《认识一元二次方程》一元二次方程PPT课件4 (共16张PPT)

合集下载

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT

《一元二次方程的根与系数的关系》一元二次方程教材课件PPT
第二十一章 一元二次方程
一元二次方程的根与系数的关系
知识回顾
1.写出一元二次方程的一般式: ax2+bx+c=0(a≠0)
2.一元二次方程的求根公式:
x1,2 b
b2 4ac 2a
3.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0). b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
1. 1 1 x1 x2 ; x1 x2 x1x2
2. x12 x22 (x1 x2 )2 2x1x2;
3. x1 x2 x12 x22 (x1 x2 )2 2x1x2 ;
x2 x1
x1x2
x1x2
4.( x1 1)( x2 1) x1x2 (x1 x2 ) 1;
使用条件
1.方程是一元二次方程,即二次项系数不为 0; 2.方程有实数根,即 Δ≥0.
重要结论
1.若一元二次方程 x2+px+q=0 的两根为 x1,x2,则 x1+x2=-p,x1x2=q. 2.以实数 x1,x2 为两根的二次项系数为1的一元二次方程是
x2-(x1+x2)x+x1x2=0.
对接中考
新知探究
方程的两个根x1,x2和系数a,b,c有如下关系:
x1
x2
b a
,
x1x2
c a
.
这表明任何一个一元二次方程的根与系数的关系为:
两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积
等于常数项与二次项系数的比.

一元二次方程优秀公开课课件(比赛课)ppt

一元二次方程优秀公开课课件(比赛课)ppt
一元二次方程
教学目标:
• 一元二次方程概念 • 解一元二次方程的方法 • 一元二次方程应用题
一元二次方程概念
• 一元二次方程概念及一元二次方程一 般式及有关概念.
一元二次方程概念
• 只含有一个未知数(一元),并且未知 数的最高次数是2(二次)的整式方程, 叫做一元二次方程.
一元二次方程特点
• (1)都只含一个未知数x; • (2)它们的最高次数都是2次的; • (3)•都有等号,是方程.
本节课要掌握:
(1)一元二次方程的概念; 2 0(a 0) (2)一元二次方程的一般形式 ax bx c •和 二次项、二次项系数,一次项、一次项 系数,常数项的概念及其它们的运用.
第二课时
• 1.一元二次方程根的概念; • 2.根据题意判定一个数是否是一元二次 方程的根及其利用它们解决一些具体题 目.
b b2 4ac x 2a
根公式,得出方程的根
注意:
• ①当时 b 4ac 0 ,方程无解; • ②公式法是解一元二次方程的万能方法; • ③利用 的值,可以不解方程 2 就能判断方程根的情况; b 4ac
2
一元二次方程的根的判别式
• 一元二次方程 ax2 bx c 0(a 0) 的根的判 别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
b b2 4ac x 2a

b2 4ac 0 )
• • • •
一般步骤: 2 ①将方程化为一般形式 ax bx c 0(a 0) ②确定方程的各系数a,b,c,计算 b 2 4ac 的值; ③当b2 4ac 0 ,将a,b,c以及 b2 4ac 的值代入求

《用因式分解法求解一元二次方程》一元二次方程PPT教学课件

《用因式分解法求解一元二次方程》一元二次方程PPT教学课件
〔来自教材〕
2
等腰三角形的腰和底的长分别是一元二次方程
x2-4x+3=0的根,那么该三角形的周长可以是
()
〔来自?典中点?〕
A.5
B.7 C.5或7
D.10
△ABC的三边长都是方程x2-6x+8=0的解,知2-练 3 那么△ABC的周长是( )
A.10 B.12 C.6或10或12 D.6或8或10或12
小颖、小明、小亮都设这个数为x,根据题意,可得方程x2=3x.
但他们的解法各不相同.
由方程x2=3x,得
x2-3x

x1=0,x2=3.
所以这个数是0或3.
方程x2=3x两边 同时约去x,得 x=3. 所以这个数是3.
由方程x2=3x,得 x2-3x=0, 即x(x-3)=0. 于是x=0,或x-3=0. 因此x1=0,x2=3. 所以这个数是0或3.
〔来自点拨〕
例4 用适当的方法解以下一元二次方程: (1)x2-2x-3=0; (2)2x2-7x-6=0; (3)(x-1)2-3(x-1)=0.
知3-讲
导引:方程(1)选择配方法;方程(2)选择公式法;
方程(3)选择因式分解法.
〔来自点拨〕
解: (1)x2-2x-3=0, 移项,得x2-2x=3, 配方,得(x-1)2=4,x-1=±2, ∴x1=3,x2=-1.
〔来自?典中点?〕
知3-讲
知识点 3 用适当的方法解一元二次方程
1. 解一元二次方程的方法: 直接开平方法、配方法、公式法、因式分解法.其中配 方法和公式法适合于所有一元二次方程,直接开方法 适合于某些特殊方程.
2.解一元二次方程的根本思路是: 将二次方程化为一次方程,即降次.
知3-讲

浙教版数学八年级下册《一元二次方程》课件

浙教版数学八年级下册《一元二次方程》课件
当k
3

时,是一元二次方程.
2.关于 x 的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,

当k ≠±1
时,是一元二次方程.,
当k =-1
时,是一元一次方程.
同时满足
联立:联合建立
.
k2-1 = 0
2 (k-1) ≠ 0
.
3.
将一元二次方程(x- 5)(x+ 5)+(2x-1)2=0化为一般形式,
距离为 8m. 如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?
A
1m
D
设梯子底端滑动 x m,可列出方程
7m
( x + 6 )2 + 72 = 102.
B
6m
C xE
分析:由勾股定理可知,滑动前梯子底端
距墙
6
m. 如果设梯子底端滑动 x m,
那么滑动后梯子底端距墙 x+6 m.
整理得 x2 +12x-15 =0.
4=0
x2 +12x-15 =0.
5x2
+10x-2.2=0.
x2-x-56=0
像这样,两边都是整式,只含有一个未知数且未知数的最高次数是2次的方程
叫做一元二次方程.
学以致用:
判断下列方程是否为一元二次方程:
① 10x2=9
(√ )
③2x2-3x-1=0
(√ )
②2(x-1)=3x ( × )

1
2
梯子底端滑动的距离 x (m) 满足方程 ( x + 6 )2 + 72 = 102,
也就是 x2 + 12x - 15 = 0.

《一元二次方程的根与系数的关系》课件(共16张PPT)

《一元二次方程的根与系数的关系》课件(共16张PPT)
2
3 6 2 x1 ∴ x1 5 5 3 3 k ∴ k 5[( ) 2] 7 又∵ ( ) 2 5 5 5 3 答:方程的另一个根是 , k 的值是 7 。 5
还可以把 x
2 代入方程的两边,求出 k
我能行3
例3、不解方程,求一元二次方程 2 x 3 x 1 0 两个根的①平方和;②倒数和。
1、当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1。
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1 ∵ (x1-x2)2=(x1+x2)2-4x1x2 由根与系数的关系得x1+x2= ∴(
k 1 2
, x1x2=
k 3 2
解得k1=9,k2= -3
k 1 2 k 3 ) 4 1 2 2
当k=9或-3时,由于△≥0,∴k的值为9或-3。
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。
解:由方程有两个实数根,得
4 ( k 1) 2 4 k 2 0
即-8k+4≥0
k
由根与系数的关系得x1+x2= 2(k-1) , x1x2=k2 ∴ X12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4 由X12+x22 =4,得2k2-8k+4=4
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
x=
2 b b 4ac 2a
(b2-4ac≥ 0)
解下列方程并完成填空:
(1)x2-7x+12=0

《一元二次方程》数学PPT课件(10篇)

《一元二次方程》数学PPT课件(10篇)
4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把

北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件

北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件

(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程

《解一元二次方程》一元二次方程PPT(因式分解法)

《解一元二次方程》一元二次方程PPT(因式分解法)
分析:出现了x2 +4x,接近完全平方式的结构特点,考虑用配方法.
〔3〕9〔x+1〕2=〔2x-5〕2 ;
分析:移项易发现符合平方差公式,考虑用因式分解法.
〔4〕9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =〔-12〕2-4×9×〔-1〕= 144+36
(x + m) 〔x + n〕=0
解法选择根本思路
1.一般地,当一元二次方程一次项系数为0时〔ax2+c=0〕, 应选用直接开平方法; 2.假设常数项为0〔 ax2+bx=0〕,应选用因式分解法; 3.假设一次项系数和常数项都不为0 (ax2+bx+c=0〕,先化为 一般式,看一边的整式是否容易因式分解,假设容易,宜选 用因式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。

《认识方程》ppt课件

《认识方程》ppt课件

利润问题
其他问题
利用二元一次方程组表示进价、售价和利润 之间的关系,求解最大利润等问题。
如浓度问题、配套问题等,都可以通过设立 二元一次方程组进行求解。
04
一元二次方程
一元二次方程形式
一般形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$
标准形式
02
$(x-p)^2 = q$
含有绝对值的情况
需要根据绝对值的性质,分别讨论绝对值内部表达式的正负情况, 从而转化为常规的无理方程进行求解。
含有参数的情况
需要根据参数的不同取值范围,分别讨论方程的解的情况,从而 得到参数对方程解的影响。
06
方程在实际问题中应用
行程问题建模与求解
路程、速度和时间关系建模
通过方程表达路程、速度和时间之间的数学关系,如s=vt(s为路 程,v为速度,t为时间)。
标准形式
$x + a = b$,通过移项可将一般 形式转化为标准形式。
解一元一次方程方法
等式性质法
利用等式性质(等式两边 同时加上或减去同一个数, 等式仍成立)来解方程。
移项法
将方程中的未知数项移到 等式的一边,常数项移到 等式的另一边,从而解出 未知数。
合并同类项法
将方程中的同类项合并, 简化方程后求解。
不等式
用不等号连接的式子称为不等式,表示左右两边不 相等。
不等式性质
不等式两边同时加上或减去同一个数,不等式性质 不变;不等式两边同时乘以或除以同一个正数,不 等式性质不变;不等式两边同时乘以或除以同一个 负数,不等式反向。
02
一元一次方程
一元一次方程形式
一般形式

人教版九年级数学上册《一元二次方程》PPT优秀课件

人教版九年级数学上册《一元二次方程》PPT优秀课件


①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤

审题,弄 清已知量 与未知量 之间的关 系
设 设未知数

找出等量 关系

根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的

新北师大版九年级数学上册《一元二次方程的解》精品课件.ppt

新北师大版九年级数学上册《一元二次方程的解》精品课件.ppt

5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则 6m+2n=_-__2_. 6.关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根为 0,则a=_-__2_.
7.小颖在做作业时,一不小心,一个方程3x2-■x-5=0的 一次项系数被墨水盖住了,但从题目的条件中,她知道方程的 解是x=5,请你帮助她求出被覆盖的数是多少.
x
3.23
3.24 3.25 3.26
ax2+bx+c -0.06 -0.02 0.03 0.09
16.若关于x的一元二次方程ax2+bx+c=0(a≠0),满足 a+b+c=0,则方程必有一个实根为___x_=.1
17.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0 的一个根为0,则a=__1__.
知识点一:一元二次方程的解
1.下列各数中是x2-3x+2=0的解的是( B )
A.-1
B.1
C.-2
D.0
2.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值是
( C) A.-1 B.0 C.1 D.2
3.已知关于x的一元二次方程2x2-mx-6=0的一个根是2,则m
=__1__.
4.写出一个根为x=-1的一元二次方程,它可以是 x2-1=0(答案不唯一) .
13.观察下表:
x
0 0.5 1 1.5 2 2.5 3 3.5 4
5x2-24x+28 28 17.25 9 3.25 0 -0.75 1 5.25 12
从表中你能得出方程5x2-24x+2方程根的取值范围.
解:一个解为x=2,另一个解的取值范围为2.5<x<3
7…
x2-70x+325 189 124 61 0 -59 -116 …

初中数学《一元二次方程》教育教学课件

初中数学《一元二次方程》教育教学课件
【含义】
一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的 值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的 根(只含有一个未知数的方程的解也叫做这个方程的根)。
【特点】
由代数基本定理,一元二次方程有且仅有两个根(重根即为两个相等的根), 根的情况由判别式 △=b2-4ac 决定。
(x-2)(x+2)=0
即 x+2=0或x-2=0 ∴ x1=-2,x2= 2
方程解法 之 基本方法 • 因式分解法
十字相乘法
十字相乘法是因式分解法解 一元二次方程中一个重要的部分。 一元二次方程左边为二次三项式, 形如x²+(p+q)x+pq=0,可化为 (x+p)(x+q)=0,从而得出:
x1=-p;x2=-q。
【银行问题】
3、王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本 和利息 取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存 款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本 利息共63元, 求第一次存款时的年利率. 解:设第一次存款时的年利率为x,
方程解法 之 基本方法 • 因式分解法
【例题】
1.解方程 x²+2x+1=0 解:利用完全平方公式 因式分解得:
(x+1)²=0 ∴ x=-1
2.解方程 x(x+1)-2(x+1)=0 解:利用提公因式法解得:
(x+1)(x-2)=0 即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程 x²-4=0 解:利用平方差公式 因式分解得:
方程解法 之 基本方法 • 公式法

北师大版九年级数学上册《认识一元二次方程》一元二次方程PPT课件(第1课时)

北师大版九年级数学上册《认识一元二次方程》一元二次方程PPT课件(第1课时)
二次项系数为 5,一次项系数为 36,常数项为-32
课堂练习 6. 根据下列问题列方程,并将其化成一元二次方程的一般形式. (1)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的长方形?
解:设长方形的长为xm,则宽为(0.5-x)m. 根据题意,得x(0.5-x)=0.06, 整理,得50x2-25x+3=0.
数的平方和吗?
解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表 示为: x+1 , x+2, x+,3 x+.根4 据题意,可得方程:
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. 化简得,x2 - 8x - 20=0. ②
去括号、移项、合并同类项
2x2-13x+11=0 x2 -8x-20=0 x2+12x-15=0
只含有1个 未知数
未知数的最 高次数是2
都是整式方 程
新知讲解
一元二次方程的定义:
只含有一个未知数x,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0) 的形式,这样的方程叫做一元二次方程.
一元二次方程的一般形式:
a x 2 + b x + c = 0 (a ≠ 0) 特征:方程的左边按x的降幂排列,右边=0
(2)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加这次 聚会?
解:设有x人参加了这次聚会, 根据题意,得 x(x-1)=10, 整理,得x2-x-20=0.
课堂总结
一元二次方程
概念
只含有一个未知数x的整式方程,并且 都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式.

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT教学课件

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT教学课件
栏目导航
31
2.方程x2-2x-3=0与不等式x2-2x-3>0的解集分别是什么?观察 结果你发现什么问题?这又说明什么?
提示:方程x2-2x-3=0的解集为{-1,3}. 不等式x2-2x-3>0的解集为{x|x<-1或x>3},观察发现不等式x2-2x -3>0解集的端点值恰好是方程x2-2x-3=0的根.
栏目导航
8
4.三个“二次”的关系
设 y=ax2+bx+c(a>0),方程 ax2+bx+c=0 的判别式 Δ=b2-4ac
判别式
Δ>0
Δ=0
Δ<0
栏目导航
解不 等式 y>0
求方程 y=0 的解
9
有两个相等的实
有两个不相等的实 数根 x1,x2(x1<x2)
数根 x1=x2= -2ba
没有 实数根
栏目导航
30
方程ax2+bx+c=0(a≠0)和不等式ax2+bx+c>0(a>0)或ax2+bx+ c<0(a>0)是函数y=ax2+bx+c(a≠0)的一种特殊情况,它们之间是一种包 含关系,也就是当y=0时,函数y=ax2+bx+c(a≠0)就转化为方程,当 y>0或y<0时,就转化为一元二次不等式.
或 y 画函数 y=ax2+bx+
<0 c(a>0)的图象
的步 得等的集 骤 不式解
y>0 y<0
{_x_|_x_<__x_1_或___x_>__x_2_} ___x__x_≠__-__2b_a__
__{__x|_x_1<___x<___x_2}___
___∅_
__R__ __∅__
栏目导航
10
思考 3:若一元二次不等式 ax2+x-1>0 的解集为 R,则实数 a 应满 足什么条件?

《一元二次方程》课件-2021-2022学年鲁教版(五四制)八年级数学下册

《一元二次方程》课件-2021-2022学年鲁教版(五四制)八年级数学下册
子底端距墙 6 m
如果设梯子底端滑动x m,那么滑 动后梯子底端距墙 x+6 m
根据题意,可得方程:
72+(x +6)2=102
6m x
由上面三个问题,我们可以得到三个方程:
(8-2x)(5-2x)=18 即 2x2-13x+11=0 x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2 即 x2-8x-20=0 72+(x+6)2=102 即 x2+12x-15=0 上述三个方程有什么共同特点?
根据题意,可得方程:
x 2+ (x +1)2 + (x + 2)2 =(x +3)2 + (x +4)2
问题三
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的 垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑 动多少米?(设梯子底端滑动xm,列出方程)
1
8m 7m
解:由勾股定理可知,滑动前梯
1.输入一组数据,按如图所示的程序进行计算,输出结果如 下表: x 20.5 20.6 20.7 20.8 20.9
输出 -13.75 -8.04 -2.31 3.44 9.21 分析表格中的数据,估计方程(x+8)2-826=0的一个 正数解x的大致范围为( ) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9 2.根据关于x的一元二次方程x2+px+q=0,可列表如下:
-2
5.25
13
x
0
5x2-24x+28 28
0.5 1 1.5 2 17.25 9 3.25 0
2.5 3 3.5 4 -0.75 3 5.25 12

《因式分解法》一元二次方程PPT课件

《因式分解法》一元二次方程PPT课件

+


=

②2x²-9x+8=0




③4x(2x+1)=3(2x+1) = − , =

= , =
④3x²-7x+2=0

=
温馨提示:计算△=b²-4ac,若为平方数,此方程必定可以
因式分解。
可以发现,上述解法中,使方程化为两个一次式的乘积等于
也可将方程的解代入原
0的形式,再使这两个一次式分别等于0,从而实现降次,
方程来验证是否正确
这种解一元二次方程的方法叫做因式分解法。
练习
1-1
用因式分解法解下列方程
①(x-2)²=3(x-2)
= , =
③x²-6x+9=0
= =
②(2x-1)²-x²=0
= , =


③x²-12x+35=0
= , =
例题2
下面是小明同学在解一道一元二次的过程,你认为
正确吗?为什么?
解方程: x²=2x
解:方程两边同时除以x
得 x=2
∴方程的解为x=2
易错点:漏解
用合适的方法解一Βιβλιοθήκη 二次方程直接开平方法:可以解ax²=b 型的方程 .
提公因式法
情境导入
回顾
若 =0,能得出什么结论?
=0,则=0或=0
请将 2 − 3进行因式分解
猜想
解方程: 2 − 3 =0
归纳
方程 2 + + = 0( ≠0),通过变形和因式分解,
变成(x+p)(x+q)=0的形式,则x+p=0或x+q=0,进

《应用一元二次方程》一元二次方程演示课件 PPT

《应用一元二次方程》一元二次方程演示课件 PPT

思考:这个问题设什么为x?有几种设法?
思考:(1)若设年平均增 (1)某公司今年的销售收入是a万元,如果每年的增长率都是x,那么一年后的销售收入将达到____ _ _万元(用代数式表示)
892(1+x)2=2083
长率为x,你能用x的代 1254(1+y)2=3089
上网计算 思考:(1)若设年平均增长率为x,你能用x的代数式表示2002年的台数吗?
1月1日 12月31日 12月31日 12月31日 12月31日
问题1:截止2000年12月31日,我国的上网计算机 总台数为892万台;截止2002年12月31日,我国的 上网计算机总台数为2083万台;
(1)求2000年12月31日至2002年12月31日我国计 算机上网总台数的年平均增长率(精确到0.1%)
解 2第、二关章键之一处元:二分次析方题程解意,方找出程等量并关系检,列验出方根程。的准确性及是否符合实际意义并作答。
练一练:
某单位为节省经费,在两个月内将开支从 每月1600元降到900元,求这个单位平均每 月降低的百分率是多少?
练一练:
某校坚持对学生进行近视眼的防治,近视学生 人数逐年减少.据统计,今年的近视学生人数是 前年人数的75℅,那么这两年平均每年近视学 生人数降低的百分率是多少(精确到1℅)?
(2) 上网计算机总台数2001年12月31日至2003年12月31日与2000 年12月31日至2002年12月31日相比,哪段时间年平均增长率较大?
2001年12月31日总台数为1254万台, 2003年12月31日总台数为3089万台
(2)解:设2001年12月31日至2003年12月31日上网计 算机总台数的年平均增长率为y,由题意得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、做一做
甲同学的做法:
x 0 0.5 -8.75 1 -2 1.5 5.25 2 13
x2+12x-15 -15
所以1<x<1.5
三、做一做
进一步计算:
x 0 0.5 -8.75 1 -2 1.5 5.25 2 13
x2+12x-15 -15
所以1.1<x<1.2 因此x的整数部分是1,十分位是1。
4
二、情境引入
(2)幼儿园活动教室矩形地面的长为8米,宽为 5米,现准备在地面的正中间铺设一块面积为 18m2的地毯,四周未铺地毯的条形区域的宽度 都相同 ,你能求出这个宽度吗? 8
4
解:设所求的宽度为xm , x 根据题意,可得方程 5 (8-2x)(5-2x)=18 即: 2x2-13x+11=0
五、课堂小结
通过本堂课你有哪些收获?谈谈你的感想。
六、作业
课本47页习题2.2 1题、2题
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
x
(8-2x)
x
18m2
x
二、情境引入
对于方程(8-2x)(5-2x)=18,即2x2-13x+11=0 (1)根据题目的已知条件,你能确定x的大致范围 吗??说说你的理由. (2) x可能小于0吗? x可能大于4吗?可能大于2.5吗? 说说你的理由,并与同伴进行交流. (3)完成下表:
x 2x2-13x+11 0 0.5 1 1.5 2 2.5
三、做一做
乙同学的做法:
x 1.1 1.2 0.84 1.3 2.29 1.4 3.76 1.5 5.25
x2+12x-15 -0.59
所以1.1<x<1.2 因此x的整数部分是1,十分位是1。
四、练一练
五个连续整数,前三个数的平方和 等于后两个数的平方。您能求出这 五个整数分别是多少吗?
四、练一练
4
三、做一做
如图,一个长为10m的梯子斜靠在墙上,梯子的 顶端距地面的垂直距离为8m.如果梯子的顶端下 滑1m,那么梯子的底端滑动多少米?
1 8m
7m
6m
x
三、做一做
在上一节课的问题中,梯子底端滑动的距离x(m) 满足方程(x+6)2+72 =102,把这个方程化为一般 形式为 x2+12x-15=0 (1)你能猜出滑动距离x(m)的大致范围吗? (2)小明认为底端也滑动了1 m,他的说法正 确吗? 为什么? (3)底端滑动的距离可能是2 m吗?可能是3 m 吗?为什么? (4)x的整数部分是几?十分位是几?
A同学的做法: 设五个连续整数中的第一个数为x,那么后面四 个数依次可表示为x+1,x+2,x+3,x+4.根据题意, 可得方程: x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2 即:x2-8x-20=0
x x2-8x-20 -3 13 -2 0 … … 9 -11 10 0
所以,x=-2或x=10
一、复习回顾
对于一元二次方程 (1)(8-2x)(5-2x)=18 即:2x2-13x+11=0; (2)(x+6)2+72=102 即:x2+12x-15=0, 你能分别求出方程中的x吗?
二、情境引入
(1)有一根外带有塑料皮长为100m的电线, 不知什么原因中间有一处不通,现给你一只万 用表(能测量是否通)进行检查,你怎样快速 地找到这一断裂处?与同伴进行交流。
四、练一练
B同学的做法:
设五个连续整数中的中间一个数为x,那么其余四 个数 依次可表示为x-2,x-1,x+1,x+2.根据题意,可得方 程:(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2 即:x2-12x=0
x -3 13 -2 0 … … 9 -11 10 0
x2-12x
所以,x=0或x=12
4
(4)你知道所求的宽度x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
二、情境引入
用“夹逼”思想解一元二次方再次进行排除; ③列出能反映未知数和方程的值的表格进行 再次筛选; ④最终得出未知数的最小取值范围或具体数据。
相关文档
最新文档