3.2一元一次方程-合并同类项和移项(2)

合集下载

七年级数学 第三章 一元一次方程3.2 解一元一次方程(一)合并同类项与移项第2课时 移项

七年级数学 第三章 一元一次方程3.2 解一元一次方程(一)合并同类项与移项第2课时 移项
3x – 4x = –xi2àn5ɡ)– 20
移项变号
合并(hébìng)同 类项
– x = – 45
系数化为1
x = 45
第八页,共二十三页。
回顾(huígù)本题列方程的过程,可以发 现:“表示同一个量的两个不同的式子相 等”是一个基本的相等关系.
第九页,共二十三页。
思考(sīkǎo)
上面解方程中“移项(yí xiànɡ)”起了什么作用?
解:设她们采摘(cǎizhāi)用了x小时,则 8x – 0.25 = 7x + 0.25. 解得 x = 0.5.
答:她们采摘用了0.5小时.
第十七页,共二十三页。
随堂演练(yǎn liàn)
基础(jīchǔ) 1. 巩对固于方程– 3x – 7=12x+6,下列移项正确的是( )A
A. – 3x – 12x=6+7 B. – 3x+12x= – 7+6 C. – 3x – 12x=7-6 D.12x – 3x=6+7
表示这批书的总数的两个代数式相等. 3x + 20 = 4x – 25
第五页,共二十三页。
思考(sīkǎo)
方程3x + 20 = 4x – 25的两边都有含x的项 (3x与4x)和不含字母(zìmǔ)的常数项(20与– 25),怎样才能使它向x=a(常数)的形式 转化呢?
第六页,共二十三页。
为了使方程的右边没有含x的项,等号两边减 4x;为了使左边(zuǒ bian)没有常数项,等号两边减20.
排量各是多少?
分析:因为新、旧工艺的废水(fèishuǐ)排量之比 为2∶5,所以可设它们分别为2x t和5x t,再根据它
们与环保限制的最大量之间的关系列方程.

3.2.一元一次方程及其解法(第2课时+移项、合并同类项 六年级数学上册(沪教版2024)

3.2.一元一次方程及其解法(第2课时+移项、合并同类项 六年级数学上册(沪教版2024)
5
解: 1 不正确,改正:移项,得3 − 2 = 9 + 18.
2 正确.
课堂练习
2.解下列方程:
1 + 8 = −17;
3 + 6 = −5;
解: 1 + 8 = −17.
移项,得 = −17 − 8.
合并同类项,得 = −25,
所以,原方程的解是 = −25.
3 + 6 = −5
C. ②①③
D. ②③①
)
3. 小明在做题时不小心用墨水把方程污染了,污染后的方

程: x -3= x +

,答案显示此方程的解是 x =-8,
被墨水遮盖的是一个常数,则这个常数是(
2
A )
4. [2024汕头澄海区期末]甲、乙两人在300 m的环形跑道上
跑步,甲每分钟跑100 m,乙每分钟跑80 m,若他们从同
移项,得 + 5 = −6.
合并同类项,得6 = −6.
两边同除以的系数6,得
= −1.
所以,原方程的解是 = −1.
2 4 = 20;
4 3 − 15 = − 19.
2 4 = 20.
两边同除以的系数4,得
= 5.
所以,原方程的解是 = 5;
(4 3 − 15 = − 19.
程.(重点)
3.进一步认识解方程的基本变形—移项,感悟解方程过程中的转化
思想.
新知探究
如何求方程4 = 18 − 2的解?
我们可以用等式性质将原方程转化为 = ≠ 0 的形式. 根据等式性质1,
在等式4 = 18 − 2的两边同时加上2, 得
4 + 2 = 18 − 2 + 2.

砀山县第七中学七年级数学上册第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时用移项的

砀山县第七中学七年级数学上册第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时用移项的

求 B O D 的 度 数 。
D 解 .设 A O C 2 X 0, 则 A O D = 3 X 0
A
根据邻补角的定义可得方程:
2X+3X=1800
O
解 得 X=360
B
AOC 2X 720
C
在解决与角的计算 B O D A O C 7 2 0
有关的问题时 , 经 答 : B O D 的 度 数 为 7 2 0
4. 列方程解应用题的步骤: 一.设未知数 ; 二.分析题意找出等量关系 ; 三.根据等量关系列方程 ;
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
本章复习
知识结构
两条
邻补角、対顶角
対顶角相等
常用到代数方式。
例2.已知直线AB、CD、EF相交于点O ,
D O E 9 0 0 , A O E 3 6 0
求 B O E 、 B O C 的 度 数 。
E
D
解 . AOB是 直 线
O
AOE与 BOE是 互 为 邻 补 角
A
B AO E BO E 1800
C
F
又 AO E 360
即 : x =-2.
等式的性质2
即 : 等式两边都乘或除以 同一个不等于0的数 , 所得 结果仍是等式.
复习
合并同类项与系数化为1都是解一元一次方 程的重要步骤。
合并同类项 系数化为1
把方程化为ax=b〔a≠0〕 的形式。
把ax=b 〔a≠0〕化为x=m。
把一些图书分给某班学生阅读 , 如果每人分3本 , 那 么剩余20本 ; 如果每人分4本 , 那么还缺25本.这个班 有多少学生 ?

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2一. 教材分析《解一元一次方程(一)——合并同类项与移项》是人教版七年级数学的重要内容。

这部分内容主要让学生掌握一元一次方程的解法,培养学生解决实际问题的能力。

教材通过引入实际问题,引导学生掌握合并同类项与移项的方法,从而解决一元一次方程。

二. 学情分析学生在学习本节课之前,已经学习了代数式的基本概念,如加减乘除等运算。

但是,对于合并同类项与移项的方法,学生可能还比较陌生。

因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。

三. 教学目标1.让学生理解合并同类项与移项的概念和方法。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.培养学生合作学习的精神,提高学生的沟通表达能力。

四. 教学重难点1.合并同类项的方法。

2.移项的方法。

3.如何将实际问题转化为方程,并运用合并同类项与移项的方法解决问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究合并同类项与移项的方法。

2.采用合作学习法,让学生在小组讨论中,共同解决问题,提高沟通表达能力。

3.采用实例教学法,让学生在解决实际问题的过程中,理解并掌握合并同类项与移项的方法。

六. 教学准备1.准备相关的实例问题,用于引导学生学习和实践。

2.准备PPT,用于辅助教学。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决此类问题。

例如:某商店举行打折活动,原价100元的商品,打8折后售价是多少?2.呈现(10分钟)讲解合并同类项与移项的方法,并通过PPT展示相关的实例问题。

让学生在小组内讨论,共同解决问题。

3.操练(15分钟)让学生在小组内进行练习,运用合并同类项与移项的方法解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)挑选几个代表性的问题,让学生上讲台进行讲解,其他学生进行评价。

以此巩固所学知识。

解 一元一次方程(一)——合并同类项与移项(第2课时)教案

解 一元一次方程(一)——合并同类项与移项(第2课时)教案

第三章一元一次方程3.2 解一元一次方程(一)——合并同类项与移项第2课时一、教学目标【知识与技能】1、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。

2、掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

【过程与方法】进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;【情感态度与价值观】通过学生观察、独立思考等过程,培养学生归纳、概括的能力,进一步让学生感受到并尝试寻找不同的解决问题的方法,初步体会一元一次方程的应用价值,感受数学文化。

二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】建立列方程解决实际问题的思想方法,学会移项,会解“ax+b=cx+d”类型的一元一次方程。

【教学难点】分析实际问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐步建立列方程解决实际问题的思想方法五、课前准备教师:课件、直尺等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课我们先一起思考下面的问题:(出示课件2)(1)解方程:2x-5x=6-8.2(2)观察下列一元一次方程,与上题的类型有什么区别?(二)探索新知1.师生互动,探究利用移项解一元一次方程3x+7=32-2x想一想:怎样才能使它向x=a (a为常数)的形式转化呢?(出示课件4)看下面问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?(出示课件5)教师问1:设这个班有x人,那么这批书有多少本?还可以怎么表示?学生讨论后回答:这批书共有(3x+20)本,还可表示为(4x-25)本。

教师问2:因为3x+20与4x-25都表示这批书,它们应该有怎样的关系?学生回答:相等.教师问3:这个问题如何列方程呢?学生回答:3x+20=4x-25教师问4:由上节课的学习,你能猜想怎么解这个方程吗?学生回答:把未知项移一到边,把常数项移到一边。

3.2.2解一元一次方程

3.2.2解一元一次方程

课件使用说明 课件第四张有链接,点击每种设法,可 以进入解题过程页,再点击箭头可以回到第 三张.
(一)创设情境,探究规律 例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,·, · · 其中某三个相邻数的和是-1 701, 这三个数各是多少?
(二)巩固方法,学以致用
类比上个问题的解决方法,完成下题: 1.一个数列,按一定规律排列如下形式: ,
(
根据这三个数的和是-1 701,得
x 9 + (- x 3 )+ x = - 1 7 0 1 .
解得 x= - 2 1 8 7 .
1, 4,1 6, 6 4,2 5 6, 1 0 2 4, …,
其中某三个相邻的数的和为 1 3 3 1 2 , 求这三个数各是多少?
解:设三个相邻数中第一个数为x,则第二个数 为-4x,第三个数为16x. 由题意,得
x+ (- 4 x )+ 1 6 x= - 1 3 3 1 2 .
解得 x= - 1 0 2 4
解:设三次活动的时间分别为:x-7,x,x+7. 根据题意,得
x-7+x+x+7=27.
解得 x=9.
所以这三天为2,9,16.
本月的四次活动的时间为2,9,16,23.四次的和为50.
(三)课堂小结,布置作业
1.根据前面的例题以及练习谈谈你是怎样 分析数列的规律的? 2.谈谈用一元一次方程分析和解决实际问题 的一般过程.
解:设这三个相邻数中的中间的一个数为 则第一个数为
x 3
x
, .
,第三个数为 3 x
根据这三个数的和是-1 701,得
x 3 x (3 x ) 1 701.
x= 7 2 9 .
解得

合并同类项与移项(2)(完成)

合并同类项与移项(2)(完成)

3.2.1解一元一次方程---合并同类项与移项(2)学习目标:1、自主探索、归纳解一元一次方程的一般步骤。

2、正确、熟练地运用解一元一次方程的三个基本步骤解简单的一元一次方程。

学习重点: 应用移项、合并同类项、系数化为1解一元一次方程。

学习难点: 建立方程解决实际问题及用移项解方程。

学习过程:一、自主学习问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?每人分3本,共分出 本,这批书共有 ;每人分4本,需要 本,减去缺少的25本,就是这批书共 本,这批书是一个定值,因此可得方程: 。

二、探究新知探究:如何将方程 3x +20=4x-25 转化为x=a 的形式,求出方程x +2x +4x=140的解?移项:把等式一边的某项 后移到 ,叫做 。

移项的根据是: 。

解方程 3x +20=4x-25 的一般步骤:解:移项,得 . --------合并同类项, 得 . --------系数化为1,得 =x . -------归纳:解形如ax+b=cx+d 的方程步骤是:① ;② ③ .三、应用新知 例 解下列方程:(1)2385--=-x x ; (2)x x 23273-=+。

(3)x x -=-32; (4)5476-=-x x ;(5)x x 43621=-; (6) x x x 3212-=-;(7) x x x 58.42.13-=--四、相关练习: 1、方程12422412+=-+=-k k k k 变形为,这种变形称为______,变形要注意________。

移项变形的依据是________________。

2、(1)方程1253+=-x x ,移项,得_________=1+5 (2)方程4.15.07.01-=-y y ,移项,得=--y y 5.07.0_________。

3、下列四组变形属于移项变形的是 ( ) A. 由122342=-=-x x 得 B. 由2332==x x 得 C. 由124124-=--=x x x x 得 D. 由3233)2(3=+-=--y y y y 得 4、把方程x x 3735-=+进行移项,正确的是 ( ) A. 3735-=-x x B. 3735-=+x xC. 7335-=-x xD. 7335-=+x x 5、方程x x -=-22的解是 ( ) A. x=1 B. x=-1 C. x=2 D. x=0 A 层:用移项的方法解一元一次方程 6、解方程x x 23421=-,移项,得__________;合并同类项,得________; 系数化为1,得_________。

解一元一次方程(一)——合并同类项与移项(2)

解一元一次方程(一)——合并同类项与移项(2)

解方程:
5 x=25.
系数化为1,得
系数化为1,得
1 - x=4. 2
x=5.
x=-8.
我思我进步
一、移项法解一元一次方程的一般步骤: 第一步:移项 第二步:合并同类项 第三步:系数化为1 二、移项的方法:
一般将含未知数的项都移到方程的左边, 常数都移到方程右边。(左“元”右 “常” )
错 因 下面是马虎同学在学习解一元一次方程 分 时完成的一道练习题,他的解法对吗? 析 Why? : x-5+2x+1=-5+3x-7-4x-x 思 路 解:移项,得: x-3x+4x+2x=5-7-1-5 不 合并同类项,得:4x=-8 清 系数化为1,得:x=-2 , 程 依次先抄再移 金点子 序 先合并再移项 混 先将左边未知项依次抄写下来,再把右 乱 边未知项变号后依次写下来,右边类推。
义务教育教科书
数学
七年级
上册
3.2 解一元一次方程(一) ——合并同类项与移项(第2课时)
江东初中 屠 欣
学习目标
学习目标: 1. 理解移项法则,会解形如 ax+b=cx+d 型方程; 2.体会等式变形中的化归思想. 学习重点: 利用移项与合并同类项解形如 ax+b=cx+d 的一元一次 方程. 学习难点: 正确地进行移项并解出方程.
3x 4x= 25 20
合作探究
4 x-25 20 3 x+ 20=
方程两边都-4x-20 移项
移项的定义:
3x 4x= 25 20
变号 像上面那样,把等式一边的某项变号后移 到另一边,叫做移项. 点拨 (1)移项是将某项从等式的一边移到另一边; (2)移项要变号.(移“+”为“-” ,移“-”为“+” )

七年级数学第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时移项导学案

七年级数学第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时移项导学案

3.2 解一元一次方程(一)—-合并同类项与移项第2课时移项一、新课导入1。

课题导入:前面,我们学习了利用合并同类项解一元一次方程,所见到的方程基本上都是含有未知数的项在等号的一边(左边),常数项在等号的另一边(右边),如果等号两边都有含有未知数的项和常数项,那么这样的方程该怎样求解呢?这节课我们继续学习解一元一次方程的方法——移项(板书课题)。

2。

三维目标:(1)知识与技能①会解“ax+b=cx+d”类型的一元一次方程.②建立方程解决实际问题.(2)过程与方法①通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。

②掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.(3)情感态度体会方程中蕴涵的化归思想。

3.学习重、难点:重点:确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程。

难点:确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

二、分层学习1。

自学指导:(1)自学内容:教材第88页“问题2"至教材第89页例3之前的内容。

(2)自学时间:8分钟。

(3)自学指导:认真阅读“问题2"的问题分析和解题过程,认识“表示同一个量的不同的式子相等”这一相等关系,思考在解题过程中是如何“移项”的,以及“移项”起了什么作用?(4)自学参考提纲:①“问题2”是根据什么相等关系来列方程的?图书的本数是一定的.②课本上是怎样解方程3x+20=4x-25的?有哪几个步骤?移项;合并同类项;系数化为1。

③什么叫移项?移项的依据是什么?有何作用?把等式一边的某项变号后移到另一边,叫做移项.移项的依据是等式的性质1。

移项可以使方程变得更简单。

④仿照问题2中的解方程的过程,解下列方程.a.3x+7=32-2x;b。

x-3=3x+1.2解:a.x=5;b。

x=—8.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生自学情况和存在的问题。

人教版七年级数学上册教案:第3章 一元一次方程 解一元一次方程(一)——合并同类项与移项(2课时)

人教版七年级数学上册教案:第3章 一元一次方程  解一元一次方程(一)——合并同类项与移项(2课时)

3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。

3.2解一元一次方程-合并同类项和移项(教案)

3.2解一元一次方程-合并同类项和移项(教案)
同学们,今天我们将要学习的是《解一元一次方程-合并同类项和移项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决一些数量关系的问题?”比如,如果两个苹果和三个苹果一共是五个苹果,那两个苹果是多少?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
五、教学反思
在今天的课堂上,我们探讨了合并同类项和移项在解一元一次方程中的应用。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现同学们在理解合并同类项的概念上存在一些困难。这让我意识到,在讲解这个概念时,需要更具体的例子和更详细的解释,帮助他们更好地理解同类项的定义和如何进行合并。在今后的教学中,我需要更加关注这个环节,尽量用生活中的实例来阐述,让学生感受到数学与生活的紧密联系。
3.重点难点解析:在讲授过程中,我会特别强调合并同类项的法则和移项的步骤这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,比如如何识别同类项,以及移项时如何正确改变符号。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过合并同类项和移项来解一个实际问题的方程。
举例:对于方程2x + 5 = 3x + 2,难点在于理解移项时不是简单地将x项移到一边,而是需要将3x项移至左边,同时将常数项2移至右边,并且注意在移动过程中改变符号(3x变为-3x,2变为-2)。学生可能会在这一过程中混淆符号的变换,或者在合并同类项时忽视变量的系数必须相同。
四、教学流程
(一)导入新课(用时5分钟)

专题3.2 解一元一次方程(一)——合并同类项与移项

专题3.2 解一元一次方程(一)——合并同类项与移项

1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.2.移项:把等式一边的某项___________后移到另一边,叫做移项.3.合并同类项:把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.(1)合并同类项的实质是系数的合并,字母及其指数都不变.(2)含不同未知数的项不能合并.(3)系数是负数时,合并时注意不能丢了负号.4.实际问题列方程的基本步骤:(1)设未知数;(2)找相等关系;(3)列方程.K知识参考答案:1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号3.相加,不变K—重点(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.K—难点列方程解决实际问题.K —易错移项时要变号.一、解一元一次方程——合并同类项与移项1.解一元一次方程——合并同类项解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变. 2.解一元一次方程——移项移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边. 3.解一元一次方程——系数化为1 将形如ax =b (a ≠0)的方程化为x =a b 的形式,也就是求出方程的解x =ab的过程,叫做系数化为1. 系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数. 【例1】方程2x –3=5解是 A .x =4 B .x =5C .x =3D .x =6【答案】A【解析】方程移项合并得:2x =8,解得x =4,故选A . 【名师点睛】1.合并同类项的实质是系数的合并,字母及指数都不变;2.系数合并时要连同前面的“±”号,如–3x +2x =5应变成(–3+2)x =5,即–x =5; 3.系数合并的实质是有理数的加法运算;4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.二、列一元一次方程解决实际问题1.列一元一次方程解决实际问题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验→写出答案 2.常见的两种基本相等关系 (1)总量=各部分量的和;(2)表示同一个量的两个不同的式子相等.【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x 尺,以下列出的方程正确的是 A .x +2x =5B .x +2x +4x +6x +8x =5C .x +2x +4x +8x +16x =5D .x +2x +4x +16x +32x =5【答案】C【解析】设她笫一天织布为x 尺,可得x +2x +4x +8x +16x =5,故选C . 【名师点睛】1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______. 28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x -=的解是 A .14x =-B .4x =-C .14x =D .4x =35.马强在计算“41+x ”时,误将“+”看成“–”,结果得12,则41+x 的值应为A .29B .53C .67D .7036.方程|x –3|=6的解是A .9B .±9C .3D .9或–337.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181x x -=,则x = A .–1B .2C .3D .438.a ※b 是新规定的这样一种运算法则:a ※b =a +2b ,例如3※(–2)=3+2×(–2)=–1.若(–2)※x =2+x ,则x 的值是 A .1B .5C .4D .239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动? 40.若新规定这样一种运算法则:a *b =a 2+2ab ,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值; (2)若3*x =2,求x 的值;(3)(–2)*(1+x )=–x +6,求x 的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店 A . 不盈不亏 B . 盈利20元C . 亏损10元D . 亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-,合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x =3代入方程得:3a –4=a ,解得:a =2,故选B . 7.【答案】A【解析】把x =3代入2x –3m –12=0得6–3m –12=0,所以m =–2.故选A . 8.【答案】A【解析】a +3=0,移项得,a =–3.故选A . 9.【答案】B【解析】根据题意得:5x −7=4x +9,移项得:5x –4x =9+7, 合并同类项得:x =16,故选B . 10.【答案】D【解析】根据题意得:x –7−2x +2=0, 移项合并得:–x =5, 解得:x =−5, 故选D . 11.【答案】B【解析】方程移项得:2x =4+2, 合并得:2x =6, 解得:x =3, 故选B . 12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x =3. 故选A . 19.【答案】C【解析】移项得:x +x =2+2,合并同类项得:2x =4,解得:x =2.故选C .解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92.26.【答案】11 227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9,要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a ,移项合并得:3a =3,解得:a =1.故选B .32.【答案】A【解析】解第一个方程得:x =1,解第二个方程得:x =a −6,所以a −6=1,解得:a =7.故选A .33.【答案】A【解析】解方程220x +=,得1x =-,把1x =-代入253x a +=得253a -+=,解得 1.a =故选A .34.【答案】A 【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。

七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移

七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移

3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。

3.2解一元一次方程—合并同类项与移项(2)

3.2解一元一次方程—合并同类项与移项(2)

3.2 解一元一次方程(一)———合并同类项与移项(2)主备人:王彦东一、学习目标:会用移项法则解方程重点:会用移项法则解方程难点:理解“移项法则”的依据,以及寻找问题中的等量关系二、预习提纲:1.导入:解方程:(1)3x-2x=7;(2)14x =3+12x;2. 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x本和剩余的20本,可知道这批书共有________本;根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等;根据这一相等关系,列方程:__________________;本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20即3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意.下面的框图表示了解这个方程的具体过程.(在“”上填上解题步骤)↓↓↓由此可知这个班共有45个学生.2. 例2 解方程(1)3x+7=32-2x (2)-4x+5=6x-7(3)x-3=12x+4 (4)245333x x-=-三、讨论与交流要求:以小组为单位对预习提纲的内容展开交流,并准备展示内容.四、展示与点评要求:以小组为单位对预习提纲的内容进行展示,其他小组进行质疑、点评,教师做适当补充.五、当堂检测:A组:1.下列移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得3x=6;(2)从2x=x-1得到2x-x=1;(3)从2+x-3=2x+1得到2- 3 -1=2x-x;B组:2.解方程:(1)6x-7=4x -5 (2)10y+5=12y-7-3y(3)3x+5=4x+1 (4)9-3y=5y+5C组: 3.解方程:12x-6 =34x。

2022七年级数学上册第三章一元一次方程3.2解一元一次方程(一)合并同类项与移项课时2用移项解一元

2022七年级数学上册第三章一元一次方程3.2解一元一次方程(一)合并同类项与移项课时2用移项解一元
课时2
用移项解一元一次方程
知识点1
1.下列四个变形中,属于移项的是 (
1
A.由2x-1=0,得x=2
B.由5x+6=0,得5x=-6

C.由3=2,得x=6
2
D.由5x=2,得x=5
答案
1.B
解一元一次方程——移项
)
知识点1
解一元一次方程——移项
2. [2022阳江阳东区期末]将方程2x+3=5-x移项,结果正确的是 (
.
答案


4.4 方程2x-a=0的解是x=2,方程4x+5=3x+6的解是x=1.由题意,得2=1+1,解得a=4.
5. 为配合某市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭
卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了
10元.若此次小丽同学不买卡直接购书,则她需付款
A.2x-x=5-3
B.2x-x=5+3
C.2x+x=5-3
D.2x+x=5+3
)
答案
2.C A项,-x移项后没有变号,故A错误;B项,-x和3移项后都没有变号,故B错误;D项,3移
项后没有变号,故D错误.
易知C正确.
知识点1
解一元一次方程——移项
3. [2022唐山古冶区期中]方程-1=1+2x的解是 (
9. [2022常州期末]阅读理解:你知道如何将无限循环小数写成分数形式吗?下面的解答过程
·
例题:利用一元一次方程将0.6化成分数.
·
·
设x=0.6,则10x=6.6.
·
·

3.2.1合并同类项与移项(课时2)

3.2.1合并同类项与移项(课时2)

解: (5) x =-2; (6) t =20; (7) x =-4; (8) x =2.
课后作业
练习册49页7题、50页5题 做在作业上
——
思学 考习 ,知 再识 思要 爱考善 因。于 斯思 坦考

Байду номын сангаас
2.解方程步骤 ①移项 ②合并同类项 ③系数化为1
移项要变号
等式的性质1 乘法分配律 等式的性质2
作业分析
作业中一些错误: ①运算问题:合并同类项时系数加错,定号算 数问题大,分数表示除法时分子分母颠倒 ②移项问题:移项不变号,没移动的项乱变号 ③书写不规范:不写解,-1X的错误写法 养成检验好习惯,看解是否正确
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5-8
D. 由x+9=3x-1,得3x-x=-1+9
3.如果2x与x-3的值互为相反数,那么x等于( B )
A.-1 B.1
C.-3
D.3
4.某中学七年级(5)班共有学生56人,该班男生的人 数是女生人数的2倍少1人.设该班有女生有x人,可列 方程为__2_x_-1__+_x_=_5_6___. 解得女生有 19 人.
5. 已知 2m-3=3n+1,则 2m-3n = 4 .
6. 如果

互为相反数,则m的值 为
1 12
.
7. 当x =_-__2__时,式子 2x-1 的值比式子 5x+6 的值小1.
解下列方程: (1) -2x + x =6;
(2) 6m-3m-4m =-3;
(3) 3y+2y =-2+6.
当堂练习
1. 下列方程合并同类项正确的是

人教版初一七年级上册数学 课时练《 解一元一次方程(一)—合并同类项与移项》02(含答案)

人教版初一七年级上册数学 课时练《 解一元一次方程(一)—合并同类项与移项》02(含答案)

人教版七年级上册数学《3.2解一元一次方程(一)—合并同类项与移项》课时练一、单选题1.方程24x =-的解是()A .2x =-B .2x =C .12x =D .6x =-2.下列变形中,属于移项的是()A .由32x =-,得23x =-B .由32x=,得6x =C .由570x -=,得57x =D .由520x -+=,得250x -=3.已知方程2332x x k -=-+的解是2x =,则k 的值为()A .1-B .2-C .3-D .4-4.已知等式278a b -=,那么用含b 的式子表示a 的等式正确的是()A .827a b -=B .287a b +=C .872b a +=D .872b a -=5.如果关于x 的方程337x x -=+与()36411x k ++=的解相同,则求k 为()A .2B .-2C .1D .不确定6.已知方程280x -=,则下列方程中与它的解相同的是()A .34x x-=B .3280x x --=C .24720x x x +-=-D .580x -=7.解下面的方程时,既要移含未知数的项,又要移常数项的是()A .372x x =-B .3521x x -=+C .3321x x --=D .1511x +=8.一元一次方程1321022y y -+=-+的解是()A .4y =B .4y =-C .8y =D .8y =-9.方程537x x -=+移项后正确的是()A .375x x +=+B .357x x +=-+C .375x x -=-D .375x x -=+10.下列移项正确的有()(1)125x -=-,移项,得125x -=;(2)73132x x -+=--,移项,得13732x x -=--;(3)2334x x +=+,移项,得2433x x -=-;(4)57211x x --=-,移项,得11725x x -=-.A .1个B .2个C .3个D .4个11.对方程86108x x x +-=合并同类项正确的是()A .38x =B .48x =C .88x =D .28x =12.若方程3x +5=11的解也是关于x 的方程6x +3a =22的解.则a 的值为()A .103B .310C .﹣6D .﹣8二、填空题13.当2x =-时,式子25ax -与式子2a x -的值相等,则a =_________.14.若31a -与12a -互为相反数,则a =______.15.已知2x =-是方程55ax a x x +=-的解,则a =_______.16.下面是一个被墨水污染过的方程:2x ﹣1=3x +答案显示此方程的解是x =12-,被墨水遮盖的是一个常数,则这个常数是______________17.已知25A x =-,33B x =+,若A 比B 大7,则x 的值为________.三、解答题18.解下列方程:(1)23418x x x ++=(2)13153x x x -+=-(3)2.51061521.5y y y +-=-(4)12261233b b b -+=´-19.若方程7159014x x -=-的解也是关于x 的方程272ax a =+的解,求a 的值.20.若2(3)a +与|1|b -互为相反数,且关于x 的方程1342a x y xb +-=+的解是1x =-,求223y -的值.21.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc cd=-,已知24181-=x x,求x 的解.参考答案1.A 2.C 3.C 4.C 5.A 6.C 7.B 8.C 9.D 10.B11.B 12.A13.95-14.015.83-16.12-17.-1518.(1)2x =;(2)3x =;(3)1y =-;(4)185b =.19.9a =20.52-21.3x =。

初中数学教学课件:3.2 解一元一次方程(一)——合并同类项与移项 第2课时(人教版七年级上)

初中数学教学课件:3.2  解一元一次方程(一)——合并同类项与移项  第2课时(人教版七年级上)

x=7+4,
x=11.
3.(宿迁中考)已知5是关于x的方程 3x 2a 7 的解,则a的值为________. 【解析】由解的定义知,3×5-2a=7,解得a=4.
答案:4
4.(淮安中考)小明根据方程5x+2=6x-8编写了一道应用 题.请你把空缺的部分补充完整. 某手工小组计划教师节前做一批手工艺品赠给老师, 如果每人做5个,那么就比计划少2个; .请
方程的两边都有含5),怎样才能使它向 x=a(常数) 的形式转化呢?
解方程:x-7 = 5.
方法1:方程两边都加7,得 x-7+7=5+7, x=5+7, x=12. 检验:把x=12代入方程的两边,得 左边=12-7=5, 右边=5,左边=右边, 所以x=12是原方程的解.
3.2 解一元一次方程(一) ——合并同类项与移项
第2课时
1.理解移项法,并知道移项法的依据,会用移项法则解 方程.
2.经历运用方程解决实际问题的过程,发展抽象、概括、
分析问题和解决问题的能力,认识用方程解决实际问题 的关键是建立相等关系. 3.鼓励学生自主探索与合作交流,发展思维策略,体会 方程的应用价值.
(4x 25) 本. 这批书共____________
这批书的总数有几种表示法?它们之间有什么关系?本题 哪个相等关系可作为列方程的依据呢? 这批书的总数是一个定值,表示它的两个式子应相等, 即表示同一个量的两个不同的式子相等. 根据这一相等关系列方程得: 3x 20 4x 25
3x 20 4x 25
方法2:
x–7 = 5 从左移右改 变符号
x = 5 +7 x = 12
像上面这样把等式一边的某项变号后移到另一边, 叫做 “移项” .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题2:
小明想在两种灯中选购一种,其中一种是11瓦(即 0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)
的白炽灯,售价3元.两种灯的照明效果一样,使用寿命也相
同(3000小时以上).节能灯售价较高,但是较省电;白炽灯售 价低,但是用电多.如果电费是0.5元/(千瓦时),选哪种灯可 以节省费用(灯的售价加电费)? 分析:问题中有基本等量关系:费用=灯的售价+电费; 电费=0.5×灯的功率(千瓦) ×照明时间(时).
解:设照明时间为t小时,
则节能灯的总费用为[60+0.5×0.011t]元; 白炽灯的总费用为[3+0.5×0.06t]元; 如果两个总费用相等,则有 60+0.5×0.011t =3+0.5×0.06t
解此方程得:t≈2327(小时)
因此我们可以取t=2000小时和t=2500小时,分别计算节能灯 和白炽灯的总费用
休闲方式,其中南温泉的票价是每人1
次30元,现推出每月60元优惠卡政策,
当月凭卡购买门票的价格是每人18元。
你认为哪种购票方式比较合算?
2、“元旦”节时,为了促销衣服,甲、 乙两个服装店都采取优惠措施,甲店推 出满100省30的优惠活动;乙店采取直 接打折的方式销售。某件衣服,甲、乙 两店的原价均为150元,那么 (1)若乙店打七五折,那么到哪家购 买划算?
(2)乙店打几折时,到两家店购买优 惠一样多?
3、某校计划为该校每名学生制作一个 校牌,有一商家前来洽谈制作业务, 商家提出两种方案供学校选择:
甲方案:运费600元,每个校牌8.8元;
乙方案:不要运费包送,每个校牌9元。
(1)做多少个校牌时,甲乙两个方 案的费用一样多? (2)若该校共有2200名学生,选择 哪种方案划算?
价低,但是用电多.如果电费是0.5元/(千瓦时),选哪种灯
可以节省费用(灯的售价加电费)? 问题: 如果灯的使用寿命都是3000小时,而计划照明3500 小时,则需要购买两个灯,试设计你认为能省钱的选灯方案.
参考方案:买白炽灯和节能灯各一只,用白炽灯照明500小时,
节能灯照明3000小时.
在这种方案中的总费用为: 60+0.5×0.011×3000+3+0.5×0.06×500
解:设通讯员 x 小时追上学生队伍. 18 根据题意,得 14x=5×60+5x, 3 移项,得 14x-5x=2, 3 合并同类项,得 9x=2, 1 系数化为 1,得 x=6(小时). 1 答:通讯员用6小时可追上学生队伍.
用一元一次方程分析和解决 实际问题的基本过程如下:
实际问题 列方程 数学问题 (一元一次方程) 解 方 程
因此由方程的解和试算判断:
在t<2327小时时,选择白炽灯优惠一些; 在t=2327小时时,两种等的总费用一样; 在t>2327小时而不超过使用寿命时,选择节能灯优惠一 些.
小明想在两种灯中选购一种,其中一种是11瓦(即0.011千 瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白 炽灯,售价3元.两种灯的照明效果一样,使用寿命也相同 (3000小时以上).节能灯售价较高,但是较省电;白炽灯售
州行要收费 (6+0.2t)元。于是可列方程
求解。
30 0.1t 6 0.2t
t 240
所以,当本地通话小于240分钟时, 选择神州行卡优惠;当本地通话等于240 分钟时,两种卡收费一样;当本地通话大 于240分钟时,选择全球通卡优惠。
同步练习: 1、重庆巴南区被列为“中国十大
温泉之乡”,泡温泉已成为一种时尚的
(2)小华买了一部手机,请你给他设 计一个怎样选择手机卡的优惠方Βιβλιοθήκη 。月租费 本地通话费 (1)
全球通卡 30元 0.1元/分
神州行卡 6元 0.2元/分
200分 350分
全球通卡 50元 65元
神州行卡 46元 76元
月租费 本地通话费
全球通卡 30元 0.1元/分
神州行卡 6元 0.2元/分
设累计通话 t 分钟时,两种卡的收费一 样,则全球通要收费 (30+0.1t) 元,神
实际问题 的答案
检验
数学问题的解
( x a)
课时小结:
1、本节课我们学习了什么知识?
2、同学们,你们有什么收获呢?
布置作业
1、课本第94页第9、10、11题 2、节节高第61——62页
复习引入
1、解下列方程:
(1)4 x 2 3 x
(2) 7 x 2 2 x 4 (3)4 x 8 3x 1 3x 9
3 (4) y 3 8 y 18 2 y 4
2、解方程的步骤是什么?
感受新知:
前面我们学习了用方程解决一 些简单的实际问题,并学会了解一 元一次方程。但在实际生活中我们 常常遇到这样的问题:手机卡的选 用、购物的方式等。今天就让我们 走进去认真选一选吧!
问题一:
我国已成为移动电话使用人数最多
的国家,移动电话达6亿部之多,某
市移动公司有两种移动电话卡,收费 方式如下表: 月租费 本地通话费 全球通卡 30元 0.1元/分 神州行卡 6元 0.2元/分
月租费 本地通话费
全球通卡 30元 0.1元/分
神州行卡 6元 0.2元/分
(1)一个月内在本地通话200分和350分, 两种卡各需交费多少元?
当t=2000时,
节能灯的总费用为:60+0.5×0.011t = 60+0.5×0.011×2000=71; 白炽灯的总费用为:3+0.5×0.06t = 3+0.5×0.06×2000=63;
当t=2500时,
节能灯的总费用为:60+0.5×0.011×2500=73.75; 白炽灯的总费用为:3+0.5×0.06×2500=78;
=60+16.5+3+15
=94.5(元) 你的方案的 总费用是多 少?
问题3:一队学生去校外进行军事野营训练.他们以 5 千米/ 时的速度行进,走了 18 分的时候,学校要将一个紧急通知传给 队长,通讯员从学校出发,骑自行车以 14 千米/时的速度按原路 追上去.通讯员用多少时间可以追上学生队伍?
相关文档
最新文档