河北省衡水中学2018届高三高考押题(一)理数试题

合集下载

2018届河北省衡水中学高三高考押题(一)数学(理)试题(解析版)

2018届河北省衡水中学高三高考押题(一)数学(理)试题(解析版)

2018届河北省衡水中学高三高考押题(一)数学(理)试题一、单选题1.已知集合,,则=()A. B. C. D.【答案】B【解析】由题知,,则故本题答案选.2.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.【答案】B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.3.下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给函数的性质即可确定正确的选项.详解:逐一考查所给函数的性质:A.,该二次函数的对称轴为,是非奇非偶函数,不合题意;B.,该函数为偶函数,当时,函数的解析式为,函数在上单调递减,不合题意;C.若,则,函数为奇函数,不合题意;D.是偶函数,且时,单调递减,即函数在区间上单调递减,偶函数关于轴对称,则函数在区间上单调递增,满足题意.本题选择D 选项.点睛:本题主要考查函数奇偶性的判断,函数单调性的判断等知识,意在考查学生的转化能力和计算求解能力.4.已知双曲线:与双曲线:,给出下列说法,其中错误的是( )A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等 【答案】D【解析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,5.在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】由韦达定理知4124123,1a a a a +=-=,则4120,0a a <<,则等比数列中4840a a q =<,则81a ==-.在常数列1n a =或1n a =-中, 412,a a 不是所给方程的两根.则在等比数列{}n a 中,“4a , 12a 是方程2310x x ++=的两根”是“81a =±”的充分不必要条件.故本题答案选A . 6.执行如图所示的程序框图,则输出的S 值为( )A. 1009B. -1009C. -1007D. 1008 【答案】B【解析】由程序框图则0,1;1,2;12,3;123,4S n S n S n S n =====-==-+=,由S 规律知输出123456...20152016201720181009S =-+-+-++-+-=-.故本题答案选B .【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.7.已知一几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.【答案】C【解析】观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为.三棱锥的底面是两直角边分别为的直角三角形,高为.则几何体的体积.故本题答案选.8.8.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为( )A. B. C. D.【答案】C【解析】由图象最高点与最低点的纵坐标知,又,即,所以.则,图象过点,则,即,所以,又,则.故,令,得,令,可得其中一个对称中心为.故本题答案选.9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =, BC b =,则该图形可以完成的无字证明为( )A.0,0)2a ba b +≥>> B. 222(0,0)a b ab a b +≥>>C. 20,0)ab a b a b ≤>>+D. 0,0)2a b a b +≤>> 【答案】D【解析】令,AC a BC b ==,可得圆O 的半径2a br +=,又22a b a bOC OB BC b +-=-=-=,则()()2222222442a b a b a b FC OC OF -++=+=+=,再根据题图知FO FC ≤,即2a b +≤D. 10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A. 720 B. 768 C. 810 D. 816 【答案】B【解析】由题知结果有三种情况. ()1甲、乙、丙三名同学全参加,有1444C A =96种情况,其中甲、乙相邻的有123423C A A 48=种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有964848-=种情况; ()2甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有314434C C A 288=种情况; ()3甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有224434432C C A =种情况.则选派的4名学生不同的朗诵顺序有28843248768++=种情况,故本题答案选B11.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离MF 转化成到准线的距离MP ,将比值问题转化成切线问题求解.12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()()224,23,{12,34,x x x f x g x ax x x x-+≤≤==++<≤,对[]12,0x ∀∈-, []22,1x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A. 11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B. 11,00,48⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦C. (]0,8 D. ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【解析】由题知问题等价于函数()f x 在[]2,0-上的值域是函数()g x 在[]2,1-上的值域的子集.当[]2,4x ∈时, ()()224,232,34{x x x x xf x --+≤≤+<≤=,由二次函数及对勾函数的图象及性质,得此时()93,2f x ⎡⎤∈⎢⎥⎣⎦,由()()22f x f x +=,可得()()()112424f x f x f x =+=+,当[]2,0x ∈-时, []42,4x +∈.则()f x 在[]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时, ()[]21,1g x a a ∈-++,则有3214918{a a -+≤+≥,解得18a ≥,当0a =时, ()1g x =,不符合题意;当0a <时, ()[]1,21g x a a ∈+-+,则有3149218{a a +≤-+≥,解得14a ≤-.综上所述,可得a 的取值范围为 ][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭.故本题答案选D .点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该 不重复不遗漏.二、填空题13.已知()1,a λ=, ()2,1b =,若向量2a b +与()8,6c =共线,则a 在b 方向上的投影为_________.【解析】由题知()24,21a b λ+=+,又2a b +与c 共线,可得()248210λ-+=,得1λ=,则a 在方向上的投影为5a b b⋅==.14.已知实数x , y 满足不等式组20,{250,20,x y x y y --≤+-≥-≤且2z x y =-的最大值为a ,则2cos 2xa dx π⎰=__________. 【答案】3π【解析】作出可行域,目标函数可变为2y x z =-,令0z =,作出2y x =,由平移可知直线过()4,2时z 取最大值,则max 6a z ==.则()ππ2ππ00006cos 3cos 33sin |3|3π2x dx x dx x x =+=+=⎰⎰.故本题应填3π. 15.在ABC ∆中,角A , B , C 的对边分别为a , b , c , tan tan 2tan b B b A c B +=-,且8a =, ABC ∆的面积为b c +的值为__________.【答案】【解析】由正弦定理,原等式可化为sin sin sin sin sin 2sin cos cos cos B A BB BC B A B⋅+⋅=-⋅,进一步化为c o s s i n s i n A c o s B 2A B s i n C c o s A +=-,则()s i n 2A B s i n C c o s A +=-,即1c o s 2A =-.在三角形中2π3A =.由面积公式1sin 2ABCS bc A ==,可知16bc =,由余弦定理()22222cos a b c bc A b c bc =+-=+-,代入可得b c +=填点睛:本题主要考查正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.选择余弦定理和面积时,要以已知角的为主.16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球, 3BC =, AB =E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是__________.【答案】[]2,4ππ【解析】如图,设△BDC 的中心为O 1,球O 的半径为R , 连接O 1D,OD,O 1E ,OE ,则1123sin6033O D AO =⨯===, 在Rt △OO 1D 中,R 2=3+(3−R)2,解得R=2, ∵BD=3BE ,∴DE=2在△DEO 1中, 11O E ==,∴OE ==,过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,=22ππ⨯=.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题17.已知()()()()231111nx x x x ++++++++的展开式中x 的系数恰好是数列{}n a 的前n 项和n S .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()()122121nnn a n a a b +=--,记数列{}n b 的前n 项和为n T ,求证:1n T <.【答案】(1)n a n =;(2)见解析.【解析】试题分析:(1)由二项展开式可知各项中x 的系数,求和后可得n S ,利用n S 与n a 间的关系可得数列{}n a 的通项公式;(2)由n a 的通项公式可求得n b 的通项公式()()122121n n n n b +=--,对n b 进行裂项,用裂项法可求得n T ,利用放缩法可证明不等式.试题解析:(1)()()()()231111nx x x x ++++++++的展开式中x 的系数为1111123n C C C C ++++= 2111223n C C C C ++++= 2211122n C n n +=+,即21122n S n n =+,所以当2n ≥时, 1n n n a S S n -=-=; 当1n =时, 11a =也适合上式,所以数列{}n a 的通项公式为n a n =. (2)证明:()()122121nn n n b +==-- 1112121n n +---,所以11111113372121n n n T +=-+-++--- 11121n +=--,所以1n T <. 18.如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面; (2)若,求二面角的余弦值.【答案】(1)见解析;(2)cos θ=. 【解析】试题分析:(1)延长OG 交AC 于点M ,由重心性质及中位线性质可得//OM BC ,再结合圆的性质得OM AC ⊥,由已知PA OM ⊥,可证OM ⊥ 平面PAC ,进一步可得平面OPG ⊥ 平面PAC ;(2)以点C 为原点, CB , CA , AP方向分别为x , y , z 轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点.因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥.因为PA ⊥平面ABC , OM ⊂平面ABC ,所以PA OM ⊥.又PA ⊂平面PAC ,AC ⊂平面,PAC PA AC ⋂= A ,所以OM ⊥ 平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG ,所以平面OPG ⊥平面PAC .(2)以点C 为原点, CB , CA , AP 方向分别为x , y , z 轴正方向建立空间直角坐标系C xyz -,则()0,0,0C , ()0,1,0A ,)B,1,02O ⎫⎪⎪⎝⎭, ()0,1,2P , 10,,02M ⎛⎫⎪⎝⎭,则,0OM ⎛⎫= ⎪ ⎪⎝⎭,1,22OP ⎛⎫=- ⎪ ⎪⎝⎭.平面OPG 即为平面O P M ,设平面O P M 的一个法向量为(),,n x y z =,则30,{3120,22n OM x n OP x y z ⋅=-=⋅=-++=令1z =,得()0,4,1n =-.过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A ⋂=,所以CH ⊥平面PAB ,即CH 为平面PAO 的一个法向量.在Rt ABC ∆中,由2A B A C =,得30ABC ∠=︒,则60HCB ∠=︒,122CH CB ==. 所以cos 4H x CH HCB =∠=, 3sin 4H y CH HCB =∠=.所以33,04CH ⎛⎫= ⎪⎪⎝⎭. 设二面角A OP G--的大小为θ,则c o sC H nC H nθ⋅==⋅=. 点睛:若12,n n 分别二面角的两个半平面的法向量,则二面角的大小θ满足12cos ,cos n n θ=〈〉,二面角的平面角的大小是12,n n 的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400P =;(2)见解析.【解析】试题分析:(1)选择方案一可以免单,但需要摸出三个红球,利用古典概型求出摸出三个红球的概率,再利用两个相互独立事件同时发生的概率应该是两事件的概率乘积可求得两位顾客均享受免单优惠的概率;(2)分别写出两种方案下付款金额的分布列,再求出期望值,利用期望值的大小,进行合理选择. 试题解析:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()333101120C P A C ==,所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.()3331010120C P X C ===, ()2137310760040C C P X C ===, ()12373102170040C C P X C ===, ()373107100024C P X C ===, 故X 的分布列为,所以()1721706007001000120404024E X =⨯+⨯+⨯+⨯ 17646=(元).若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~3,10Y B ⎛⎫⎪⎝⎭,故()3931010E Y =⨯=,所以()()1000200E Z E Y =-=()1000200820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.20.已知椭圆C : 22221(0)x y a b a b+=>>的长轴长为6,且椭圆C 与圆M :()224029x y -+=的公共弦长为3. (1)求椭圆C 的方程.(2)过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A , B ,试判断在x 轴上是否存在点D ,使得ADB ∆为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.【答案】(1)22198x y +=;(2)见解析. 【解析】试题分析:(1)由长轴长可得a 值,公共弦长恰为圆M 直径,可知椭圆经过点2,⎛ ⎝⎭,利用待定系数法可得椭圆C 方程;(2)可令直线l 的解析式为2y kx =+,设()()1122,,,A x y B x y , AB 的中点为()00,E x y ,将直线方程与椭圆方程联立,消去y ,利用根与系数的关系可得00,x y ,由等腰三角形中DE AB ⊥,可得1DE k k=-,得出(),0D m 中289m k k-=+.由此可得D 点的横坐标m 的范围.试题解析:(1)由题意可得26a =,所以3a =.由椭圆C 与圆M : ()224029x y -+=的公共弦长为,恰为圆M 的直径,可得椭圆C经过点2,⎛ ⎝⎭,所以2440199b +=,解得28b =.所以椭圆C 的方程为22198x y +=. (2)直线l 的解析式为2y kx =+,设()()1122,,,A x yB x y ,AB 的中点为()00,E x y .假设存在点(),0D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,{1,98y kx x y=++=得()228936360k x kx ++-=,故1223698kx x k +=-+,所以021898k x k -=+, 00216298y kx k =+=+.因为D E A B ⊥,所以1DEk k =-,即2216019898k k m k -+=--+,所以2228989k m k k k--==++.当0k >时,89k k +≥=0m ≤<;当0k <时,89k k +≤-,所以0m <≤综上所述,在x 轴上存在满足题目条件的点E ,且点D的横坐标的取值范围为0,1212⎡⎫⎛-⋃⎪ ⎢⎪ ⎣⎭⎝⎦. 点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.21.已知函数()22ln 2(0)f x x mx x m =-+>.(1)讨论函数()f x 的单调性;(2)当2m ≥时,若函数()f x 的导函数()'f x 的图象与x 轴交于A , B 两点,其横坐标分别为1x , 212()x x x <,线段AB 的中点的横坐标为0x ,且1x , 2x 恰为函数()2ln h x x cx bx =--的零点,求证: ()()1202'ln23x x h x -≥-+. 【答案】(1)当02m <≤时, ()f x 在()0,+∞内单调递增;当2m >时, ()f x在⎝⎭内单调递减,在⎛ ⎝⎭,2m ⎛⎫++∞⎪ ⎪⎝⎭内单调递增;(2)见解析. 【解析】试题分析:(1)对函数求导后,利用导数与函数单调性的关系,对m 进行讨论可得函数单调性;(2)由函数的导函数可知, 1212,1x x x x +==又是()2ln h x x cx bx =--的零点,代入相减化简得()121212lnx x b c x x x x =-+-,对()h x 求导, ()()120'x x h x -= 12112212ln 1x x xx x x -⋅-+.令()1201x t t x =<<,求得函数()122ln ln213t G t t t -=⋅--++的最小值为.不等式得证. 试题解析:(1)由于()22l n 2fx x m x x =-+的定义域为()0,+∞,则()()221'x mx f x x-+=.对于方程210xmx -+=,其判别式24m ∆=-.当240m -≤,即02m <≤时, ()'0f x ≥恒成立,故()f x 在()0,+∞内单调递增.当240m ->,即2m >,方程210x mx -+=恰有两个不相等是实x =,令()'0f x >,得02m x <<或2m x >,此时()f x 单调递增;令()'0f x <,得22m m x +<<()f x 单调递减. 综上所述,当02m <≤时, ()f x 在()0,+∞内单调递增;当2m >时, ()f x在⎝⎭内单调递减,在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭内单调递增. (2)由(1)知, ()()221'x mx f x x-+=,所以()'f x 的两根1x , 2x即为方程210x mx -+=的两根.因为m ≥,所以240m ∆=->, 12x x m +=, 121x x =.又因为1x , 2x 为()2ln h x x cx bx =--的零点, 所以2111l n 0x c xb x --=,2222ln 0x c bx --=,两式相减得()()()11212122ln 0xc x x x x b x x x --+--=,得()121212lnx x b c x x x x =-+-.而()1'2h x cx b x=--,所以()()120'x x h x -= ()120012x x cx b x ⎛⎫---=⎪⎝⎭()()()121212121212ln 2x x x x c x x c x x x x x x ⎡⎤⎢⎥⎢⎥--+-+++-⎢⎥⎢⎥⎣⎦()1211222lnx x x x x x -=-=+ 12112212ln 1x x x x x x -⋅-+. 令12(01)x t t x =<<,由()2212x x m +=得22212122x x x x m ++=,因为121x x =,两边同时除以12x x ,得212t m t++=,因为m ≥,故152t t +≥,解得102t <≤或2t ≥,所以102t <≤.设()12ln 1t G t t t -=⋅-+,所以()()()221'01t G t t t --=<+,则()y G t =在10,2⎛⎤ ⎥⎝⎦上是减函数,所以()min12ln223G t G ⎛⎫==-+ ⎪⎝⎭, 即()()120'y x x h x =-的最小值为2ln23-+. 所以()()1202'ln23x x h x -≥-+. 22.已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.【答案】(1).(2).【解析】试题分析:(1)利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参数的几何意义可求得弦的长;(2)写出圆的参数方程,利用点到直线的距离公式,可得,可求出的最大值,即求得的面积的最大值.试题分析:(1)由得,所以,所以圆的直角坐标方程为.将直线的参数方程代入圆,并整理得,解得,.所以直线被圆截得的弦长为.(2)直线的普通方程为.圆的参数方程为(为参数),可设曲线上的动点,则点到直线的距离,当时,取最大值,且的最大值为.所以,即的面积的最大值为.23.选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.【答案】(1) .(2) .【解析】(1)根据函数的单调性可知,当时,.所以函数的值域.(2)因为,所以,所以.又,所以,知,,所以,所以,所以.。

河北省衡水中学2018届高三下学期猜题卷理数试题 含解

河北省衡水中学2018届高三下学期猜题卷理数试题 含解

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“1m =±”是“复数2(1)(1)m m i -++(其中i 是虚数单位)为纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B. 【解析】试题分析:由题意得,2(1)(1)m m i -++是纯虚数210110m m m ⎧-=⇔⇔=⎨+≠⎩,故是必要不充分条件,故选B.考点:1.复数的概念;2.充分必要条件.2.设全集U R =,函数()lg(|1|1)f x x =+-的定义域为A ,集合{}|sin 0B x x π==,则()U C A B 的元素个数为( )A .1B .2C .3D .4 【答案】C.考点:1.对数函数的性质;2.三角函数值;3.集合的运算. 3.若点55(sin,cos )66ππ在角α的终边上,则sin α的值为( )A .2-B .12- C .12 D .2 【答案】A. 【解析】试题分析:根据任意角的三角函数的定义,5cos 6sin 1πα==,故选A. 考点:任意角的三角函数.4.如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的i a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n = 【答案】B.考点:1.统计的运用;2.程序框图.5.如图所示的是函数()sin 2f x x =和函数()g x 的部分图象,则函数()g x 的解析式是( )A .()sin(2)3g x x π=-B .2()sin(2)3g x x π=+C .5()cos(2)6g x x π=+D .()cos(2)6g x x π=- 【答案】C. 【解析】试题分析:由题意得,(0)0g <,故排除B ,D ;又∵17()()sin 24842g f πππ===除A ,故选C.考点:三角函数的图象和性质. 6.若函数2(2)()m xf x x m-=+的图象如图所示,则m 的范围为( )A .(,1)-∞-B .(1,2)-C .(0,2)D .(1,2) 【答案】D.考点:函数性质的综合运用.7.某多面体的三视图如图所示,则该多面体各面的面积中最大的是( )A .1B .2C .2D 【答案】C.考点:1.三视图;2.空间几何体的表面积.8.已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .201421+ C .201521- D .201521+【答案】A.考点:数列的通项公式.9.已知非零向量a ,b ,c ,满足||||4a b b -==,()()0a c b c -⋅-=,若对每个确定的b ,||c 的最大值和最小值分别为m ,n ,则m n -的值为( )A .随||a 增大而增大B .随||a 增大而减小C .是2D .是4 【答案】D. 【解析】试题分析:∵()()0a c b c -⋅-=,∴2()0c a b c a b -+⋅+⋅=,即2||||||cos ,0c a b c a b c a b -+⋅⋅<+>+⋅=,∵1cos ,1a b c -≤<+>≤,∴22||||||0||||||0c a b c a b c a b c a b ⎧-+⋅+⋅≤⎪⎨++⋅+⋅=⎪⎩,解得||||2||222a b a b c ++-≤≤+,(||||||||2222a b a b a bb b +--=+≥-=),故min ||||22a bc +=-,max ||||22a b c +=+, ∴4m n -=,故选D. 考点:平面向量数量积.10.已知在三棱锥P ABC -中,1PA PB BC ===,AB =AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( ) AB .3π CD .2π【答案】B. 【解析】考点:空间几何体的外接球.【名师点睛】外接球常用的结论:长方体的外接球:1.长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,2R =;2.棱长为a 的正方体的体对角线长2R =;棱长为a ,内切球的半径为12a ; 11.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q ,若60PAQ ∠=,且3OQ OP =,则双曲线C 的离心率为( )A C D 【答案】C. 【解析】试题分析:如下图所示,设AOQ α∠=,∴tan cos b a a c αα=⇒=,sin bcα=,∴2||cos a OH a cα=⋅=,||sin ab AH a c α=⋅=,又∵3OQ OP =,∴2||||||2a OP PH HQ c===,∴2|||22ab a AH PH b c c =⇒=⇒=,∴e ==C.考点:双曲线的标准方程及其性质.【名师点睛】要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解,要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征以及平面几何知识的运用,如12||||2PF PF c +≥等.12.已知函数()()()()()52log 11221x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程1(2)f x a x +-=的实根个数不可能为( )A .5个B .6个C .7个D .8个 【答案】A.当2a =时,方程()f x a =有两个正根,一个小于4-的负根,∴1(2)f x a x+-=有六个根,当2a >时,方程()f x a =有一个正根一个小于4-的负根,∴1(2)f x a x+-=有四个根,∴1(2)f x a x+-=根的个数可能为2,3,4,6,7,8,故选A.考点:1.函数与方程;2.分类讨论的数学思想.【名师点睛】要判断函数零点或方程根的个数,一般需结合函数在该区间的单调性、极值等性质进行判断,对于解析式较复杂的函数的零点,可根据解析式特征,利用函数与方程思想化为()()f x g x =的形式,通过考察两个函数图象的交点来求,通过图形直观研究方程实数解的个数,是常用的讨论方程解的一种方法.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上.)13.已知0a >6)x展开式的常数项为15,则2(a ax x dx -+=⎰____________.【答案】223π++考点:定积分的计算及其性质.14.设a ,b R ∈,关于x ,y 的不等式||||1x y +<和48ax by +≥无公共解,则ab 的取值范围是__________. 【答案】[16,16]-.考点:线性规划.15.设抛物线()220y px p =>的焦点为F ,其准线与x 轴交于点C ,过点F 作它的弦AB ,若90CBF ∠=,则AF BF -=________. 【答案】2p .考点:抛物线焦点弦的性质.【名师点睛】若AB 为抛物线22(0)y px p =>的焦点弦,F 为抛物线焦点,A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,则:2124p x x =,212y y p =-,以AB 为直径的圆与抛物线的准线相切, 112||||AF BF p+=. 16.已知数列{}n a 满足12a =,210n n a a n +++=,则31a =_____________.【答案】463-.考点:数列的通项公式.【名师点睛】已知递推关系求通项,掌握先由1a 和递推关系求出前几项,再归纳、猜想n a 的方法,以及“累加法”,“累乘法”等:1.已知1a 且1()n n a a f n --=,可以用“累加法”得:12()nn k a a f k ==+∑,2n ≥;2.已知1a 且1()nn a f n a -=,可以用“累乘法”得:1(2)(3)(1)()n a a f f f n f n =⋅⋅⋅⋅⋅-⋅,2n ≥. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图,在ABC ∆中,已知点D 在边BC 上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =(1)求AD 长; (2)求cos C . 【答案】(1)3;(2)3. 【解析】试题分析:(1)利用已知条件首先求得cos BAD ∠的值,再在ABD ∆中,利用余弦定理即可求解;(2)在ABD ∆中利用正弦定理即可求解.试题解析:(1)∵0AD A C ⋅=,则A D A C ⊥,∴s i n s i n ()c o s 2B AC B AD B A Dπ∠=+∠=∠,即cos 3BAD ∠=,在ABD ∆中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-∠,即28150AD AD -+=,解得5AD =,或3AD =,∵AB AD >,∴3AD =;……6分(2)在ABD ∆中,由正弦定理,可知sin sin BD ABBAD ADB=∠∠.又由cos 3BAD ∠=,可知1sin 3BAD ∠=,∴sin sin AB BAD ADB BD ∠∠==.∵2ADB DAC C C π∠=∠+=+,∴cos C =…………12分 考点:正余弦定理解三角形. 18.(本小题满分12分)已知矩形ABCD ,22AD AB ==,点E 是AD 的中点,将DEC ∆沿CE 折起到D EC '∆的位置,使二面角D EC B '--是直二面角.(1)证明:BE CD '⊥;(2)求二面角D BC E '--的余弦值.【答案】(1)详见解析;(2.在Rt D MF '∆中,122D M EC '==,11,tan 22D M MF AB D FM MF ''==∠==cos D FM '∠=,∴二面角D BC E '--…………12分考点:1.面面垂直的判定与性质;2.二面角的求解. 19.(本小题满分12分)2018年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[]0,2000,(]2000,4000,(]4000,6000,(]6000,8000,(]8000,10000五组,并作出如下频率分布直方图:(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望; (3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求b ,c ,a b +,c d +,a c +,b d +,a b c d +++的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?0.00.18附:临界值表参考公式:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++.【答案】(1)3360;(2)详见解析;(3)详见解析.ξ的分布列为()0123535355E ξ=⨯+⨯+⨯=;…………8分 (3)解得9b =,5c =,39a b +=,11c d +=,35a c +=,15b d +=,50a b c d +++=,()225030695 4.046 3.84139113515K ⨯⨯-⨯==>⨯⨯⨯,∴有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关.…………12分考点:1.古典概型;2.频率分布直方图;3.独立性检验. 20.(本小题满分12分)已知椭圆()2222:10x y E a b a b +=>>的两个焦点1F ,2F ,且椭圆过点,,且A 是椭圆上位于第一象限的点,且12AF F ∆的面积12AF F S ∆(1)求点A的坐标;(2)过点(3,0)B的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点5(,0)2C,则||||CM CN是否为定值,如果是定值,求出这个定值,如果不是请说明理由.【答案】(1)(2,1)A;(2)详见解析.法二:设11(,)P x y ,22(,)Q x y ,3(,0)M x ,4(,0)N x ,直线l ,AP ,AQ 的斜率分别为k ,1k ,2k ,由()22326y k x x y ⎧=-⎨+=⎩,得()222212121860k x k x k +-+-=,()()4221444121860k k k ∆=-+->,可得21k <,21221212k x x k +=+,212218612k x x k -=+,考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.椭圆中的定值问题. 【名师点睛】求解定值问题的方法一般有两种:1.从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;2.直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 21.(本小题满分12分)已知函数221()()(1)(22),2xf x ax bx a b e x x x a R =++---++∈,且曲线()y f x =与x 轴切于原点O .(1)求实数a ,b 的值;(2)若2()()0f x x mx n ⋅+-≥恒成立,求m n +的值. 【答案】(1)0a =,1b =;(2)1m n +=-. 【解析】试题分析:(1)求导,利用导数的几何意义即可求解;(2)将不等式作进一步化简,可得21(1)(1)(1)2x x e x x x ->-++,分类讨论,构造函数21()(1)2x g x e x x =-++,求导研究其单调性即可得到0x =,和1x =是方程20x mx n +-=的两根,从而求解.考点:导数的综合运用.【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明;2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值;3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论;4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,PA 为四边形ABCD 外接圆的切线,CB 的延长线交PA 于点P ,AC 与BD 相交于点M ,且//PA BD .(1)求证:ACD ACB ∠=∠;(2)若3PA =,6PC =,1AM =,求AB 的长.【答案】(1)详见解析;(2)2.考点:1.切线的性质;2.相似三角形的判定与性质.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知点()1,2P -,直线1:2x t l y t =+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B .(1)求直线l 和曲线C 的普通方程;(2)求PA PB +.【答案】(1)直线l 的普通方程是30x y --=,曲线C 的普通方程是22y x =;(2)联立直线方程与抛物线方程,利用参数的几何意义结合韦达定理即可求解.【解析】考点:1.参数方程,极坐标方程与直角方程的相互转化;2.直线与抛物线的位置关系.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x a =--,()2g x x m =-+,a ,m R ∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-2.(1)求整数m 的值;(2)若函数()y f x =的图象恒在函数1()2y g x =的上方,求实数a 的取值范围. 【答案】(1)4;(2)(,3)-∞.【解析】试题分析:(1)解不等式()1g x ≥-,根据整数解为2-,即可求解;(2)问题等价于()()102f xg x ->恒成立,分类讨论将绝对值号去掉即可求解. 试题解析:(1)由()1g x ≥-,即21x m -+≥-,21x m +≤, 得1122m m x ---+≤≤,∵不等式的整数解为2-,∴11222m m ---+≤-≤,解得35m ≤≤, 又∵不等式仅有一个整数解2-,∴4m =;…………4分 (2)函数()y f x =的图象恒在函数()12y g x =的上方,故()()102f x g x ->, ∴212a x x <-++对任意x R ∈恒成立,设()212h x x x =-++,则3,2()4,213,1x xh x x xx x-≤-⎧⎪=--<≤⎨⎪>⎩,则()h x在区间(),1-∞上是减函数,考点:1.绝对值不等式;2.分类讨论的数学思想;3.恒成立问题.。

衡水中学2018年高考理数押题试卷

衡水中学2018年高考理数押题试卷

河北衡水中学2018年高考押题试卷理数试卷第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A {x|x2x 6 0, x Z},B {z|z x y ,x A,y A},则Al B ()A. {0,1} B• {0,1,2} C• {0,1,2,3} D• { 1,0,1,2}1 z2.设复数z满足'2 i,则| A ()1 i zA. .5B 1C•仝D仝5 5 253.若cos( -)- ,(0,—) ,则sin 的值为()4 3 2A. 4 2B 4 .2 C7 D辽••6 6 18 34.已知直角坐标原点O为椭圆C :2 2x y1(a b 0)的中心,F1,F2为左、右焦点,在区间(0,2)任a2 b2取一个数e,则事件“'以e为离心率的椭圆C与圆0: 2 2 x y a b没有交点”的概率为()Ad B 4 2C D 2 24 4 2 25.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E :2 2% y21(a 0,b 0),当其离心率e [「2,2]时,对应双曲线的渐近线的夹角的取值范围为()a bA. [0, ] B • [―,]C • [―,]D •[―,]6 6 3 4 3 3 26.某几何体的三视图如图所示,若该几何体的体积为 3 2,则它的表面积是()A. (32133) .22 2B- (3 413|) 22 2c •卫.22D.13 ,22247.函数ysin x ln x 在区间[ 3,3]的图象大致为()A.函数g( x)图象的对称轴方程为 x k (k Z)12B. 函数g(x)的最大值为2.218.二项式(ax)n (a 0,b 0)的展开式中只有第 6项的二项式系数最大,bx第4项的系数的3倍,则ab 的值为( )且展开式中的第3项的系数是A . 4B12D. 169.执行如图的程序框图,若输入的x 0 , y 1 ,n 1,则输出的p 的值为(A . 81B• 2 10. 已知数列 a 1 1, a 22, 且an 2A .2016 1010 1B.100911. 已知函数 f(x)Asin( x )(Aa n 2 20170,2( 1)n , 814n N ,则S 2017的值为.2017 1010 1 D81 8)1009 20160,)的图象如图所示,令 g(x)2f(x) f '(x),则下列关于函数g(x)的说法中不正确的是()B .C . Dr'-W I I 庄C.函数g(x)的图象上存在点 P ,使得在P 点处的切线与直线I : y 3x 1平行第U 卷二、填空题:本大题共4小题,每小题5分,共20分.13. 向量a (m, n) , b ( 1,2),若向量a , b 共线,且a 2 b ,则mn 的值为 _______________________ .2 2x y14. 设点M 是椭圆 —2 1(a b 0)上的点,以点 M 为圆心的圆与x 轴相切于椭圆的焦点 F ,圆Ma b与y 轴相交于不同的两点 P 、Q ,若 PMQ 为锐角三角形,则椭圆的离心率的取值范围为 ___________________ .2x y 3 015.设x , y 满足约束条件 x 2y 2 0,则y 的取值范围为2x y 2 x16.在平面五边形 ABCDE 中, 已知 A 120o , B 90o , C 120o , E 90o ,AB 3,AE 3, 当五边形ABCDE 的面积S [6・、,3,9、一 3)时,则BC 的取值范围为 __________三、解答题:解答应写出文字说明、证明过程或演算步骤•1 *17.已知数列{a n }的前 n 项和为 S n ,q —,2S n S n 1 1(n 2,n N).2(1 )求数列{a n }的通项公式;* 1(2)记 b n log 1 a n (n N ),求{}的前 n 项和 T n .2b n b n 1D.方程g(x) 2的两个不同的解分别为X i , x 2,贝U X ! x 2最小值为一212.已知函数f(x) ax 3 3x 21,若f (x)存在三个零点,则 a 的取值范围是(A . (, 2) B . ( 2,2) C . (2,) D(2,0) U(0,2)18.如图所示的几何体ABCDEF中,底面ABCD为菱形,AB 2a , ABC 120o, AC与BD相交于O点,四边形BDEF为直角梯形,DE//BF , BD DE , DE 2BF 2. 2a,平面BDEF 底面ABCD.(1)证明:平面AEF 平面AFC ;(2 )求二面角E AC F的余弦值•19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1 )试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数的分布列与数学期望20.已知椭圆C :与爲l(a b 0)的离心率为—,且过点,动直线I : y kx m交a b 2 22uuu uuu椭圆C于不同的两点A, B,且OA OB 0 ( O为坐标原点)•(1)求椭圆C的方程•(2)讨论3m2 2k2是否为定值?若为定值,求出该定值,若不是请说明理由_ 2 221.设函数f (x) a In x x ax(a R).(1)试讨论函数f (x)的单调性;(2)设(x) 2x (a2 a)ln x,记h(x) f (x) (x),当a 0时,若方程h(x) m(m R)有两个不相等的实根禺,X2,证明h'Q x2) 0 .2请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号22.选修4-4 :坐标系与参数方程x 3 cost在直角坐标系xOy中,曲线G : ( t为参数,a 0),在以坐标原点为极点,x轴的非负y 2 si nt半轴为极轴的极坐标系中,曲线C2: 4sin .(1 )试将曲线G i与C2化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围;(2)当a 3时,两曲线相交于A,B两点,求AB .23.选修4-5 :不等式选讲已知函数f (x) 2x 1 x 1 .(1 )在下面给出的直角坐标系中作出函数y f(x)的图象,并由图象找出满足不等式f(x) 3的解集;(2)若函数y f (x)的最小值记为m,设a, b R,且有a2 b2 m,试证明:1 4 18 a2 1 b2 1 7、选择题 1-5: BCAAD 6-10: AABCC 11 、填空题 13. 8 14. 参考答案及解析 理科数学(U )、12: CD15.2 7 - [―,—]代.[、,3,3、3) 5 417.解:(1)当 n 2时,由— 得 2S 2 S 1 1 ,即 2a〔 2a 2又由2S n S n 1 1,① 可知2S n 1 S n 1,② ②-①得2a n 1 a n ,即也a n 1适合上式, 2 a 2 a 1三、解答题 S n 1 1 及 a 11,解得a 212 14 .且n 1时, (2)由(1)及 b n1 可知bn log 1(2)n 1 所以 ------ b n bn 11 故Tn — b n b2 1 尹2). 1 因此数列{a n }是以一为首项, 21-为公比的等比数列,故21 * a n 27(nN ).log-, a n (n N2n(n 1) 1 db s b n b n 1 [(1 2)(11)(丄n 1 1 —)]1 —n 1n 118.解:(1)因为底面 ABCD 为菱形,所以AC BD , 又平面BDEF 底面 ABCD ,平面 BDEF I 平面 ABCD BD,因此AC 平面BDEF ,从而AC EF . 又BD DE ,所以DE 平面ABCD , 由 AB 2a ,DE 2BF 2、2a , ABC 120o , 可知 AF -4a 2 2a 2 ,6a ,BD 2a , EF 4a 2 2a 2 . 6a ,AE 4a 2 8a 2 2.3a ,从而 AF 2 FE 2 AE 2,故 EF AF .19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为 B , 所以可以估计该校学生获得成绩等级为B 的概率为卫6 14,100 25 14则该校高三年级学生获得成绩为 B 的人数约有800 14 448.251(2)这100名学生成绩的平均分为 (32 100 56 90 7 80 3 70 2 60)100因为91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关 (3)由题可知用分层抽样的方法抽取11个学生样本,其中 A 级4个,B 级7个,从而任意选取3个,这3又AF I AC A ,所以EF 平面AFC .又EF 平面AEF ,所以平面 AEF 平面 AFC .(2)取EF 中点G ,由题可知OG / /DE ,所以OG 平面ABCD ,又在菱形 ABCD 中,OA OB ,所uuu以分别以OA , uuu uuu OB , OG 的方向为x , y , z 轴正方向建立空间直角坐标系O xyz(如图示),则 O(0,0,0),A(「3a,0,0),C( _3a,0,0),E(0, a,2.'2a),F(0,a,j2a), uuu 所以AE (0, a,2、2a) ( 3a,0,0)( , 3a, a,2 2a), uuur _ __ uuu_AC (3a,0,0)(..3a,0,0)(2、3a,0,0),EF (0,a, 2a)(0, a, 2 2a)(0,2a, ,2a).uur由(1)可知EF 平面AFC ,所以平面 AFC 的法向量可取为 EF (0,2a, ,2a).设平面AEC 的法向量为n (x, y, z),r uuu冲 n AE 0 则r uuir ,即n AC 0x 0x 0r uuun EF 6a V 31 n LuiU I EF |6屈 3 .,即 y 2'2z ,令 z 2,得 y 4,91.3,2 2zAC F 的余弦值为所以 n (0,4, .2).r uuu 从而 cos n, EF故所求的二面角 E个为A 级的个数 的可能值为0, 1, 2 , 3.x2故所求的椭圆方程为 -2uuu uuu(2)设 A(x 1, %),B(x 2, y 2),由 OA OBy 联立方程组 x 22因此可得的分布列为:12 则 E( )0 11552兰4 7 28 133 55 可知 x-|X 2 y 1y 2 0.消去y 化简整理得 (1 2 2 22k )x 4kmx 2m2 2 由 16k m8(m 21)(122k ) 0,得 12k 2m 2,所以 X 1 X 24km1 2k2 ,X-|X 2c 2 c细2,③1 2k又由题知x 1x 2 yy 即 x 1x 2 (kx 1 m)(kx 2 m)整理为(1 k 2)x 1x2 km(x 1 X 2)c 22、2m 将③代入上式,得(1 k 2)击 km岁 3 -165 20.解:(1) c由题意可知一 a所以a 2 2 c 2 2(a 2 b 2),即 a 22b 2,①又点P (互 2f )在椭圆上,所以有2 4a 2 34b 2,②由①②联立,解得b 21, a 21.kx2 2化简整理得3m 2 22k 0,从而得到3m 2i 2k 22k 2 2.2i.解:(i )由 f(x) a 21nx x 2 ax , 可知 f'(x)2x a2x 2 ax a 2(2x a)(x a)因为函数f (x)的定义域为(0, ),所以, ①若a 0时,当x (0, a)时, f'(x) 0, 函数 f (x)单调递减, (a,)时, f'(x) 0 ,函数f (x)单调递增; ②若a 0时,当f '(x) 2x 0 在 x (0, )内恒成立,函数 f (x)单调递增;③若a 0时,当x (0, f'(x) 0,函数 f(x)单调递减,当xa (2,)时, f '(x)0,函数f (x)单调递增. (2 )证明:由题可知 h(x) f (x) (x) x 2 (2 a)x a In x(x 0),所以 h'(x) 2x (2 2 、a 2x a )x(2 x a)x a (2x a)(x 1)a a X (0,)时,h'(x) 0 ;当 x (, 2 2 欲证 h'(Xi X2) 0,只需证 h'4 X2) h'(a ), 2 2 2 x i x 2 a 2 2. 所以当 )时,h'(x)i 时,h' 0.)0,只需证h '(又 h''(x)即h'(x)单调递增,故只需证明设X i ,X 2是方程h(x) m 的两个不相等的实根,不妨设为 X iX 2,2 “X i (2 a)x i al n X i m 则 v 7 i i, 2x 2 (2 a)x 2 a I n x 2 m 两式相减并整理得 a(x-i x 2 In x-i In x 2) 2 2^ X i X 2 2 X i2x2,从而a x i 2 x 222x i 2x 2 x 2 In x i In x 2 X i 故只需证明x i x 2 x i 2 x 22 2x i 2x 2 2 2(x i x 2 In x i In x 2)即 x 1 x 2 2 2% x 2 2为 2X 2 x i x ? In x i In x 2 因为 x-i x 2 In x i In x 2 0, 所以(*)式可化为In x i, 2x i 2x 2 In x 2 x i x 2因为0 x 1 x 2,所以0 竺1 ,X 2因此R(t)在(0,1)单调递增• 又 R(1) 0 ,因此 R(t) 0 , t (0,1),故 Int 2— , t (0,1)得证,t 1从而h'(X1 X2) 0得证.2 x 3cost2 2 22.解:(1)曲线C 1: ,消去参数t 可得普通方程为(x 3) (y 2)y 2 si nt 曲线C 2: 4sin ,两边同乘 •可得普通方程为x 2 (y 2)2 4. 把(y 2)2 4 x 2代入曲线G 的普通方程得:a 2 (x 3)2 4 x 2 13 6x , 而对C 2有x 2 x 2 (y 2)2 4,即2x2,所以1 a 225故当两曲线有公共点时, 为[1,5].2 2 (2)当 a 3时,曲线 G : (x 3) (y 2)9,2两曲线交点A ,B 所在直线方程为x 2.即ln$ X 2 2生2 X 2 X i X 2所以AB 2 823不妨令t —-,所以得到In t X 2 2tt t (0,1). 2t 21 4 设 R ⑴ |nt 十,t (0,1),所以 R'(t)? r (t 1)2 3 t(t 1)2 0,当且仅当t 1时,等号成立,a 的取值范围32 2 2 2 曲线x (y 2) 4的圆心到直线 x 的距离为d —,3 3 3x, x 1 23.解:(1)因为 f (x) |2x 1 x 1 x 2, 1所以作出图象如图所示,并从图可知满足不等式 所以 2 a ,从而 b 2 3 2 从而1 a2 1 4 b 2 1 7[(a2 1) 3x,x 1 f (x) 3的解集为[1,1] f (x)的最小值为 1 b 21 7, 22 1(b 2 1)](— a a2 b 2 1 4(a 2 0 181 b2 1 ] 7当且仅当 b 2 1 a 22肓时,等号成立即a 2 所以 1 6 1 a 2 1 b 2 4 b 7" 4时,有最小值,3 18 、工得证.1 7 i ,即 7[5 J2 當)]。

泄露天机2018高考押题卷理科数学(一)

泄露天机2018高考押题卷理科数学(一)

泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。

2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。

3.考试结束后将试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。

1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。

2+iB。

2-iC。

1+iD。

i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。

2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。

解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。

3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。

解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。

因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}AB =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .2 2.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否 →输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( )A . 5B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( )A .3B.C. D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤ ⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B解析:当,32x ππ⎛⎫∈ ⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈ 212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( )A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当2ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= . 13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩ABMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 . 15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +=,所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因(2)求2cos 2sin 22B ⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos 2A ∴=,又因为0πA<<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πCB BC B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin 116626πππB B B B B B ⎛⎫=-+-=-=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是212⎛⎤- ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.参考数据:若2(,)X N μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============所以的分布列为()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ==2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OCOA 的方向为x 轴,y轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅==⎪∴⎨⋅=--=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA=-=,由122123020AB n x AA n y ⎧⋅=-=⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,12x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c o s ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x -+=……………………(5分)(2)把1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥, 解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

2018高考数学模拟试卷(衡水中学理科)

2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科)第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1.【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n=2n+n2﹣1.【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为2.【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD ∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,. . . .. . ..s . .. 因为原点到直线x ﹣y ﹣4=0的距离d=, 所以△AOB 的面积是|AB |d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f (x )=|x ﹣l |+|x ﹣3|.(I )解不等式f (x )≤6;(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R恒成立,求实数a 的取值范围.【解答】解:函数f (x )=|x ﹣l |+|x ﹣3|= 的图象如图所示,(I )不等式f (x )≤6,即①或②,或③. 解①求得x ∈∅,解②求得3<x ≤5,解③求得﹣1≤x ≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f (x )≥ax ﹣1对任意x ∈R 恒成立,则函数f (x )的图象不能在y=ax ﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B (3,2),∴3a ﹣1≤2,且 a ≥﹣2,求得﹣2≤a ≤1.。

衡水中学2018年高考押题理数(一)答案

衡水中学2018年高考押题理数(一)答案

c( x1
x2 )]
x1 1
2(x1 x2 ) x1 x2
ln
x1 x2
2
x2 x1
ln 1
x1 x2
.
x2

x1 x2
t(0 t
1) ,由 (x1 x2 )2
m2 得 x12
x22
2x1x2
m2

因为
x1x2
1 ,两边同时除以
x1x2
,得 t
1 t
2
m2 ,
因为 m 3 2 ,故 t 1 5 ,解得 0 t 1 或 t 2 ,所以 0 t 1 .
2
t2
2
2
设 G(t)
2
t t
1 1
ln
t
,所以 G '(t)
(t 1)2 t(t 1)2
0

则 y G(t) 在 (0, 1] 上是减函数, 2
所以 G(t)min
G( 1) 2
2 3
ln
2


y
( x1
x2
)h
'(x0
)
的最小值为
2 3
ln
2
.
所以
( x1
x2
)h
'(x0 )
2 3
ln
2
.
22.解:(1)由 4 cos 得 2 4 cos ,
9
3
可得椭圆 C 经过点 (2, 2 10 ) , 3
所以
4 9
40 9b2
1 ,解得 b2
8.
所以椭圆 C 的方程为 x2 y2 1. 98
(2)直线 l 的解析式为 y kx 2 ,设 A(x1, y1), B(x2, y2 ) , AB 的中点为 E(x0, y0 ) .假设存在点 D(m, 0) ,

2018届河北省模拟试题(一)数学(理)试卷(含答案)

2018届河北省模拟试题(一)数学(理)试卷(含答案)

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A.2或5 3B.53C.2D.26.已知函数[]2sin,,0,()1,(0,1],x xf xx xπ⎧∈-⎪=⎨-∈⎪⎩则1()f x dxπ-=⎰()A.2π+B.2πC.22π-+D.24π-7.执行如图程序框图,则输出的S的值为()A2021B2019C.505D.50518.已知函数23()sin cos30)f x x x xωωωω=->的相邻两个零点差的绝对值为4π,则函数()f x的图象()A.可由函数()cos4g x x=的图象向左平移524π个单位而得B.可由函数()cos4g x x=的图象向右平移524π个单位而得C.可由函数()cos2g x x=的图象向右平移724π个单位而得D.可由函数()cos2g x x=的图象向右平移56π个单位而得9.61(23)(1)xx-+的展开式中剔除常数项后的各项系数和为()A.73-B.61-C.55-D.63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=r ,(1,1)b =-r ,且a b ⊥r r ,则2()a b -=r r .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)nn n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.18.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==,1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1xg x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.2018年普通高等学校招生全国统一考试模拟试题理数(一)答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u r u u u r u u u r ,得2212()33AD AB AC =+u u u r u u u r u u u r 4441421()99929=++⨯⨯⨯-=,所以2||3AD =u u u r .18.解:(1)连接1A B ,1A D ,AC ,因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =I ,所以BD ⊥平面1A AC , 又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥.(2)由112A B A D ==,及22BD AB ==,知11A B A D ⊥,于是111222AO A O BD AA ===,从而1A O AO ⊥, 结合1A O BD ⊥,AO BD O =I , 得1A O ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA u u u r的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =u u u r,11(1,0,1)BB AA ==-u u u r u u u r ,11(1,1,0)DC DC ==-u u u u r u u u r, 由11(1,0,1)DD AA ==-u u u u r u u u r ,易求得1(1,1,1)D --. 设111D E DC λ=u u u u r u u u u r ([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =r,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =r , 设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|DE n θ=<>u u u r r 227142(1)1λλ==⨯+--+, 解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB 所成角的正弦值为7.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得22222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=. (2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y ,则122812k x x k +=-+,122612x x k=+, 则1112AD y k x -=,2212BDy k x -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1xa e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立,∴max 2(1)()xa e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞U . (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x , 同理,()f x 在区间0(,1)x 内存在零点2x , 所以()f x 在区间(0,1)内恰有两个零点. 由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12ea ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意,所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C ,半径2r =12||C C == ∵圆1C 与圆2C 外切,a =a =即圆1C的极坐标方程为)4πρθ=-+, 将12πθ=代入1C,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C,得cos()124ππρ=-,得ρ=故12||||AB ρρ=-=23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=,21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号.∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。

衡水中学20XX年高考理数押题试卷.doc

衡水中学20XX年高考理数押题试卷.doc

河北衡水中学2018 年高考押题试卷理数试卷第Ⅰ卷一、选择题:本大题共12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A { x | x2 x 6 0, x Z} ,B { z | z x y , x A, y A},则 AI B ()A.{0,1} B . {0,1, 2} C . {0,1,2,3} D . { 1,0,1,2}2. 设复数z满足1z 2 i ,则 |1| ()1 i zA. 5 B .1C . 5D . 55 5 253. 若cos( ) 1 ,(0, ) ,则sin 的值为()34 2A.42 B .42 C .7D . 26 6 18 34. 已知直角坐标原点O 为椭圆 C :x2y2 1(a b 0) 的中心, F1, F2为左、右焦点,在区间a2 b2取一个数 e ,则事件“以 e 为离心率的椭圆 C 与圆 O :x2 y2 a2 b2没有交点”的概率为(A. 2 B .42 C . 2 D .224 4 2 25. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90o的正角.已知双曲线E:x2 y21(a 0, b 0) ,当其离心率 e [ 2, 2] 时,对应双曲线的渐近线的夹角的取值范围为(a2 b2A.[0, ] B . [ , ] C . [ , ] D . [ , ]6 6 3 4 3 3 26. 某几何体的三视图如图所示,若该几何体的体积为 3 2 ,则它的表面积是()(0, 2) 任))A .(3 133)22 2B.(3 133)222242 C .1322D. 1322247. 函数 y sin x ln x 在区间 [ 3,3] 的图象大致为()A .B .C .D .8. 二项式 (ax1)n (a 0, b 0) 的展开式中只有第 6 项的二项式系数最大, 且展开式中的第 3 项的系数是bx第 4 项的系数的 3 倍,则 ab 的值为( )A . 4B. 8C. 12D. 16 9. 执行如图的程序框图,若输入的x 0 , y 1 , n 1 ,则输出的 p 的值为()A . 81B. 81C. 81D. 8124810. 已知数列 a 1 1, a 2 2 ,且 a n 2 a n 22( 1)n , n N * ,则 S 2017 的值为()A . 2016 10101 B. 10092017C .2017 1010 1D. 1009 201611. 已知函数 f ( x)Asin( x ) ( A0,0,) 的图象如图所示,令 g( x) f ( x) f '( x) ,则下2列关于函数 g( x) 的说法中不正确的是()A .函数 g( x) 图象的对称轴方程为 x k(k Z )12B .函数 g( x) 的最大值为 2 2C.函数g( x)的图象上存在点P,使得在P 点处的切线与直线l :y 3x 1 平行D.方程g( x) 2 的两个不同的解分别为x1, x2,则x1x2 最小值为212. 已知函数f ( x) ax3 3x2 1 ,若 f (x) 存在三个零点,则 a 的取值范围是()A.( , 2) B . ( 2,2) C .(2, ) D.( 2,0) U (0,2)第Ⅱ卷二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13.r r r r r r向量 a (m, n) ,b ( 1,2) ,若向量 a , b 共线,且a 2 b ,则 mn 的值为.14. 设点 M 是椭圆x2y2 1(a b 0) 上的点,以点M为圆心的圆与 x 轴相切于椭圆的焦点F,圆M a2 b2与 y 轴相交于不同的两点15. 设x,y满足约束条件P、Q,若PMQ 为锐角三角形,则椭圆的离心率的取值范围为.2x y 3 0x 2 y 2 0 ,则y的取值范围为.2x y 2x16. 在平面五边形ABCDE中,已知 A 120o, B 90o, C 120o, E 90o,AB 3, AE 3 ,当五边形 ABCDE 的面积S [6 3,9 3) 时,则BC 的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列{ a n } 的前 n 项和为S n ,a 1 , 2S S 1(n 2, n N * ) .n n 11 2( 1)求数列{ a n}的通项公式;(2)记b n log 1 a n (n N * ) ,求{ 1 } 的前 n 项和 T n.2 bnbn 118. 如图所示的几何体ABCDEF 中,底面 ABCD 为菱形, AB 2a ,ABC120o,AC与BD相交于O 点,四边形BDEF 为直角梯形,DE / / BF , BD DE ,DE2BF 2 2a ,平面BDEF底面ABCD .( 1)证明:平面AEF 平面AFC ;( 2)求二面角 E AC F 的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级 800名学生中随机抽取100名学生进行测试,并将其成绩分为 A 、 B 、 C 、 D 、 E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:( 1)试估算该校高三年级学生获得成绩为 B 的人数;( 2)若等级 A 、 B 、 C 、 D 、 E 分别对应 100分、 90 分、 80分、 70 分、 60 分,学校要求平均分达90 分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?( 3)为了解心理健康状态稳定学生的特点,现从 A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取 3 个学生样本分析,求这 3 个样本为 A 级的个数的分布列与数学期望.20. 已知椭圆C:x2y2 1(a b 0) 的离心率为2,且过点 P( 2 , 3 ),动直线l: y kx m 交a 2 b2 2 2 2椭圆 C 于不同的两点uuur uuur0 (O为坐标原点). A, B,且OA OB( 1)求椭圆C的方程 .( 2)讨论3m22k2是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数f (x) a2 ln x x2 ax(a R) .( 1)试讨论函数 f ( x) 的单调性;( 2)设( x) 2x (a2 a)ln x ,记 h( x) f (x) ( x) ,当a 0时,若方程h(x) m(m R) 有两个不相等的实根 x1, x2,证明 h '( x1x2 ) 0 . 2请考生在 22、23 题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22. 选修 4-4 :坐标系与参数方程在直角坐标系 xOy 中,曲线 C1x 3 cost( t 为参数, a 0 ),在以坐标原点为极点,x 轴的非负:2 sin ty半轴为极轴的极坐标系中,曲线C2:4sin .( 1)试将曲线C1与C2化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时 a 的取值范围;( 2)当a 3时,两曲线相交于A, B两点,求AB .23.选修 4-5 :不等式选讲已知函数 f ( x) 2x 1 x 1 .( 1)在下面给出的直角坐标系中作出函数y f (x) 的图象,并由图象找出满足不等式 f (x) 3 的解集;( 2)若函数y f (x) 的最小值记为 m ,设 a, b R ,且有 a2 b2 m ,试证明: 11 b2 4 18 .a 2 1 7参考答案及解析理科数学(Ⅱ)一、选择题1-5: BCAAD 6-10: AABCC 11、 12: CD二、填空题13.814.62 2 e5 1 15.[2,7] 16.[ 3,3 3)25 4三、解答题17. 解:( 1)当 n2 时,由 2S n S n11 及 a 11,2 得 2S 2 S 1 1 ,即 2a 1 2a 21 a 1 1,解得 a .24又由 2S n S n 1 1 ,①可知 2S n1S n 1 ,②② - ①得 2a n 1 a n ,即a n 1 1(n 2) .a n2且 n1时,a 21 1 为首项,1 为公比的等比数列,故1 *) .a 1适合上式,因此数列 { a n } 是以2 a nn ( nN222( 2)由( 1)及 b nlog 1 a n (nN *),2可知 b nlog 1 (1 )n n ,2 2所以1111 ,b nbn 1n(n 1) n n 1 故 T n1 1 1[(1 1) (11)(1 1)]11 n .b n b 2 b 2 b 3b n b n 12 23 n n 1n 1 n 118. 解:( 1)因为底面 ABCD 为菱形,所以 AC BD ,又平面 BDEF 底面 ABCD ,平面 BDEF I 平面 ABCD BD ,因此 AC 平面 BDEF ,从而 AC EF .又 BD DE ,所以 DE 平面 ABCD ,由 AB2a , DE 2BF2 2a ,ABC 120o ,可知 AF4a 2 2a 26a , BD 2a ,EF4a 2 2a 26a , AE 4a 2 8a 22 3a ,从而 AF 2 FE 2 AE 2 ,故 EF AF .又AFI AC A ,所以 EF平面 AFC .又 EF平面 AEF ,所以平面 AEF 平面 AFC .( 2)取 EF 中点 G ,由题可知 OG / /DE ,所以 OG平面 ABCD ,又在菱形 ABCD 中, OA OB ,所uuur uuur uuurO xyz (如图示), 以分别以 OA , OB , OG 的方向为 x , y , z 轴正方向建立空间直角坐标系则 O (0,0,0) , A( 3a,0,0) , C (3a,0,0) , E(0, a, 2 2a) , F (0, a,2a) ,uuur (0, a, 2 2a) ( 3a,0,0) ( 3a, a,22a)所以 AE ,uuur (3a,0,0)( 3a,0,0)( 2 3a,0,0)uuur(0, a, 2a) (0, a, 2 2a) (0, 2a, 2a) .AC , EF 由( 1)可知 EFuuur(0, 2a,2a) .平面 AFC ,所以平面 AFC 的法向量可取为 EFr (x, y, z) ,设平面 AEC 的法向量为 nr uuur 0n AE3x y 2 2z 0 ,即 y 2 2z,令 z2 ,得 y4 ,则 r uuur 0 ,即n AC x 0 x 0r (0, 4, 2) .所以 n r uuur r uuur 6a 3从而 cos n EF.n, EF r uuur 6 3a 3n EF故所求的二面角E ACF 的余弦值为3 .319. 解:( 1)从条形图中可知这 100人中,有 56 名学生成绩等级为 B ,所以可以估计该校学生获得成绩等级为B 的概率为5614 ,100 25则该校高三年级学生获得成绩为B 的人数约有 800 14 448 .1(32 100 25( 2)这 100 名学生成绩的平均分为56 90 780 3 70 2 60) 91.3 ,100因为 91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关.( 3)由题可知用分层抽样的方法抽取11A 级 4 个,B 级 7 个,从而任意选取 3 个,这 3个学生样本,其中个为 A级的个数的可能值为 0 1 2 , 3 ., ,则P(0)C 40C 7371) C 41C 7228C 113, P(C 113,3355 P(C 42 C 71 14 , P(C 43C 704 .2)55 3)C 113165C 113因此可得的分布列为:123P7 28 144335555165则E( ) 071 28 14 3412 .33255165115520. 解:( 1)由题意可知 c2 ,所以 a 2 2c 22( a 2 b 2 ) ,即 a 2 2b 2 ,①a2又点 P(2 , 3) 在椭圆上,所以有2 31 ,②224a 24b 2由①②联立,解得 b 21, a 22 ,故所求的椭圆方程为x 2 y 21.2uuur uuur( 2)设A( x 1, y 1 ) , B( x 2 , y 2 ) ,由 OA OB,可知 x 1 x 2y 1 y 2 0 .y kx m 联立方程组x 2y 2,12消去 y 化简整理得 (1 2k 2 ) x 2 4kmx 2m 22 0 ,由16k 2m 28(m 2 1)(1 2k 2 )0,得 1 2k 2m 2 ,所以 x 1 x 21 4km , x 1 x2 2m 2 2 ,③2k 2 1 2k 2又由题知 x 1x 2 y 1 y 2 0 ,即 x 1 x 2(kx 1 m)( kx 2 m) 0,整理为 (1 k 2 ) x 1 x 2 km(x 1 x 2 ) m 2 0 .将③代入上式,得 (1k2 )2m 22 km 4km m 2 0 .1 2k2 1 2k 2化简整理得 3m2 2 2k 2 0 ,从而得到 3m2 2k 2 2 .1 2k 221. 解:( 1)由f (x) a2 ln x x2 ax ,可知 f '(x) a2 2x a 2x2 ax a2 (2 x a)( x a) .x x x因为函数 f ( x) 的定义域为 (0, ) ,所以,①若 a 0 时,当 x (0, a) 时, f '( x) 0 ,函数 f ( x) 单调递减,当 x ( a, ) 时, f '( x) 0 ,函数 f ( x) 单调递增;②若 a 0 时,当 f '( x) 2x 0 在 x (0, ) 内恒成立,函数 f ( x) 单调递增;③若 a 0 时,当 x (0, a) 时, f '( x) 0 ,函数 f ( x) 单调递减,当 x ( a , ) 时, f '( x) 0 ,函2 2数 f ( x) 单调递增.( 2)证明:由题可知h( x) f (x) (x) x2 (2 a)x a ln x( x 0) ,所以 h '(x) 2x (2 a)a 2x2 (2 a) x a (2 x a)( x 1)x x .x 所以当 x欲证 h '( x 1x1x2 2(0,a) 时, h '( x) 0 ;当 x (a, ) 时, h '( x) 0 ;当 x a 时, h '(a) 0 .2 2 2 2x2 ) 0 ,只需证 h '(x1x2 ) h '(a) ,又 h ''(x) 2 a 0 ,即 h '( x) 单调递增,故只需证明2 2 2 x2a.2设 x1, x2是方程 h(x) m 的两个不相等的实根,不妨设为0 x1 x2,x12 (2 a)x1 a ln x1 m则,x22 (2 a) x2 a ln x2 m两式相减并整理得a( x1 x2 ln x1 ln x2 ) x12 x2 2 2x1 2x2,从而a x12 x22 2x1 2x2 ,x1 x2 ln x1 ln x2x x x 2 x 2 2x 2x2故只需证明 1 2 1 2 1 ,2 2(x1 x2 ln x1 ln x2 )即 x1 x2 x12 x22 2x1 2x2.x1 x2 ln x1 ln x2因为 x1 x2 ln x1 ln x2 0 ,所以 (*) 式可化为 ln x1 ln x2 2 x1 2x2 ,x1 x2即 lnx 12x12x 2 . x 2x 1 1x 2因为 0x 1 x 2 ,所以 0x 1 1 ,x 2不妨令 tx 1 ,所以得到 ln t 2t2, t (0,1) .x 2 t1设 R(t)ln t2t 2 , t1 4(t 1)2 0,当且仅当 t1 时,等号成立,(0,1) ,所以 R '(t )(t 1)2t (t 1)2t 1t因此 R(t ) 在 (0,1) 单调递增 .又 R(1) 0,因此 R(t ) 0 , t (0,1) ,故 ln t2t 2, t (0,1) 得证,t 1从而 h '(x 1 x 2) 0 得证 .222. 解:( 1)曲线 C 1 : x3cost,消去参数 t 可得普通方程为 (x3)2 ( y 2) 2a 2 .y2 sin t曲线 C 2: 4sin ,两边同乘. 可得普通方程为x 2 ( y 2)24 .把 ( y 2) 2 4 x 2 代入曲线 C 1 的普通方程得: a 2 ( x 3)2 4 x 213 6x ,而对 C 2 有 x 2 x 2 ( y 2) 24 ,即 2 x2,所以 1 a 2 25 故当两曲线有公共点时, a 的取值范围为 [1,5] .( 2)当 a 3 时,曲线 C 1 : (x 3)2 ( y 2) 2 9 , 两曲线交点A ,B 所在直线方程为 x2.3曲线 x 2( y 2)24 的圆心到直线 x2的距离为 d 2 ,33所以 AB 248 2.4393x, x 123. 解:( 1)因为f ( x) 2x 1 x 1 x 2, 1 x 1 ,213x, x2所以作出图象如图所示,并从图可知满足不等式 f (x) 3 的解集为 [ 1,1]( 2)证明:由图可知函数y f ( x) 的最小值为3,即 m 3 .3 7 2 2所以 a2 b2 ,从而 a2 1 b2 1 ,2 2从而1 42 2 2 1 4 2 b2 1 4(a2 1) a2 1 b2 1 7 [( a 1) (b 1)] ( a2 a b2 1 ) 7 [5 ( a2 1 b2 1 )] 2[5 2 b2 1 4(a2 1)] 18 .7 a2 1 b2 1 7当且仅当b2 1 4( a2 1)时,等号成立,a2 1 b2 1即 a2 1 , b2 4 时,有最小值,6 3所以 11 418得证.a 2 b2 1 7。

2018届河北省衡水中学高三下学期一调考试理科数学试题及答案

2018届河北省衡水中学高三下学期一调考试理科数学试题及答案

的最小值为 3 的正数 为( )
4
A. 1 B. 2 C. 4 D. 3
3
3
3
2
5、定义在 R上的连续函数 f ( x) 满足 f ( -x) =- f ( x+4) ,当 x>2
时, f ( x) 单调递增,如果 x1+x2<4,且 ( x1-2)( x2-2)<0 ,则 f ( x1) +
f ( x2) 的值 (
)
A.恒小于 0 B .恒大于 0 C .可能为 0 D .可正可负
6、如图给出的是计算 1 1 1
246
框内应填入的是( )
1 的值的程序框图,其中判断
2014
A. i 2014
B. i>2014
C. i 1007
D. i>1007
7、一个几何体的三视图如右图所
示,={3,4, 5} , Q={6,7} ,定义 P * Q {( a, b) | a P,b Q} , 则 P * Q 的子集个数为 ( )
A.7 B .12 C . 32 D .64 2、已知 0 a 2 ,复数 z 的实部为 a ,虚部为 1,则 | z | 的取值范围 是( ) A.(1 ,5) B . (1 , 3) C . (1, 5) D . (1, 3) 3、在第 29 届北京奥运会上,中国健儿取得了 51 金、 21 银、 28 铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育 强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加 调查的 2548 名男性中有 1560 名持反对意见, 2452 名女性中有 1200 名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体 育强国之列”是否有关系时,用什么方法最有说服力 ( ) A.平均数与方差 B .回归直线方程 C .独立性检验 D .概 率 4、若函数 f (x) sin x 3 cos x, x R, 又 f ( ) 2, f ( ) 0 ,且

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题有答案-(高三)

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题有答案-(高三)

2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}02|>-=x x A ,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛=121|xx B ,则( )A .{}20|≤<=x xB A I B .{}0|<=x x B A IC .{}2|<=x x B A YD .R B A =Y2.已知i 为虚数单位,a 为实数,复数z 满足ai a i z +=+3,若复数z 是纯虚数,则( ) A .3=a B .0=a C .0≠a D .0<a3.我国数学家邹元治利用下图证明了购股定理,该图中用勾()a 和股()b 分别表示直角三角形的两条直角边,用弦()c 来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是( )A .4925 B .4924 C .74 D .754.已知等差数列()n a 的前n 项和为n S ,且π=69S ,则=5tan a ( ) A .33 B .3 C.3- D .33- 5.已知函数())(R a xax x f ∈+=,则下列结论正确的是( ) A .)(,x f R a ∈∀在区间()∞+,0内单调递增 B .)(,x f R a ∈∃在区间()∞+,0内单调递减 C.)(,x f R a ∈∃是偶函数D .)(,x f R a ∈∃是奇函数,且()x f 在区间()∞+,0内单调递增 6.()()421x x -+的展开式中x 项的系数为( )A .-16B .16 C. 48 D .-487.如图是某个集合体的三视图,则这个几何体的表面积是( )A .424++πB .4242++π C. 2242++π D .4222++π 8.若10,1<<<>b c a ,则下列不等式不正确的是( ) A .b a 20182018log log > B .a a c b log log < C.bca c a a c a )()(->- D .()()bca b c a b c ->-9.执行如图所示的程序框图,若输出的n 值为11,则判断框中的条件可以是( )A .?1022<SB .?2018<S C. ?4095<S D .?4095>S 10.已知函数()⎪⎪⎭⎫ ⎝⎛π≤ϕ>ϕϕ+ϖ=20)sin(2,x x f 的部分图象如图所示,将函数()x f 的图象向左平移12π个单位长度后,所得图象与函数)(x g y =的图象重合,则( )A .()⎪⎭⎫ ⎝⎛π+=32sin 2x x g B .()⎪⎭⎫ ⎝⎛π+=62sin 2x x g B .C.()x x g 2sin 2= D .()⎪⎭⎫ ⎝⎛π-=32sin 2x x g 11.已知抛物线x y C 4:2=的焦点为F ,过点F 作斜率为1的直线l 交抛物线C 于Q P ,两点,则QFPF 11+的值为( ) A .21 B .87C. 1 D .2 12.已知数列{}n a 中,()*+∈+=-=N n a a a n a n n n ,1,211,若对于任意的[]*∈-∈N n a ,2,2,不等式12121-+<++at t n a n 恒成立,则实数t 的取值范围为( ) A .(][)+∞-∞-,22,Y B .(][)+∞-∞-,12,Y C. (][)+∞-∞-,21,Y D .[]2,2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()()1,3,,1=λ=b a ,若向量b a -2与()2,1=c 共线,则向量a 在向量c 放心上的投影为 .14.若实数y x ,满足⎪⎩⎪⎨⎧≥≤=+,1,2,4x y x y x 则13+-=y x z 的最大值是 .15.过双曲线()0,012222>>=-b a bx a y 的下焦点1F 作y 轴的垂线,交双曲线于B A ,两点,若以AB 为直径的圆恰好过其上焦点2F ,则双曲线的离心率为 .16.一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若B c C b A a cos cos cos 2+=. (1)求角A 的大小;(2)若点D 在边AC 上,且BD 是ABC ∠的平分线,4,2==BC AB ,求AD 的长.18. 如图,在三棱柱111C B A ABC -中,侧棱⊥1CC 底面ABC ,且BC AC BC AC CC ⊥==,221,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证://CD 平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为23时,求二面角11C MB A --的余弦值.19. 第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政数处为了调查学生对“一带一络"的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数; (2)从所轴取的70分以上的学生中再随机选取4人. ①记X 表示选取4人的成绩的平均数,求)87(≥X P ;②记ξ表示测试成绩在80分以上的人数,求ξ的分布列和数学期望.20.已知椭圆 )0(12222>>=+b a b y a x C :的左、右焦点分别为21,F F ,离心率为31,点P 在椭圆C 上,且21F PF ∆的面积的最大值为22. (1)求椭圆C 的方程;(2)已知直线)0(2:≠+=k kx y l 与椭圆C 交于不同的两点N M ,,若在x 轴上存在点G ,使得GN GM =,求点G 的横坐标的取值范围.21. 设函数e R a a x a e x f x,),ln(2)(∈+--=为自然对数的底数.(1)若0>a ,且函数)(x f 在区间),0[+∞内单调递增,求实数a 的取值范围; (2)若320<<a ,试判断函数)(x f 的零点个数. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,椭圆C 的方程为141622=+x y ,以O 为极点,x 轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为3)3sin(=π+θρ. (1)求直线l 的直角坐标方程和椭圆C 的参数方程;(2)设),(y x M 为椭圆C 上任意一点,求132-+y x 的最大值. 23.选修4-5:不等式选讲 已知函数|2|)(-=x x f .(1)求不等式4)2()(≤++x f x f 的解集;(2)若)2()()(x f x f x g +-=的最大值为m ,对任意不想等的正实数b a ,,证明:||)()(b a m a bf b af -≥+.试卷答案一、选择题1-5: DBBCD 6-10: ABCCA 11、12:CA二、填空题13.0 14.31-15.21+ 16.π34 三、解答题17.解:(1)在ABC ∆中,∵B c C b A a cos cos cos 2+=, ∴由正弦定理,得B C C B A cos sin cos sin cos sin 2+=A CB sin )sin(=+=,∵0sin ≠A ,∴21cos =A , ∵()π∈,0A , ∴3π=A . (2)在ABC ∆中,由余弦定理得A AC AB AC AB BC cos 2222⋅-+=,即AC AC 24162-+=,解得131+=AC , 或131-=AC (负值,舍去)∵BD 是ABC ∠的平分线,4,2==BC AB , ∴21==BC AB DC AD ,∴313131+==AC AD . 18.解:(1)取线段1AB 的中点E ,连结EM DE ,. ∵1,EB AE DB AD ==, ∴1//BB DE ,且121BB DE =. 又M 为1CC 的中点, ∴1//BB CM ,且121BB CM =. ∴DE CM //,且DE CM =. ∴四边形CDEM 是平行四边形.∴EM CD //.又⊂EM 平面⊄CD M AB ,1平面M AB 1, ∴//CD 平面1MAB .(2)∵1,,CC CB CA 两两垂直,∴以C 为原点,1,,CC CB CA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Cxyz ,如图,∵三棱柱111C B A ABC -中,⊥1CC 平面ABC , ∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1=AC ,则由23tan =∠MAC ,得23=CM . ∴()()()()⎪⎭⎫ ⎝⎛23,0,0,2,1,0,0,1,0,0,0,1,0,0,01M B B A C . ∴()2,1,1,23,0,11-=⎪⎭⎫ ⎝⎛-=AB , 设平面1AMB 的一个法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,02,0231z y x n AB z x n AM 令2=z ,得1,3-==y x ,即)2,1,3(-=n . 又平面11B BCC 的一个法向量为)0,0,1(=, ∴14143|cos |=⋅=nCA n CA n CA , 又二面角11C MB A --的平面角为钝角, ∴二面角11C MB A --的余弦值为14143-. 19.解:(1)众数为76,中位数为76.抽取的12人中,70分以下的有4人,不低于70分的有8人, 故从该校学生中人选1人,这个人测试成绩在70分以上的概率为32128=,故该校这次测试成绩在70分以上的约有2000323000=⨯(人) (2)①由题意知70分以上的有72,76,76,76,82,88,93,94. 当所选取的四个人的成绩的平均分大于87分时,有两类. 一类是82,88,93,94,共1种; 另一类是76,88,93,94,共3种. 所以 3524087(48==≥C X p . ②由题意可得,ξ的可能取值为0,1,2,3,4701)0(484404===ξC C C P , ()35870161483414====ξC C C P , 35187036)2(482424====ξC C C P ,()35870163481434====ξC C C P , 701)4(480444===ξC C C P . ξ的分别列为ξ1234P701358 3518 358 701 ()27043533523517010=⨯+⨯+⨯+⨯+⨯=ξ∴E 20.解:(1)由已知得⎪⎪⎪⎩⎪⎪⎪⎨⎧-==⨯⨯=,,22221,31222b a c b c a c解得1,8,9222===c b a ,∴椭圆C 的方程为18922=+y x . (2)设()()2211,,,y x N y x M ,MN 的中点为()00,y x E ,点()0,m G ,使得GN GM =, 则MN GE ⊥.由⎪⎩⎪⎨⎧=++=,189,222y x kx y 得()036369822=-++kx x k ,由0>∆,得R k ∈. ∴8936221+-=+k kx x ,∴89162,891820020+=+=+-=k kx y k k x . ∵,MN GE ⊥∴kk GE 1-=, 即k k k k 189180891622-=+--+,∴kk k k m 8928922+-=+-=. 当0>k 时,21289289=⨯≥+k k (当且仅当kk 89=,即322=k 时,取等号), ∴0122<≤-m ; 当0>k 时,21289-≤+k k (当且仅当kk 89=,即322-=k 时,取等号),∴1220≤<m , ∴点G 的横坐标的取值范围为⎥⎦⎤⎝⎛⎪⎪⎭⎫⎢⎣⎡-122,00,122U . 21.解:(1)∵函数()x f 在区间[)∞+,0内单调递增, ∴01)('≥+-=ax e x f x 在区间[)∞+,0内恒成立. 即x e a x -≥-在区间[)∞+,0内恒成立. 记()x ex g x-=-,则01)('<--=-x e x g 恒成立,∴()x g 在区间[)∞+,0内单调递减, ∴()()10=≤g x g ,∴1≥a ,即实数a 的取值范围为[)∞+,1. (2)∵320<<a ,ax e x f x +-=1)(', 记)(')(x f x h =,则()01)('2>++=a x e x h x,知)('x f 在区间()+∞-,a 内单调递增. 又∵011)0('<-=a f ,01)1('>+-=aa e f , ∴)('x f 在区间()+∞-,a 内存在唯一的零点0x , 即01)('000=+-=ax e x f x, 于是ax ex +=01,()a x x +-=00ln . 当0x x a <<-时,)(,0)('x f x f <单调递减; 当0x x >时,)(,0)('x f x f >单调递增. ∴()())ln(200min 0a x a ex f x f x +--==a a ax a x x a a x 3231210000-≥-+++=+-+=, 当且仅当10=+a x 时,取等号. 由320<<a ,得032>-a , ∴()()00min >=x f x f ,即函数()x f 没有零点. 22.解:(1)由33sin =⎪⎭⎫⎝⎛π+θρ, 得3cos 23sin 21=θρ+θρ, 将θρ=θρ=sin ,cos y x 代入,得直线l 的直角坐标方程为063=-+y x . 椭圆C 的参数方程为ϕ⎩⎨⎧ϕ=ϕ=(sin 4,cos 2y x 为参数).(2)因为点M 在椭圆C 上, 所以设)sin 4,cos 2(ϕϕM ,则1sin 4cos 34132-ϕ+ϕ=-+y x913sin 8≤-⎪⎭⎫ ⎝⎛π+ϕ=,当且仅当13sin -=⎪⎭⎫⎝⎛π+ϕ时,取等号, 所以9132max=-+y x .23.解:(1)不等式()4)2(≤++x f x f ,即42≤+-x x , 此不等式等价于⎩⎨⎧≤--≤,42,0x x x或⎩⎨⎧≤+-≤<,42,20x x x 或⎩⎨⎧≤+->.42,2x x x解得01≤≤-x ,或20≤<x ,或32≤<x .所以不等式()4)2(≤++x f x f 的解集为{}31|≤≤-x x . (2)()|||2|)2()(x x x f x f x f --=+-=, 因为()2|2|2=--≤--x x x x , 当且仅当0≤x 时,取等号, 所以()2≤x g ,即2=m , 因为b a ,为正实数,所以()()22-+-=+a b b a a bf b af()()b ab a ab b ab a ab 2222---≥-+-= b a m b a -=-=2,当且仅当()()022≤--a b 时,取等号. 即()()()||b a m a bf b af -≥+.。

(完整word版)2018年河北省衡水中学高三一模理科数学试题(1)

(完整word版)2018年河北省衡水中学高三一模理科数学试题(1)

河北省衡水中学2018高三第一次模拟理科数学试题一、选择题(本大题共12小题,每小题5分,共60分)1.设全集为实数集R ,{}24M x x =>,{}13N x x =<≤,则图中阴影部分表示的集合是( )A .{}21x x -≤<B .{}22x x -≤≤C .{}12x x <≤D .{}2x x <2.设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的( ) A 。

充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2011B .2012C .4022D .40234. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。

A .①②B.③④C.③④⑤D.④⑤5。

在长方体ABCD —A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1相交于点E,则点E 为△A 1BC 1的( )A .垂心B .内心C .外心D .重心6。

设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是( )A .613B . 365C .65D .36137.已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A .16πB .4π C .8πD .2π 8.已知函数()2sin()f x x =+ωϕ(0,)ω>-π<ϕ<π图像的一部分(如图所示),则ω与ϕ的值分别为( )A .115,106π-B .21,3π-C .7,106π-D .4,53π-9。

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

【衡水金卷】河北省衡水中学2018届高三毕业班模拟演练一理科数学试题(精编含解析)

2018届高三毕业班模拟演练理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】集合集合,则,故选A. 点睛: (1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知,为虚数单位,若复数为纯虚数,则的值为()A. B. 2 C. -2 D. 0【答案】B【解析】复数为纯虚数,则,解得x=2,故选B.3. 已知等比数列中,,,则()A. B. -8 C. 8 D. 16【答案】C【解析】由题意可得, ,又同号,所以,则,故选C.4. 如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A. B. C. D.【答案】D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.5. 我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A. 13.25立方丈B. 26.5立方丈C. 53立方丈D. 106立方丈【答案】B【解析】分析:根据题意,把有关数据代入公式,即可求出刍童的体积.详解:由算法可知,刍童的体积,立方长,\故选:B点睛:本题解题的关键是理解题意,利用题目提供的各个数据代入公式即可.6. 已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.【答案】D【解析】,故, 又,故,故选D.7. 某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()A. B. C. D.【答案】C【解析】若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.8. 若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为()A. 8B. 3C. 2D. 1【答案】B点睛:本题考查程序框图的应用,属于中档题.算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 已知点分别在正方形的边上运动,且,设,,若,则的最大值为()A. 2B. 4C.D.【答案】C【解析】,又因为,,当且仅当x=y时取等号, ,即的最大值为,故选C.10. 已知函数,将的图象向右平移个单位,所得函数的部分图象如图所示,则的值为()A. B. C. D.【答案】A【解析】由题意得=,则,由图知,则,由,得,解得的值为,故选A.11. 若函数满足:①的图象是中心对称图形;②若时,图象上的点到其对称中心的距离不超过一个正数,则称是区间上的“对称函数”.若函数是区间上的“对称函数”,则实数的取值范围是()A. B. C. D.【答案】A【解析】函数的图象可由的图象向左平移1个单位,再向上平移m个单位得到,故函数f(x)的图象关于点A(-1,m)对称,如图所示,由图可知,当时,点A到函数f(x)图象上的点(-4,m-27)或(2,m+27)的距离最大,最大距离为,根据条件只需,故,应选A.12. 已知双曲线的左、右焦点分别为,点是双曲线上的任意一点,过点作双曲线的两条渐近线的平行线,分别与两条渐近线交于两点,若四边形(为坐标原点)的面积为,且,则点的横坐标的取值范围为()A. B.C. D.【答案】A【解析】由题易知四边形PAOB 为平行四边形,且不妨设双曲线C 的渐近线,设点P(m,n),则直线PB 的方程为y-n=b(x-m),且点P 到OB 的距离为,由,解得,又 ,又,,双曲线C 的方程为,即,又,解得或,所以点P 的横坐标m 的取值范围为,故选A.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】=,故填.14. 已知抛物线的焦点坐标为,则抛物线与直线所围成的封闭图形的面积为__________. 【答案】【解析】抛物线的标准方程为,由得或,图形面积,故填.15. 已知实数满足不等式组则目标函数的最大值与最小值之和为__________.【答案】【解析】令t=2x,则x=,原可行域等价于,作出可行域如图所示,经计算得的几何意义是点P(t,y)到原点O的距离d的平方,由图可知,当点P与点C重合时,d取最大值;d的最小值为点O到直线AB:t-y-1=0的距离,故,所以的最大值与最小值之和为,故填.点睛: 应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.16. 在中,为的中点,与互为余角,,,则的值为__________.【答案】或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC,,当时, ,在△ACD中,,综上可得,的值为或.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和恰好与的展开式中含项的系数相等.(1)求数列的通项公式;(2)记,数列的前项和为,求.【答案】(1) (2)【解析】试题分析:(1)根据数列的前项和等于展开式中含项的系数,以及的关系,求出数列的通项公式;(2)由(1)求出,根据裂项相消法得出结果.试题解析:(1)依题意得,故当时,,又当时,,也适合上式,故.(2)由(1)得,故.18. 在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.【答案】(1)见解析(2)【解析】试题分析: (1) 当时,点是的中点,由已知证出,根据面面垂直的性质定理证得平面,进而证得结论;(2) 以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.写出各点坐标,求出平面的法向量,根据线面角的公式求出结果.试题解析:(1)当时,点是的中点.∴,.∵,∴.∵,,,∴.∴.又平面平面,平面平面,平面,∴平面.∵平面,∴.(2)以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.则,,.取的中点,∵,∴,∴ 易证得平面,∵,∴,∴.∴,,.设平面的一个法向量为,则令,则.设与平面所成的角为,则,解得或(舍去)∴存在实数,使得与平面所成的角的正弦值为,此时.19. 春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.(1)求样本平均数;(2)求;(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.参考数据:若,则,.【答案】(1)68.5(2)0.8185(3)【解析】试题分析:(1)根据表中数据以及平均数公式代入计算即可;(2) 由(1)得的值,根据概率的计算公式计算即可;(3) 的所有可能取值为1,2,3,4,分别求出概率写出分布列,并求出期望即可. 试题解析:(1),(2)由(1)得,.∴.(3)易知.∴的所有可能取值为1,2,3,4.;;;.∴的分布列为∴.20. 已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.(1)试求椭圆的标准方程;(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.【答案】(1) (2) 与之积为定值,且该定值是【解析】试题分析:(1),可得,将坐标代入求出点E,代入椭圆方程,结合焦点坐标可得椭圆方程;(2) 设,,设出直线AB的方程,与椭圆方程联立,消去y得到关于x的一元二次方程并写出韦达定理,根据三点共线得出M,N的坐标,求出与之积得出定值.试题解析:(1)椭圆的上顶点为,右焦点,点的坐标为.∵,可得,又,,∴代入可得,又,解得,,即椭圆的标准方程为.(2)设,,,,.由题意可设直线的方程为,联立消去,得,∴根据三点共线,可得,∴.同理可得,∴的坐标分别为,,∴.∴与之积为定值,且该定值是.点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).【答案】(1) (2)见解析【解析】试题分析:(1)求出函数的定义域和导函数,对参数m进行讨论得出函数的单调性,根据零点存在性定理判断零点的个数,求出m的取值范围;(2) 记函数,,则函数的两个相异零点为,将零点代入写出方程,并对两式相加和相减,再利用分析法以及变量集中构造新函数,并利用导数求最值的方法证得命题成立.试题解析:(1)由题意知的定义域为,且.①当时,,在区间上单调递增,又,,∴,即函数在区间有唯一零点;②当时,,令,得.又易知函数在区间上单调递增,∴恰有一个零点.③当时,令,得,在区间上,,函数单调递增;在区间上,,函数单调递减,故当时,取得极大值,且极大值为,无极小值.若恰有一个零点,则,解得,综上所述,实数的取值范围为.(2)记函数,,则函数的两个相异零点为不妨设,∵,,∴,,两式相减得,两式相加得.∵,∴要证,即证,只需证,只需证,即证,设,则上式转化为,设,,∴在区间上单调递增,∴,∴,即,即.点睛:本题考查函数的应用,利用导数解决函数的零点以及函数的单调性,最值和不等式的证明等问题.本题也考查了零点存在性定理的应用,如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得,这个c也就是方程的实数根.但是反之不一定成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)若直线与圆有公共点,试求实数的取值范围;(2)当时,过点且与直线平行的直线交圆于两点,求的值.【答案】(1) (2)【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.试题解析:(1)由,得,即,故直线的直角坐标方程为.由得所以圆的普通方程为.若直线与圆有公共点,则圆心到直线的距离,即,故实数的取值范围为.(2)因为直线的倾斜角为,且过点,所以直线的参数方程为(为参数),①圆的方程为,②联立①②,得,设两点对应的参数分别为,则,,故.23. 选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.【答案】(1) (2)【解析】分析:(1)讨论x的取值范围,把不等式转化为三个不等式组,分别求解集,最后取并集;(2)对于任意的,都存在,使得成立即的值域为值域的子集.详解:(1)依题意,得由,得或或解得.即不等式的解集为.(2)由(1)知,,,则,解得,即实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北衡水中学2018年高考押题试卷理数试卷(一)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B =( ) A .{|12}x x -≤≤ B .{1,0,1,2}- C .{2,1,0,1,2}-- D .{0,1,2} 2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.下列函数中,既是偶函数,又在(,0)-∞内单调递增的为( )A.42y x x =+ B .||2x y = C.22x xy -=- D .12log ||1y x =-4.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是( ) A.它们的焦距相等 B .它们的焦点在同一个圆上 C.它们的渐近线方程相同 D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 6.执行如图的程序框图,则输出的S 值为( )A.1009 B .-1009 C.-1007 D .1008 7.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 8.已知函数()sin()f x A x ωϕ=+(0,0,||)A ωϕπ>><的部分图象如图所示,则函数()cos()g x A x ϕω=+图象的一个对称中心可能为( )A .5(,0)2-B .1(,0)6 C.1(,0)2- D .11(,0)6-9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A.2a bab +≥(0,0)a b >> B .222a b ab +≥(0,0)a b >>C.2abab a b≤+(0,0)a b >> D .2222a b a b ++≤(0,0)a b >> 10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( ) A .720 B .768 C.810 D .81611.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为( ) A .11(,)[,)88-∞-+∞ B .11[,0)(0,]48-C.(0,8]D .11(,][,)48-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=,(2,1)b =,若向量2a b +与(8,6)c =共线,则a 和b 方向上的投影为 .14.已知实数x ,y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩且2z x y =-的最大值为a ,则2cos 2xa dx π⎰= . 15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,ABC ∆的面积为b c +的值为 .16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知23(1)(1)(1)(1)n x x x x ++++++++的展开式中x 的系数恰好是数列{}n a 的前n 项和n S .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足12(21)(21)nn n a n a a b +=--,记数列{}n b 的前n 项和为n T ,求证:1n T <.18.如图,点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心.(1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆C :22221(0)x y a b a b +=>>的长轴长为6,且椭圆C 与圆M :2240(2)9x y -+=的公共弦410. (1)求椭圆C 的方程.(2)过点(0,2)P 作斜率为(0)k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.21. 已知函数2()2ln 2(0)f x x mx x m =-+>. (1)讨论函数()f x 的单调性;(2)当m ≥时,若函数()f x 的导函数'()f x 的图象与x 轴交于A ,B 两点,其横坐标分别为1x ,2x 12()x x <,线段AB 的中点的横坐标为0x ,且1x ,2x 恰为函数2()ln h x x cx bx =--的零点,求证:1202()'()ln 23x x h x -≥-+.请考生在第22、23题中任选一题作答.并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程已知直线l的参数方程为4,2x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点. (1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值. 23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++. (1)求函数()f x 的值域M ;(2)若a M ∈,试比较|1||1|a a -++,32a ,722a -的大小.参考答案及解析 理科数学(Ⅰ)一、选择题1-5:BBDDA 6-10:BCCDB 11、12:AD二、填空题(本大题共4小题,每小题5分,共20分)14.3π 15.[2,4]ππ 三、解答题17.解:(1)23(1)(1)(1)(1)n x x x x ++++++++的展开式中x 的系数为1111123n C C C C ++++=2111223n C C C C ++++=2211122n C n n +=+, 即21122n S n n =+, 所以当2n ≥时,1n n n a S S n -=-=; 当1n =时,11a =也适合上式, 所以数列{}n a 的通项公式为n a n =.(2)证明:12(21)(21)n n n n b +==--1112121n n +---, 所以11111113372121n n n T +=-+-++---11121n +=--, 所以1n T <.18.解:(1)如图,延长OG 交AC 于点M . 因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =,所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB ,CA ,AP 方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,3,0,0)B ,31,0)2O ,(0,1,2)P ,1(0,,0)2M ,则3(2OM =-,31(,2)2OP =-.平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =,则30,23120,22n OM x n OP y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩令1z =,得(0,4,1)n =-. 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PAAB A =,所以CH ⊥平面PAB ,即CH 为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,0)44CH =. 设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅2233|0410|251441739411616-⨯+⨯=+⨯+. 19.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-, 由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元). 因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算. 20.解:(1)由题意可得26a =,所以3a =. 由椭圆C 与圆M :2240(2)9x y -+=410,恰为圆M 的直径,可得椭圆C 经过点210(2,, 所以2440199b+=,解得28b =. 所以椭圆C 的方程为22198x y +=. (2)直线l 的解析式为2y kx =+,设1122(,),(,)A x y B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360k x kx ++-=,故1223698kx x k +=-+, 所以021898k x k -=+,00216298y kx k =+=+. 因为DE AB ⊥,所以1DE k k=-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++. 当0k >时,89k k+≥=,所以012m -≤<; 当0k <时,89k k+≤-012m <≤. 综上所述,在x 轴上存在满足题目条件的点E ,且点D的横坐标的取值范围为2[(0,]12. 21. 解:(1)由于2()2ln 2f x x mx x =-+的定义域为(0,)+∞,则22(1)'()x mx f x x-+=.对于方程210x mx -+=,其判别式24m ∆=-.当240m -≤,即02m <≤时,'()0f x ≥恒成立,故()f x 在(0,)+∞内单调递增.当240m ->,即2m >,方程210xmx -+=恰有两个不相等是实根2m x ±=,令'()0fx >,得0x<<或x >,此时()f x 单调递增;令'()0f x <x <<,此时()f x 单调递减.综上所述,当02m <≤时,()f x 在(0,)+∞内单调递增;当2m >时,()f x在内单调递减,在,)+∞内单调递增.(2)由(1)知,22(1)'()x mxf xx-+=,所以'()f x的两根1x,2x即为方程210x mx-+=的两根.因为m≥,所以240m∆=->,12x x m+=,121x x=.又因为1x,2x为2()lnh x x cx bx=--的零点,所以2111ln0x cx bx--=,2222ln0x c bx--=,两式相减得11212122ln()()()0xc x x x x b x xx--+--=,得121212ln()xxb c x xx x==+-.而1'()2h x cx bx=--,所以120()'()x x h x-=1201()(2)x x cx bx---=121212121212ln2()[()()]xxx x c x x c x xx x x x--+-+++-1211222()lnx x xx x x-=-=+12112212ln1xx xx xx-⋅-+.令12(01)xt tx=<<,由2212()x x m+=得22212122x x x x m++=,因为121x x=,两边同时除以12x x,得212t mt++=,因为m≥,故152tt+≥,解得12t<≤或2t≥,所以12t<≤.设1()2ln1tG t tt-=⋅-+,所以22(1)'()0(1)tG tt t--=<+,则()y G t=在1(0,]2上是减函数,所以min12()()ln223G t G==-+,即120()'()y x x h x =-的最小值为2ln 23-+. 所以1202()'()ln 23x x h x -≥-+. 22.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得20t +=, 解得10t =,2t =-.所以直线l 被圆C截得的弦长为12||t t -=(2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数), 可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l的距离d=|2cos()4πθ=+,当cos()14πθ+=-时,d 取最大值,且d 的最大值为2所以1(222ABP S ∆≤⨯=+ 即ABP ∆的面积的最大值为223. 解:(1)3,1,1()2,1,213,.2x x f x x x x x ⎧⎪-<-⎪⎪=--≤≤⎨⎪⎪>⎪⎩ 根据函数()f x 的单调性可知,当12x =时,min 13()()22f x f ==. 所以函数()f x 的值域3[,)2M =+∞.(2)因为a M ∈,所以32a ≥,所以3012a <≤. 又|1||1|1123a a a a a -++=-++=≥,所以32a≥,知10a->,430a->,所以(1)(43)2a aa-->,所以37222aa>-,所以37|1||1|222a a aa-++>>-.。

相关文档
最新文档