(含答案)竞赛辅导:一次函数及绝对值函数的应用

合集下载

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20). (2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20. (2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

初中数学竞赛第06讲 一次函数及其应用 知识点和真题讲解

初中数学竞赛第06讲 一次函数及其应用 知识点和真题讲解

第6讲 一次函数及其应用时间是个常数,但对勤奋者来说,是个“变数”。

用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍。

——雷巴柯夫知识方法扫描形如y=kx+b(k ≠0)的函数叫做一次函数,当b=0时是正比例函数。

在直角坐标系中,它的图像是一条直线。

它与y 轴的交点坐标是(0,b),与x 轴的交点坐标是(kb ,0). 当k>0时,随的增大而增大;当k<0时,随的增大而减小。

在本讲中应该掌握以下各点:① 利用待定系数法来确定一次函数的方法② 一般的一次函数没有最大值或最小值。

但是当自变量的取值范围有限制时,在端点处可以取到最大值或最小值。

③ 要注意运用数形结合的方法来解题。

④ 在应用问题中,要特别注意自变量的取值范围。

经典例题解析例1.(2002年江苏省初中竞赛试题)HJ 牌小汽车的油箱可装气油30L ,原来装有汽油10L ,现在再加汽油xL 。

如果每升汽油2.95元,油箱内汽油的总价(y )元与x (L )之间的函数关系是 ,并在直角坐标系中画出其图像。

解 设y=kx+b ,则由题意知,当x=0时,y=29.5;当x=0时,y=88.5。

于是有29.5=b, 88.5=20k+b 。

解得 k=2.95, b=29.5,且0≤x≤20.所以函数关系是 y=2.95x+29.5(0≤x≤20).其图像如右图所示。

例2.(2008年第6届创新杯全国数学邀请赛8年级试题)已知y=kx-3k+2的图象与y 轴正半轴,x 轴正半轴分别交于A,B ,且OA+OB=12,求k 的值。

解 取x=0,得y=-3k+2, 所以A(0,-3k+2);取y=0, 得x=3-k2 。

因 OA+OB=12, 故(-3k+2)+( 3-k 2)=12, 3k 2+7k+2=0,(3k+1)(k+2)=0, 所以 k=-31或k=-2. 例3 (1996年上海市初中数学竞赛试题)已知函数y=|x-a|+|x+19|+|x-a-96| 其中a 为常数,且19<a<96,当自变量的取值范围为a≤x≤96时,求y 的最大值。

中考数学专题复习5一次函数及其运用(解析版)

中考数学专题复习5一次函数及其运用(解析版)

一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。

特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213x-C.y=34x D.y=12(x-1)【答案】C【解析】A.分母中含有自变量x.不是正比例函数.故A错误;B.y=213x-是一次函数.故B错误;C.y=34x是正比例函数.故C正确;D.y=12(x-1)可变形为y=12x-12是一次函数.故D错误.故选C.【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4【答案】B【解析】解:(1)y=﹣x是正比例函数.是特殊的一次函数.故正确;(2)y=x﹣1符合一次函数的定义.故正确;(3)y=1x属于反比例函数.故错误;(4)y=x2属于二次函数.故错误.综上所述.一次函数的个数是2个.故选:B.考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0.b)和(-bk.0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0.向上平移b个单位长度;b<0.向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0)k>0.b>0 一、二、三y随x的增大而增大k>0.b<0 一、三、四y=kx+b (k≠0)k<0.b>0一、二、四y随x的增大而减小k<0.b<0 二、三、四(3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2.b1≠b2.两直线平行;②当k1=k2.b1=b2.两直线重合;③当k1≠k2.b1=b2.两直线交于y轴上一点;④当k1·k2=–1时.两直线垂直.【例3】已知正比例函数y=x的图象如图所示.则一次函数y=mx+n图象大致是A.B.C. D.【答案】C【解析】利用正比例函数的性质得出>0.根据m、n同正.同负进行判断.由正比例函数图象可得:>0.mn同正时.y=mx+n经过第一、二、三象限;mn同负时.经过第二、三、四象限.故选C.【例4】已知一次函数的图象经过点.且y随x的增大而减小.则点的坐标可以是()A.()1,2-B.()1,2-C.()2,3D.()3,4【答案】Bmnmnmn【解析】∵一次函数3y kx =+的函数值y 随x 的增大而减小.∴k ﹤0.A .当x=-1.y=2时.-k+3=2.解得k=1﹥0.此选项不符合题意;B .当x=1.y=-2时.k+3=-2,解得k=-5﹤0.此选项符合题意;C .当x=2.y=3时.2k+3=3.解得k=0.此选项不符合题意;D .当x=3.y=4时.3k+3=4.解得k=13﹥0.此选项不符合题意.故选:B .考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值. 【答案】y =x –2;4【解析】(1)设一次函数解析式为y =kx +b .把(3.1).(2.0)代入得.解得. 所以这个一次函数的解析式为y =x –2; (2)当x =6时.y =x –2=6–2=4.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区一般形式y =kx +b (k 是常数.且k ≠0) y =kx +b (k .b 是常数.且k ≠0)3120k b k b +=+=⎧⎨⎩12k b ==-⎧⎨⎩别图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)【答案】A【解析】解:∵将函数y=2x的图象向上平移3个单位.∴所得图象的函数表达式为:y=2x+3.故选:A.考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标.【例7】已知直线y=mx+n(m.n为常数)经过点(0.–2)和(3.0).则关于x的方程mx+n=0的解为A.x=0 B.x=1C.x=–2 D.x=3【答案】D【解析】直线y=mx+n与x轴的交点横坐标的值即为方程mx+n=0的解.∵直线y=mx+n(m.n为常数)经过点(3.0).∴当y=0时.x=3.∴关于x的方程mx+n=0的解为x=3.故选D.【例8】如图为y=kx+b的图象.则kx+b=0的解为x= ()A.2 B.–2C.0 D.–1【答案】D【解析】从图象上可知.一次函数y=kx+b与x轴交点的横坐标为–1.所以关于x的方程kx+b=0的解为x=–1.故选D.【例9】如图.正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m.2).一次函数的图象经过点B(−2.−1).(1)求一次函数的解析式;(2)请直接写出不等式组−1<kx+b<2x的解集.【答案】(1)y =x +1;(2)x >1【解析】(1)∵点A (m.2)在正比例函数y =2x 的图象上.∴2=2m .解得:m =1. ∴点A 的坐标为(1.2)将A (1.2)、B (−2.−1)代入y =kx +b .221k b k b +=⎧⎨-+=-⎩解得:k =b =1∴一次函数的解析式为y =x +1 (2))∵在y =x +1中.1>0. ∴y 值随x 值的增大而增大. ∴不等式–1<x +1的解集为x >–2.观察函数图象可知.当x >1时.一次函数y =x +1的图象在正比例函数y =2x 的图象的下方. ∴不等式组–1<x +1<2x 的解集为x >1.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是A .B .C .D . 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标.所以方程组的解是.故选A .y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x 交于点A、B.则△AOB的面积为()A.2B.3C.4D.6【答案】B【解析】解:在y=x+3中.令y=0.得x=﹣3.解32y xy x=+⎧⎨=-⎩得.12xy=-⎧⎨=⎩.∴A(﹣3.0).B(﹣1.2).∴△AOB的面积=12⨯3×2=3.故选:B.考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等.(2)用一次函数解决实际问题的一般步骤为:①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤检验所求解是否符合实际意义;⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类 食品 药品 生活用品每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x .装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费. 【解析】(1)由题意可得.6x +5y +4(20-x -y )=100.化简.得y =20-2x .即y 与x 的函数关系式是y =-2x +20;(2)由题意可得..解得5≤x ≤8.即车辆的安排有四种方案. 方案一:运食品的5辆车.装运药品的10辆车.装运生活用品的5辆车; 方案二:运食品的6辆车.装运药品的8辆车.装运生活用品的6辆车; 方案三:运食品的7辆车.装运药品的6辆车.装运生活用品的7辆车; 方案四:运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车; (3)由题意可得.w =120×6x +160×5y +100×4(20-x -y )=-480x +16000.∵5≤x ≤8.∴当x =8时.w 最小.此时w =-480×8+16000=12160(元). 即在(2)的条件下.若要求总运费最少.应安排运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车.最少总运费是12160元.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)52204x x ≥-+≥⎧⎨⎩1.下列函数①y =﹣2x +1.②y =ax ﹣b .③y =﹣6x.④y =x 2+2中.是一次函数的有 A .①② B .①C .②③D .①④【答案】B【解析】①y =﹣2x +1符合一次函数定义.故正确; ②y =ax ﹣b 中当a =0时.它不是一次函数.故错误; ③y =﹣6x属于反比例函数.故错误; ④y =x 2+2属于二次函数.故错误; 综上所述.是一次函数的有1个. 故选B .2.一次函数y =–2x +b .b <0.则其大致图象正确的是A .B .C .D .【答案】B【解析】因为k =–2.b <0.所以图象在第二、三、四象限.故选B . 3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–2【答案】C【解析】∵一次函数y =kx +b 的图象过点(.–1).∴关于x 的方程kx +b =–1的解是x =.故选C4. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是1212A .x >﹣2B .x >0C .x >1D .x <1【答案】C【解析】当x >1时.x +b >kx +4.即不等式x +b >kx +4的解集为x >1.故选C .5. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >【答案】A【解析】解:由题意将(1,1)P 代入(0)y kx b k =+<.可得1k b +=.即1k b -=-. 整理kx b x +≥得.()10k x b -+≥.∴0bx b -+≥.由图像可知0b >.∴10x -≤.∴1x ≤.故选:A .6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .【答案】C【解析】对于乌龟.其运动过程可分为两段:从起点到终点乌龟没有停歇.其路程不断增加;最后同时到达终点.可排除B .D 选项 对于兔子.其运动过程可分为三段:据此可排除A 选项.开始跑得快.所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快.故选:C7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0 B .b <0C .a +b >0D .a ﹣b <0【答案】D【解析】∵一次函数y =ax +b 的图象经过一、二、四象限. ∴a <0.b >0. ∴a ﹣b <0.即选项A 、B 、C 都错误.只有选项D 正确; 故选:D .8.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <2【答案】C【解析】如图所示.直线y =kx +b 交直线y =mx +n 于点P (1.2). 所以.不等式kx +b >mx +n 的解集为x <1. 故选:C .9.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2【答案】B【解析】如图所示.延长AC 交x 轴于点D .设()0,C c∵这束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.∴由反射定律可知.1OCB ∠=∠.∵∠1=∠OCD .∴OCB OCD ∠=∠.∵CO DB ⊥于O .∴COD COB ∠=∠=90°.在COD ∆和COB ∆中OCD OCBOC OC COD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴()COD COB ASA ∆≅∆.∴1OD OB ==.∴()1,0D -.设直线AD 的解析式为y kx b =+.∴将点()4,4A .点()1,0D -代入得:440k bk b =+⎧⎨=-+⎩.解得:4545k b ⎧=⎪⎪⎨⎪=⎪⎩. ∴直线AD 的解析式为:4455y x =+.∴点C 坐标为40,5⎛⎫⎪⎝⎭.故选B . 10.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5【答案】C【解析】如图.过点D作DE⊥BC于点E..由图象可知.点F由点A到点D用时为a s.△FBC的面积为a cm2.∴AD=a.∴DE•AD=a.∴DE=2.当点F从D到B时.∴BD.Rt△DBE中.BE.∵四边形ABCD是菱形.∴EC=a–1.DC=a.Rt△DEC中.a2=22+(a–1)2.解得a=.故选C.第二部分填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y=(m+2)是正比例函数.则m的值是__________.【答案】2【解析】∵函数y=(m+2)x m2−3是正比例函数.∴m2–3=1.m+2≠0.解得:m=2.故答案为:2.12.把直线y=2x﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____.【答案】y=2x+3【解析】解:把直线y=2x﹣1向左平移1个单位长度.得到y=2(x+1)﹣1=2x+1.再向上平移2个单位长度.得到y=2x+3.故答案为:y=2x+3.13.如图.直线542y x=+与x轴、y轴分别交于A、B两点.把AOB绕点B逆时针旋转90°1255()2222=521BD DE--=5223mx-后得到11AO B .则点1A 的坐标是_____.【答案】(4.125) 【解析】解:在542y x =+中.令x=0得.y=4.令y=0.得5042x =+.解得x=8-5. ∴A (8-5.0).B (0.4).由旋转可得△AOB ≌△A 1O 1B .∠ABA 1=90°. ∴∠ABO=∠A 1BO 1.∠BO 1A 1=∠AOB=90°.OA=O 1A 1=85.OB=O 1B=4. ∴∠OBO 1=90°.∴O 1B ∥x 轴.∴点A 1的纵坐标为OB -OA 的长.即为48-5=125; 横坐标为O 1B=OB=4.故点A 1的坐标是(4.125).故答案为:(4.125). 14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.【答案】x <4【解析】解:∵直线y =kx +b 与直线y =2交于点A (4.2).∴x <4时.y <2. ∴关于x 的不等式kx +b <2的解集为:x <4.故答案为:x <4.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 【答案】<【解析】根据直线2y x =+经过()11,M y .()23,N y 两点.可分别将M 、N 的坐标代入得.1123y =+=.2325y =+=.则12y y <.故答案为:<16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C ..则点2020B 的坐标______.【答案】()20202020231,3⨯-【解析】解:∵AM 的解析式为1y x =+.∴M (-1.0).A (0.1).即AO=MO=1.∠AMO=45°. 由题意得:MO=OC=CO 1=1.O 1A 1=MO 1=3.∵四边形1111O A B C 是正方形.∴O 1C 1=C 1O 2=MO 1=3.∴OC 1=2×3-1=5.B 1C 1=O 1C 1=3.B 1(5.3). ∴A 2O 2=3C 1O 2=9.B 2C 2=9.OO 2=OC 2-MO=9-1=8.综上.MC n =2×3n .OC n =2×3n -1.B n C n =A n O n =3n . 当n=2020时.OC 2020=2×32020-1.B 2020C 2020 =32020.点B()20202020231,3⨯-.故答案为:()20202020231,3⨯-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6. (1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.【答案】(1)51k b =⎧⎨=-⎩ (2)14 【解析】(1)∵当x =3时.y =14.当x =–1时.y =–6.∴3146k b k b +=⎧⎨-+=-⎩.∴51k b =⎧⎨=-⎩;(2)∵51k b =⎧⎨=-⎩.∴y =5x –1. 当y 与x 相等时.则x =5x –1. ∴x =14. 18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数; (2)若点(a .2)在这个函数的图象上.求a 的值. 【答案】(1)一次函数。

【数学中考一轮复习】 一次函数的最值应用(含答案)

【数学中考一轮复习】 一次函数的最值应用(含答案)

专项训练一次函数的最值应用一、一次函数最值问题的基本模型1.如果n≤x≤m,那么y=kx+b有最大或最小值.当x=n时,y有最小值,当x=m时,y有最大值.当x=n时,y有最大值,当x=m时,y有最小值.2.如果x≥n,那么y=kx+b有最大或最小值.当x=n时,y有最小值;当x=n时,y有最大值.3.如果x≤m,那么y=kx+b有最大或最小值.当x=m时,y有最大值;当x=n时,y有最小值.4.如果n<x<m,x取值不定,那么y=kx+b既没有最大值也没有最小值.但是,如果x 取特殊值(如x取整数值),可参照前述三条求最值.二、一次函数最值应用的步骤1.审题,求一次函数的解析式;3.根据题意确定自变量的取值范围;4.结合增减性和自变量的取值范围确定函数的最值.类型一实际应用中直接求最值1.为迎接国庆节的到来,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍各种奖品的单价如下表所示如果计划一等奖买x件,买50件奖品的总钱数是w元.(1)求与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少,最少是多少元?2.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要原料0.25吨,每生产1吨乙产品需要原料0.5吨,受市场影响,该厂能获得的原料至多为1000吨,其他原料充足.求该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.4.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如表所示:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)10 8(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元分别写出当0≤x≤50和x>50时,y与x的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?5.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?类型二方案设计中的最值6.煤炭是陕西省的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如表(表中运费栏“元/t·km”表示每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.7.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.8.年初,武汉暴发新冠疫情,“一方有难,八方支援”,某地为助力武汉抗疫,紧急募集到一批物资运往武汉的A,B两县,用载重量为16吨的大货车8辆和载重量10吨的小货车10辆恰好一次性运完这批物资.运往A,B两县的运费标准如表:(1)如果安排到A,B两县的货车都是9辆,设前往A县的大货车为x辆,前往A,B两县的总运费为y元,求出y与x的函数关系式(写出自变量的取值范围);(2)在(1)的条件下,若运往A县的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.9.在抗击新冠肺炎疫情期间,市场上的消毒液和防护口罩热销.某药店推出两种优惠方案,方案①:购买1瓶消毒液,赠送1个口罩,方案②:消毒液和口罩一律按9折优惠.消毒液每瓶定价40元,口罩每个定价5元小明需买4瓶消毒液和若干个口罩(不少于4个),设购买口罩x 个,用优惠方案①购买费用为y 1元,用优惠方案②购买费用为y 2元. (1)请分别写出y 1,y 2与x 之间的函数关系式; (2)什么情况下选择方案②更优惠?(3)若要买4瓶消毒液和12个口罩,请你设计怎样购买最便宜.参考答案1.解:(1)w = 12x +10(2x-10)+5[50-x-(2x-10)]= 17x +200.由⎪⎪⎩⎪⎪⎨⎧-⨯≤--->--->->)102(105.1)]102(50[50)]102(50[01020x x x x x x x ,得10≤x <20.∴自变量的取值范围是10≤x <20,且x 为整数;(2)w =17x +200,∵k =17>0,∴w 随x 的增大而增大,减小而减小. ∵1≤0x <20,当x =10时,有w 最小值,最小值为w =17×10+200=370. 2.解: (1) y =0.3x +0.4(2500-x )=-0.1x +1000, 因此y 与x 之间的函数表达式为:y =-0.1x +1 000;⎧≤-+1000)2500(5.025.0x x又∵k =-0.1<0,∴y 随x 的减小而增大. ∴当x =1000时, y 最大,此时2500-x =1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大.3,解:(1)设y 甲=k 1x ,根据题意得:5k 1=100,解得:k 1=20.∴у甲=20x. 设y 乙=k 2x +100,根据题意得:20k 2+100=300,解:k 2=10. ∴y 乙= 10x +100;(2)①y 甲<y 乙,即20x <10x-100,解得:x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x-100,解得:x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即 20x >10x +100,解得:x >10,当入园次数大于10次时,选择乙消费卡比较合算.4,解:(1)由表格可得,40×10=400(元), 答:小刚购买苹果40千克,应付400元; (2)由题意可得,当0≤x ≤50时, y 与x 的关系式是y =10x ,当x >50时,y 与x 的关系式是y =10×50—8(x-50)=8x +100, 即当x >50时,y 与x 的关系式是y =8x +100;(3)小刚若一次性购买80千克所付的费用为:8×80-100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800—740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40 千克)所付的费用少60元.5.解:(1)依题意得:y =4x +3(50-x ) =x +150;(2)依题意得:⎩⎨⎧≤-+≤-+,②,①17)50(4.03.019)50(2.05.0x x x x解不等式①得:x ≤30,解不等式②得:x ≥28, ∴不等式组的解集为28≤x ≤30.∵y =x +150, y 是随2的增大而增大,且28≤x ≤30,∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,y 最小=28+150=1786,解:(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨. 依题意得:y =200×0.45x +150×a ×(1000-x )=90x-150ax + 150000a =(90-150a )x + 150000a ,依题意得⎩⎨⎧≤-≤8001000600x x ,解得200≤x ≤600.故函数关系式为y =(90-150a )x +150000a , (200≤x ≤600) ; (2)当0<a <0.6时,90-150a >0,∴当x =200时,y 最小=(90-150a )×200+150000a =120000a +18000. 此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a )×600+150000a =60000a +54000. 此时,1000-x =1000-600=400.当a =0.6时,y =90000,答:当0<a <0.6时,运往A 厂200吨, B 厂800吨时,总运费最低,最低运费(120000a +18000)元.当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60000a +54000)元.当a =0.6时,运费90000元.7.解:(1)由题意可得,y =400x +320(8-x )=80x +2560. 即y 与x 的函数关系式为y =80x +2560;(2)由题意可得,45x +35(8-x )≥340,解得,x ≥6, ∵y =80x +2560,∴k =80,y 随x 的增大而增大. ∴当x =6时, y 取得最小值,此时y =3040,8-x =2.答:最节省费用的租车方案是大货车6辆,小货车2辆,最低费用是3040元.8.解:(1)设前往A 县的大货车为z 辆,则前往A 县的小货车为(9-x )辆;前往B 县的大货车为(8-x )辆,前往B 县的小货车为(1+x )辆,根据题意得:y =1080x +750(9-x )+120(8-x )+950(1+x )=80x +17300 (0≤x ≤8); (2)由题意得,16x +10(9-x )≥120,解得x ≥5. 又∵0≤x ≤8,∴5≤x ≤8且为整数.∵y =80x +17300,且80>0,∴y 随x 的增大而增大, ∴当x =5时,y 最小,最小值为y =80×5+17300=17700.货车前往B县.最少运费为17700元.9.解:(1)由题意得:y1=40×4+5(x-4)=5x+140;y2=40×0.9×4+5×0.9x=4.5x+144;(2)当y1>y2时,5x+140>4.5x+144,解得x>8,答:当x>8时,选择方案②更优惠;(3)方案①:y1=5×12+140=220(元);方案②:y2=4.5×12+144=198(元);方案③:先按方案①买4瓶消毒液,送4个口罩,剩下8个口罩按方案②购买,总价为:40×4+5×0.9×8=196(元),∵200>198>196,∴方案③最省钱.答:购买4瓶消毒液和12个口罩用方案③最优惠.。

2020年中考数学一轮专题复习——一次函数及其应用(含详细解析)

2020年中考数学一轮专题复习——一次函数及其应用(含详细解析)

2020年中考数学——一次函数及其应用考题感知与试做1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4 s 行驶的路程为48 mB .在0到8 s 内甲的速度每秒增加4 m /sC .两车到第3 s 时行驶的路程相等D .在4至8 s 内甲的速度都大于乙的速度2.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若点C ⎝⎛⎭⎫32,32,则该一次函数的表达式为 .中考考点梳理一次函数及其图象和性质1.一次函数及正比例函数的概念用自变量的一次整式表示的函数的关系式,称为一次函数.一次函数通常可以表示为y =kx +b 的形式,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y =kx (常数k ≠0)叫做正比例函数.【温馨提示】正比例函数是一种特殊的一次函数.正比例函数是一次函数,反之不一定成立;定义中k ≠0是非常重要的条件,若k =0,则函数就成为y =b (b 为常数),此函数图象是平行于x 轴(包括x 轴)的直线,不是一次函数.2.一次函数的图象和性质一次函数 y =kx +b (k ≠0)k 、b符号 k >0 k <0 b >0 b <0 b =0 b >0 b <0 b =0图象经过象限经过第一、二、三象限经过第 象限 经过第一、三象限 经过第一、二、四象限 经过第二、三、四象限经过第 象限增减性 y 随x 的增大而 y 随x 的增大而与坐标轴 的交点与x 轴的交点坐标为 , 与y 轴的交点坐标为3.一次函数y =kx +b (k ≠0)的图象向上或向下平移m (m>0)个单位的解析式为y =kx +(b±m );向左或向右平移m 个单位的解析式为y =k (x±m )+b.一次函数表达式的确定4.求一次函数表达式的常用方法是 ,具体步骤: (1)设出待求函数表达式y =kx +b (k ≠0);(2)将题中条件(图象上点的坐标)代入表达式y =kx +b ,得到含有待定系数k 、b 的方程(组); (3)解方程(组)求出待定系数k 、b 的值;(4)将所求待定系数的值代入所设函数表达式中.一次函数与方程(组),不等式的关系5.一次函数与方程(组)的关系(“数形结合”思想)(1)一次函数y =kx +b (k 、b 为常数,且k ≠0)可转化为二元一次方程kx -y +b =0; (2)一次函数y =kx +b 的图象与x 轴交点的横坐标 是方程kx +b =0的解;(3)一次函数y =kx +b 与y =k 1x +b 1图象交点的横、纵坐标值是方程组⎩⎪⎨⎪⎧y =kx +b ,y =k 1x +b 1的解.6.一次函数与不等式的关系(“数形结合”思想)(1)如图①,函数y =kx +b 中,当函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集,对应的函数图象为位于x 轴上方的部分,即x <a ;当函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集,对应的函数图象为位于x 轴下方的部分,即x >a.(2)两个一次函数可将平面分成四部分,比较两函数交点左右两边图象上下位置来判断不等式的解集,即k 1x +b 1>k 2x +b 2的解集为x >a ;k 1x +b 1<k 2x +b 2的解集为x <a (如图②).【温馨提示】灵活运用“数形结合”思想,不忘代数解法.一次函数的实际应用7.利用一次函数解决实际问题的一般步骤 (1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式; (3)确定自变量的取值范围; (4)利用函数性质解决问题;(5)检验所求解是否符合实际意义; (6)作答. 8.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过 列不等式 ,求解出某一个事物的 取值范围 ,再根据另一个事物所要满足的条件,即可确定出有多少种方案.1.(2019·沈阳中考)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是( ) A .k <0 B .k <-1 C .k <1 D .k >-12.若一个正比例函数的图象经过A (3,-6)、B (m ,-4)两点,则m 的值为( ) A .2 B .8 C .-2 D .-8(第1题图) (第3题图)3.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( )A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +34.如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1).当x<2时,y 1 y 2.(填“>”或“<”)中考典题精讲精练一次函数的图象及性质【典例1】已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k 、b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0一次函数表达式的确定及与方程(组)、不等式的关系【典例2】已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1,那么这个函数的表达式为 .【典例3】如图,若一次函数y =-2x +b 的图象交y 轴于点A (0,3),则不等式-2x +b >0的解集为( )A .x >32 B .x >3C .x <32 D .x <3一次函数的实际应用【典例4】甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地.甲出发1 h 后,乙出发.设甲与A 地相距y 甲(km ),乙与A 地相距y 乙(km ),甲离开A 地的时间为x (h ),y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km /h ;(2)当1≤x ≤5时,求y 乙关于x 的函数表达式;(3)当乙与A 地相距240 km 时,甲与A 地相距 km .一次函数的综合应用 【典例5】如图,把Rt △ABC 放在平面直角坐标系上,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 cm 2.1.(2019·广安中考)一次函数y =2x -3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、三、四 D .一、二、四2.(2019·成都中考)已知一次函数y=(k-3)x+1的图象经过第一、二、四象限,则k的取值范围是 .3.(2019·通辽中考)如图,直线y=kx+b(k≠0)经过点(-1,3),则不等式kx+b≥3的解集为()A.x>-1B.x<-1C.x≥3D.x≥-14.若函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.5.(2019·大连中考)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A、B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a-b= .6.(2019·山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1、y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱?7.(2019·乐山中考)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.参考答案考题感知与试做1.(2019·中考)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( C )A .乙前4 s 行驶的路程为48 mB .在0到8 s 内甲的速度每秒增加4 m /sC .两车到第3 s 时行驶的路程相等D .在4至8 s 内甲的速度都大于乙的速度2.(2018·中考)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若点C ⎝⎛⎭⎫32,32.中考考点梳理一次函数及其图象和性质1.一次函数及正比例函数的概念用自变量的一次整式表示的函数的关系式,称为一次函数.一次函数通常可以表示为y =kx +b 的形式,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y =kx (常数k ≠0)叫做正比例函数.【温馨提示】正比例函数是一种特殊的一次函数.正比例函数是一次函数,反之不一定成立;定义中k ≠0是非常重要的条件,若k =0,则函数就成为y =b (b 为常数),此函数图象是平行于x 轴(包括x 轴)的直线,不是一次函数.2.一次函数的图象和性质3.一次函数y =kx +b (k ≠0)的图象向上或向下平移m (m>0)个单位的解析式为y =kx +(b±m );向左或向右平移m 个单位的解析式为y =k (x±m )+b.一次函数表达式的确定4.求一次函数表达式的常用方法是 待定系数法 ,具体步骤: (1)设出待求函数表达式y =kx +b (k ≠0);(2)将题中条件(图象上点的坐标)代入表达式y =kx +b ,得到含有待定系数k 、b 的方程(组);(3)解方程(组)求出待定系数k 、b 的值; (4)将所求待定系数的值代入所设函数表达式中.一次函数与方程(组),不等式的关系5.一次函数与方程(组)的关系(“数形结合”思想)(1)一次函数y =kx +b (k 、b 为常数,且k ≠0)可转化为二元一次方程kx -y +b =0;(2)一次函数y =kx +b 的图象与x 轴交点的横坐标 -bk是方程kx +b =0的解;(3)一次函数y =kx +b 与y =k 1x +b 1图象交点的横、纵坐标值是方程组⎩⎪⎨⎪⎧y =kx +b ,y =k 1x +b 1的解.6.一次函数与不等式的关系(“数形结合”思想) (1)如图①,函数y =kx +b 中,当函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集,对应的函数图象为位于x 轴上方的部分,即x <a ;当函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集,对应的函数图象为位于x 轴下方的部分,即x >a.(2)两个一次函数可将平面分成四部分,比较两函数交点左右两边图象上下位置来判断不等式的解集,即k 1x +b 1>k 2x +b 2的解集为x >a ;k 1x +b 1<k 2x +b 2的解集为x <a (如图②).【温馨提示】灵活运用“数形结合”思想,不忘代数解法.一次函数的实际应用7.利用一次函数解决实际问题的一般步骤 (1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式; (3)确定自变量的取值范围; (4)利用函数性质解决问题;(5)检验所求解是否符合实际意义; (6)作答. 8.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过 列不等式 ,求解出某一个事物的 取值范围 ,再根据另一个事物所要满足的条件,即可确定出有多少种方案.1.(2019·沈阳中考)已知一次函数y =(k +1)x +b 的图象如图所示,则k 的取值范围是BA .k <0B .k <-1C .k <1D .k >-12.若一个正比例函数的图象经过A (3,-6)、B (m ,-4)两点,则m 的值为( A ) A .2 B .8 C .-2 D .-8(第1题图) (第3题图)3.(2014·宜宾中考)如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是( D )A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +34.如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1).当x<2时,y 1 < y 2.(填“>”或“<”)中考典题精讲精练一次函数的图象及性质【典例1】已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k 、b 的取值情况为( A )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0【解析】一次函数y =kx +b -x =(k -1)x +b. ∵函数值y 随x 的增大而增大,∴k -1>0,即k >1.又∵图象与x 轴的正半轴相交,∴图象与y 轴的负半轴相交.∴b <0.一次函数表达式的确定及与方程(组)、不等式的关系【典例2】已知函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1,那么这个函数的表达式为 y =32x -2 W.【解析】由题意知,函数图象过(0,-2)、(2,1)两点,并代入y =kx +b ,得⎩⎪⎨⎪⎧2k +b =1,b =-2.求解出k 、b 的值,即可确定出函数的表达式.【典例3】如图,若一次函数y =-2x +b 的图象交y 轴于点A (0,3),则不等式-2x +b >0的解集为( C )A .x >32 B .x >3C .x <32D .x <3【解析】由题意可得一次函数图象与x 轴的交点坐标为⎝⎛⎭⎫32,0,对应x 轴上方的函数图象的自变量x 的取值范围即为所求.一次函数的实际应用【典例4】甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地.甲出发1 h 后,乙出发.设甲与A 地相距y 甲(km ),乙与A 地相距y 乙(km ),甲离开A 地的时间为x (h ),y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km /h ;(2)当1≤x ≤5时,求y 乙关于x 的函数表达式;(3)当乙与A 地相距240 km 时,甲与A 地相距 km . 【解析】(1)根据图象确定甲的路程与时间即可求出速度;(2)利用待定系数法求出y 乙关于x 的函数表达式即可;(3)求出乙距A 地240 km 时的时间,乘以甲的速度即可得出结果.【解答】解:(1)60;(2)当1≤x ≤5时,设y 乙关于x 的函数表达式为y 乙=kx +b.∵点(1,0)、(5,360)在其图象上, ∴⎩⎪⎨⎪⎧0=k +b ,360=5k +b ,解得⎩⎪⎨⎪⎧k =90,b =-90. ∴y 乙=90x -90(1≤x ≤5); (3)220.一次函数的综合应用【典例5】如图,把Rt △ABC 放在平面直角坐标系上,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 16 cm 2.【解析】如图.∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5, ∴AC =4.∴A′C′=4.∵点C′在直线y =2x -6上, ∴2x -6=4,解得 x =5. 即OA′=5.∴CC′=5-1=4.根据平行四边形面积的计算方法可求线段BC 扫过的面积.1.(2019·广安中考)一次函数y =2x -3的图象经过的象限是C A .一、二、三 B .二、三、四 C .一、三、四 D .一、二、四2.(2019·成都中考)已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是k <3.3.(2019·通辽中考)如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为DA .x >-1B .x <-1C .x ≥3D .x ≥-14.若函数y =2x +b (b 为常数)的图象经过点(1,5),则b 的值为 3 W.5.(2019·大连中考)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A 、B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲、乙两人之间的距离(单位:m )与甲行走时间x (单位:min )的函数图象,则a -b =12.6.(2019·山西中考)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1、y 2与x 之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱? 解:(1)当游泳次数为x 时,方式一费用为y 1=30x +200,方式二的费用为y 2=40x ; (2)由y 1<y 2,得30x +200<40x ,解得x >20, 当x >20时,选择方式一比方式二省钱.7.(2019·乐山中考)如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ). (1)求直线l 1的解析式; (2)求四边形PAOC 的面积.解:(1)∵点P (-1,a )在直线l 2:y =2x +4上, ∴2×(-1)+4=a ,即a =2, 则P 点的坐标为(-1,2).设直线l 1的解析式为y =kx +b (k ≠0),代入B (1,0)、P (-1,2),得 ⎩⎪⎨⎪⎧k +b =0,-k +b =2.解得⎩⎪⎨⎪⎧k =-1,b =1. ∴直线l 1的解析式为y =-x +1; (2)∵直线l 1与y 轴相交于点C , ∴C 点的坐标为(0,1).又∵直线l 2与x 轴相交于点A , ∴A 点的坐标为(-2,0),则AB =3. ∵S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2-12×1×1=52.。

中考数学专题复习(有答案)一次函数及其应用

中考数学专题复习(有答案)一次函数及其应用

第2节 一次函数及其应用A 组1.(2020泰州)点P (a ,b )在函数y =3x +2的图象上,则代数式6a -2b +1的值等于( C )A .5B .3C .-3D .-12.(2020嘉兴)一次函数y =2x -1的图象大致是( B )A B C D3.(2020临沂)点⎝⎛⎭⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是 m <n .4.(2020济宁)数形结合是解决数学问题常用的思想方法.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,方程x +5=ax +b 的解是( A )A .x =20B .x =5C .x =25D .x =15第4题图 第6题图 5.(2020黔东南州)把直线y =2x -1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 y =2x +3 .6.(2020上海)小明从家步行到学校需走的路程为1 800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.B 组7.若ab <0且a >b ,则函数y =ax +b 的图象可能是( A )A B. C. D.8.(2020北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.解:(1)∵一次函数y =kx +b (k ≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x +b 中,得1+b =2.∴b =1.∴一次函数的解析式为y =x +1.(2)m ≥2.C 组9.(2020河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k 2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.解:(1)由图可知,y 1=k 1x +b 过点(0,30),(10,180),∴⎩⎪⎨⎪⎧b =30,10k 1+b =180.解得⎩⎪⎨⎪⎧k 1=15,b =30. k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元.(2)由题意,得打折前的每次健身费用为15÷0.6=25(元),则k 2=25×0.8=20.(3)选择方案一所需费用更少,理由如下:由(1)(2)可知,y 1=15x +30,y 2=20x .当健身8次时,选择方案一所需费用为y 1=15×8+30=150(元),选择方案二所需费用为y 2=20×8=160(元).∵150<160,∴选择方案一所需费用更少.。

一次函数综合应用(习题及解析)精选全文

一次函数综合应用(习题及解析)精选全文

精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

一次函数应用题含答案

一次函数应用题含答案

一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。

一次函数的综合应用含答案

一次函数的综合应用含答案

∙某服装店老板到厂家选购A、B两种型号的服装,它们的进价及获利如表所示.型号 A B进价(元/件) 90 120获利(元/件) 20 22∙(1)根据市场需求,服装店老板决定,购进B型服装的数量要比购进A型服装数量的2倍少3件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于1534元.问有几种进货方案?请求出所有的进货方案.(2)采用哪种方案时,可获得最大利润,最大利润为多少?解:(1)设购进A型服装a件,则购进B型服装(2a-3)件.由题意,得,解之得25≤a≤28.故有4种进货方案:①购进A型服装25件,B型服装47件;②购进A型服装26件,B型服装49件;③购进A型服装27件,B型服装51件;④购进A型服装28件,B型服装53件;(2)设购进A型服装a件时,所获利润为y元,则y=20a+22(2a-3)=64a-66,∵y随a的增大而增大,∴当a=28时,y=64×28-66=1726元.最大故购进A型服装28件,B型服装53件时,可获得最大利润,最大利润为1726元.解析:(1)设购进A型服装a件,则购进B型服装(2a-3)件,根据A型服装最多可购进28件,可以得到不等式a≤28,根据总的获利不少于1534元可以列出不等式20a+22(2a-3)≥1534,联立两个不等式组成不等式组,解不等式组就可以求出进货方案;(2)设购进A型服装a件时,所获利润为y元.先根据利润=出售A型服装的利润+出售B型服装的利润,列出y关于a的函数关系式,再根据函数的性质求解.∙某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C 楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.解:(1)设取奶站建在距A楼x米处,所有取奶的人到奶站的距离总和为y米.①当0≤x≤40时,y=20x+70(40-x)+60(100-x)=-110x+8800∴当x=40时,y的最小值为4400,②当40<x≤100,y=20x+70(x-40)+60(100-x)=30x+3200此时,y的值大于4400因此按方案一建奶站,取奶站应建在B处;(2)设取奶站建在距A楼米处,①0≤x≤40时,20x+60(100-x)=70(40-x)解得x=-<0(舍去)②当40<x≤100时,20x+60(100-x)=70(x-40)解得:x=80因此按方案二建奶站,取奶站建在距A楼80米处.(3)设A楼取奶人数增加a人①当0≤x≤40时,(20+a)x+60(100-x)=70(40-x)解得x=-(舍去).②当40<x≤100时,(20+a)x+60(100-x)=70(x-40),解得x=.∴当a增大时,x增大.∴当A楼取奶的人数增加时,按照方案二建奶站,取奶站建在B、C两楼之间,且随着人数的增加,离B楼越来越远解析:(1)设取奶站建在距A楼x米处,所有取奶的人到奶站的距离总和为y米,求出在各函数在自变量下的最小值,(2)设取奶站建在距A米处,列出等量关系式,解得x.(3)设A楼取奶人数增加a人,在各个自变量下,解得x与a的关系∙一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号A型B型C型进价(单位:元/部) 900 1200 1100预售价(单位:元/部) 1200 1600 1300∙(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.分析:(1)关键描述语:A型、B型、C型三款手机共60部,由A、B型手机的部数可表示出C型手机的部数.(2)根据购机款列出等式可表示出x、y之间的关系.(3)①由预估利润P=预售总额-购机款-各种费用,列出等式即可.②根据题意列出不等式组,求出购买方案的种数,预估利润最大值即为合理的方案.解答:解:(1)60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-50.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-1500,P=1200x+1600y+78000-1300x-1300y-61000-1500,P=-100x+300y+15500,P=-100x+300(2x-50)+15500,整理得P=500x+500.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得,解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.点评:此题结合图表,以手机销售为载体,考查了根据实际问题列函数解析式的问题.(1)、(2)两题较简单,容易列出表达式和一次函数解析式,主旨是为(3)提供思路;(3)根据前两题的关系式及“每款手机至少要购进8部”的条件,列出不等式组,求出x的取值范围,然后根据一次函数的增减性求出利润最大值.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?分析:(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x≤80时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本-员工工资-其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.解答:解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x≤80时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(-×50+8)(50-40)-15-0.25a,得30-15-0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w=(-x+8)(x-40)-15-20=-(x-60)2+5,1=5万元;则当x=60时,wmax当60<x≤80时,=(-x+5)(x-40)-15-0.25×80w2=-(x-70)2+10,=10万元,∴x=70时,wmax∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.点评:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.∙根据题意设解析式y=kx+b,把(5,12),(8,15.6)代入即可求出k,b 的值,即得到解析式y=1.2x+6,把x=0代入即可求出答案.∙宾馆厨房的桌子上整齐叠放着若干只形状一样的碗,它的主视图如图,请你画出它的俯视图.设叠放这种碗x只叠放高度为y厘米,经实验发现,当叠放这种碗5只时,叠放高度为12厘米;当叠放这种碗8只时,叠放高度为15.6厘米.求y(厘米)与x(只)之间的函数关系,并指出这种碗的深度是多少?∙解答:解:它的俯视图是:设y=kx+b,把(5,12),(8,15.6)代入得:,解得:k=1.2,b=6,∴y=1.2x+6,当x=0时,y=6,所以y与x之间的函数关系是y=1.2x+6,这种碗的深度是6厘米.点评:本题主要考查了一次函数的性质,解此题的关键是把实际问题转化成数学问题.用到的数学思想是转化思想某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1和y2元.(1)试求一个人要打电话30分钟,他应该选择那种通信业务?(2)根据一个月通话时间,你认为选用哪种通信业务更优惠?解:(1)甲:15+0.3×30=24(元),乙:0.6×30=18(元),∵18<24,∴选择乙种通信业务;(2)y1=15+0.3x,y2=0.6x,当y1>y2即15+0.3x>0.6x时,x<50,当y1=y2即15+0.3x=0.6x时,x=50,当y1<y2即15+0.3x<0.6x时,x>50,所以,当通话时间小于50分钟时,选择乙种通信业务更优惠,当通话时间等于50分钟时,选择两种通信业务一样,当通话时间大于50分钟时,选择甲种通信业务更优惠.∙(2008•陕西)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.品种项目单价(元/棵) 成活率劳务费(元/棵)A 15 95% 3B 20 99% 4∙设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?分析:(1)A种树苗为x棵时,B种树苗为2000-x棵,根据题意容易写出函数关系式;(2)根据题意,成活1960棵,即0.95x+0.99(2000-x)=1960,可计算出此时x的值,再代入(1)中的函数关系式中就可计算出总费用.解答:解:(1)y=(15+3)x+(20+4)(2000-x),=18x+48000-24x,=-6x+48000;(2)由题意,可得0.95x+0.99(2000-x)=1960,∴x=500.当x=500时,y=-6×500+48000=45000,∴造这片林的总费用需45000元.点评:此题不难,关键要仔细审题,懂得把B种树苗用A种树苗为x表示出来,即(2000-x)∙∙(2003•武汉)小强在劳动技术课中要制作一个周长为80cm的等腰三角形,请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量x的取值范围.分析:我们知道等腰三角形的周长=腰长×2+底长.据此可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).解答:解:由题意,函数关系式为:y=80-2x∵x+x=2x>y∴0<y=80-2x<2x,解得20<x<40∴y=80-2x(20<x<40).点评:本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.∙∙(2001•河北)甲乙两辆汽车在一条公路上匀速行驶.为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0.表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图请解答下列问题:(1)就这两个一次函数图象所反映的两汽车在这条公路上行驶的状况填写如下的表格.行驶方向速度的大小(km/h) 出发前的位置甲车乙车(2)甲乙两车能否相遇如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,)已知甲乙两车的函数解析式,列方程组求出t,s的值即可.解答:解:(1)甲车:x轴的负方向(向左),零千米路标右侧190千米;乙车:x轴的正方向(向右),零千米路标左侧80千米处.行驶方向速度的大小(km/h)出发前的位置甲车向左40 零千米路标右侧190千米乙车向右50 零千米路标左侧80千米处(2)甲乙两车相遇.设甲乙两车经过t小时相遇,则可得所以经过3小时两车相遇,相遇在零千米路标右侧70千米处.点评:本题通过考查一次函数的应用来考查从图象上获取信息的能力.请说理由.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系,请根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了 h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5-2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:80=2.5k+b 300=4.5k+b ,解得:k=110 b=-195 ,故线段DE对应的函数解析式为:y=110x-195;(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x-195,解得:x=3.9小时,答:轿车从甲地出发后经过3.9小时追上货车.托盘秤是日常生活中一种常见的称重仪器(如图).小华同学发现刻度盘上的顺时针指针偏离0刻度的角度与托盘上物体重量符合一次函数关系,并制作了下表.请你帮助小华同学解决下列问题:(1)在横线上的单元格中填上适当数或代数式:(2)利用上表发现的规律计算:①当托盘上的物体的重量是7.5kg时,指针顺时针偏离0刻度多少度?②当指针从0刻度顺时针旋转306度时,托盘上物体的重量是多少?托盘上物体的重量/kg 0 1 ...5 ...10 (x)刻度盘上指针顺时针偏离0刻度的角度/度0 _____ …90 …180 …_____答案:18 18x解析:(1)根据表格中的数据,利用待定系数法求得一次函数解析式,然后把x=1代入函数解析式,求得相应的y值;(2)①把x=7.5代入(1)中的函数解析式,求得相应的y的值;②把y=306代入(1)中的函数解析式,求得相应的x的值.解:(1)设刻度盘上的顺时针指针偏离0刻度的角度与托盘上物体重量的一次函数关系式为y=kx+b(k≠0),则,解得,则该一次函数解析式为:y=18x.所以当x=1时,y=18.故答案是:18;18x;(2)由(1)知,y=18x.①当x=18时,y═18×7.5=135(度).即当托盘上的物体的重量是7.5 kg时,指针顺时针偏离0刻度的角度是135度;②当y=306时,x═306÷18=17.即当指针从0刻度顺时针旋转306度时,托盘上物体的重量是17kg.某工厂2010年、2011年、2012年的产值连续三年呈直线上升,具体数据如表:年份2010 2011 2012产值则2011年的产值为().答案:解:设这个一次函数解析式为y=kx+a,∵(2,2a)在它上面,∴2k+a=2a,解得k=a,∴y=ax+a,当x=1时,y=a.故答案为a.解析:设一次函数解析式为y=kx+a,然后把(2,2a)代入求得k的值,进而把x=1代入可得2011年的产值某化妆公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.为方案设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案二的函数图象.已知每件商品的销售提成方案二比方案一的函数图象,y2一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):的函数解析式;(1)求y1(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?答案:分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)因为每件商品的销售提成方案二比方案一少7元,所以设y的函数解析式2为y=ax+b(x≥0),则a=24-7=17,又因该图象过点(30,960),把该点的坐标代入,即可求出b的值,从而求出答案.(3)利用(1)、(2)中求出的两函数的解析式,利用不等式求出即可,即可写出选择的最好方案,并利用该方案涉及的函数解析式,利用不等式即可求出至少要销售多少商品.的函数解析式为y=kx(x≥0).(1分)解答:解:(1)设y1∵y经过点(30,720),1∴30k=720.∴k=24.(2分)的函数解析式为y=24x(x≥0).(3分)∴y1(2)设y的函数解析式为y=ax+b(x≥0),它经过点(30,960),2∴960=30a+b.(4分)∵每件商品的销售提成方案二比方案一少7元,∴a=24-7=17.(5分)∴960=30×17+b.∴b=450,即方案二中每月付给销售人员的底薪为450元.(6分)(3)由(2),得y的函数解析式为y=17x+450(x≥0).2当17x+450>1000,∴x>,=24x,由y1当24x>1000,得x>41,当17x+450>24x,解得:x<64,则当33<x<65时,小丽选择方案二较好,小丽至少要销售商品33件;当销量超过65件时,小丽选择方案一比较好,小丽至少销售商品65件.点评:本题考查了待定系数法求一次函数解析式以及一次函数与一元一次不等式关系的知识,充分利用图象中数据信息,正确应用待定系数法求解析式以及构造不等式是解题关键甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的距离为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1)甲走完全程所用的时间为______小时;(2)乙行走的速度为______;(3)当乙行走了多少时间,他们两人在途中相遇?答案:4;20km/h.解析:分析:(1)由于A、B两地间的距离为20km,由图象可知,当s=20时,甲中对应的t值为4,即甲走完全程需要用4小时;(2)由图象可知,乙1小时走了20千米,从而求出乙行走的速度;(3)分别写出甲乙所走路线的函数关系式,求出交点的横坐标即为答案.解答:解:(1)由图象可知,甲走完全程所用的时间为4小时;(2)由图象可知,乙行走的速度为:=20(km/h);=kx,由图知:4k=20,k=5,(3)设y甲=5x;∴y甲=mx+n,由图知:设y乙,解得=20x-20.∴y乙两人在途中相遇,则5x=20x-20,解得x=.-1=h.答:当乙行走了h,他们两人在途中相遇.某市是重要石油生产基地,该市甲公司只负责向乙市管道输送石油,且乙市全部石油只由甲公司提供.2010年甲公司的石油日生产量保持不变,乙市的石油日消耗量也保持不变,如图是2010年10月初甲公司又一次启动向乙市输送石油开始统计,得到的甲公司与乙市各自的石油储备总量y(吨)与时间x(天)之间的函数关系图象.通过分析图象回答下列问题:(1)甲公司的石油日生产量为多少吨?(2)乙市的石油日消耗量为多少吨?甲公司向乙市的石油日输出量为多少吨?(3)请直接写出射线AB的函数解析式(不要求写出自变量的取值范围).答案:分析:(1)利用第15天甲公司石油储备总量为:8200吨,第5天时,甲公司石油储备总量为:5000吨,得出甲公司的石油日生产量即可;(2)利用第10天乙公司石油储备总量为:3000吨,开始时,乙公司石油储备总量为:6000吨,得出乙公司的石油日消耗量,进而得出甲公司向乙市的石油日输出量;(3)利用D点坐标为:(0,6000),C点坐标为:(10,3000)得出直线CD 的解析式,进而得出A点坐标为,求出射线AB的解析式即可.解答:解:(1)根据图象可以得出:第15天甲公司石油储备总量为:8200吨,第5天时,甲公司石油储备总量为:5000吨,得出甲公司的石油日生产量为(8200-5000)÷10=320吨;(2)根据图象可以得出:第10天乙公司石油储备总量为:3000吨,开始时,乙公司石油储备总量为:6000吨,得出乙公司的石油日消耗量为:(6000-3000)÷10=300吨;根据前5天甲公司输出石油:20000-5000+320×5=16600(吨),则甲公司向乙市的石油日输出量为16600÷5=3320吨;(3)根据已知得出15天后,直线AB与直线CD平行,∵D点坐标为:(0,6000),C点坐标为:(10,3000),设解析式为:y=kx+b,得:,解得:,故CD直线解析式为:y=-300x+6000,则射线AB解析式为:y=-300x+h,∵C点坐标为(10,3000),A点纵坐标为:16600+3000-5×300=18100,∴A点坐标为:(15,18100),代入y=-300x+h,得:18100=-300×15+b,解得:b=22600,故射线AB的函数解析式为:y=-300x+22600.点评:此题主要考查了一次函数的应用中函数图象与实际结合的问题,根据已知利用图象得出甲公司日生产量与乙市日消耗量是解题关键.。

一次函数的应用100道题与答案

一次函数的应用100道题与答案
(1) y与x的函数关系式为:;
(2) 若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.
17.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图
(1)第20天的总用水量为多少米3?
(2)求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;
(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
20.某体育用品商店为了解5月份的销售情况,对本月各类商品的销售情况进行调查,并将调查的结果绘制成如下两幅不完整的统计图
(3)在(2)中的进价和售价的条件下,据实际情况,预计足球销售超过60个后,这种球就会产生滞销
①假设所购进篮球、足球、排球能全部售出,求出预估利润P(元)与x(个)的函数关系式;
②求出预估利润的最大值,并写出此时购进三种球各多少个.
21.我市某风景区门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)请求出y关于x的函数关系式;
(2)若某3人之家欲购买120平方米的商品房,求其应缴纳的房款.
13.某大型超市的采购人员先后购进两批晋祠大米,购进第一批大米共花费5400元,进货单价为m元/千克,该超市将其中3000千克优等品以进货单价的两倍对外出售,余下的二等品则以1.5元/千克的价格出售.当第一批大米全部售出后,花费5000元购进了第二批大米,这一次的进货单价比第一批少了0.2元.其中优等品占总重量的一半,超市以2元/千克的单价出售优等品,余下的二等品在这批进货单价的基础上每千克加价0.6元后全部卖完,若不计其他成本,则售完第二批大米获得的总利润是4000元(总售价﹣总进价=总利润)

(完整版)利用一次函数解决实际问题(含答案)

(完整版)利用一次函数解决实际问题(含答案)

利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。

因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。

2021 一次函数及其应用含答案

2021 一次函数及其应用含答案

2021 一次函数及其应用含答案2021-一次函数及其应用含答案专题12一次函数及其应用阐释考点知识点名师点晴会推论一个函数与否为一次函数。

1.一次函数一次函数与也已2.正比例函数比例函数3.一次函数的图象4.一次函数的性质晓得正比例函数就是特定的一次函数。

晓得一次函数的图象就是一条直线。

可以精确推论k的差值、函数多寡性和图象经过的象限。

一次函数的应用领域6.一次函数图象的应用领域7.一次函数的综合应用领域?2年中考【2021年题组】5.一次函数与一元一次方程、二元一次方程组、一元一次不等式可以用数形融合思想化解此类问题。

(组)的联系能够根据图象信息,化解适当的实际问题。

能够化解与方程(组)、不等式(组)的有关实际问题。

1.(2021宿迁)在平面直角坐标系则中,若直线y?kx?b经过第一、三、四象限,则直线y?bx?k不经过的象限是()a.第一象限b.第二象限c.第三象限d.第四象限【答案】c.【解析】试题分析:由一次函数y?kx?b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y?bx?k经过第一、二、四象限,∴直线y?bx?k不经过第三象限,故选c.考点:一次函数图象与系数的关系.2.(2021桂林)如图,直线y?kx?b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足?3?a?0时,k的取值范围是()a.?1?k?0b.1?k?3c.k?1d.k?3【答案】c.考点:1.一次函数与一元一次不等式;2.综合题.3.(2021贺州)未知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致就是()a.【答案】c.【解析】试题分析:∵b.c.d.k1?0?k2,b=1<0,∴直线过一、三、四象限;双曲线坐落于二、四象限.故选c.考点:1.反比例函数的图象;2.一次函数的图象.4.(2021南通)在20km越野赛中,甲乙两球手的行程y(单位:km)随其时间x(单位:h)变化的图象如图所示,根据图中提供更多的信息,存有以下观点:①两人碰面前,甲的速度大于乙的速度;②启程后1小时,两人行程均为10km;③启程后1.5小时,甲的行程比乙多3km;④甲比乙先抵达终点.其中恰当的存有()a.1个b.2个c.3个d.4个【答案】c.考点:一次函数的应用领域.5.(2021徐州)若函数y?kx?b的图象如图所示,则关于x的不等式k(x?3)?b?0的解集为()a.x<2b.x>2c.x<5d.x>5【答案】c.【解析】试题分析:∵一次函数y?kx?b经过点(2,0),∴2kb=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x?3)?b?0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选c.考点:1.一次函数与一元一次不等式;2.不含字母系数的不等式;3.综合题.6.(2021连云港)例如图就是本地区一种产品30天的销售图象,图①就是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②就是一件产品的销售利润z (单位:元)与时间t(单位:天)的函数关系,未知日销售利润=日销售量×一件产品的销售利润,以下结论错误的就是()a.第24天的销售量为200件b.第10天销售一件产品的利润是15元c.第12天与第30天这两天的日销售利润相等d.第30天的日销售利润是750元【答案】c.考点:1.一次函数的应用领域;2.综合题.7.(2021德阳)如图,在一次函数y??x?6的图象上取一点p,作pa⊥x轴于点a,pb⊥y轴于点b,且矩形pboa的面积为5,则在x轴的上方满足上述条件的点p的个数共有()a.1个b.2个c.3个d.4个【答案】c.考点:1.一次函数图象上点的坐标特征;2.分类讨论.1mn(mn)y1mn(mn),则y的最小8.(2021德阳)已知m?x?1,n??x?2,若规定值()a.0b.1c.1d.2【答案】b.【解析】试题分析:因为m?x?1,n??x?2,当x?1??x?2时,可以得:x?0.5,则y?1?x?1?x?2?2x,则y的最小值为1;当x?1??x?2时,可以得:x?0.5,则y?1?x?1?x?2??2x?2,则y<1,故挑选b.考点:1.一次函数的性质;2.分段函数;3.崭新定义;4.分类探讨;5.最值问题.9.(2021广安)某油箱容量为60l的汽车,加完汽油后高速行驶了100km时,油箱中的汽油1大约消耗了5,如果加满汽油后汽车行驶的路程为xkm,邮箱中剩油量为yl,则y与x之间的函数解析式和自变量值域范围分别就是()a.y=0.12x,x>0b.y=600.12x,x>0c.y=0.12x,0≤x≤500d.y=600.12x,0≤x≤500【答案】d.【解析】试题分析:因为油箱容量为60l的汽车,加满汽油后行驶了100km时,油箱中的汽油大11约消耗了5,可以得:5×60÷100=0.12l/km,60÷0.12=500(km),所以y与x之间的函数求解析式和自变量取值范围是:y=600.12x,(0≤x≤500),故选d.考点:根据实际问题列一次函数关系式.11.(2021广元)如图,把ri△abc放在直角坐标系内,其中∠cab=90°,bc=5.点a、b的坐标分别为(1,0)、(4,0).将△abc沿x轴向右平移,当点c落在直线y?2x?6上时,线段bc扫过的面积为()a.4b.8c.16d.82。

2020年中考数学考点总动员第11讲 一次函数及其应用(含答案解析)

2020年中考数学考点总动员第11讲 一次函数及其应用(含答案解析)

第11讲 一次函数及其应用1.一次函数的概念一般地,形如y =kx +b(k≠0) 的函数叫做一次函数,当b =0时,y =kx +b 即为y =kx 叫做正比例函数,所以说正比例函数是一种特殊的一次函数. 2.一次函数的图象与性质(1)一次函数y =kx +b(k≠0)的图象是一条直线,它与x 轴的交点坐标为(-bk ,0),与y 轴的交点坐标为原点,正比例函数y =kx(k≠0)的图象是过(0,b) 的一条直线.(2)一次函数y =kx +b(k≠0)的图象所经过的象限及增减性.3.待定系数法求一次函数解析式的一般步骤(1)设:设出一次函数解析式一般形式y =kx +b(k≠0);(2)代:将已知条件中函数图象上的两点坐标代入y =kx +b 得到方程(组); (3)求:解方程(组)求出k ,b 的值; (4)写:写出一次函数的解析式. 4.一次函数与方程(组)的关系(1)一次函数的解析式y =kx +b 就是一个二元一次方程;(2)一次函数y =kx +b 的图象与x 轴交点的__横坐标__就是方程kx +b =0的解;(3)一次函数y =k 1x +b 1与y =k 2x +b 2的图象交点的横、纵坐标值就是方程组⎩⎪⎨⎪⎧y =k 1x +b 1y =k 2x +b 2的解.5.一次函数与不等式的关系(1)函数y =kx +b 的函数值y 大于0时,自变量x 的取值范围就是不等式kx +b >0的解集,即函数图象位于x 轴的上方部分对应点的横坐标的取值范围;(2)函数y =kx +b 的函数值y 小于0时,自变量x 的取值范围就是不等式kx +b<0的解集,即函数图象位于x 轴的下方部分对应点的横坐标的取值范围. 6.一次函数的实际应用(1)常见类型:①费用问题;②销售问题;③行程问题;④容量问题; ⑤方案问题.(2)解一次函数实际问题的一般步骤:①设出实际问题中的变量; ②建立一次函数关系式; ③利用待定系数法求出一次函数关系式; ④确定自变量取值范围; ⑤利用一次函数的性质求相应的值,对所得到的解进行检验,是否符合实际意义; ⑥答.考点1: 一次函数的图象与性质【例题1】(2018•江苏扬州•3分)如图,在等腰Rt △ABO ,∠A=90°,点B 的坐标为(0,2),若直线l :y=mx+m (m ≠0)把△ABO 分成面积相等的两部分,则m 的值为 .【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m 的值. 【解答】解:∵y=mx+m=m (x+1), ∴函数y=mx+m 一定过点(﹣1,0), 当x=0时,y=m , ∴点C 的坐标为(0,m ),由题意可得,直线AB 的解析式为y=﹣x+2,,得,∵直线l :y=mx+m (m ≠0)把△ABO 分成面积相等的两部分, ∴,解得,m=∵m<2(舍去),故答案为:2135 .考点2: 一次函数与方程、不等式的关系【例题2】.(2018·河北T24·10分)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4).(1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.【解析】:(1)把C(m ,4)代入一次函数y =-12x +5,可得4=-12m +5,解得m =2,∴C(2,4).设l 2的解析式为y =ax ,则4=2a ,解得a =2. ∴l 2的解析式为y =2x.(2)过点C 作CD ⊥AO 于点D ,CE ⊥BO 于点E ,则CD =4,CE =2,∵y =-12x +5的图象与x 轴、y 轴交于A ,B 两点,令x =0,则y =5,令y =0,则x =10,∴A(10,0),B(0,5). ∴AO =10,BO =5.∴S △AOC -S △BOC =12×10×4-12×5×2=15.(3)k 的值为32或2或-12.考点3: 一次函数的实际应用【例题3】(2019•四川省广安市•8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题. 【解答】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.归纳: 1.对于一次函数方案设计题,关键是读懂题意,然后在列方案时找出其中的数量关系并列出不等式;通过解不等式求出未知数的取值范围,然后取其整数解,将每一组符合题意的整数解定为一种方案,在选择最优方案时,通过将每一组解代入相应的关系式中,满足题意的最优解即可定为最优方案.2.在遇到求解一次函数最值问题时,切入问题的关键点在于确定自变量的取值范围,通过给定自变量的范围,选取合适的数值代入解析式求解即可.同时,一次函数确定最值时还应注意以下两点:①当在确定一次函数自变量时,有时需要列不等式解题,对于某些关键字要特别注意,如“不超过”、“不多于”、“最多”等字眼需要使用“≤”;而“至少”、“不少于”等字眼要使用“≥”;②从方程中得到的解一定要进行检验,即要符合原方程和实际意义,切不可忽略.3.涉及图象问题的实际应用要注意:在观察函数图象时,首先要弄清横轴与纵轴所表示的函数变量,然后在分析函数图象时应注意拐点、交点的实际意义,最后在分析图象时要考虑到函数自变量的取值范围.一、选择题:1. (2019•四川省广安市•3分)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【答案】C【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.2. (2018•湘潭)若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.【答案】C【解答】解:∵一次函数y=x+b中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,故选:C.3. (2019湖北荆门)(3分)如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0 D.k>0且b<0【答案】A【解答】解:∵y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b<0时成立;当k>0,b≤0时成立;综上所述,k≥0,b≤0;故选:A.4. (2019•山东临沂•3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限 B.y随x的增大而减小C.图象与y轴交于点(0,b) D.当x>﹣时,y>0【答案】D【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5. (2018•包头)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A. B. C. D.2【答案】B【解答】直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B.二、填空题:6. (2019•山东潍坊•3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是1<k<3 .【答案】1<k<3;【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;7. (2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.【答案】x=2.【解答】解:∵一次函数y=ax+b 的图象与x 轴相交于点(2,0), ∴关于x 的方程ax+b=0的解是x=2. 故答案为x=2.8. (2019▪广西河池▪3分)如图,在平面直角坐标系中,A (2,0),B (0,1),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是 y =2x ﹣4 .【答案】y =2x ﹣4.【解答】解:∵A (2,0),B (0,1) ∴OA =2,OB =1过点C 作CD ⊥x 轴于点D ,则易知△ACD ≌△BAO (AAS ) ∴AD =OB =1,CD =OA =2 ∴C (3,2)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得0223k bk b =+⎧⎨=+⎩ ∴24k b =⎧⎨=⎩∴直线AC的解析式为y=2x﹣4.故答案为:y=2x﹣4.9. (2019•山东省聊城市•3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 .【答案】P(,),【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),三、解答题:10. (2019•湖北省仙桃市•8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解;【解答】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;11. (2017·台州改编)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)直接写出关于x的不等式2x+1<mx+4的解集;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D.若线段CD长为2,求a的值.【点拨】(1)把点P的坐标代入l1求出b,再将(1,b)代入l2求出m;(2)观察图象,由两直线的交点P的横坐标可得;(3)C,D两点横坐标相同时,线段CD的长等于其纵坐标的差,但要注意有两种情况.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l 2:y =mx +4上, ∴3=m +4.∴m =-1. (2)x<1.(3)当x =a 时,y C =2a +1,y D =4-a.∵CD =2,∴|2a +1-(4-a)|=2,解得a =13或a =53.∴a 的值为13或53.12. (2018•重庆)如图,在平面直角坐标系中,直线y=﹣x+3过点A (5,m )且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与y=2x 平行的直线交y 轴于点D . (1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.【分析】(1)先把A (5,m )代入y=﹣x+3得A (5,﹣2),再利用点的平移规律得到C (3,2),接着利用两直线平移的问题设CD 的解析式为y=2x+b ,然后把C 点坐标代入求出b 即可得到直线CD 的解析式;(2)先确定B (0,3),再求出直线CD 与x 轴的交点坐标为(2,0);易得CD 平移到经过点B 时的直线解析式为y=2x+3,然后求出直线y=2x+3与x 轴的交点坐标,从而可得到直线CD 在平移过程中与x 轴交点的横坐标的取值范围.【解答】解:(1)把A (5,m )代入y=﹣x+3得m=﹣5+3=﹣2,则A (5,﹣2), ∵点A 向左平移2个单位,再向上平移4个单位,得到点C , ∴C (3,2),∵过点C 且与y=2x 平行的直线交y 轴于点D , ∴CD 的解析式可设为y=2x+b ,把C (3,2)代入得6+b=2,解得b=﹣4, ∴直线CD 的解析式为y=2x ﹣4;(2)当x=0时,y=﹣x+3=3,则B (0,3),当y=0时,2x ﹣4=0,解得x=2,则直线CD 与x 轴的交点坐标为(2,0); 易得CD 平移到经过点B 时的直线解析式为y=2x+3,当y=0时,2x+3=0,解的x=﹣,则直线y=2x+3与x 轴的交点坐标为(﹣,0),∴直线CD 在平移过程中与x 轴交点的横坐标的取值范围为﹣≤x ≤2.13. (2017·河北T24·10分)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB.(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.【解析】:(1)把y =0代入y =-38x -398,得x =-13.∴C(-13,0).1分把x =-5代入y =-38x -398,得y =-3.∴E(-5,-3).2分∵点B ,E 关于x 轴对称,∴B(-5,3). 设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =5,-5k +b =3.解得⎩⎪⎨⎪⎧k =25,b =5.∴直线AB 的解析式为y =25x +5.5分(2)∵CD =8,DE =DB =3,OA =OD =5.∴S △CDE =12×8×3=12,S 四边形ABDO =12×(3+5)×5=20.∴S =32.8分(3)当x =-13时,y =25x +5=-15≠0,∴点C 不在直线AB 上,即A ,B ,C 三点不共线.∴他的想法错在将△CDB 与四边形ABDO 拼接后看成了△AOC.14. (2019·贵州安顺·10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千元)与每千元降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示: (1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?【解答】解:(1)设一次函数解析式为:y =kx +b 当x =2,y =120;当x =4,y =140; ∴, 解得:,∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得:(60﹣40﹣x )(10 x +100)=2090, 整理得:x 2﹣10x +9=0, 解得:x 1=1.x 2=9, ∵让顾客得到更大的实惠, ∴x =9,答:商贸公司要想获利2090元,则这种干果每千克应降价9元.15. (2018·唐山乐亭县一模)如图,在平面直角坐标系xOy 中,过点A(-6,0)的直线l 1与直线l 2:y =2x 相交于点B(m ,4).(1)求直线l 1的解析式;(2)直线l 1与y 轴交于点M ,求△AOM 的面积;(3)过动点P(n ,0)且垂直于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 上方时,直接写出n 的取值范围.【变式】 (4)将(3)中条件“过动点P(n ,0)且垂直于x 轴的直线l 1,l 2的交点分别为C ,D ”保持不变,“当点C 位于点D 上方时”改为“且CD =2”,求点C 的坐标.【点拨】 (1)点B 在直线y =2x 上,所以m =2,即点B(2,4),利用待定系数法可得直线l 1的解析式;(2)直线l 1与y 轴的交点坐标,利用三角形的面积公式求出三角形的面积;(3)点C 位于点D 的上方,l 1>l 2,即当n<2时.(4)当CD =2时,需分点C 在点D 上方和下方进行讨论.【自主解答】 解:(1)∵直线y =2x 经过点B , ∴4=2m ,∴m =2,即B(2,4). 设直线l 1的解析式为y =kx +b , ∵直线l 1的经过点A ,B ,∴⎩⎪⎨⎪⎧0=-6k +b ,4=2k +b ,解得⎩⎪⎨⎪⎧k =12,b =3.∴直线l 1的解析式为y =12x +3.(2)∵当x =0时,y =3,∴M(0,3). ∴S △AOM =12×6×3=9.(3)n<2.(4)①当点C 在点D 上方时,有12x +3-2x =2,解得x =23.此时点C 的坐标为(23,103);②当点C 在点D 下方时,有2x -(12x +3)=2,解得x =103.此时点C 的坐标为(103,143).。

一次函数竞赛题归纳及其解法

一次函数竞赛题归纳及其解法

一次函数竞赛题归纳及其解法一次函数竞赛题归纳及其解法一次函数是与现实生活联系最紧密的知识点,受到各级各类竞赛的青睐.近几年各国各地竞赛试题中与一次函数相关的问题屡见不鲜. 1 一次函数的性质问题一次函数y kx b =+(,k b 是常数,k ≠0)的性质大致如下: (1)它的图象是经过点(,0bk-)和(0,b )的一条直线; (2)它的系数符号决定图象的大致位置及单调性(y 随x 的变化情况),如图1所示.来源学科网Z,X,X,K]例1 已知一次函数,0y kx b kb =+<,则这样的一次函数的图象必经过的公共象限有个,即第象限.例2 已知abc ≠0,并且a b b c c ap c a b+++===,那么y px p =+一定经过( )A.第一、二象限B.第二、三象限 C 、第三、四象限 D 、第一、四象限2 一次函数图象上的特殊点问题(k<0,b<0)(k<0.b>0)(k>0,b<0)(k>o,b>0)OxyOxy Oy y xO一次函数图象上的特殊点主要指与两坐标轴的交点、定点(恒过某一点)、整点以及两个一次函数图象的交点等.例3 函数3|2|y x =--的图象如图2所示,则点A 与B 的坐标分别是A ,B例 4 如图3在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线13y x b =+恰好将矩形OABC 分成面积相等的两部分,那么,b =3 一次函数的图象与面积问题一次函数的图象与两坐标轴的交点以及坐标原点构成的直角三角形的面积,可用一次函数的系数,k b 表示;若所考察的三角形的边不在坐标轴上,关键是把相关三角形的面积用边在坐标轴上的其他三角形的面积来表示,使面积问题与坐标建立联系.例5 设直线(1)2nx n y ++=(n 为自然数)与两坐标轴围成的三角形面积为n S (n =1,2,3,…,2000).则S 1+S 2+S 3+…+S 2000的值为 ( )A.19992000B.1C.20002001D.20012002例6 如图4,直线313y x =-+与x 轴,y 轴分别交于点,A B ,以线段AB 为直yxOB (15,6)yxAC OB y角边在第一象限内作等腰直角△ABC,且∠BAC=90○.如果在第二象限内有一点P(a,12),且△ABP的面积与Rt△ABC的面积相等,求a的值.4 一次函数的应用问题一次函数的应用就是从给定的材料中抽象出函数关系,构建一次函数模型,再利用一次函数的性质求出问题的解.例7 某家电生产业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工作时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所需工时和每台产值如表1 表一家电名称空调器彩电冰箱工时121314产值(千元) 4 3 2[来源:学科网ZX XK]问每周应生产空调器,彩电,冰箱各多少台才能使产值最高?最高产值多少(以千元为单位)?与一次函数相关的内容是十分丰富的,如大家非常熟悉的用待定系数法求解析式等,在这里就不一一赘述.【练习题】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(含答案)竞赛辅导:一次函数及绝对值函数的应用竞赛辅导:一次函数及绝对值函数的应用1一、填空题(共4小题,每小题5分,满分20分)1.(5分)已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=_________时,有一个交点的纵坐标为6.2.(5分)如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP 与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_________(0<x<10).3.(5分)将直线y=2x﹣4沿y轴向上平移3个单位得到直线_________,若沿x轴向右平移3个单位又可得到直线_________.4.(5分)直线y=3x+4关于直线y=x对称的直线的函数解析式是_________.二、选择题(共2小题,每小题4分,满分8分)5.(4分)方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积为()A.4B.3C.2D.16.(4分)方程|xy|+|x﹣y+1|=0的图象是()A.三条直线:x=0,y=0,xB.两条直线:x=0,x﹣y+1=0 ﹣y+1=0D.两个点(0,1),(﹣1,0)C.一个点和一条直线:(0,0),x﹣y+1=0三、解答题(共6小题,满分72分)7.(12分)作出函数y=|x﹣2|﹣1的图象.8.(12分)已知函数y=|x﹣a|+|x+19|+|x﹣a﹣96|,其中a为常数,且满足19<a<96,当自变量x的取值范围是a≤x≤96时,求y的最大值.9.(12分)已知A、B的坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m的值.10.(12分)如图,在Rt△ABC中,AB是斜边,点P在中线CD上,AC=3cm,BC=4cm,设P、C的距离为xcm,△APB 的面积为ycm2,求y与x的函数关系式及自变量x的取值范围.11.(12分)在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=﹣x+6图象上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.12.(12分)某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(l)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,l吨水生产出的饮料所获的利润是多少?1吨水价格x(元) 4 6200 198用1吨水生产的饮料所获利润y(元)(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.已知该厂日用水量不少于20吨,设该厂日用水量为t吨,当日所获利润为W元.求W与t的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.竞赛辅导:一次函数及绝对值函数的应用1参考答案与试题解析一、填空题(共4小题,每小题5分,满分20分)1.(5分)已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=5时,有一个交点的纵坐标为6.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:将y=6分别代入两个函数可得,然后变形可得.解答:解:依题意有,由3x+m=6可得6x=12﹣2m,再代入m﹣3=6x中就可得到m=5.故答案为:5.点评:运用了函数的知识、方程组的有关知识,以及整体代入的思想.2.(5分)如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是y=5x+50(0<x<10).考点:相似三角形的判定与性质;根据实际问题列一次函数关系式;三角形中位线定理;正方形的性质.专题:几何图形问题.分析:易得BF是△EPC的中位线,那么△EFB的面积与△EPC面积之比为1:4,易得正方形的面积,那么也就可以求得四边形AFPD的面积,让△EFB与四边形AFPD的面积相加即可.解答:解:∵正方形ABCD的边长为10cm,DP=xcm,∴PC=10﹣x,∵EB=10cm,∴S△EPC=×(10﹣x)×(10+10)=100﹣10x,BF 是△EPC的中位线,∴△EFB∽△EPC,∴S△EFB=×(100﹣10x),∴四边形BCPF的面积×(100﹣10x),∵正方形的面积为100,四边形AFPD的面积=100﹣×(100﹣10x),∴y=×(100﹣10x)+100﹣×(100﹣10x)=5x+50,故答案为y=5x+50.点评:考查了列一次函数问题,用到的知识点为:相似三角形的面积比等于相似比的平方.3.(5分)将直线y=2x﹣4沿y轴向上平移3个单位得到直线y=2x﹣1,若沿x轴向右平移3个单位又可得到直线y=2x﹣10.考点:一次函数图象与几何变换.分析:根据上加下减,左加右减的法则可得出答案.解答:解:y=2x﹣4沿y轴向上平移3个单位得到直线:y=2x ﹣4+3=2x﹣1,若沿x轴向右平移3个单位又可得到直线:y=2(x﹣3)﹣4=2x﹣10.故填:y=2x﹣1,y=2x﹣10.点评:本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.4.(5分)直线y=3x+4关于直线y=x对称的直线的函数解析式是y=x﹣.考点:一次函数图象与几何变换.专题:计算题.分析:设(x,y)为所求函数解析式上任意点,则关于y=x的对称点为(y,x),∴(y,x)在直线y=3x+4上,代入后即可得出要求的函数解析式.解答:解:设(x,y)为所求函数解析式上任意点:则关于y=x 的对称点为(y,x),∴(y,x)在直线y=3x+4上,代入得:x=3y+4,∴3y=x﹣4,∴y=x ﹣,故答案为:y=x ﹣.点评:本题考查了一次函数图象与几何变换,属于基础题,注意设出一个点的坐标是关键.二、选择题(共2小题,每小题4分,满分8分)5.(4分)方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积为()A.4B.3C.2D.1考点:函数最值问题.专题:计算题.分析:由方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积与方程|x|+|y|=1确定的曲线所围成的图形面积相等,分析求解方程|x|+|y|=1确定的曲线所围成的图形面积相即可.解答:解:先考虑简单的情况:当|x|+|y|=1时:当x>0,y>0时,x+y=1,当x>0,y<0时,x﹣y=1,当x<0,y>0时,y﹣x=1,当x<0,y<0时,x+y=﹣1,∴四条直线与坐标轴的交点分别为(0,1),(1,0),(﹣1,0),(0,﹣1),∴正方形边长为:=,∴正方形面积为:×=2.∵|x﹣1|+|y﹣1|=1的在坐标系内的图象只不过是将|x|+|y|=1的图象向右又向上移动了一个单位,图象的形状并未改变,∴其面积依然为2.故选C.点评:此题考查了函数最值问题.注意抓住方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积与方程|x|+|y|=1确定的曲线所围成的图形面积相等是解题的关键.6.(4分)方程|xy|+|x﹣y+1|=0的图象是()A.三条直线:x=0,y=0,x﹣y+1=0B.两条直线:x=0,x﹣y+1=0C.一个点和一条直线:(0,0),x﹣y+1=0D.两个点(0,1),(﹣1,0)考点:非负数的性质:绝对值;解二元一次方程组.分析:根据非负数的性质,可求出x、y的值,从而得到方程|xy ﹣1|+|x﹣y+1|=0的图象是两个点.解答:解:根据题意得:,解得或.∴方程|xy﹣1|+|x﹣y+1|=0的图象是两个点(0,1),(﹣1,0).故选D.点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.三、解答题(共6小题,满分72分)7.(12分)作出函数y=|x﹣2|﹣1的图象.考点:一次函数的图象;绝对值.专题:作图题.分析:根据题意,化简绝对值可得,函数y=|x﹣2|﹣1=,进而作出其图象.解答:解:根据题意,函数y=|x﹣2|﹣1=,进而可得其图象为:点评:本题考查一次函数图象的变化及分段函数图象的作法,注意绝对值的化简方法即可.8.(12分)已知函数y=|x﹣a|+|x+19|+|x﹣a﹣96|,其中a为常数,且满足19<a<96,当自变量x的取值范围是a≤x≤96时,求y的最大值.考点:一次函数的性质;绝对值.专题:计算题.分析:先由19<a<96,a≤x≤96,得到x﹣a>0,x+19>0,x ﹣a﹣96<0,这样就可以去绝对值,即y=x﹣a+x+19﹣(x﹣a﹣96)=x+115,根据当k>0,图象经过第一,三象限,y随x的增大而增大,所以x=96,y有最大值,代入计算即可.解答:解:∵19<a<96,a≤x≤96,得到x﹣a>0,x+19>0,x﹣a﹣96<0,∴y=|x﹣a|+|x+19|+|x﹣a﹣96|=x﹣a+x+19﹣(x﹣a﹣96)=x+115,∵k=1>0,y随x的增大而增大,∴当自变量x的取值范围是a≤x≤96时,x=96,y有最大值,y的最大值=96+115=211.所以y的最大值为211.点评:本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,直线与y轴的交点在x轴上方;当b=0,直线经过坐标原点;当b<0,直线与y轴的交点在x轴下方.同时考查了绝对值的含义.9.(12分)已知A、B的坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m的值.考点:一次函数图象上点的坐标特征.专题:计算题;数形结合.分析:分三种情况①A为直角,②B为直角,③P为直角,前两种情况m的值就是A和B的横坐标,③可设p(m ,m+2),再根据AP2+BP2=AB2可求出.解答:解:①此时AP垂直x轴,m=﹣2;②此时BP垂直x轴,m=4;③可设p(m ,m+2),∴可得:(m+2)2++(m ﹣4)2+=36,解得:m=±.∴m的值可为﹣2,4,±.点评:本题考查一次函数图象上点的坐标特征,注意本题要分三种情况讨论,不要漏解.10.(12分)如图,在Rt△ABC中,AB是斜边,点P在中线CD上,AC=3cm,BC=4cm,设P、C的距离为xcm,△APB的面积为ycm2,求y与x的函数关系式及自变量x的取值范围.考点:相似三角形的判定与性质;根据实际问题列一次函数关系式;直角三角形斜边上的中线;勾股定理.专题:计算题.分析:根据勾股定理求出AB的长,然后过P点作PH⊥AB交AB于H,过C点作CM⊥AB交AB于M,求证△ACB∽△AMC,利用其对应边成比例求得CM的长,再利用CM∥BH,求出PH,代入即可.解答:解:在Rt△ABC中,AB===5,∵AD=BD,∴CD=AB=,∵PC的长为x,∴PD=﹣x,过P点作PH⊥AB交AB于H,过C点作CM⊥AB交AB于M,∵△ACB∽△AMC∴=,∴CM==,∵CM⊥AB,PH⊥AB,∴CM∥BH,∴=,∴PH===﹣x.S△APB =y=AB•BH=×5×(﹣x),∴y=﹣x+6,∴0<x <.答:y与x的函数关系式是y=﹣x+6,自变量x的取值范围为0<x <.点评:此题主要考查学生对相似三角形的判定与性质、根据实际问题列一次函数关系式、勾股定理和直角三角形斜边上的中线等知识点的理解和掌握,此题涉及到的知识点较多,综合性强,难度大,属于难题.解答此题的关键是过P点作PH⊥AB交AB于H,过C点作CM⊥AB 交AB于M,求证△ACB∽△AMC.11.(12分)在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=﹣x+6图象上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.考点:一次函数图象上点的坐标特征;三角形的面积.专题:几何图形问题.分析:易得OA之间的距离,△OPA的面积=×AO×P的纵坐标,把相关数值代入求解即可.解答:解:∵AO=4,点P的纵坐标为y,∴S=×4y=2(6﹣x)=12﹣2x,∵点P在第一象限,∴x>0,6﹣x>0,∴0<x<6,∴S=12﹣2x(0<x<6).点评:考查一次函数图象上的点的坐标的特点;得到三角形的面积的关系式是解决本题的关键.注意写完函数解析式后应考虑相应自变量的取值.12.(12分)某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(l)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,l吨水生产出的饮料所获的利润是多少?1吨水价格x(元) 4 6用1吨水生产的饮料所获利润y(元)200 198(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.已知该厂日用水量不少于20吨,设该厂日用水量为t吨,当日所获利润为W元.求W与t的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.考点:一次函数的应用.分析:(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200)(6,198)可求出解析式;(2)根据函数式可求出一吨水价是40的利润,然后根据题意可得w=200×20+164(t﹣20),代入t=20或t=25可求出日利润的取值范围.解答:解:(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数式为根据题意得:y=kx+b,,解得,∴所求一次函数式是y=﹣x+204,当x=10时,y=﹣10+204=194(元);(2)当1吨水的价格为40元时,所获利润是:y=﹣40+204=164(元).∴W与t的函数关系式是w=200×20+(t﹣20)×164,即w=164t+720,∵20≤t≤25,∴4000≤w≤4820.点评:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.参与本试卷答题和审题的老师有:HJJ;workholic;392901;gsls;自由人;zcx;lanchong;caicl;HLing;王岑;lk;fxx (排名不分先后)菁优网2012年12月20日。

相关文档
最新文档