垂直高度,∠A =30°,AB=240m ,(1)求sinA 和cosA 的值;(2)求点B 相对于水平地面的高度。

练习:如图是引拉线固定电线杆的示意图,已知:CD ⊥AB ,CD =33m ,∠CAD =∠CBD =60°,求拉线AC 的长。

问题2、小明正在放风筝,风筝线与水平线成30°角时,小明的手离地面1m ,若把放出的风筝线看成一条线段,长95m ,求风筝此时的高度。

(精确到1m )问题3、如图,求半径为10的圆的内接正五边形的边长(结果精确到0.1)。

(sin36°=0.59, cos 36°=0.81, tan36°=0.73)练习:求半径为20的圆的内接正三角形的边长和面积(结果保留根号).问题4、在△ABC 中,∠B=30°,AB=10,BC=63,求AC 的长。

练习:在△ABC 中,∠A=75°,∠B=45°, BC=3+1,求AC 和AB 的长。

问题5、在梯形ABCD 中,DC ∥AB ,AD=23,DC=2,∠DAB=30°,∠C BA=60°,求AB 的长。

练习:等腰梯形ABCD 中,AD ∥BC ,AD=2,BC=8,面积为A DB 三、课后作业:1.正三角形边长为a ,则其外接圆半径等于 ( )A .a 3 B.a 33 C.a 23 D.a 21第七章 锐角三角函数BAAOBH D E CA CBB C2.如图,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )m 2A .αsin 1600 B 。

八年级数学下册 9.4 解直角三角形(2)导学案 青岛版

八年级数学下册 9.4 解直角三角形(2)导学案 青岛版

课题:9.4 解直角三角形(2)课型:新授教学目标:1. 通过解直角三角形提高学生的分析解决问题能力。

2. 通过构建直角三角形并解直角三角形,感受数形结合的作用。

教学重点:构建直角三角形难点:分析解决问题的能力教学方法:自主探究合作探究一. 完成下列各题。

小组内讨论1.R tABC中,∠C=90°, CD⊥AB于D, AD=3, ∠B=60°,求AB,BC 【1】批注【1】:让学生了解已知元素和需求元素所在三角形,数形结合能力 CB D A2 △ABC中,AB=AC, AB:BC=5:8, 求sinB, cosB. 【2】批注【2】:怎样构建直角三角形?应把已知元素和所求元素构建在同一直角三角形中。

AB C二.板书例3. △ABC中,∠A=60°, ∠B=45°,AC=20厘米,求AB 的长。

CA B1.小组交流构建直角三角形的方法(辅助线的做法)【3】批注【3】:小组内交流统一意见后,考虑解法,引导学生能解哪个直角三角形?需要解直角三角形?2.最后统一解题格式。

三.巩固练习【4】批注【4】:提醒学生数形结合,利于解决问题1.等腰三角形的底边长为6,面积为33,求这个等腰三角形的顶角。

2.在△ABC中,已知∠B=30°,SinC=4/5,AC=10,求AB的长。

四.达标测试21.在直角坐标系中,直线y=x上一点A,OA=5,求点A 的坐标。

Yy=xAO X2.等腰三角形,顶角120°,腰长10cm,求等腰三角形的周长。

五.作业:P76 B 组 1.2.六.教学反思:。

28.2(2)解直角三角形应用2

28.2(2)解直角三角形应用2

仰角和俯角
在进行测量时, 从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线

仰角

线
俯角
水平线
视线
例4:热气球的探测器 显示,从热气球看一栋 高楼顶部的仰角为 30°,看这栋高楼底部 的俯角为60°,热气球 与高楼的水平距离为 120m,这栋高楼有多 高?
B
其底部C的俯角a=45, 求 两座建筑物AB及CD的高. (精确到0.1米)
B
C
(第 2 题)
利用解直角三角形的知识解决实际问题的 一般过程是:
1.将实际问题抽象为数学问题; (画出平面图形,转化为解直角三角形的问题)
2.根据条件的特点,适当选用锐角三角函数等去解直角三角形; 3.得到数学问题的答案;
解:∵∠C=90°
A
b ∴sinB= c
a cosB= c
∴b=sinB ×c=cos72 ° ≈4.32
a=conB×C=14×COSB≈13.3ቤተ መጻሕፍቲ ባይዱ
c=14 b B aC
∠A=90°-∠B=18°
解决有关比萨斜塔倾斜的问题.
设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A, 过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC 中,∠C=90°,BC=5.2m,AB=54.5m
cosO cosa OQ 6400 0.9491 OF 6400 343
a 18.36
F
P Q
α O·
∴ P⌒Q的长为:
18.36 6400 18.36 3.14 6400 2051(km)
180
180
答:当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约 2051km

《解直角三角形》课件2

《解直角三角形》课件2
b , b= 30 , tan B = a ∴ a b 30 ≈ 64 o tanB tan25

在直角三角形的6个元素中, 直角是已知元素,如果再 知道一条边和第三个元素, 那么三角形的所有元素就 都可以确定下来。
如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 AD = 4 3 ,求Rt△ABC的面积。
问题(1)当梯子与地面所成的角a为75°时, 梯子顶端与地面的距离是使用这个梯子所能攀到 的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A= 75°,斜边AB=6,求∠A的对边BC的长. BC 由 sin A = 得 AB BC = AB sin A = 6× sin75 由计算器求得 sin75°≈0.97
在Rt△ABC中,∠A, ∠B, ∠C,岁对应得便分别 是a,b,c,根据下面条件求出直角三角形的其他元 素(角度精确到1°) ( 2) a = 6 2 , b = 6 6 (1)a=19,c = 19 2 (2)解:在Rt△ABC 中 (1)解:在Rt△ABC 中, b=6 6 ∵∠C=90°,a = 6 2 , ∠C=90° 6 6 ∵a=19 c = 19 2 tanB = = 3 6 2 2 2 ∴b = c - a =19 2 2
∵ AC=BC ∴ AD=0.5AB=10 ∠ACD=0.5∠ACB 又 CD=19.2
AD 10 tan ACD = = ≈ 0.52 CD 19.2
∴ ∠ACD=27.74°
∴ ∠ACB=55.48°3. 如图所示,一棵大树在一次强烈的地震中于离 地面10米处折断倒下,树顶落在离树根24米处.大树在 折断之前高多少?





(

25.3解直角三角形2-仰角与俯角

25.3解直角三角形2-仰角与俯角

1 图25.3.3图25.3.425.3解直角三角形2----仰角与俯角课时学习目标1.通过自学掌握仰角与俯角概念, 能利用解直角三角形解决有关仰角与俯角实际问题。

2.由实际问题转化为几何问题时,学会自己画图,建立模型.学习重点难点重点: 灵活应用解直角三角形知识解决实际问题。

难点:由实际问题转化为几何问题(建模)。

课前预习导学1、如图25.3.3,在进行测量时,从下向上看,视线与水平线的夹角叫做___________;从上往下看,视线与水平线的夹角叫做___________.2、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC =1200米,从飞机上看地面控制点B 的俯角α=30°,求飞机A 到控制点B 的距离.(精确到1米)已知:sin20°= , cos20°= , tg20°=课堂学习研讨例1 如图25.3.4,为了测量电线杆的高度AB ,在离电线杆22米的D 处,用高1.5米的测角仪CD 测得电线杆顶端B 的仰角α=30°,求电线杆AB 的高.(精确到0.1米)例2 两座建筑AB 与CD ,其地面距离AC 为50米,从AB 的顶点B 测得CD 的顶部D 的仰角β=30°,测得其底部C 的俯角α=45°,求两座建筑物AB 与CD 的高.(精确到0.1米)2 (第4题)课堂达标检测1. 在△ABC 中,∠C =90°,AB =13,BC =12,则sinB 的值为 。

2. 若30α= ∠,则α∠的余角是 °,cos α= .3.小明在地面一点A 处测得对面大楼楼顶点C 处的仰角为52 , 则小明从楼楼顶点C 处看地面点A 的俯角为 °.4.如图,飞机A 在目标B 的正上方1000米处,飞行员测得地面目标C 的俯角为30°,求地面目标B 、C之间的距离.(结果保留根号)1.两幢大楼相距110米,从甲楼顶部看乙楼顶部的仰角为26°,如果甲楼高35米,那么乙楼的高为多少米?(精确到1米)2.如图,一个古代棺木被探明位于点A 地下24米处.由于点A 地面下有煤气管道,考古人员不能垂直向下挖掘,他们被允许从距点A 8米的点B 挖掘.考古人员应以与地平面形成多大的角度进行挖掘才能沿最短路线挖到棺木?他们需要挖多长的距离?(角度精确到1′,距离精确到0.1米)课堂小结:这节课我的收获是 。

2022年青岛版九年级上《解直角三角形的应用2》精品课件

2022年青岛版九年级上《解直角三角形的应用2》精品课件

x

1
x
2
2a
2. 关于x的二次三项式x2 +4x+k是一个 完全平方式。求k的值。
课时小结
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式。
2、写出 a、b、c 的值,值的范围为实数 。
3、求出 b2 4ac 的值。
特别注意:若 b24ac0则方程无解
4、代入求根公式 : xb b2 4ac
5、写出方程的解:
解直角三角形的应用(2)
1.进一步掌握解直角三角形的方法。
2.能熟练地应用解直角三角形的知 识解决有关方位角的实际问题。
精讲点拨
例3 住宅的采光是建楼和购房时 人们所关心的问题之一。如图,住 宅小区南、北两栋楼房的高度均为。 已知当地冬至这天中午12时太阳光 线与地面所成的角是35°。
(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的 距离元二次方程的一般步骤:
1、把方程化成一般形式。
2、写出 a、b、c 的值。
3、求出 b2 4ac 的值。
特别注意:若 b24ac0则方程无解
4、代入求根公式 : xb b2 4ac 2a
5、写出方程的解:
x

1
x
2
复习巩固 公式法解方程: (1)x2-7x-18=0
(2) 9x2+6x+1=0
(2)如果两栋楼房之间的距离为20m,那么这时南楼的影 子是否会影响北楼一楼的采光?
跟踪训练
如图,在海岸边有一港口O,已知小岛A在港口 O北偏东30°的方向,小岛B在小岛A正南方向, OA=60海里,OB=20 海里.计算: (1)小岛B在港口O的什么方向; (2)求两小岛A,B的距离.

1.3 解直角三角形(2)

1.3  解直角三角形(2)

S= ab sina
探究活动
如图, ABC中 ∠A为锐角 为锐角,sina= 如图, △在ABC中, ∠A为锐角,sina= 2 , AB+AC=6cm,设AC=xcm, △ABC的面积为ycm . AB+AC=6cm,设 ABC的面积为ycm 的面积为 (1)求 关于x的函数关系式和自变量x的取值范围; (1)求y关于x的函数关系式和自变量x的取值范围; C (2)何时 ABC的面积最大 最大面积为多少? 何时△ 的面积最大, (2)何时△ABC的面积最大,最大面积为多少?
i1=1∶3 ∶ i2=1∶2.5 ∶
E F
如图所示,某水库大坝的横断面 如图所示, 是等腰梯形,坝顶宽6 m,坝高1 0m, 是等腰梯形,坝顶宽6 m,坝高1 0m, 斜坡AB的坡度为 的坡度为1 现要加高2m, 斜坡AB的坡度为1:2.现要加高2m, 在坝顶宽和斜坡坡度均不变的情况下, 在坝顶宽和斜坡坡度均不变的情况下, 加高一条长为50 m的大坝 的大坝, 加高一条长为50 m的大坝,需要多少 土方? 土方?
水平面的夹角叫做坡角, 坡面与 水平面的夹角叫做坡角,记 作a,有 , h tan a= =i.
l
铅垂 高水平长度
坡角
显然,坡度越大,坡角 就越大 坡面就越陡. 就越大, 显然,坡度越大,坡角a就越大,坡面就越陡
一水库大坝的横断面为梯形ABCD, , 一水库大坝的横断面为梯形 坝顶宽6米 斜坡CD 坝顶宽 米,斜坡 长为60米,斜坡 的 米 斜坡AB的 坡度i 的坡度i ∶ 求 坡度 1=1∶3,斜坡 的坡度 2=1∶2.5.求: ∶ ,斜坡CD的坡度 的坡角与坝底AD的宽度 (1)斜坡 的坡角与坝底 的宽度;(长 )斜坡CD的坡角与坝底 的宽度; 长 度精确到0.1米 度精确到 米) 若堤坝长150米 。 问建造这个堤坝需用 ( 2)若堤坝长 若堤坝长 米 多少土石方(精确到 立方米)? 精确到1立方米 多少土石方 精确到 立方米 ?

人教版九年级下册数学作业课件 第28章解直角三角形 (2)

人教版九年级下册数学作业课件 第28章解直角三角形 (2)

(2)∠A=22°,AB=10.(sin22°≈0.37,cos22°≈0.93, tan22°≈0.40,其中结果精确到 0.1) 解:在 Rt△ABC 中,∠B=90°-∠A=90°-22°=68°. ∵∠A=22°,AB=10, ∴AC=cosA·AB=cos22°·10≈0.93×10=9.3, BC=AB·sinA=10·sin22°≈0.37×10=3.7.
又∵∠CDE=90°,CD=4,sinE=CD,∠E=30°, CE
∴CE=sCinDE=sin430°=41=8. 2
∴BC=BE-CE=6 3-8.
(2)若 sinA=45,求 AD 的长. 解:∵∠ABE=90°,AB=6,sinA=45=BAEE, ∴设 BE=4x,AE=5x,则 AB=3x. ∴3x=6,得 x=2. ∴BE=8,AE=10.
10.如图,在四边形 ABCD 中,AB=2,BC=CD= 2 3 , ∠B = 90°, ∠C = 120°, 则 线 段 AD 的 长 为 7. 解析:如图,连接 AC. 在 Rt△ABC 中, ∵∠B=90°,AB=2,BC=2 3, ∴tan∠ACB=BACB=223= 33.
∴∠ACB=30°. ∴AC=2AB=4. ∵∠BCD=120°. ∴∠ACD=∠BCD-∠ACB=120°-30°=90°. 在 Rt△ADC 中, ∵∠ACD=90°,AC=4,CD=2 3, ∴AD= AC2+CD2= 42+(2 3)2=2 7.
解:在
Rt△ABC
中,∠C=90°,tanA=
3, 3
∴∠A=30°,∠ABC=60°.
∵BD 是∠ABC 的平分线,
∴∠CBD=∠ABD=30°.
又∵CD= 3, ∴BC=taCn3D0°=3. 在 Rt△ABC 中,∠C=90°,∠A=30°, ∴AB=siBn3C0°=6.

初中数学面试真题-《解直角三角形的应用(2)》教案、教学设计

初中数学面试真题-《解直角三角形的应用(2)》教案、教学设计

《解直角三角形的应用(2)》教案、教学设计
一、教学目标
【知识与技能】
掌握应用解直角三角形解决实际问题的思路及步骤。

【过程与方法】
通过应用解直角三角形解决实际问题的过程,提升推理能力及运算能力。

【情感态度与价值观】
感受数学知识与实际生活的联系,激发学习数学的兴趣。

二、教学重难点
【重点】应用解直角三角形解决实际问题的思路及步骤。

【难点】运用同一方法多角度解决问题。

三、教学过程
(一)课堂导入
承接上节课《解直角三角形的应用(1)》,导入课题。

(二)回顾旧知
回顾解直角三角形的一般步骤:先找直角三角形,再解直角三角形。

还可复习锐角三角函数定义。

(四)小结作业
小结:教师提问,学生汇报本节课收获。

作业:完成教材上相应习题;了解解直角三角形在生活中的更多应用。

四、板书设计。

28.2.2解直角三角形(2)

28.2.2解直角三角形(2)

B 900 A B 900 A
在Rt△ABC中, ∠ C=Rt ∠,根据 下列条件,解直角三角形.
350 6400 6400
课堂小结:
解直角三角形时,运用直角三角形有关知识,通 过数值计算,去求出图形中的某些边的长度或角 的大小.在分析问题时,最好画出几何图形,按 照图中的边角之间的关系进行计算.这样可以帮 助思考、防止出错.
老师提示:当从低处观察高处的目标时.视线与水 平线所成的锐角称为仰角.当从高处观察低处的目 标时.视线与水平线所成的锐角称为俯角.
驶向胜利 的彼岸
小结
拓展
解直角三角形
(1)三边关系:
a2+b2=c2;
∠A+∠B=90°;
(2)锐角之间关系:
(3)边角之间关系
• 解三角形

回味无穷 驶向胜利
的彼岸
B
C
60
D
45
A
3、山顶上有一旗杆,在地面上一点A处测得杆顶B 的仰角为 600,杆底C的仰角为450,已知旗杆高 BC=20米,求山高CD。
B 20
C
x
60
D
45
A
4、在山脚C处测得山顶A的仰角为45°.问题如下: 1.沿着水平地面向前300m到达D点,在D点 测得山顶A的仰角为60 °,求山高AB. 2.沿着坡角为30 °的斜坡前进300m到达D 点,在D点测得山顶A的仰角为60 ° ,求山高AB.
解直角三角形(2)
回顾与思考 1
直角三角形的边角关系
a2+b2=c2.
直角三角形三边的关系: 勾股定理
直角三角形两锐角的关系:两锐角互余 ∠A+ ∠B=900. 直角三角形边与角之间的关系:锐角三角函数 a a b sin A cos B , cos A sin B , tan A = b c c 互余两角之间的三角函数关系:

2.4解直角三角形(2)

2.4解直角三角形(2)
青岛版初中数学九年级上册
第二单元
第4课
导入新课
1.解直角三角形的概念? 2. 在直角三角形ABC中,∠C﹦90°,由下列条件解 直角三角形。 (1)已知a﹦2,b﹦2,则c﹦_, ∠A﹦_, ∠B﹦_. (2)已知b﹦1,c﹦2,则∠A﹦_,∠B﹦_,a﹦_.
新课学习
例3:如图2-9,在△ABC中,已知∠A=60°, ∠B=45°,AC=20,求AB的长.
课本P.52第1、2题
板书设计
2.4解直角三角形 第二课时
1.构造直角三角形的方法: 例3
课堂练习
1.如图,在Rt△ABC中,∠A=900,AD⊥BC,垂足为D, ∠B=600,AD=3,求BC的长
A
BD
C

课堂练习
2.在△ABC中,∠ACB=118°,BC=4, 求BC边上的高
课堂练习
3.在等腰三角形中,AB=AC,且一腰长与底边的比 为5:8,求sinB,cosB的值。
作业布置
新课学习
新课学习
解 过点C作CD⊥AB,垂足为点D(图2-10). 在Rt△ACD中,AC=20,∠A=60°.
新课学习
挑战自我 在图2-9中,∠B=45°,BC=2,试用含∠A的三角比 的式子表示AB的长.
结论总结
通过本节课的内容,你有哪些收获? 1.把一些非直角三角形的图形转化成直角三角形的方 法? 2.如何添加辅助线。

华师大版九年级数学上册24.4《解直角三角形(第2课时 俯角和仰角的问题)》课件

华师大版九年级数学上册24.4《解直角三角形(第2课时 俯角和仰角的问题)》课件

α β
OA
OB
OA 450 450 3, tan 30
450米
OB 450 450 tan 45
AB OA OB (450 3 450)(m)O
B
A
答:大桥的长AB为 (450 3 450)m.
07:56
合作与探究
变题1:如图,直升飞机在长400米的跨江大桥 AB的上方P点处,且A、B、O三点在一条直线 上,在大桥的两端测得飞机的仰角分别为30° 和45 °,求飞机的高度PO .
第24章
第2课时 俯角和仰角的问题
新课导入
解直角三角形:(如图)
只有下面两种情况:
(1)已知两条边;
B
c
a

A
bC
(2)已知一条边和一个锐角
1.已知a,b.解直角三角形(即求:∠A,∠B及C边)
2. 已知∠A,a.解直角三角形 3.已知∠A,b. 解直角三角形 4. 已知∠A,c. 解直角三角形
推进新课 仰角和俯角
07:56
合作与探究
【例1】如图,直升飞机在跨江大桥AB的上方P 点处,此时飞机离地面的高度PO=450米,且A、 B、O三点在一条直线上,测得大桥两端的俯角 分别为α=30°,β=45°,求大桥的长AB .
解:由题意得,在Rt△PAO与Rt△PBO中
PAO 30, PBO 45
PO tan 30, PO tan 45 P
P
C
30° A
45°
200米
O
B
07:56
合作与探究
例2:如图,直升飞机在高为200米的大楼AB上 方P点处,从大楼的顶部和底部测得飞机的仰 角为30°和45°,求飞机的高度PO .

第二节解直角三角形

第二节解直角三角形

第二节解直角三角形第二节解直角三角形知识要点已知三角形的某些元素求其它元素的问题称为解三角形,解一般的三角形至少需要已知三个元素(其中至少要有一条边)在直角三角形中,一个元素(直角)是已知的,只需要知道其他两个元素(其中至少要有一条边),就可以求出该三角形的其他元素(边长和角)及面积,这类问题称为“解直角三角形”.一、直角三角形中的边角关系解直角三角形包括“已知一边一角”和“已知两边”两类情况,都可以利用三角比的边角关系或勾股定理来解.例题精讲例1△中,∠C=°,AC=BC,点D在BC上,∠DAC=°已知AD=6,求BD的长.举一反三1-1旗杆上的绳子从顶端垂到地面还多8米.当把绳子下端沿地面拉直后,绳子与地面成45°角,则与绳子长度最接近的整数值是()A.27;B.28;C.29;D.301-2在△中,∠C=°,点D在BC上,BD=4,AD=BC,cos∠ADC =(2)求sinB的值.点评在直角三角形中,已知某锐角的三角比但相关的两条线段都不知道,则必需引入比例系数k,再按题意根据等量关系列出方程求k.注意不可直接写DC=3,AD=5,因为比例系数k并不一定等于1(在本题中比例系数k=2).1-3△中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=0.8(1)求线段DC的长;(2)求tan∠EDC的值.点评在斜三角形中,要求某锐角内角的三角比,可通过作垂线构造直角三角形,或通过相等角的代换将该角转移到直角三角形中,寻找新的关系.二、等腰三角形中的边角关系根据三线合一定理,作底边上的高线可以把等腰三角形分成两个全等的直角三角形,从而把解等腰三角形的问题化为解直角三角形的问题例2△ABC中,AB=AC,BC=6,(1)求边AB的长;(2)求边AC上的高.求三角形的面积也是解三角形的内容之一,下面看一道利用三角比计算三角形面积的问题.举一反三2-1在△中,AB=AC=10,∠B=°,求△的面积.点评由本题中的方法二可归纳出新的面积公式:,其中为AB、AC的夹角2-2已知△中,AB=AC=10,△的面积为,求顶角A的大小.点评在已知三角形面积的问题中,经常要按照以上两种情况进行分类讨论.2-3在△中,AB=AC=10,BC=12.(1)求∠B的正切值;(2)求∠A的正弦值.三、一般三角形的边角关系例3在△ABC中,∠A=°,∠C=°,AB=12. (1)求边AC的长;(2)求sinC.点评(1)对于一般三角形,通过作一条高可以把它分成两个直角三角形,如果原三角形中含特殊角,那么尽量不要把特殊角分开,在本例中,如果一上来就作AE⊥BC,固然在Rt△ABE中由AB=12,∠B=60°可以求出AE和BE,接着在Rt△ACE中都是非特殊角,计算无法进行下去了.(2)本题的计算结果使我们又获得了一个“扩大的特殊角”的三角比:sin75°=.举一反三3-1已知在△中,∠B、∠C都是锐角,BC=20,,,求AC的长.3-2在△中,D在边BC上,BD=2CD,且AD⊥AB,若,求∠B的度数.点评本题中的两个条件“∠BAD=90°和“tan∠CAD=”不在同一个三角形中,添辅助线的目的就是要把这两个条件集中到同一个直角三角形中.3—3在上海旅游节期间举办了彩车巡回展览活动.上海锦江集团制作的彩车上有一副钢制的三脚架安置在一辆平板车上,如图2—2一15所示,平板车底板离地面为1.6米,三脚架为△ABC,其中BC长20米,∠B和∠C分别为45°和30°.彩车要穿过南北高架路驶往外滩,已知南京路成都路道口的高架路离地面高8米,延安路成都路道口的高架路离地面高10米.这辆彩车在这两处道口是否都能安全通过?(参考数据:≈1.732)点评抛开题目的实际背景,本题的数学含义是:“在△ABC中,已知BC=20,∠B=45°,∠C=30°,求高AD.”解题中以AD=x为中间量,根据BD+DC=BC建立方程求解.四、复合图形中的边角关系在这里,“复合图形”是指由有两个三角形拼合或叠合而成的图形°四边形被它的一条对角线分成两个三角形,因此解四边形的问题可以化归为解三角形的问题.例4已知四边形ABCD中,BC=CD=DB,∠ADB=°,,求S△ABD:S△BCD.举一反三4-1将两块三角板如图放置,其中∠C=∠EDB=°,∠A=45°,∠E=30°,AB=DE=6求重叠部分四边形DBCF的面积.点评用“割补法”求四边影DBCF的面积可以有两种方法:一是由点C作垂线CG上AB于G,把四边形DBCF分成Rt△BCG和梯形DGCF;二是如本题中的解法,看作是两个等腰直角三角形(△ABC和△ADF)的面积之羞.后者只需要求出AD和AC’的长,是同一种图形的面积相减,因此后一种解法比前者顺畅.将两块三角板换一种叠法得到下面的问题.4-2将一副三角板如图放置,其中∠A=∠BCD=°,AB=AC,∠DBC=°,已知BC=6,求它们重叠部分△EBC的面积.4-3已知△ABC是边长为a的等边三角形,△DBC是以BC为斜边的等腰直角三角形,求线段AD的长.点评不给图形的题目,往往藏有玄机.在自己画图的过程中要仔细考虑:这个图有没有不同的画法?要不要进行分类讨论?内容提炼1.解直角三角形时,除了“已知两边求第三边”用勾股定理、“已知一个锐角求另一个锐角”用“两锐角互余”之外,其它各种情况都可以用三角比的定义求解;2.解斜三角形时,我们把它化为直角三角形来解,经常遇到的题目有两类:①已知两边夹角解三角形.如图2—2—22,△ABC中,已知AC=b,AB=c,∠A=a,可作高CD⊥AB,则CD=b·sina,AD=b·cosb,BD=c—bcosa,再在Rt△BCD中用勾股定理求,利用三角比定义tanB=,最后求出∠C=180°一∠A一∠B·②已知两角一边解三角形.如图2—2—23,△ABC中,已知∠A=a,∠B=,AB=c,作高CD,设CD=x,列方程xcota+xcot=c,得x=求出CD后计算习题精炼1.△ABC中,∠C=°,已知以下边或角的大小不能解该三角形的是()A.∠A、a;B.∠B、c;C.∠A、∠B;D.a、c2.△ABC中,∠A=90°,若AB=c,∠B=;B.;C.;D.3.若△ABC的两条边长分别为AB=20cm,AC=30cm,S△ABC=150cm2,则∠A的度数为()A.30°;B.60°;C.30°或150°;D.60°或120°4.Rt△中,∠C=°,若AC=6,,则AB=.5.△中,∠A=°,若∠B=θ,AC=b,则AB=(用θ和b的三角比表示)6.△AB中,若AB=AC=10cm,BC=12cm,则tanB=.7.如图,△ABC中,若AB=AC,∠A=90°,BD是角平分线,则tanDBC=.8.△中,若AB=AC=,BC=6,则∠BAC=度9.在ABC中,=0°,B=AC,将ABC绕着点B旋转使点落在直线B上C','C'=________.中,∠C=°,CD是边AB上的中线,,BC=6.(1)求CD的长;(2)求sin∠BCD.11.如图,在△中,已知∠A、∠B都是锐角,,BC=20,,AB=29,求△ABC的面积.12.如图,梯形ABCD中,AB∥CD,∠B=°,点F在BC上,∠AFD =°,已知AB=8,DC=3,tan∠BAD=2.(1)求AD的长;(2)求tan∠FAD.互动探究如图,Rt△中,AB=AC,∠BAC=°,D、E分别为AB、AC上的点,AE=BD,联结DE、BE.(1)当AD=2DB时,分别计算tan∠ADE和tan∠EBC的值.从这个计算结果你能得出什么结论?(2)以第(1)小题中的探究结论为条件,求的值.2014/11/29第8页共8页74-84。

解直角三角形(2.仰角)

解直角三角形(2.仰角)
总结词
航海中,仰角用于确定航向、航速和船只的位置。
详细描述
在航海过程中,仰角的应用非常重要。船长需要根据仰角来确定船只的航向和 航速,以确保能够安全、准时地到达目的地。同时,利用仰角还可以确定船只 的位置,这对于海上救援和搜寻工作来说至关重要。
06
结论
解直角三角形(2.仰角)的总结
仰角在解直角三角形中的应用
总结词:利用仰角可以方便地求解直角三角形中的其他角度,特别是当已知一个 锐角和一个邻边时。
利用仰角求边长
在解直角三角形中,仰角不仅可以用于求角度,还可以用于求边长。通过三角函数和已知的仰角,可 以求解直角三角形中的对边或斜边长度。例如,已知一个锐角和对应的对边长度,可以使用正切函数 或余切函数来求解斜边长度。
实例
已知一个直角三角形的一个锐角为 30°,邻边为3,斜边为5,利用相 似性求另一个直角三角形的斜边长 度。
04
仰角在解直角三角形中的应用
利用仰角求角度
仰角是观测点到目标点的视线与水平线之间的夹角。在解直角三角形中,可以利 用仰角和三角函数来求解其他角度。例如,如果已知一个锐角和一个邻边,可以 使用正弦函数或余弦函数来求解另一个锐角。
通过学习更多实际应用案例,了解解直角三角形在各个领域中的应用,提高解决实际问 题的能力。
注重实践和实验
解直角三角形需要大量的实践和实验来提高技能和经验。建议多进行实际测量和计算, 熟悉各种测量仪器和方法,提高自己的实践能力和计算精度。
THANKS
感谢观看
02
仰角的概念
仰角的定义
01
仰角的定义:在直角三角形中,与直角相邻的锐角叫做仰角。
02
仰角是相对于直角而言的,是直角三角形的一个重要组成部分。

解直角三角形(2)

解直角三角形(2)

A
B
4、如图,为了测量高速公路的保护石堡坎与 地面的倾斜角∠BDC是否符合建筑标准,用一 根长为的铁管AB斜靠在石堡坎B处,在铁管AB 上量得AF长为1.5m,F点离地面的距离为0.9m, 又量出石堡坎顶部B到底部D的距离为 , 4 3m 这样能计算出∠ BDC吗?若能,请计算出∠BDC 的度数,若不能,请说明理由。
视线 铅 直 线
仰角 水平线 俯角 视线
例1、如图,为了测量电线杆的高度AB,在离 电线杆22.7米的C 处,用高1.20米的测角仪CD 测得电线杆顶端B的仰角a=22°, 求电线杆AB的高.(精确到0.1米)
α=22°
1.20 22.7
E
图 19.4.4
例2:热气球的探测器显 示,从热气球看一栋高 楼顶部的仰角为30°, 看这栋高楼底部的俯角 为60°,热气球与高楼 的水平距离为120m,这 栋高楼有多高?
1.解直角三角形
在直角三角形中,除直角外,由已知两元素 (必有一边) 求其余未知元素的过程叫解直角三角形.
2.解直角三角形的依据
(1)三边之间的关系:a2+b2=c2(勾股定理) c (2)两锐角之间的关系: ∠ A+ ∠ B= 90º ;
(3)边角之间的关系:

a
a sinA= c
cosA=
b c
1、建筑物BC上有一旗杆AB,由距BC 40m的D处观 察旗杆顶部A的仰角为60°,观察底部B的仰角为 45°,求旗杆的高度(精确到0.1m)
A
B
D
40
C
2、在山脚C处测得山顶A的仰角为45°。 沿着水平地面向前300米到达D点,在D点测得山顶 A的仰角为600 , 求山高AB。
A
3x
45° 60°

北师大版初三(下)数学第81讲:解直角三角形(2)(学生版)(著名机构讲义)

北师大版初三(下)数学第81讲:解直角三角形(2)(学生版)(著名机构讲义)

解直角三角形(2)____________________________________________________________________________________________________________________________________________________________________1、了解解直角三角形在测量及几何问题中的应用;2、掌握仰角、俯角、坡度等概念,并会解决简单的实际应用问题;3、认识到数学是解决现实问题的重要工具,强化利用三角函数解决问题的自信心.1.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.2.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做_____,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.3.解直角三角形的应用-仰角俯角问题(1)概念:仰角是_____的视线与水平线的夹角;俯角是_____向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.4.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.1.解直角三角形的应用-方向角问题.【例1】(2014•四川自贡中学期末)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A.250m B.250m C.m D.250m练1.如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于()A.a•sinα B.a•cosα C.a•tanα D.a•cotα练2.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,在C处测得A的方位角为北偏东20°,则C到A的距离是()A.15km B.15km C.15(+)km D.5(+3)km2.解直角三角形的应用-坡度坡角问题.【例2】(2015•承德第一中学月考)如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m 杆的影子长为2 m,则电线杆的高度约为m.(结果保留两位有效数字,≈1.41,≈1.73)练3.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度比为.3.解直角三角形的应用-求长度问题.【例3】(2014•辽宁旅顺八中期中)一棵树因雪灾于A处折断,测得树梢触地点B到树根C处的距(答离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为米.案保留根号)练4..如图,一架梯子斜靠在墙上,若梯子到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.4.解直角三角形的应用-仰角俯角问题.【例4】(2014•山东费县中学期末)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD的高(结果保留根号).练5.如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?5.解直角三角形的应用-方案问题.【例5】(2015•云南腾冲中学期末)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架.请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是(用工具的序号填写);(2)在图中画出你的测量方案示意图;(3)你需要测得 示意图中的哪些数据,并分别用a、b、c、α等表示测得的数据:;(4)写出求树高的算式:AB= .练6.为了测量一棵大树的高度,准备了如下测量工具:①镜子;②皮尺;③长为2m的标杆;④高为1.5m的测角仪(能测量仰角和俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案上,选用的测量工具是;(2)在下图中画出你的测量方案示意图;(3)你需要测量示意图中的哪些数据,并用a,b,c,α等字母表示测得的数据;(4)写出求树高的算式:AB= m.1.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.m B.100m C.150m D.m2.如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A.500sin55°米 B.500cos55°米C.500tan55°米 D.500cot55°米3.如图,为了测量一河岸相对两电线杆A,B间的距离,在距A点15米的C处(AC⊥AB)测得∠ACB=50°,则A,B间的距离应为()A.15sin50°米 B.15tan50°米 C.15tan40°米 D.15cos40°米4.如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.7海里 B.14海里 C.7海里D.14海里5.如图,一束光线从y轴上点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),则光线从A点到B点经过的路线长是.__________________________________________________________________________________________________________________________________________________________________1.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.2.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了m.3.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为米.4.如图,一游人由山脚A沿坡角为30°的山坡AB行走600m,到达一个景点B,再由B沿山破BC 行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45°,则山高CD等于m.(结果用根号表示)5.如图是一山谷的横断面示意图,宽AA′为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(点A,O,O′A′在同一条水平线上),则该山谷的深h为m.6.如图,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30°,∠BCA=90°,台阶的高BC为2米,那么请你帮忙算一算需要米长的地毯恰好能铺好台阶.(结果精确到0.1m,取=1.414,=1.732).7.小刘同学为了测量雷州市三元塔的高度,如图,她先在A处测得塔顶C的仰角为32°,再向塔(小的方向直行35米到达B处,又测得塔顶C的仰角为60°,请你帮助小刘计算出三元塔的高度.刘的身高忽略不计,结果精确到1米)8.如图,某建筑物BC的楼顶上有一避雷针AB,在距此建筑物12米的D处安置一高度为1.5米的测倾器DE,测得避雷针顶端的仰角为60°.又知建筑物共有六层,每层层高为3米.求避雷针AB的长度.(结果精确到0.1米)(参考数据:≈1.41,≈1.73)9.课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.10.为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A北偏西45°并距该岛20海里的B处待命.位于该岛正西方向C处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C处?(结果精确到个位.参考数据:≈1.4,≈1.7)11.如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)课程顾问签字: 教学主管签字:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形
一、锐角三角函数证明:------------------
结论:--------------------
练习:---------------------
正弦和余弦(二)
一、素质教育目标
(一)知识教学点
使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力.
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、教学重点、难点
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.三、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.
(二)整体感知
只要知道三角形任一边长,其他两边就可知.
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.
若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则
引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.
例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.
学生练习1中1、2、3.
让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
例2 求下列各式的值:
为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1)sin45°+cos45; (2)sin30°•cos60°;
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即
0<sinA<1, 0<cosA<1(∠A为锐角).
还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”
四、布置作业
教材习题14.1中A组3.
预习下一课内容.。

相关文档
最新文档