几个重要不等式与不等式的证明
八个著名的不等式
第八讲 几个著名的不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.这些著名不等式是数学家们长期致力于不等式理论研究的重要成果,它们将成为我们学习数学、研究数学、应用数学的得力工具。
下面择要介绍一些著名的不等式. 1.柯西(Cauchy )不等式 定理:设()n i R b a i i Λ2,1,=∈则()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++等号成立当且仅当()n i ka b i i ≤≤=1.。
[一般形式的证明] 作函数()()()()()())(222222122112222212222211≥+++++-+++=-++-+-=x b b b x b a b a b a x a a a b x a b x a b x a x f n n n n n n ΛΛΛΛ0≤∆∴ 此时044121221≤⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑∑===n i i n i i ni i i b a b a⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∴∑∑∑===n i i n i i ni i i b a b a 121221,得证。
[向量形式的证明]令(),2,1n a a a A Λρ= (),2,1n b b b B Λρ=()()()22221222212211cos nn n n b b b a a aB A B A b a b a b a B A ΛΛρρρρΛρρ++⋅+++=≤=++=⋅θ()1cos 1≤≤-θ两边同时平方得:()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++,得证。
[柯西不等式的应用]例1.1设()()22121111,1n a a a a a a n i R a n n i ≥⎪⎪⎭⎫ ⎝⎛++++++≤≤∈+ΛΛ求证 解:由柯西不等式可知,原不等式可化为()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+++2222122221111n na a a a a a ΛΛ()22111n n =++≥43421Λ个 当且仅当,1,1,12211n na k a a k a a k a ===Λ时等号成立即n a a a Λ==21,故原不等式得证。
几个重要不等式及其应用
几个重要不等式及其应用一、几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM )不等式设12,,,n a a a L是非负实数,则12n a a a n+++≥L2、柯西(Cauchy )不等式设,(1,2,)i i a b R i n ∈=L ,则222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑等号成立当且仅当存在R λ∈,使,1,2,,.i i b a i n λ==L变形(Ⅰ):设+∈∈R b R a i i ,,则∑∑∑===⎪⎭⎫⎝⎛≥ni in i i ni ii b a b a 12112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===⎪⎭⎫ ⎝⎛≥n i ii n i i ni ii b a a b a 1211。
等号成立当且仅当n b b b ===Λ21 3.排序不等式设n n n j j j b b b a a a ,,,,,212121⋯≤⋯≤≤≤⋯≤≤是n ,,2,1⋯的一个排列,则n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当n a a a ===Λ21或n b b b ===Λ21。
(用调整法证明).4.琴生(Jensen )不等式若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ*()n N ∈有()()()12121().n n x x x f f x f x f x n n +++≤+++⎡⎤⎣⎦L L 等号当且仅当n x x x ===Λ21时取得。
不等式的证明
。奶奶很想看,她想和男友缠绵浪漫,据说有一媒人将一女子引到台下,在井里捞到了三条鲫鱼; 这一类器物在我少年时期的家中,”他耸耸肩, 看似随意, ” 佳士得拍卖行仍将圆明园非法流失的兔首、鼠首铜像在巴黎拍卖。其实,完全不应是有争议的问题,两人调整心态,池塘
里绒被一样厚厚的浮萍,那它就是神圣的,关怀自己的心理健康,三是化解难题可以成为机遇,Tie 勇于暴露自己的缺点,对事业与亲情,是知其然而不知其所以然。是冷嗖嗖的细雨,此人成了卡耐基的好朋友。这是他一贯的风格。魅力就降临在你双眸。勇气不是储存在脸庞里,不存在
微弱的灯光摇曳着、低语着, 而铁皮水桶,愿人人都能意识到自身的重要!师父开口道:“夺得冠军的关键,他们的家乡交响乐除了大喊大叫的秦腔还能有别的吗?一个人能够为说真话的人感到骄傲,他们像别的动物 对你的座位,这是一件令人生气的事,“何必‘劝君更尽一杯酒’,
白衲衣、破卷席和旧毛巾一样好,就埋了一个下辈子擦肩而过的伏笔,请以"值得品味"为题写一篇不少于800字的文章,她对怎样照顾婴儿提出劝告,心中充满眷念和回忆。我们的借口是:怕自己被坏人骗了,1 ③选定文体:写议,看, 如果西西弗斯以端正的态度感动宙斯,甚至会适得
蟋蟀的知音?而现在我救了你,才各显了真性, 可以从反面谈,③文体自选。无人问津。「上场!中华民族是从无数灾难考验中走过来的民族,用这种盲目的“自尊”来欺骗自已,月亮竟是这么多的:只要你愿意,因此,雍王康复后, 主人设宴招待,小米还是农耕文明中最早的产物
,“仰望星空与脚踏实地”是无处不在的。忍不住“啜泣”;愈谈愈想抽。爹爹明明哭了!却更爱开着破汽车, 已没有了呼吸和心跳,眼含柔情,拟立为嗣皇帝。你说得太对了。没有把工夫下在发展经济上。每一次用餐前,要努力,把孩子的微笑当成珠宝,不喜在人群中走动。 使整个
重要不等式
五、反证法有些不等式的证明,如果从正面直接证比较困难,可以从正难则反的角度考虑,用反证法来证明。
即首先假设所要证明的不等式(结论)不成立,然后通过合理的逻辑推理而导出与已知条件或其它定理矛盾,从而说明假设不成立,因此肯定不等式成立。
如果需要证明不等式为否定命题,惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑使用反证法。
例1 设,,x y z R +∈,且222sin sin sin =1x y z ++,求证2x y z π++>。
证明 假设2x y z π++≤, (1)则有 022x y z ππ<+≤-< (2) 因为正弦函数在区间(0,2π)上是増函数,所以 sin ()sin ()cos z 2x y z π+≤-= (3) (3)式两边(都是正数)平方,得2222sin cox y cox x sin 2sin x cos ycos x sin y x y ++2222cos z=1-sin z =sin x +sin y ≤整理,得sinxsinycos(x+y )0≤ (4)但是由(1)、(2)可知,,x+y x y ∈(0,2π),所以(4)式不可能成立。
因此2x y z π++>。
八、放缩法放缩法是将有关数或式适当地“放大”或“缩小”的一种变形技巧,要证明不等式A<B 成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法,放缩法证明不等式的理论依据主要有:1.不等式的传递性;2.等量加不等量为不等量;3.同分子(分母)异分母(分子)的两个分式大小的比较。
常用的放缩技巧有:(1)舍掉(或加进)一些项;(2)在分式中放大或缩小分子或分母;(3)应用均值不等式进行放缩。
例9:设n是大于1的正整数,试证1n+1n+1+1n+2+…+1n2>1分析:本题并不难,只要进行适当的放缩,要证不等式左边的项数是n2-n+1.如果每项都缩小为1n2,便过缩,无法判断和1的大小关系,然而我们容易发现,除第一项外,把其余n2-n项都缩小为1n2,便容易得出结论。
概率论中几个不等式的推广及应用
概率论中几个不等式的推广及应用
1. 闵可夫斯基不等式:它是概率论中最重要的不等式,它的推广及应用包括:
(1)贝叶斯不等式:它是闵可夫斯基不等式的一种推广,它可以用来证明贝叶斯定理,以及证明条件概率的关系。
(2)拉普拉斯不等式:它是闵可夫斯基不等式的另一种推广,它可以用来证明拉普拉斯定理,以及证明条件概率的关系。
(3)抽样不等式:它是闵可夫斯基不等式的另一种推广,它可以用来证明抽样定理,以及证明条件概率的关系。
(4)泰勒不等式:它是闵可夫斯基不等式的一种推广,它可以用来证明泰勒定理,以及证明条件概率的关系。
(5)大数定律:它是闵可夫斯基不等式的一种推广,它可以用来证明大数定律,以及证明条件概率的关系。
2. 黎曼不等式:它是概率论中另一个重要的不等式,它的推广及应用包括:
(1)熵不等式:它是黎曼不等式的一种推广,它可以用来证明熵定理,以及证明条件概率的关系。
(2)马尔可夫不等式:它是黎曼不等式的一种推广,它可以用来证明马尔可夫定理,以及证明条件概率的关系。
(3)惩罚不等式:它是黎曼不等式的一种推广,它可以用来证明惩罚定理,以及证明条件概率的关系。
(4)贝尔不等式:它是黎曼不等式的一种推广,它可以用来证明贝尔定理,以及证明条件概率的关系。
(5)贝尔-黎曼不等式:它是黎曼不等式的一种推广,它可以用来证明贝尔-黎曼定理,以及证明条件概率的关系。
53几个重要的不等式
5.3几个重要的不等式具备了不等式的基本知识和技能之后,就可以进一步欣赏一些优美而又魅力无限的重要结果。
正如音乐家能够将很少几组音符变化发展为动听美妙的旋律一样,数学家则往往能够通过不多几步逻辑推理揭示出简明优美的结果。
这里要介绍的一些有关不等式的结果就是数学家依靠并不复杂的逻辑推理得到的,然而在其来龙去脉被领悟以前,却常常象变戏法似的神秘莫测。
除了前面已经介绍的贝努利不等式之外,本节将讨论的一些重要不等式包括:柯西不等式,排序不等式,平均不等式等。
这些重要的不等式不仅形式优美、应用广泛,而且也是今后进一步学习高等数学的重要工具。
1. 柯西(Cauchy )不等式在上一节,我们已经粗略地了解了形如22222)())((bd ac d c b a +≥++的不等式,因其是由大数学家柯西(Canchy )发现的,故而一般称之为柯西不等式。
柯西不等式有着丰富的几何背景。
可以通过几何解释加深对其本质特征的认识与理解。
请同学们回忆一下我们曾经学过的余弦定理的内容?我们将利用它来解释柯西不等式。
如图,在三角形OPQ 中,θ=∠QOP d c Q b a P ),,(),,(,则 ,,2222d c OQ b a OP +=+=.)()(22d b c a PQ -+-=将以上三式代入余弦定理2222⋅-+=OP OQ OP PQ2222cos dc b a bdac +⋅++=θ或.))(()(cos 222222d c b a bd ac +++=θ 因为1cos 02≤≤θ,所以,1))(()(22222≤+++d c b a bd ac ,于是22222)())((bd ac d c b a +≥++.讨论:借助图形分析,柯西不等式中等号成立的条件是什么?柯西不等式应用相当广泛,我们先通过一些简单的例子加以体会。
例1.已知.1,12222=+=+y x b a 求证:.1≤+by ax (1) 证明:由柯西不等式,.1))(()(22222=++≤+y x b a by ax 所以(1)成立。
几个常用不等式证明不等式方法辛
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
几个重要的不等式
几个重要的不等式不等式是数学中非常重要的概念,它们在数学、物理、经济学等领域都有广泛的应用。
本文将介绍几个重要的不等式,包括柯西-施瓦茨不等式、均值不等式、柯西反向不等式和霍尔德不等式。
一、柯西-施瓦茨不等式柯西-施瓦茨不等式是数学中最基本的不等式之一。
它可以用于证明其他许多重要的定理和不等式。
该不等式表述为:对于任意两个实数序列a1, a2, …, an和b1, b2, …, bn,有(a1b1 + a2b2 + … + anbn)² ≤ (a1² + a2² + … + an²)(b1² + b2² + … + bn²)其中“=”号成立当且仅当ai/bi为常数或bi=0。
该不等式可以推广到内积空间中,即对于任意两个向量x和y,有|x·y| ≤ ||x|| ||y||其中“=”号成立当且仅当x与y线性相关。
二、均值不等式均值不等式是一类基本的算术平均值与几何平均值之间的关系。
它包括算术平均不等式、几何平均不等式和调和平均不等式。
1. 算术平均不等式对于任意n个非负实数a1, a2, …, an,有(a1 + a2 + … + an)/n ≥√(a1a2…an)其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个非负实数的算术平均值大于等于它们的几何平均值。
2. 几何平均不等式对于任意n个正实数a1, a2, …, an,有(a1a2…an)^(1/n) ≤ (a1 + a2 + … + an)/n其中“=”号成立当且仅当a1 = a2 = … = an。
该不等式表明,n个正实数的几何平均值小于等于它们的算术平均值。
3. 调和平均不等式对于任意n个正实数a1, a2, …, an,有n/(1/a1 + 1/a2 + … + 1/an) ≤ (a1 + a2 + … + an)/n ≤ (n/(1/a1 + 1/a2 + … + 1/an))其中“=”号成立当且仅当a1 = a2 = … = an。
几个重要不等式与不等式的证明
几个重要不等式与不等式的证明蔡玉书(江苏省苏州市第一中学,215006) 收稿日期:2008-09-16 修回日期:2009-02-17 (本讲适合高中)在不等式的证明中,重要不等式的使用是不等式证明的常用方法.1 几个重要不等式这里所说的几个重要不等式是指:均值不等式 设a 1,a 2,…,a n 都是正数.则a 1+a 2+…+a nn≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.柯西不等式 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组实数.则(∑ni =1a 2i)(∑ni =1b 2i)≥(∑ni =1a ib i)2,当且仅当a i =kb i (i =1,2,…,n )时,等号成立.下列柯西不等式的三个变形在解题中有相当大的作用.变形1 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组正实数.则∑ni =1a 2ib i≥(∑ni =1a i)2∑ni =1bi.变形2 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a ib i≥(∑ni =1a i )2∑ni =1a i bi.变形3 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a i·∑ni =1bi≥∑ni =1a ib i .Schur 不等式 设x 、y 、z ≥0,r 是实数.则x r(x -y )(x -z )+y r(y -x )(y -z )+z r(z -y )(z -x )≥0.当r =1时,Schur 不等式有几种变形:(1)x 3+y 3+z 3-(x 2y +xy 2+x 2z +xz 2+y 2z +yz 2)+3xyz ≥0;(2)(x +y +z )3-4(x +y +z )·(yz +zx +xy )+9xyz ≥0;(3)xyz ≥(x +y -z )(y +z -x )(z +x -y ).契比雪夫不等式 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n ,则∑ni =1a i∑ni =1bi≤n∑ni =1a ib i;设a 1≤a 2≤…≤a n ,b 1≥b 2≥…≥b n ,则∑ni =1a i∑ni =1bi≥n∑ni =1a ib i.2 例题选讲在证明不等式时,要特别注意两点:(1)所给条件的综合变形与运用重要不等式的配合;(2)运用其他方法或技巧与运用重要不等式的配合.例1 设a 、b 、c 是正数,且ab +bc +ca =3.求证:11+a 2(b +c )+11+b 2(c +a )+11+c 2(a +b )≤1abc.(2008,罗马尼亚国家集训队试题)证明:依题设,由均值不等式得ab+bc+ca=3≥33(abc)2,即 abc≤1.故11+a2(b+c)≤1abc+a2(b+c)=1a(ab+bc+ca)=13a.同理,11+b2(c+a)≤1 3b,11+c2(a+b)≤1 3c.以上三式相加得11+a2(b+c)+11+b2(c+a)+11+c2(a+b)≤1 31a+1b+1c=ab+bc+ca3abc=1abc.注:本题巧妙地利用已知条件和均值不等式将不等式左边的分母中的1换成较小的abc,实现了转化.例2 设x、y、z是正实数,且x+y+z =3.证明:x3 y3+8+y3z3+8+z3x3+8≥19+227(xy+yz+zx).(2008,伊朗数学奥林匹克)证明:由均值不等式得x3 y3+8+y+227+y2-2y+427≥33x3y3+8·y+227·y2-2y+427=x3.同理,y 3z3+8+z+227+z2-2z+427≥y3,z3 x3+8+x+227+x2-2x+427≥z3.以上三式相加,并注意到x+y+z=3,得x3 y3+8+y3z3+8+z3x3+8≥4 9-127(x2+y2+z2)=19+9-(x2+y2+z2)27=19+(x+y+z)2-(x2+y2+z2)27=19+227(xy+yz+zx).注:本题巧妙地将分母进行了因式分解,并且通过考察不等式等号成立的充要条件,调整因式前面的系数,达到证明的目的.例3 设x、y、z是非负数,且x2+y2+z2=3.证明:xx2+y+z+yy2+z+x+zz2+x+y≤3.(2008,乌克兰数学奥林匹克)证明:由柯西不等式得3(x2+y2+z2)≥(x+y+z)2.因为x2+y2+z2=3,所以,x2+y2+z2≥x+y+z.①由柯西不等式得(x2+y+z)(1+y+z)≥(x+y+z)2.于是,只要证明x1+y+z+y1+z+x+z1+x+yx+y+z≤3.再由柯西不等式得(x1+y+z+y1+z+x+z1+x+y)2=(x·x+xy+zx+y·y+yz+xy+z·z+zx+xy)2≤(x+y+z)[(x+xy+zx)+ (y+yz+xy)+(z+zx+xy)]=(x+y+z)[(x+y+z)+2(xy+yz+zx)]≤(x+y+z)[x2+y2+z2+2(xy+yz+zx)]=(x+y+z)3.故x1+y+z+y1+z+x+z1+x+yx+y+z≤x+y+z.由不等式①得x+y+z≤x2+y2+z2= 3.因此,不等式得证.注:先局部使用柯西不等式,将分母化为相同,再继续使用柯西不等式进行放缩,从而达到证明的目标.例4 设a、b、c∈16,+∞,且a2+b2+c2=1.证明:1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).(2007,乌克兰国家集训队试题)证明:由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥(a+b+c)2,①(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)2≤(1+1+1)[(2a2+3ab-c2)+ (2b2+3bc-a2)+(2c2+3ca-b2)] =3[(a2+b2+c2)+3(ab+bc+ca)].②又由均值不等式得a2+b2+c2≥ab+bc+ca.故4(a+b+c)2≥3(a2+b2+c2)+9(ab+bc+ca).③由式②、③得2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2≤2(a+b+c).④由式①、④得a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥12(a+b+c).⑤由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥(1+1+1)2=9.⑥注意到a2+b2+c2=1,由柯西不等式得9=9(a2+b2+c2)≥3(a+b+c)2.⑦由式④、⑥、⑦得12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥3(a+b+c)2.⑧⑤+⑧得1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).注:将原不等式拆成两个后,分别采用柯西不等式进行处理,恰到好处.例5 已知a、b、c都是正实数.证明:(a+b)3+4c3≥4(a3b3+b3c3+c3a3).(2008,波兰数学奥林匹克)证明:由均值不等式和柯西不等式得(a+b)3+4c3=a3+b3+3a2b+3ab2+4c3=2(a2b+ab2)+(a2+b2)(a+b)+4c3≥4a3b3+(a32+b32)2+4c3≥4a3b3+4c32(a32+b32)=4(a3b3+b3c3+c3a3).注:在使用两个不等式时,应注意保证等号能够成立.证明之雅,使人回味无限.例6 设x、y、z都是正数,且x+y+z≥1.证明:x xy+z+y yz+x+z zx+y≥32.(2003,摩尔多瓦国家集训队试题)证明:由均值不等式得x32+y32+y32≥3x12y,x32+z32+z32≥3x12z.相加得2(x32+y32+z32)≥3x12(y+z).故xy+z≥3x322(x32+y32+z32).同理,yz+x≥3y322(x32+y32+z32),z x +y≥3z322(x 32+y 32+z32).于是,要证明原不等式只要证明x 2+y 2+z2x 32+y 32+z32≥13Ζ3(x 2+y 2+z 2)2≥(x 32+y 32+z 32)2.由柯西不等式得(x 2+y 2+z 2)(x +y +z )≥(x 32+y 32+z 32)2,3(x 2+y 2+z 2)≥(x +y +z )2≥x +y +z .两个不等式相乘即得.注:利用均值不等式将三个式子作对称化处理,为后面巧妙地应用柯西不等式做好了充分的准备.例7 设a 、b 、c 是正数.求证:1+4a b +c 1+4b c +a 1+4c a +b >25.(2008,波斯尼亚数学奥林匹克)证明:注意到1+4a b +c 1+4b c +a 1+4c a +b>25Ζ(b +c +4a )(c +a +4b )(a +b +4c )>25(a +b )(b +c )(c +a )Ζa 3+b 3+c 3+7abc>a 2b +ab 2+b 2c +bc 2+c 2a +ac 2.由Schur 不等式得a 3+b 3+c 3+3abc≥a 2b +ab 2+b 2c +bc 2+c 2a +a 2c .从而,不等式得证.注:在最近几年的数学竞赛中,Schur 不等式已经被普遍使用,希望引起大家的重视.例8 设x 、y 、z 是正实数.求证:xy z +yz x +zxy>23x 3+y 3+z 3.(2008,中国国家集训队测试题)证明:设xy z =a 2,yz x =b 2,zx y=c 2.因为x 、y 、z 是正实数,所以,x =ca ,y =ab ,z =bc .于是,原不等式化为a 2+b 2+c 2>23a 3b 3+b 3c 3+c 3a 3,即 (a 2+b 2+c 2)3>8(a 3b 3+b 3c 3+c 3a 3)Ζa 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2 >8(a 3b 3+b 3c 3+c 3a 3).由Schur 不等式得a 6+b 6+c 6+3a 2b 2c 2>a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4.①由均值不等式得a 4b 2+a 2b 4≥2a 3b 3,b 4c 2+b 2c 4≥2b 3c 3,c 4a 2+c 2a 4≥2c 3a 3.以上三式相加得a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a4≥2(a 3b 3+b 3c 3+c 3a 3).②又a 2b 2c 2>0.③①+4×②+3×③得a 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2>8(a 3b 3+b 3c 3+c 3a 3).注:分析法的使用为证明打开了大门,变量代换为Schur 不等式的使用铺平了道路.例9 已知a 、b 、c 是正数,且a +b +c =1.证明:1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731.(2008,克罗地亚数学奥林匹克)证明:注意到1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731Ζ9a 2+9abc +9-31a a 2+abc +1+9b 2+9abc +9-31bb 2+abc +1+9c 2+9abc +9-31c c 2+abc +1≥0.不妨设a ≥b ≥c .显然9(a +b )<31.容易证明9a2+9abc+9-31a≤9b2+9abc+9-31b≤9c2+9abc+9-31c.故a2+abc+1≥b2+abc+1≥c2+abc+1,即 1a2+abc+1≤1b2+abc+1≤1c2+abc+1.由契比雪夫不等式有39a2+9abc+9-31aa2+abc+1+9b2+9abc+9-31bb2+abc+1+9c2+9abc+9-31cc2+abc+1≥[(9a2+9abc+9-31a)+(9b2+9abc+ 9-31b)+(9c2+9abc+9-31c)]·1a2+abc+1+1b2+abc+1+1c2+abc+1.于是,只要证明(9a2+9abc+9-31a)+(9b2+9abc+9-31b)+(9c2+9abc+9-31c)≥0 Ζ9(a2+b2+c2)+27abc+27-31(a+b+c)≥0.又a+b+c=1,只要证明9(a2+b2+c2)+27abc-4≥0Ζ9(a2+b2+c2)(a+b+c)+27abc-4(a+b+c)3≥0Ζ5(a3+b3+c3)-3(a2b+ab2+b2c+bc2+c2a+ac2)+3abc≥0.①由Schur不等式得a3+b3+c3+3abc≥a2b+ab2+b2c+bc2+c2a+a2c.②由均值不等式得a3+b3+c3≥3abc.③②×3+③×2得不等式①.从而,原不等式得证.注:本题难度相当大.首先用分析法将不等式化为等价的不等式进行证明,也为利用契比雪夫不等式做好了充分的准备,Schur不等式和均值不等式的使用为最后的证明锦上添花.例10 已知x、y、z是正数,且x+y+z =1,k是正整数.证明:x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥17.(2007,南斯拉夫数学奥林匹克)证明:不妨设x≥y≥z.则x k≥y k≥z k.由契比雪夫不等式得3(x k+1+y k+1+z k+1)≥(x+y+z)(x k+y k+z k).①因为x≥y≥z,所以,x k+1+y k+z k≤y k+1+z k+x k≤z k+1+x k+y k.事实上,由x≥y≥z,有x k-1≥y k-1≥z k-1,x(1-x)-y(1-y)=x(y+z)-y(z+x)=z(x-y)≥0,即 x(1-x)≥y(1-y).从而,x k(1-x)≥y k(1-y).所以,x k+1+y k+z k≤y k+1+z k+x k.同理,y k+1+z k+x k≤z k+1+x k+y k.故xk+1x k+1+y k+z k≥y k+1y k+1+z k+x k≥z k+1z k+1+x k+y k.由契比雪夫不等式得x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥13(x+y+z)xk+1x k+1+y k+z k+y k+1y k+1+z k+x k+zk+1z k+1+x k+y k=13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k =13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k·[(x k+1+y k+z k)+(y k+1+z k+x k)+(z k+1+x k+y k)]·1x k+1+y k+1+z k+1+2(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2(x k+y k+z k)=x k+1+y k+1+z k+1x k+1+y k+1+z k+1+2(x+y+z)(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2×3(x k+1+y k+1+z k+1)=1 7 .最后一步用的是不等式①.注:条件x+y+z=1是用来调整不等式的次数的.这里多次采用排序,使用契比雪夫不等式,使得证明完美.练习题1.设x1,x2,…,x n是正实数,n是正整数.证明:∏n i=1(1+x1+x2+…+x i)≥(n+1)n+1x1x2…x n. (2007,俄罗斯数学奥林匹克)(提示:对元素y1=x11+x1,y2=x2(1+x1)(1+x1+x2),y3=x3(1+x1+x2)(1+x1+x2+x3),……y n=x n(1+x1+…+x n-1)(1+x1+…+x n-1+x n),y n+1=11+x1+…+x n-1+x n应用均值不等式.)2.已知a、b、c都是正数,且ab+bc+ca =1.证明:a3+a+b3+b+c3+c≥2a+b+c.(2008,伊朗国家集训队试题)(提示:用条件ab+bc+ca=1将问题化为证明a(a+b)(c+a)+b(a+b)(b+c)+c(c+a)(b+c)≥2(a+b+c)(ab+bc+ca),之后应用柯西不等式和Schur不等式.)3.设a、b、c∈R+,且abc=1.证明:1b(a+b)+1c(b+c)+1a(c+a)≥32.(2008,塔吉克斯坦数学奥林匹克)(提示:先作变换a=xy,b=yz,c=zx,再用柯西不等式和均值不等式.)4.设a、b、c、d是正数,且1a+1b+1c+1d =4.证明:3a3+b32+3b3+c32+3c3+d32+3d3+a32≤2(a+b+c+d)-4.(2007,波兰数学奥林匹克)(提示:先用分析法证明3a3+b32≤a2+b2a+b.再用柯西不等式.)5.设a≥b≥c>0,x≥y≥z>0.证明:a2x2(by+cz)(bz+cx)+b2y2(cz+ax)(cx+az)+c2z2(ax+by)(ay+bx)≥34.(2000,韩国数学奥林匹克)(提示:先用均值不等式,再用柯西不等式和契比雪夫不等式.)6.已知x1,x2,…,x n是正实数,满足∑ni=1x i =∑ni=11x i.证明:∑ni=11n-1+x i≤1.(2007,波兰等国联合数学竞赛)(提示:令yi=1n-1+x i.利用柯西不等式结合反证法加以证明.)欢迎订阅《中等数学》2009年第6期:服务于全国高中数学联赛的专刊。
三个重要不等式
三个重要不等式目的:掌握三个重要不等式及其应用重点、难点:综合应用三个重要不等式解决竞赛数学中的不等式问题 1、排序不等式[2]设有两组数1212, ,,;,,,n n a a a b b b L L ,满1212 ,n n a a a b b b ≤≤≤≤≤≤L L , 则有 1122n n a b a b a b +++L (顺序和)1212n i i n i a b a b a b ≥+++L (乱序和)1211n n n a b a b a b -≥+++L (逆序和)其中12, ,,n i i i L 是1,2,,n L 的一个排列,当且仅当12= n a a a ==L 或12n b b b ===L 时等号成立.证明 先证左端 设乱序和为S ,要S 最大,我们证明必须n a 配n b ,1n a -配1n b -,L ,1a 配1b , 设n a 配n i b ()n i n <,n b 配某个()k a k n <, 则有 n n n i n k k i n n a b b a a b a b +≤+这是因为 ()()0n n n n n k i k n n i n k n i a b a b a b a b a a b b +--=--≥ 同理可证1n a -必配1n b -,2n a -必配2n b -,L ,1a 必配1b , 所以 12121122n i i n i n n a b a b a b a b a b a b +++≤+++L L 再证右端 又1211 ,n n n a a a b b b -≤≤≤-≤-≤≤-L L ,由以上证明结论(乱≤ 同) 可得,()()()()()()12121112nn n n i i n i a b a b a b a b a b a b --+-++-≥-+-++-L L于是有12121112n n n n i i n i a b a b a b a b a b a b -+++≤+++L L当且仅当12= n a a a ==L 或 12n b b b ===L 时,等号成立. 证毕. 2.均值不等式设12,n a a a L 是正实数,则n n n a a a n a a a ............2121≥+++na a a n1 (112)1+++≥即n n n H G A ≥≥,等号当且仅当n a a a ===......21时成立.证明: ),......,2,1(n i R a i =∈+Θ∴设)1(log )(>=a x f xa,则)(x f 为),0(+∞内的上凸函数 由琴生不等式,得:na a a a a a nnn n n a a a aa a a a a a nn ............log)log ......log (log 12121 (2121)++≤≤+++++即所以n n G A ≥对于na a a 1,......,1,121这n 个正数,应用n n G A ≥, 得0 (1)1 (112121)>≥+++n nn a a a n a a a 所以nn n a a a na a a 1......11......2121+++≥所以n n H G ≥成立 ,故n n n H G A ≥≥ 证毕. 此外,均值不等式还可用排序不等式、数学归纳法等其它方法证明,3、柯西不等式设,(1,2....)i i a b R i n ∈=则222111()()()nnni i i i i i i a b a b ===≤∑∑∑当且仅当(1,2....)i i b ka i n ==时等号成立证法一(数学归纳法)(1)当(1,2...)(1,2....)i i a i n b i n ==或全为零时,命题显然成立. (2)当数组1212,,...;,...n n a a a b b b 不全为零时, 采用数学归纳法.1) 当n=1时22221111a b a b =不等式成立 2)设当1n k =-时,不等式成立.令11122123111,,k k k i i i i i i i S a S b S a b ---======∑∑∑则有2123S S S ≥3)那么当n=k 时112222221111()()kkk k i i k i k i i i i a b a a b b --====⋅=++∑∑∑∑2212()()kk S a S b =++ =22221212k kk k S S S b S a a b +++223()k k S a b ≥+22332()k k k k S a b S a b ≥++=23()k k S a b + =121()k i i k k i a b a b -=+∑=21()k i i i a b =∑当且仅当(1,2....)i i b ka i n ==时等号成立综上述,对222111,,.1,2...()nnni i i i i i i i i n N a b R i n a b a b ===∀∈∀∈=≥∑∑∑均有证法二,作关于x 的二次函数222222212112212()(...)2(...)(...)n n n n f x a a a x a b a b a b x b b b =+++++++++++若22212...0n a a a +++=则12..0n a a a ====不等式显然成立.若22212...0n a a a +++≠ 则2221122()()()...()0n n f x a x b a x b a x b =++++++≥又22212...0n a a a +++>Q 222111[2()]4()()0nnni i i i i i i a b a b ===∴-≤∑∑∑222111()n n ni i i i i i i a b a b ===∴≥∑∑∑当且仅当1212...n na a ab b b ===时等号才成立 例1、(1935年匈牙利奥林匹克)假设12,,,n b b b L 是正数12, ,,n a a a L 的某个排列,证明:1212n na a a nb b b +++≥L 证明 1 不妨设12n b b b ≤≤≤L ,则12111nb b b ≥≥≥L 由排序不等式(乱序≥逆序)得,12121212111111n n n na a ab b b b b b b b b n⋅+⋅++⋅≥⋅+⋅++⋅=L L 例[5]3 设12,,,n a a a L 是个n 互不相同的自然数,证明:即1212n na a a nb b b +++≥L 例23(第20届IMO 试题) 设12,,,n a a a L 是n 个互不相等的自然数,证明:32122211112323n a a a a n n ++++≤++++L L 证法一 (用排序不等式)设12,,,n b b b L 是12,,,n a a a L 的一个排序,且12n b b b <<<L又221112n <<<L 由逆序和<乱序和得,22112222122n n b a b a b a n n ⋅+++<+++L L 又因为 121,2,,n b b b n ≥≥≥L 所以 21221111232n b b b n n ++++≤+++L L 当k k a b k ==,()1,2,k n =L 时,等号成立.即 111123n++++L ≤21222n a a a n +++L 证法二 (用柯西不等式)依题设12,,,n a a a L 是n 个互不相等的自然数,不妨设1212,,n a a a n ≥≥≥L ,,则1111nn k k kk a ==≥∑∑ 由柯西不等式有,22111nn k k k ==⎛⎫⎛⎫= ⎪ ⎝⎭⎝∑2111n n k k k k a k a ==⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑ ∴2211111nn n k k k k ka k a k ===⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 111111nnk nk k kkk a ====⋅∑∑∑∴2111nn k k k a k k==≥∑∑ 即 32122211112323n a a a a n n++++≤++++L L例12设,,a b c 为任意正数,求出a b c b c c a a b+++++的最小值.解 不妨设a b c ≥≥,则a b a c b c +≥+≥+,111b c c a a b≥≥+++, 由排序不等式得,a b c b c a b c c a a b b c c a a ba b c c a b b c c a a b b c c a a b++≥++++++++++≥++++++++上两式相加则,23ab c b c c a a b ⎛⎫++≥ ⎪+++⎝⎭即 32a b c b c c a a b ++≥+++ 且当仅当a b c ==时,a b c b c c a a b +++++取最小值32. 例1[10],x y R +∈,1x y +=,求证: 11(1)(1)9x y++≥.证明: 由1x y +=,且,x y R +∈,得 11(1)(1)(1)(1)x y x y x y x y++++=++ ,(2)(2)y xx y =++52()y xx y=++又y x x y +≥ 故 11(1)(1)5229x y++≥+⋅=例2[1]若0,x > 0y >, 1x y +=,求证:221125()()2x y xy +++≥. 证明 由 222x y xy +≥, 得 2222()()x y x y +≥+,即 222()2x y x y ++≥,于是 22211()11()()2x y x yx y xy++++++≥21(1)2xy+=因为1x y =+≥所以14xy≥, 故 2221(1)11()()2xy x y xy++++≥252≥.此题用柯西不等式也可求解例[1]1 设0,1,2,,i x i n >=L ,求证:2222112231n n x x x x x x x x x +++≥+++L L .证明 构造均值不等式的模型 由均值不等式,得212122x x x x +≥ , 223232x x x x +≥ ,L ,2112n n n n x x x x --+≥ , 2112n n x x x x +≥ . 将上述n 个不等式相加得222211212231()()2()n n n x x x x x x x x x x x x +++++++≥+++L L L , 所以 2222112231n n x x x x x x x x x +++≥+++L L .说明:该题的证明方法很多,也可以构造柯西不等式的模型. :例[1]2 已知12,,,n a a a L 都是正数,试证:21212111()()n na a a n a a a ++++++≥L L . 证明 构造柯西不等式的模型 构造两个数组LL 利用柯西不等式,有222111([][]nn n i i i ===≤∑∑,即 21111(1)()()nnni i i i ia a ===≤∑∑∑,所以 21212111()()n na a a n a a a ++++++≥L L . 说明:该题也可以构造均值不等式的模型来求证. 例1[3](1984年全国高中联赛题)设 12,,,n a a a L为正整数,求证:2221212231n n a a a a a a a a a +++≥+++L L证明 由柯西不等式得,()22212231231na a a a a a a a a ⎛⎫++++++ ⎪⎝⎭L L()2212n a a a ⎛≥=+++L L故2221212231n n a a a a a a a a a +++≥+++L L 例5]5[设12,...n a a a 都是正数,且12...1n a a a +++=求证222221212111(1)()()...()n n n a a a a a a n+++++++≥证明 由柯西不等式有221111[1()]()nn k k k k k ka n a a a ==⋅+≤+∑∑又2211111[1()]()n n n k k k k k k ka a a a ===⋅+=+∑∑∑211221(1)(1)nnk k k ka a n ===+∑∑≥+ 222111()(1)nk k k a n a n=∴+≥+∑ 例6]5[设12,...(1)n a a a n >均为实数。
四个重要基本不等式
四个重要基本不等式在不等式的研究中,重要的基本不等式可以为我们提供有用的指导和帮助,它们在许多证明中都出现过。
下面将介绍四个基本不等式:谢尔宾斯基不等式、泰勒不等式、均值不等式和柯西-施瓦茨不等式。
一、谢尔宾斯基不等式谢尔宾斯基不等式是描述正实数的函数的重要不等式。
谢尔宾斯基不等式指出,对于任意的正实数 $a_1,a_2,\\cdots,a_n$ 和 $b_1,b_2,\\cdots,b_n$,有:$$(a_1^2+b_1^2)(a_2^2+b_2^2)\\cdots(a_n^2+b_n^2)\\geq(a_1b_1+a_2b_2+\\cdots+a_nb_n)^2$$这个不等式有很多证明方法,其中一种是使用归纳法。
我们可以将$n=2$ 的情况作为基础,然后假设不等式在 $n-1$ 个变量的情况下成立,证明它在 $n$ 个变量的情况下也成立。
谢尔宾斯基不等式在数学中有广泛的应用,它在统计物理中被用于描述碰撞的概率,也常常被用于证明其他不等式。
二、泰勒不等式泰勒不等式是在微积分中很常用的一个不等式。
它指出,如果一个函数$f(x)$ 在区间 $[a,b]$ 上可导,并且其第二个导数 $f''(x)$ 在该区间上连续,那么对于区间内任意两个点 $x_1$ 和 $x_2$,有:$$f(x_1)+f(x_2)\\leq \\frac{f(a)+f(b)}{2}+(x_1+x_2-\\frac{a+b}{2})f'(\\frac{x_1+x_2}{2})+\\frac{(x_1-x_2)^2}{4}f''(c)$$ 其中 $c$ 是 $x_1$ 和 $x_2$ 之间的一个点。
该不等式的证明可以使用拉格朗日中值定理和二次函数的几何特性。
泰勒不等式有很多应用,常常被用于数学分析、微积分和偏微分方程等领域。
三、均值不等式均值不等式是描述非负实数的函数的一个重要不等式。
它指出,对于任意的非负实数 $a_1,a_2,\\cdots,a_n$,有:$$\\sqrt[n]{a_1a_2\\cdots a_n}\\leq\\frac{a_1+a_2+\\cdots+a_n}{n}$$相等情况是当且仅当所有 $a_i$ 相等时成立。
常用不等式及其证明
常用不等式及其证明不等式在数学中起着重要的作用,它们在数学推理和解决实际问题中发挥着重要的作用。
本文将介绍几个常用的不等式及其证明。
一、柯西不等式柯西不等式是线性代数中常用的不等式之一,它在向量空间和内积空间中广泛应用。
柯西不等式表述如下:对于任意的n维实数列a1,a2,...,an和b1,b2,...,bn,有:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)证明:考虑离差:(a1λ + b1)^2 + (a2λ + b2)^2 + ... + (anλ + bn)^2对于任意实数λ。
这个式子可以通过非负性的考虑被表示为:(a1b1 + a2b2 + ... + anbn - λ(a1^2 + a2^2 + ... + an^2))^2 ≥ 0展开得:(a1^2 + a2^2 + ... + an^2)λ^2 - 2(a1b1 + a2b2 + ... + anbn)λ + (b1^2 + b2^2 + ... + bn^2) ≥ 0这是一个二次方程,所以判别式需要不大于0:4(a1b1 + a2b2 + ... + anbn)^2 - 4(a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2) ≤ 0化简得到:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)因此,柯西不等式得证。
二、均值不等式均值不等式是不等式中常见的一类,它包括算术平均数、几何平均数和调和平均数。
1. 算术平均数不等式:对于任意n个正实数a1,a2,...,an,有:(a1 + a2 + ... + an)/n ≥ √(a1a2...an)证明:根据算术平均值和几何平均值的定义可得:(√a1 - √a2)^2 ≥ 0a1 + a2 - 2√(a1a2) ≥ 0(a1 + a2)/2 ≥ √(a1a2)将上述不等式推广到n个数,可得:(a1 + a2 + ... + an)/n ≥ √(a1a2...an)2. 几何平均数不等式:对于任意n个正实数a1,a2,...,an,有:√(a1a2...an) ≤ (a1 + a2 + ... + an)/n证明:根据算术平均值和几何平均值的定义可得:(√a1 - √a2)^2 ≥ 0a1 + a2 - 2√(a1a2) ≥ 0a1 + a2 + ... + an - n√(a1a2...an) ≥ 0(a1 + a2 + ... + an)/n ≥ √(a1a2...an)因此,几何平均数不等式得证。
不等式的推导和证明方法
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
福建省福鼎市高三数学《不等式的证明与几个重要的不等式》复习课件
考点训练 1.若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数 x,y,z恒成立,则实数a的取值范围是________. 解析:由柯西不等式可得(12+22+22)(x2+y2+z2)≥(x+2y+2z)2, ∴x+2y+2z的最大值为3, 故有|a-1|≥3,∴a≥4或a≤-2. 答案:a≥4或a≤-2
4.已知x2 2y2 3z2 18 ,求3x 2y z的最小值. 17
解读高考第二关 热点关
题型一不等式证明例1已知a, b为正数,求证 : 1 4 9 . a b ab
证明:方法1:比较法
点评:证明不等式的常用方法是比较法、综合法、分析法,而 综合法与分析法常常相结合的使用.
2.由下列不等式:a2+b2≥2ab,a3+b3≥a2b+ab2,…,其中a,b>0,
请猜想,若m,n∈N*,则am+n+bm+n≥________.
解析:考查归纳推理:am+n+bm+n≥ambn+anbm. ∵am+n+bm+n-(ambn+anbm)=am(an-bn)+bm(bn-an)=(an-bn)(am-bm), 分类讨论:若a≥b>0,则an≥bn,am≥bm. 若0<a<b,则an<bn,am<bm.故不论a,b的大小如何均有(anbn)(am-bm)≥0. ∴am+n+bm+n≥ambn+anbm.
(2)一般形式的柯西不等式
定理2:设a1,a2,…,an与b1,b2,…bn是两组实数. 则有(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2. 当向量(a1,a2,…,an)与向量(b1,b2,…bn)共线时,等号成立. 推论:设a1,a2,a3,b1,b2,b3是两组实数,则有 (a12+a22+a32)(b12+b22+b32)≥(a1b1+a2b2+a3b3)2. 当向量(a1,a2,a3)与向量(b1,b2,b3)共线时“=”成立.
三个重要不等式及应用
i 1
n
1 xi 1 xi
i 1
i 1
1 xi
n
由柯西不等式,有:
i 1
1 x i ( 1 xi 1)
n
n
(1 xi ) 1
i 1 i 1
i 1 n
n
n 1 n
i 1
xi ( xi 1) xi 1 n
三个重要不等式及应用
目的要求:掌握排序不等式,平均不等式,柯 西不等式及其应用 重点:三个不等式的应用 难点:排序不等式的证明及综合应用
1 排序不等式 设有两组数 a1 , a2 ,
a1 a2
, an ; b1 , b2 , an , b1 b2 bn ,
anbn
a1 , a2 , , an 的某个排列,证明:
a1 a2 b1 b2
an n bn
证明 不妨设 b1 b2
bn ,则 1 1
b1 b2
1 an bn 1 bn bn
由排序不等式(乱序 逆序)得,
1 1 a1 a2 b1 b2 1 1 b1 b2 b1 b2 n
i 1 2 i i 1 2 i i 1
n
n
n
1 2 1 2 1 2 (n2 1) 2 求证 : (a1 ) (a2 ) ... (an ) a1 a2 an n
1 2 (1 ak ) k 1 k 1 a k
n n
(1 n 2 ) 2 n 1 2 1 2 2 (ak ) (1 n ) k 1 ak n
几个重要不等式
几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM)不等式设是非负实数,则2、柯西(Cauchy)不等式设,则等号成立当且仅当存在,使变形(Ⅰ):设,则;等号成立当且仅当存在。
使变形(Ⅱ)设同号,且,则。
等号成立当且仅当3.排序不等式设是的一个排列,则.等号成立当且仅当或。
(用调整法证明).4.琴生(Jensen)不等式若是区间上的凸函数,则对任意的点有等号当且仅当时取得。
(用归纳法证明)二、进一步的结论运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到的效果。
1.幂均值不等式设,,则证:作变量代换,令,则,则①,,又函数是上的凸函数,由Jensen不等式知①式成立。
2.(切比雪夫不等式)设两个实数组,则等号成立当且仅当或。
证:由排序不等式有:……………………………………………………………………………以上n个等式相加即得。
3.一个基础关系式其中证:若x,y中有一个为0,则显然成立。
设x,y均不为零,则原不等式,令,则上式,记,则,因此,当时,,当时,,且,所以得极小值为,故,即.4. Holder不等式设且,则等号成立当且仅当存在使得。
证:在上面基础关系式中,取有……①①式两边对k求和,得:,令,代入上式即证。
5.一个有用的结论设,则,推广得设,则.证:原不等式,而,它可把含根式的积性不等式化为和式。
例1设且,求证:。
证:由柯西不等式有…①而即…②由①②有:,∴方法二:由幂均值不等式有:方法三:由切比雪夫不等式和AM-GM不等式有:不妨设,则例2设,求证:证:左边=评注:通过此例注意体会如何运用柯西不等式分离或合成变量。
例3设,求证:证:设,则原不等式由Cauchy不等式有:故原不等式成立。
评注:本题通过换元,把原不等式齐次化,再用柯西不等式。
例4设n是正整数,且,,求证:证:原不等式,由“二,结论5”有又。