黑龙江省绥滨县第一中学2017_2018学年高二数学下学期期中试题理无答案20180705024
绥滨县一中2018-2019学年下学期高二期中数学模拟题
绥滨县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣2. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°3. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,) D .[0,)4.设函数,则有( )A .f (x)是奇函数, B .f (x)是奇函数, y=b xC .f (x)是偶函数D .f (x)是偶函数,5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C. D.6. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D67. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(8. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β9. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x>},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .911.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( ) A.B.C.D.12.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A .11B .11.5C .12D .12.5二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)15.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .16.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .17.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 18.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .三、解答题19.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.20.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]21.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.22.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.23.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.24.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.绥滨县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣. 故选:C .【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.2. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.3. 【答案】C【解析】解:函数f (x )=x 3+mx 2+(2m+3)x 的导数为f ′(x )=x 2+2mx+2m+3,由题意可得,判别式△>0,即有4m 2﹣4(2m+3)>0,解得m >3或m <﹣1, 又x 1+x 2=﹣2m ,x 1x 2=2m+3,直线l 经过点A (x 1,x 12),B (x 2,x 22),即有斜率k==x 1+x 2=﹣2m ,则有直线AB:y﹣x12=﹣2m(x﹣x1),即为2mx+y﹣2mx1﹣x12=0,圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.则g(m)=d﹣r=﹣,由于f′(x1)=x12+2mx1+2m+3=0,则g(m)=﹣,又m>3或m<﹣1,即有m2>1.则g(m)<﹣=,则有0≤g(m)<.故选C.【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.4.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.5.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.6. 【答案】B【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 7. 【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10aa ,解得:330<<a故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.8. 【答案】B【解析】解:对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A 错;对于B ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°, 故命题B 正确.对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以D 不成立. 故选B .【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.9.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D10.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.11.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12. 故选:C .二、填空题13.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点, 当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 14.【答案】 相交【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.【解析】解:∵在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点, ∴PQ ∥A 1D ,∵直线A 1P 与DQ 共面,∴PQ=A 1D ,∴四边形A 1DQP 是梯形, ∴直线A 1P 与DQ 相交. 故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.15.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率.16.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.17.【答案】21 7【解析】18.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.三、解答题19.【答案】【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x MN ME -=-==,∴),31(y x E 则)1,(-=y x QM ,)1,31(+=y x …………2分∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即1322=+y x ∴曲线C 的方程为1322=+y x …………4分20.【答案】(1)最大值为,最小值为32-;(2)14.【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-= ∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC =.由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 21.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x ﹣y ﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m •(k ≠0,m ≠0),M (x 1,y 1)、N (x 2,y 2)联立消去y 并整理得:(1+4k 2)x 2+8kmx+4(m 2﹣1)=0…则,于是…又直线OM 、MN 、ON 的斜率依次成等比数列.∴…由m ≠0得:又由△=64k 2m 2﹣16(1+4k 2)(m 2﹣1)=16(4k 2﹣m 2+1)>0,得:0<m 2<2 显然m 2≠1(否则:x 1x 2=0,则x 1,x 2中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,与已知矛盾) … 设原点O 到直线的距离为d ,则∴故由m 的取值范围可得△OMN 面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.22.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.23.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式. 24.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分所以2(n 1)22n a n =+-⨯=,即2n a n =,(1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分。
2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版
2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。
【精编文档】黑龙江省绥滨县第一中学2018-2019学年高二数学下学期期中试卷理.doc
黑龙江省绥滨县第一中学2018-2019学年高二数学下学期期中试题 理(无答案)独立性检验临界值表:一、选择题(共12道题,每题5分,共60分)1、有三层楼,一层到二层3个楼梯,二层到三层有2个楼梯,那么从一楼到三楼有多少种走法 ( ) A.5 B.4 C.6 D.32、把一枚骰子掷两次,那出现2次6点的概率 ()A.61B.261⎪⎭⎫⎝⎛ C.6561⨯ D. 0.3 3、 设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差 ( ) A .pB .2p (1-p )C .-p (1-p )D .p (1-p )4、有4名毕业生分配到2个单位实习每个单位至少一人有多少种分配方案( ). A .14 B .16 C .20 D .185、直角坐标点(1,1)化为极坐标 ( ) A.(1,0) B .(4,2π) C.(2,2π) D.(4,1π) 6、若X~N(1,2σ)且P(1<X<2)=0.3则P(X>2)= ( ) A.0.5 B.0.7 C.0.2 D.0.67、若)5.0,6(~B ξ则D (ξ)= ( )A.3B.2C.1.5D.2.58、一个口袋内有5张券,其中三张有奖,甲先抽一张没有中奖的条件下乙抽一张中奖的概率 ( ) A.0.3 B.0.2 C.0.75 D.0.59、y=2x+3经过⎪⎩⎪⎨⎧='='yy xx 3121后的方程为 ( )A.3y-4x-3=0B.3y+4x-3=0C.6x+8y+9=0D.4x-3y-3=0 10、已知θρcos 8=求该圆的周长 ( ) A.4π B.8π C.16π D.6π11、在(1+2x)10的展开式中2x 的系数是 ( ) A.160 B.150 C.120 D.18012、点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为 ( ) A..D二、填空题(共4道题,每题5分,共20分)13、已知一组数据的4,3==y x 且其回归方程为a x yˆ2ˆ+=则=a ˆ 14、若直线的参数方程为⎩⎨⎧-=+=t y tx 4153(t 为参数),则直线的斜率为15、若由一个2⨯2列联表中的数据计算得k 2=7.013,那么有 把握认为两个变量有关系16、 若将函数f(x)=x 5表示为f(x)=0a +1a ()1x ++…+()551a x +,其中012,,a a a ,…,5a 为实数,则0a =________。
2017-2018学年高二下学期期中考试数学(理)试题 word版含答案
2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。
2018年高二下学期期中考试数学(理科)试卷及答案
高二下学期期中考试数学(理)一、 选择题:(每小题5分,共60分)1. 椭圆2212x y +=上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是() A .1 B .3 C 1 D .12. 若方程22125x y k k-=+-表示双曲线,则k 的取值范围是( ) A .(,2)-∞- B .(2,5)- C.[)(,2)5,-∞-+∞ D.(5,)+∞3. 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率为( ) A .5 B C .2 D .544. 设椭圆22221x y m n +=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216x y +=B.2211612x y += C.2214864x y += D.2216448x y += 5. x y =与2x y =围成的封闭图形的面积为( )A. 31B. 41C. 61D. 21 6.函数32()32f x ax x =++,若4)1(=-'f ,则a 的值等于( )A .193B .163C .133D .1037. 曲线123+-=x x y 在点(1,0)处的切线方程为( )A.1-=x yB.1+-=x yC. 22-=x yD. 22+-=x y8.把长度为16的线段分成两段,各围成一个正方形,它们的面积和的最小值为( )A. 2B. 4C. 6D.89. dx x ⎰421等于( )A.2ln 2-B. 2ln 2C. 2ln -D. 2ln 10. 设)(x f '是函数f (x )的导函数,=y )(x f '的图象如左下图所示,则y =f (x )的图象最有可能的是( )(=y )(x f '的图象) A B C D11. 方程0333=--x x 的实数根的个数为( )A. 3B. 2C. 1D.012. 设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|=( )A .9 B. 6 C. 4 D. 3 二、填空题(每小题5分,共20分)13. 曲线x x y 43-=在点(1,3)- 处的切线的倾斜角为___________________; . 14. 函数5523--+=x x x y 的单调递增区间是_________________________ 15. 设点P 是双曲线x 2-23y =1上一点,焦点F (2,0),点A (3,2),使|P A |+21|PF |有最小值时,则点P 的坐标是 .16. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的 方程为______________________ .三、解答题(共70分) 17. 已知函数23)(bx ax x f +=,当1x =时,有极大值3;(1)求,a b 的值;(2)求函数)(x f 的极小值 18. 若双曲线与椭圆1162522=+y x 有相同的焦点,与双曲线1222=-y x 有相同渐近线,求双曲线方程.19. 已知长轴长为22,短轴长为2,焦点在x 轴上的椭圆,过它的左焦点1F 作倾斜角为4π的直线交椭圆于A ,B 两点,求弦AB 的长.20. 已知a 为实数,()()2()4f x x x a =--。
高二数学理2017-2018学年度第二学期中期质量检测试题
第 3页 共 4页
第4页 共4页
A. -1 B. 1 C. -5 D. 3
2. 已知函数 f x ax3 3x2 2 ,若 f ' 1 4 ,则 a
A. 10 B. 13
3
3
3. 已知 a (2, 1,3) , b
C. 16 D.
19
3
3
1, x,2 ,若 a b 0 ,则 x
A. -4 B. 8 C. -8 D. -6 4. 下列求导运算正确的是( )
22. 已知函数 f x lnx 1 ax2 2x, a R 2
(1)若 a 1 ,求曲线 y f x 在点 1, f 1 处的切线方程;
(2)若函数 f x 在定义域内是单调递增,求实数 a 的取值范围。
20.如图,四棱锥 P ABCD 中, PA 平面 ABCD ,梯形 ABCD , AD // BC , AB AD AC 3 ,
15. 已知函数 y f x x3 ax2 a 6 x 1有极大值和极小值,则 a 的取值范围是 __________ 16. 在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平面 A1ED与平面 ABCD所成的锐二面角的余弦 值为 ________.
三、解答题(共 6 题, 17 题 10 分, 18-22 每题 12 分,共 70 分) 17. 求下列函数的导数 (1) y ex cos x
A. a // c, b // c
B. a // b, a c C. a // c, a b D. 以上都不对
绥滨县第一中学2018-2019学年下学期高二期中数学模拟题
绥滨县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 如图,程序框图的运算结果为( )A .6B .24C .20D .1202. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π3. 定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A.22⎡-⎢⎣⎦B .[]1,1- C.2⎤⎥⎣⎦ D.⎡-⎢⎣⎦4. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.45班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( ) A .65 B .210 C .425D .436. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4) 7. 若,则下列不等式一定成立的是( ) A .B .C .D .8. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .32D .339. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示10.复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.方程x 2+2ax+y 2=0(a ≠0)表示的圆( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称12.执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是( )A .(0,1]B .[1,]C .[1,2]D .[,2]二、填空题13.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .15.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”) 17.已知f (x )=x (e x +a e -x )为偶函数,则a =________.18.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .三、解答题19.已知等差数列的公差,,.(Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.20.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.21.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin ∠BAD 的值;(Ⅱ)求AC 边的长.22.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.23.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =54时,求cos B ;(2)若△ABC 面积为3,B =60°,求k 的值.24.平面直角坐标系xOy 中,过椭圆C :(a >b >0)右焦点的直线l :y=kx ﹣k 交C 于A ,B 两点,P 为AB 的中点,当k=1时OP的斜率为.(Ⅰ) 求C 的方程;(Ⅱ) x 轴上是否存在点Q ,使得k 变化时总有∠AQO=∠BQO ,若存在请求出点Q 的坐标,若不存在,请说明理由.绥滨县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】 B【解析】解:∵循环体中S=S ×n 可知程序的功能是: 计算并输出循环变量n 的累乘值,∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1, 故输出S=1×2×3×4=24, 故选:B .【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.2. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .3. 【答案】D 【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.4. 【答案】A【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.故选A .【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.5. 【答案】B考点:双曲线的性质. 6. 【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C .【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.7. 【答案】D 【解析】因为,有可能为负值,所以排除A ,C ,因为函数为减函数且,所以,排除B ,故选D答案:D8. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征.9.【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 10.【答案】C【解析】解:z====+i,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.11.【答案】A【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,故选:A.【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.12.【答案】B【解析】解:由程序框图知:算法的功能是求f(x)=的值,当a<0时,y=log2(1﹣x)+1在[﹣1,a]上为减函数,f(﹣1)=2,f(a)=0⇒1﹣a=,a=,不符合题意;当a ≥0时,f ′(x )=3x 2﹣3>⇒x >1或x <﹣1,∴函数在[0,1]上单调递减,又f (1)=0,∴a ≥1;又函数在[1,a]上单调递增,∴f (a )=a 3﹣3a+2≤2⇒a≤.故实数a 的取值范围是[1,].故选:B .【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值.二、填空题13.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 14.【答案】.【解析】解:依题意,当0≤x≤时,f (x )=2x,当<x ≤1时,f (x )=﹣2x+2∴f (x )=∴y=xf (x )=y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣+x2)=+=故答案为:15.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④16.【答案】, 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。
高二第二学期期中数学试卷理科及答案
2017-2018学年度第二学期期中考试高二数学试题(理)一、选择题(每题5分,共60分)1.设复数z满足11zz-+=2i,则z =A.35-45-B.35-+45i C.35+45i D.3545-i2.已知椭圆+=1上一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为A.2B.3C.5D.7 3.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB→与AC→夹角为()A.30° B.45° C.60° D.90°4.椭圆+=1的焦距是2,则m的值是( )A.5B.3或8C.3或5D.20 5.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.x281+y272=1 B.x281+y29=1 C.x281+y245=1 D.x281+y236=16.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出第n-1个式子为( )A.1+122+132+…+1n2<12n-1B.1+122+132+…+1n2<12n+1C.1+122+132+…+1n2<2n-1n D.1+122+132+…+1n2<2n2n+17.已知函数 的导函数 图象如图所示,则函数 有 A.两个极大值,一个极小值 B.两个极大值,无极小值 C.一个极大值,一个极小值 D.一个极大值,两个极小值 8.设a ≠0,a ∈R,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0B.⎝⎛⎭⎪⎫0,12aC.⎝ ⎛⎭⎪⎫a 4,0D.⎝⎛⎭⎪⎫0,14a9.三角形的面积为S=(a+b+c)·r,其中a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为 ( ) A.V=abcB.V=ShC.V= (S 1+S 2+S 3+S 4)· r(S 1,S 2,S 3,S 4分别为四面体的四个面的面积,r为四面体内切球的半径)D.V=(ab+bc+ac)·h(h为四面体的高)10.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)11.若直线与抛物线 相交于 , 两点,则 等于 A .B .C .D .12.正三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A.30°B.45°C.60°D.90°二、填空题(每题5分,共20分) 13.已知()20d f x x ⎰=8,则()202d f x x x ⎡⎤-⎣⎦⎰=______14.若双曲线11622=-m x y 的离心率2=e ,则=m ______________.15.在平面直角坐标系xOy 中,二元一次方程Ax +By =0(A ,B 不同时为0)表示过原点的直线.类似地,在空间直角坐标系Oxyz 中,三元一次方程Ax +By +Cz =0(A ,B ,C 不同时为0)表示____________________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]. ②f (x )的极值点有且只有一个. ③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________. 三、解答题(17题10分,18—22每题12分)17.( 本小题满分10分)(1)已知斜率为1的直线l 过椭圆1422=+y x 的右焦点F 交椭圆于A 、B 两点,求弦AB 的长。
2017-2018学年高二下学期期中数学试卷(理科)Word版含解析
2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.37.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),∴=2f′(x),故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i)﹣=+3+i﹣i10=i+3+i+1=4+2i;故答案为:4+2i.14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.设PD在平面PBC内部,且PD⊥BC,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为4x+y﹣4=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x)=x2﹣(3a+2)x+6a,由函数f(x)在x=1处取得极值﹣,列出方程组,能求出a,b.(2)由f′(x)=x2﹣3x+2,利用导数性质能求出函数f(x)的单调递增区间.【解答】解:(1)∵f(x)=﹣x2+6ax+b,其中a,b∈R,∴f′(x)=x2﹣(3a+2)x+6a,∵函数f(x)在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f(x)=﹣+2x﹣1,∴f′(x)=x2﹣3x+2,由f′(x)=x2﹣3x+2>0,得x>2或x<1,∴函数f(x)的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8E:数列的求和.【分析】(1)由题设求出S1=,S2=.S3=.(2)由此猜想Sn=,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=由题设(Sn ﹣1)2﹣an(Sn﹣1)﹣an=0,Sn 2﹣2Sn+1﹣anSn=0.当n≥2时,an =Sn﹣Sn﹣1,代入上式得Sn﹣1Sn﹣2Sn+1=0.①得S1=a1=,S2=a1+a2=+=.由①可得S3=.(2)由(1)猜想Sn=,n=1,2,3,….下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即Sk=,当n=k+1时,由①得Sk+1=,可得Sk+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知Sn=对所有正整数n都成立.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.【考点】HT:三角形中的几何计算.【分析】(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,可得总运费y表示为x的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。
黑龙江省绥滨县第一中学2018-2019学年高二下学期期中
绥滨一中2018-2019学年度下学期高二期中考试数学试题(文)考试时间:120分钟第I 卷(选择题)一、单选题(每题5分,共60分) 1.已知集合,,则( )A .B .C .D .2.函数()f x =的定义域为( ) A .(]2,0- B .()(],22,0-∞-⋃- C .(]2,1- D .()(],22,1-∞-⋃- 3.点M 的极坐标为,则它的直角坐标为( ) A .(,1)B .(-1,)C .(1,)D .(-,-1)4.如果函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取 值范围是 ( )A .a ≥9B .a ≤-3C .a ≥5D .a ≤-75.已知函数的定义域为,则的定义域为A .B .C .D .6.已知函数,且,则( )A .B .C .D . 7.函数的值域为( ) A .B .C .D .8.若定义域为(0,3)的函数f (x )是增函数,且f (2a –1)<f (a ),则a 的取值范围是 A .(–∞,1) B .(0,1)C .(,1)D .(1,3)9.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是( )A .B .C .D .10.,,x y z R ∈,且2x y z ++=,则222x y z ++的最小值( ) A .1 B .43 C. 23 D .1311.已知函数f(x)是R 上的增函数,A(0,-1),B(3,1)是其图像上的两点,那么-1<f(x)<1的解集是( ) A .(-3,0) B .(0,3)C .(-∞,-1]∪[3,+∞)D .(-∞,0]∪[1,+∞)12.的单调递增区间是( ) A . B .C .D .第II 卷(非选择题)二、填空题(每题5分,共20分) 13.“14m <”是“一元二次方程20x x m ++=有实数解”的 条件. 14.已知函数()()22log 3,2{2,2x x x f x x --<=≥,则()()2log 121f f +=__________.15.命题p:,,若“非p”为真命题,m 的取值范围为____________16.命题“对”的否定是 _______;三、解答题(17——21为必考题每题12分,第22、23为选考题任选一题做答10分,如果多做则按所做的第一题计分。
高二数学理2017-2018学年度第二学期中期质量检测试题及答案
2017-2018学年度第二学期中期质量检测高二数学(理科)试卷满分:150分 时间:120分钟注意事项:1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单项选择题(共12题,每小题5分,共60分)1.曲线曲线在32y x =-点x=-1处切线的斜率为( ) A. -1 B. 1 C. -5 D. 3 2. 已知函数()3232f x ax x =++,若()'14f -=,则()a =A.103 B. 133 C. 163 D. 1933.已知(2,1,3)a =-,()1,,2b x =-,若0a b ⋅=,则()x =A. -4B. 8C. -8D. -6 4. 下列求导运算正确的是( )'211.1A x x x ⎛⎫+=+ ⎪⎝⎭ ()'2.cos 2sin B x x x x =- ()'3.33log e x x C = ()'21.ln 2logx D x =5.若(2,2,2)a =--,()2,0,4b =,则a与b 的夹角的余弦值为( )A.15B. 5-15- D.0 6.已知(2,3,1)a =--,()2,0,4b =,()4,6,2c =--,则下列结论正确的是( ).//,//A a c b c .//,B a b a c ⊥ .//,C a c a b ⊥ D.以上都不对7.已知函数()()3'0,3f x x f x ==,则0x 的值为( )A. -1B. 1C. 1或或9.已知曲线2122y x =-上一点 21,3P ⎛⎫- ⎪⎝⎭ ,则过点 P 的切线的倾斜角为( )A. 30B. 45C. 135D. 60 9.函数22ln y x x =-的单调增区间为( ) A. (﹣∞,﹣1)和(0,1) B. (1,+∞) C. (﹣1,0)和(1,+∞) D. (0,1)10. 函数()31443f x x x =-+在[]0,3上的最值是( )A. 最大值是4,最小值是13-B. 最大值是2,最小值是13-C. 最大值是4,最小值是43-D. 最大值是2,最小值是43-11.若2x =- 或4x =是函数()32f x x ax bx =++的两个极值点,则有( ).2,4A a b =-= .3,24B a b =-=- .1,3C a b == .2,4D a b ==-12.已知()y x f x =⋅'的图象如图所示,则()f x 的一个可能图象是( )A.B.C.D.二、填空题(共4题,每小题5分,共20分)13.函数ln y x x =-的单调递减区间是_________14.若函数()y f x =的图象在4x =处的切线方程是29y x =-+,则()()44f f -'=__________. 15.已知函数()()3261y f x x ax a x ==++++有极大值和极小值,则a 的取值范围是__________ 16. 在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.三、解答题(共6题,17题10分,18-22每题12分,共70分) 17.求下列函数的导数(1)cos x e xy x=(2)()1ln 21y x x=--18.如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F G 、分别在线段AB BC 、上,且2AF FB =,2CG GB =. (1)证明: PE FG ⊥;(2)求直线PA 与直线FG 所成角的余弦值.19. 已知函数()3293f x x x x a --=+(a 为常数) (1)求()f x 的单调区间;(2)函数()f x 在[]2,2-上的最大值为10,求a 的值20.如图,四棱锥P ABCD-中,PA ABCD ⊥平面,梯形ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值21.已知函数()32f x x x a bx c +=++在点0x 处取得极小值5-,其导函数()'y f x =的图像经过点()0,0和点()2,0,(1)求,a b 的值;(2)求0x 及函数()f x 的表达式22. 已知函数()()21ln ,22f x x ax x a R -=-∈(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若函数()f x 在定义域内是单调递增,求实数a 的取值范围。
黑龙江省绥滨县第一中学2017-2018学年高二数学暑假作业考试试题(无答案)
黑龙江省绥滨县第一中学2017-2018学年高二数学暑假作业考试试题(无答案)一、选择题(共12小题)1.如图所示,直观图四边形是一个底角为,腰和上底均为的等腰梯形,那么原平面图形的面积是().A B C D2.过点且与直线垂直的直线方程是()A B CD3.过点和点的直线的倾斜角是( )A B C D4.已知三棱锥的各棱长都相等,为中点,则异面直线与所成角的余弦值为().A B C D5.一个几何体的三视图如图所示,则该几何体的体积为()A B C D6.在中,,则()A B C D.或7.棱长为的正方体的内切球的表面积为()A B C D8.不等式的解集为()A B 或 CD.9.在由正数组成的等比数列中,若,则的值为()A B C D10.已知中,,则为( )A 直角三角形B 等腰三角形C 等腰或直角三角形D 等边三角形11.设实数,满足,则的最大值为( )A B C D12.直线与圆的位置关系是()A 相离B 相切C 相交且过圆心D 相交但不过圆心二、填空题(共4小题)13 已知圆的方程为,则点到圆上的点的距离的最大值为__________.14 在平面直角坐标系中,直线与圆相交于两点,则弦的长等于__________.15 在中,,则的面积为__________.16 下列命题:①若直线上有无数个点不在平面内,则;②若直线与平面平行,则与平面内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线与平面平行,则与平面内的任意一条直线都没有公共点.其中正确的命题的序号是__________(注:把你认为正确的命题的序号都填上)三、简答题(共6小题)17 已知定点,点是圆上一动点,点是的中点,求点的轨迹方程.18 求过点的圆的切线方程.19 如图,在三棱锥中,,,点,,分别为,,,的中点(1)求证:平面;(2)求证:.20 设数列的前项和公式为,已知⑴设,证明:数列是等比数列⑵求数列的通项公式.21 在中,内角所对的边分别为.已知.(Ⅰ)求角的大小;(Ⅱ)已知,的面积为,求边长的值.22 如图所示,在多面体中,四边形,均为正方形,为的中点,过的平面交于.(1)证明:(2)求二面角余弦值.。
黑龙江省实验中学2017-2018学年高二下学期期中考试数学(理)试题(精编含解析)
黑龙江省实验中学2018年下学期高二年级数学学科期中考试满分:150分完成时间:120分钟一、选择题:本大题共12小题,每小题5分,总计60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知,则()A. B. C. D.【答案】A【解析】由f(x)=f′(1)+x ln x,得:f′(x)=1+ln x,取x=1得:f′(1)=1+ln1=1故f(e)=f′(1)+e ln e=1+e.故选:A.2. “中国梦”的英文翻译为“”,其中又可以简写为,从“”中取6个不同的字母排成一排,含有“” 字母组合(顺序不变)的不同排列共有()A. 360种B. 480种C. 600种D. 720种【答案】C【解析】从其他5个字母中任取4个,然后与“”进行全排列,共有,故选B.3. 已知的展开式的常数项是第七项,则正整数的值为 ( )A. 7B. 8C. 9D. 10【答案】B【解析】分析:由二项展开式的通项,求得展开式的第七项为常数项,即可得求解.详解:由二项展开式的通项可知:展开式的第七项为,又因为第七项为常数,所以,故选B.点睛:本题主要考查二项式定理的通项与系数,属于简单题,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.4. 10张奖券中有3张是有奖的,某人从中不放回地依次抽两张,则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率为 ( )A. B. C. D.【答案】B【解析】设第一次抽到中奖券记为事件A,第二次抽到中奖券记为事件B,则两次都抽到中奖券为事件AB.则P(A)=,P(AB)==,P(B|A)===.5. 设函数f(x)在R上可导,其导函数,且函数f(x)在x=﹣2处取得极小值,则函数的图象可能是( )A. B. C. D.【答案】A【解析】分析:由题设条件可知,当时,;当时,;当时,,由此观察四个选项能够得到正确结果.详解:因为函数在上可导,其导数且,且函数在处取得极小值,所以当时,;当时,;当时,,所以当时,,函数单调递增;当时,,函数单调递递减,故选A.点睛:本题主要考查了利用导数研究函数的极值的应用,解题时要认真审题,注意导函数性质和函数的极值的性质的合理运用,着重考查了分析问题和解答问题的能力.6. 2018年开始,黑龙江省实行高考改革,考生除参加语文,数学,外语统一考试外,还需从物理,化学,生物,政治,历史,地理六科中选考三科,要求物理,化学,生物三科至少选一科,政治,历史,地理三科至少选一科,则考生共有( )种选考方法A. B. C. D.【答案】C【解析】利用间接法求解.从六科中选考三科的选法有,其中包括了没选物理、化学、生物中任意一科与没选政治、历史、地理中任意一科,这两种选法均有,因此考生共有多少种选考方法有种.7. 被除所得的余数是( )A. B. C. D.【答案】B【解析】由二项式定理展开得∴883+6被49除所得的余数是0.本题选择B选项.点睛:用二项式定理处理整除问题,通常把底数写成除数(或与余数密切相关联的数)与某数的和或差的形式,再用二项式定理展开,但要注意两点:一是余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,切记余数不能为负,二是二项式定理的逆用.8. 某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率()A. B. C. D.【答案】C【解析】试题分析:根据题意,要满足8人乘坐两辆车,每车坐4人,可在8个人中取出4人,坐第一辆车,剩下的坐第二辆车,则有种情况;要满足恰有两名教师在同一车上,可先在3名教师中任取两人,5名学生中取两人构成第一组,乘坐第一辆车,剩下的构成第二组,乘坐第二辆车,则有种分组方法,再对应到两辆车,共有种乘坐方法;则恰有两名教师在同一车上的概率为考点:等可能事件的概率9. 我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞。
黑龙江省绥滨县第一中学2017-2018学年高二第二学期期中物理试卷(无答案)
2018年下学期高二物理期中考试题时间:90分钟满分:100分共4页一·选择题(1-6题单项选择,每题3分,7-14题多项选择每题4分,多选错选不得分,少选得2分,共50分)1、一列简谐横波在t=0时刻的波形如图中的实线所示,t=0.02 s时刻的波形如图虚线所示。
若该波的周期T大于0.02 s,则该波的传播速度可能是( )A.2 m/s B.3 m/sC.4 m/s D.5 m/s2.某些特定环境下照像时,常在照相机镜头前装一片偏振滤光片使景象清晰,关于其原理,下列说法中正确的是()A.增强透射光的强度 B.减弱所拍摄景物周围反射光的强度C.减弱透射光的强度 D.增强所拍摄景物周围反射光的强度3.一束光由空气射入某介质时,入射光线与反射光线间的夹角为90°,折射光线与反射光线间的夹角为105°,则该介质的折射率及光在该介质中的传播速度为()2cA.2,c2 B.1.2,22cC.3,c3 D.2,24.分析下列物理现象:(1)夏天里在一次闪电过后,有时雷声轰鸣不绝;(2)“闻其声而不见其人”;(3)学生围绕振动的音叉转一圈会听到忽强忽弱的声音;(4)当正在鸣笛的火车向着我们急驶而来时,我们听到汽笛声的音调变高。
这些物理现象分别属于波的( )A.反射、衍射、干涉、多普勒效应B.折射、反射、多普勒效应、干涉C.反射、衍射、多普勒效应、干涉D.衍射、折射、干涉、多普勒效应5、关于电磁波和声波,下列说法不正确...的是()A.两种波的传播都是能量传递的过程B.两种波都能发生干涉和衍射现象C.两种波的传播都需要介质D.两种波从空气进入介质,波的频率均保持不变6.如图所示,运动员挥拍将质量为m的网球击出。
如果网球被拍子击打前、后瞬间速度的大小分别为v1、v2,v1与v2方向相反,且v2>v1。
重力影响可忽略,则此过程中拍子对网球作用力的冲量( )A.大小为m(v2+v1),方向与v1方向相同B.大小为m(v2-v1),方向与v1方向相同C.大小为m(v2+v1),方向与v2方向相同D.大小为m(v2-v1),方向与v2方向相同)7.如图7所示,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面。
黑龙江省绥滨县第一中学2017-2018学年高二数学下学期期中试题 文(无答案)
黑龙江省绥滨县第一中学2017-2018学年高二数学下学期期中试题文(无答案)时间:120分钟 满分:150分选择题:(本题包括12个小题,每小题只有一个正确选项,每小题5分,共60分).1.若b a >,则下列结论正确的是( )A.bc ac >B. 22b a >C. ba 11< D. 21->-b a 2.已知{}3,2,1=A ,{}4,3,2=B ,则=B A ( ) A.{}3,2 B.{}3,2,1 C.{}4,3,2 D. {}4,3,2,1 3.已知集合{}m m m A ++=22,2,若A ∈3,则m 的值为( ) A.1 B.23- C.1或23- D.0 4.若点M 的极坐标为)3,2(π,则M 的直角坐标是( )A.)0,1(B.)1,3(C.)3,1(D.)3,1(-5.已知集合{}31≤≤∈=x R x P ,{}42≥∈=x R x Q ,则)(Q C P R =( )A.[]3,2B.(]3,2-C. [)2,1D.(][)+∞-∞-,12,6.原命题22,R,c b,a,:"bc ac b a P >>∈则若设,以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0B.1C.2D.47."0)12("=-x x 是"0"=x 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数1)3(-+-=x x x y 的定义域为( )A. []3,1B.[]3,0C.[)+∞,1D.[)+∞,39.将正弦曲线x y sin =作如下变换⎩⎨⎧='='yy x x 32,得到的曲线方程为( )A.x y '='2sin 31B. x y '='2sin 21C. x y '='2sin 3D. x y '='21sin 3 10.命题"01,"0200>--∈∃x x R x 的否定是( )A.01,2≤--∈∀x x R xB.01,2>--∈∀x x R xC. 01,0200≤--∈∃x x R xD. 01,0200≥--∈∃x x R x11.若函数)(x f y =在R 上单调递增,且)1()1(2+->+m f m f ,则实数m的取值范围是( )A.()1,-∞-B.()+∞,0C.()0,1-D.()()+∞-∞-,01,12.已知定义在[]4,4-=D 上的函数⎪⎩⎪⎨⎧≤<-≤≤++=40 2204- 45)(2x x x x x x f ,对任意D x ∈,存在D x x ∈21,,使得)()()(21x f x f x f ≤≤,则21x x -的最大值与最小值之和为( )A.7B.8C. 9D.10二.填空题:请把答案填在题中横线上(每小题5分,共20分).13.已知)(x f 的定义域为()0,1-,则函数)12(+x f 的定义域为___________.14.设⎩⎨⎧<≥-=020 1)( x x x x f x ,则()[]=-2f f __________. 15.已知)(x f 是一次函数,且()[]2+=x x f f ,则=)(x f ____________.16.已知⎩⎨⎧≥<+-=1 lo g 1 4)13()(x x x a x a x f a 是),(+∞-∞上的减函数,则a 的取值范围是______________.三.解答题:(解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合{}0652=+-=x x x A ,{}01=+=mx x B ,且A B A = ,求实数m 的值组成的集合.18.(12分)若函数2412+-+=ax ax ax y 的定义域为R ,求实数a 的取值范围.19.(12分)已知命题p :函数12)(2++=ax x x f 在R 上有零点,命题q :02)1(32≤+++x a x 在区间⎥⎦⎤⎢⎣⎡23,21内恒成立.若命题q p ∧是假命题,求实数a 的取值范围.20.(12分)(1)已知12)(3)(+=-+x x f x f ,求)(x f 的解析式;(2)已知x x x f 2)1(+=+,求)(x f 的解析式.21.(12分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C :)0( cos 2sin 2>=a a θθρ,已知过点)4,2(--P 的直线l 的参数方程为(t 224222⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 为参数),直线l 与曲线C 交于N M ,两点.(1)写出曲线C 和直线l 的普通方程;(2)若PN MN PM ,,成等比数列,求a 的值.22.(12分)已知函数3212)(-++=x x x f(1)求不等式6)(≤x f 的解集; (2)已知0>a ,若关于x 的不等式2)(-<a x f 的解集非空,求实数a 的取值范围.1.D2.A3.B4.C5.B6.C7.B8.A9.D10.A11.D12.C选择题和填空题每个5分17题10分18-22题每题12分。
黑龙江省绥滨县第一中学2018_2019学年高二数学下学期期中试题文(无答案)
黑龙江省绥滨县第一中学2018-2019学年高二数学下学期期中试题文(无答案)考试时间:120分钟第I 卷(选择题)一、单选题(每题5分,共60分)1.已知集合,,则( ) A . B . C .D .2.函数()f x =的定义域为( ) A .(]2,0- B .()(],22,0-∞-⋃- C .(]2,1- D .()(],22,1-∞-⋃- 3.点M 的极坐标为,则它的直角坐标为( ) A .(,1)B .(-1,)C .(1,)D .(-,-1) 4.如果函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取值范围是 ( )A .a ≥9B .a ≤-3C .a ≥5D .a ≤-75.已知函数的定义域为,则的定义域为 A .B .C .D .6.已知函数,且,则( ) A . B . C . D .7.函数的值域为( ) A . B . C . D .8.若定义域为(0,3)的函数f (x )是增函数,且f (2a –1)<f (a ),则a 的取值范围是A .(–∞,1)B .(0,1)C .(,1)D .(1,3)9.在平面直角坐标系中,经伸缩变换后曲线方程变换为椭圆方程,此伸缩变换公式是( ) A . B .C .D . 10.,,x y z R ∈,且2x y z ++=,则222x y z ++的最小值( )A .1B .43 C. 23 D .1311.已知函数f(x)是R 上的增函数,A(0,-1),B(3,1)是其图像上的两点,那么-1<f(x)<1的解集是( )A .(-3,0)B .(0,3)C .(-∞,-1]∪[3,+∞)D .(-∞,0]∪[1,+∞)12.的单调递增区间是( ) A . B . C . D .第II 卷(非选择题)二、填空题(每题5分,共20分)13.“14m <”是“一元二次方程20x x m ++=有实数解”的 条件. 14.已知函数()()22log 3,2{ 2,2x x x f x x --<=≥,则()()2log 121f f +=__________.15.命题p:,,若“非p”为真命题,m 的取值范围为____________ 16.命题“对”的否定是 _______;三、解答题(17——21为必考题每题12分,第22、23为选考题任选一题做答10分,如果多做则按所做的第一题计分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018下学期高二期中数学(理)试题
考试说明: 1.考试时间为120分钟,满分150分,选择题涂卡。
第Ⅰ卷
一、选择题(本题包括12个小题,每小题只有一个正确选项,每小题5分,共60分)
1 ,,,,
a b c d e共5个人,从中选1名组长1名副组长,不同的选法总数是
A.20 B.16 C.10 D.6
2.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法有
A.
12
694
C C B.C1
6C
2
99
C.C3
100
-C3
94
D.A3
100
-A3
94
3.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为( )
A.16 B.18 C.32 D.72
4.下表是一位母亲给儿子作的成长记录:
根据以上样本数据,她建立的身高y(cm)与年龄x(周岁)的线性回归方程为
y^=7.19x+73.96,给出下列结论:
①y与x具有正的线性相关关系;②回归直线过样本点的中心(42,117.1);
③儿子10岁时的身高是145.86 cm;④儿子年龄增加1周岁,身高约增加7.19 cm.
其中,正确结论的个数是( )
A.1 B.2 C.3 D.4
5.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A.5
21 B.
10
21
C.
11
21
D.1
6. 在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1
个红球的条件下,第二个人摸出1个白球的概率为()
7. 在8
2
x ⎛ ⎝的展开式中的常数项是 ( ) A.7 B .7- C .28 D .28-
8.某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102
),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A .10 B .9 C .8 D .7 9.(x 2
-x +1)3
展开式中x 项的系数为( ) A .-3 B .-1 C .1 D .3
10.设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=45
4,则n 与p 的值
( )
A .60,34
B .60,14
C .50,34
D .50,1
4
11.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),
要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )
A .210种
B .420种
C .630种
D .840种
12.已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<1
2
,则( )
A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)
B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)
C .E (ξ1)>E (ξ2),
D (ξ1)<D (ξ2) D .
E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)
二、填空题(本题包括4个小题,每小题5分,共20分) 13. 已知2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++
++
则01211a a a a +++
+的值为 .
14.对于回归方程y =4.75x +2.57,当x =28时,y 的估计值是________
15.设⎝
⎛⎭⎪⎫5x -1x n
的展开式的各项系数和为M ,二项式系数和为N ,若M -N =240,则展开式中
x 的系数为________
16.若某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,则选出的志愿者中
男女生均不少于1名的概率是________.(结果用最简分数表示) 三、解答题(本题包括6个小题,共70分)
17 (12分) 已知函数f (x )=|x -1|+|x +a |.
(1)当a =3时,解关于x 的不等式|x -1|+|x +a |>6;
(2)若函数g (x )=f (x )-|3+a |存在零点,求实数a 的取值范围。
18(12分) 设直线l 过点P (-3,3),且倾斜角为
6
5π
(1)写出直线l 的参数方程
(2)设此直线与曲线C :⎩⎨
⎧==θ
θsin 4,
cos 2y x (θ为参数)交于A 、B 两点,求|PA |·|PB
19 (12分) 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中
的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.
20 (12分)男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下
列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名;
(2)至少有1名女运动员; (3)队长中至少有1人参加; 21 (12分) 甲、乙、丙3人投篮,投进的概率分别是
31,52,2
1
. (1) 现3人各投篮1次,求3人都没有投进的概率
(2) 用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望E ξ.
22. (12分) 微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有1
3的用户平均每天使用微信时间不超过1小时,其他人都在1小时
以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中3
4是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使
用微信的用户中有2
3
是青年人.
(1)现对该市微信用户进行“经常使用微信与年龄有关”的调查,采用随机抽样的方法选取容量为180的一个样本,假设该样本有关数据与调查结果完全相同,完成2×2列联表表1
(2)根据2×2列联表中的数据利用独立性检验的方法判断是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的均值.
附:K2=
-2
++++
(表2)。