等差数列前n项和公式教学设计

合集下载

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的前n项和的公式。

2. 培养学生运用等差数列的前n项和公式解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 等差数列的概念及通项公式。

2. 等差数列的前n项和公式。

3. 等差数列的前n项和的性质。

三、教学重点与难点:1. 教学重点:等差数列的概念,等差数列的前n项和公式。

2. 教学难点:等差数列的前n项和的性质。

四、教学方法:1. 采用问题驱动法,引导学生探究等差数列的前n项和公式。

2. 运用案例分析法,让学生通过解决实际问题,巩固等差数列的前n项和公式。

3. 采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。

五、教学过程:1. 导入:引导学生回顾等差数列的概念及通项公式。

2. 新课:讲解等差数列的前n项和公式,并通过案例分析让学生理解并掌握公式。

3. 练习:布置练习题,让学生运用前n项和公式解决问题。

4. 拓展:讲解等差数列的前n项和的性质,引导学生进行思考。

5. 总结:对本节课的内容进行总结,强调重点知识点。

6. 作业布置:布置课后作业,巩固所学内容。

六、教学活动:1. 课堂讨论:让学生举例说明在生活中哪些问题可以用等差数列的前n项和公式解决,促进学生对知识的理解和应用。

2. 小组合作:学生分组,每组选择一个实际问题,运用等差数列的前n项和公式进行解决,并展示解题过程和结果。

七、教学评价:1. 课堂提问:通过提问了解学生对等差数列的前n项和公式的掌握情况。

2. 课后作业:布置有关等差数列前n项和的练习题,评估学生对知识的吸收和运用能力。

3. 小组报告:评估学生在小组合作中的表现,包括问题选择、解题过程、结果展示等方面。

八、教学资源:1. PPT课件:制作包含等差数列前n项和公式的PPT课件,辅助教学。

2. 实际问题案例:收集一些生活中的实际问题,用于引导学生应用所学知识解决实际问题。

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计一、引言等差数列是数学中常见的数列类型之一,它的前n项和公式是数学教学中的重要内容。

本文将针对等差数列前n项和公式的教学设计进行讨论,旨在帮助学生理解和应用该公式。

二、教学目标通过本次教学,学生将能够:1. 掌握等差数列的定义和性质;2. 推导等差数列前n项和公式;3. 熟练应用前n项和公式解决实际问题。

三、教学内容1. 等差数列的定义和性质在开始介绍前n项和公式之前,首先向学生介绍等差数列的定义和性质。

教师可以通过提供具体的数列示例,并引导学生观察数列中的规律,以加深他们对等差数列的理解。

2. 推导等差数列前n项和公式为了引导学生主动参与教学过程,并提高他们对公式的理解程度,教师可以采用探究性学习的方法来推导等差数列前n项和公式。

以下是一种教学策略:(1)教师先给出一个等差数列,例如:2, 5, 8, 11, 14, ...(2)教师引导学生观察数列中的规律,如何由前一项得到后一项。

(3)学生通过观察和思考,可以发现每一项与前一项的差是相同的,即公差(d)。

(4)接下来,教师可以引导学生通过等差数列的通项公式(an =a1 + (n-1)d)来表示数列中的各项。

(5)通过代入相应的值,教师指导学生推导出等差数列前n项和的公式(Sn = (n/2)(a1 + an))。

3. 应用前n项和公式解决实际问题为了提高学生的应用能力,教师可以设计一些实际问题,要求学生运用前n项和公式解决。

例如:(1)小明连续10天每天跑步,第一天跑了2公里,每天比前一天多跑3公里,问小明共跑了多少公里?(2)某商店连续7天的销售额分别是100元、110元、120元、...,每天比前一天增加10元,求7天的总销售额。

四、教学步骤1. 引导学生回顾等差数列的定义和性质;2. 通过探究性学习的方法,引导学生推导等差数列前n项和的公式;3. 提供实际问题,要求学生运用前n项和公式进行计算;4. 指导学生总结等差数列前n项和的公式;5. 练习巩固:提供更多练习题,让学生进行接触和熟练应用。

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。

能够熟练运用公式解决与等差数列前 n 项和相关的问题。

2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。

让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。

公式的熟练运用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。

提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。

方法一:依次相加。

方法二:倒序相加。

设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。

\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算公式。

3. 能够运用等差数列的前n项和公式解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

三、教学难点1. 等差数列的前n项和的公式的推导过程。

2. 运用等差数列的前n项和公式解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。

2. 通过实例分析,让学生掌握等差数列的前n项和的应用。

3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。

五、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

3. 等差数列的前n项和的性质。

4. 运用等差数列的前n项和公式解决实际问题。

第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。

等差数列前n项和公式(优质课)教案

等差数列前n项和公式(优质课)教案

等差数列的前n 项和 (优质课)教案教学目标:教学重点: 掌握等差数列前n 项和通项公式及性质,数列最值的求解,与函数的关系 教学难点: 数列最值的求解及与函数的关系教学过程:1. 数列的前n 项和一般地,我们称312...n a a a a ++++为数列{}n a 的前n 项和,用n S 表示;记法:123...n n S a a a a =++++ 显然,当2n ≥时,有1n n n a S S −=− 所以n a 与n S 的关系为n a = ①1S ()1n =②()12n n S S n −−≥2. 等差数列的前n 项和公式()()11122n n n a a n n S na d +−==+ 3. 等差数列前n 项和公式性质(1) 等差数列中,依次()2,k k k N +≥∈项之和仍然是等差数列,即23243,,,,...k k k k k k k S S S S S S S −−− 成等差数列,且公差为2k d(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列{}n a 中,若(),n m a m a n m n ==≠,则0m n a +=;若(),,n m S m S n m n ==≠则()m n S m n +=−+(4) 若{}n a 和{}n b 均为等差数列,前n 项和分别是n S 和n T ,则有2121n n n n a S b T −−=(5) 项数为2n 的等差数列{}n a ,有()1,n n n S n a a +=+有S 偶 -S 奇 =nd ,S S 奇 /偶 =1nn a a + 4. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d −=+可以写成2122n d d S n a n ⎛⎫=+− ⎪⎝⎭ 若令1,,22d dA aB =−=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a解析:当1n =时,113a S ==;当2n ≥时,121n n n a S S n −=−=+当1n =时,上式成立所以21n a n =+答案:21n a n =+练习1. 已知数列{}n a 的前n 项和22,n S n n =+求2a 答案:25a =练习2:已知数列{}n a 的前n 项和22,n S n n =+求10a 答案:1021a =例2.已知等差数列{}n a 的前n 项和为n S ,131,,15,22m a d S ==−=−求m 及m a 解析:()131..15222m m m S m −⎛⎫=+−=− ⎪⎝⎭,整理得27600,m m −−= 解得12m =或5m =−(舍去)()12311211522m a a ⎛⎫∴==+−⨯−=− ⎪⎝⎭答案:1212,4m a ==−练习3. 已知等差数列{}n a 的前n 项和为n S ,11,512,1022n n a a S ==−=−,求d答案:171d =−练习4. 已知等差数列{}n a 的前n 项和为n S ,524,S =求24a a + 答案:24485a a +=例3.在等差数列{}n a 中,前n 项和为n S (1) 若81248,168,S S ==求1a 和公差d(2) 若499,6,a a ==−求满足54n S =的所有n 的值解析:(1)由等差数列前n 项和公式有11182848,1266168,8,4a d a d a d +=+=∴=−=(2)由4919,6,18,3a a a d ==−∴==−所以()()11813542n S n n n =+−−=即213360n n −+= 解得4n =或9n = 答案:(1)18,4a d =−= (2)4n =或9n =练习5.设n S 是等差数列{}n a 的前项和,1532,3,a a a ==则9S =___________ 答案:54−练习6.在等差数列{}n a 中,241,5,a a ==则{}n a 的前5项和 5S = ______________ 答案:15类型二: 等差数列前n 项和公式的性质 例4.在等差数列{}n a 中, (1) 若41720a a +=,求20S(2) 若共有n 项,且前四项之和为21,后四项之和为67,前n 项和286n S = ,求n (3) 若10100100,10S S ==求110S解析:(1)由等差数列的性质,知()1204172012020202002a a a a S a a +=+=∴=+= (2)由题意得,知123412321,67,n n n n a a a a a a a a −−−+++=+++= 由等差数列的性质知()121324311488,22n n n n n n a a a a a a a a a a a a −−−+=+=+=+∴+=∴+=又()12n n nS a a =+ ,即 222862n ⨯=26n ∴= (4) 因为数列{}n a 是等差数列,所以10,2010302010090110100,,...,,S S S S S S S S S −−−−成等差数列,首项为10100S =,设其公差为d ,则100S 为该数列的前10项和,()()10010201010090109 (10100102)S S S S S S d ⨯∴=+−++−=⨯+=解得22d =−,又110S 为该数列的前11项和,故()110111011100221102S ⨯=⨯+⨯−=− 答案:(1)20200S = (2)26n = (3)110110S =−练习7.(2014山东淄博一中期中)设n S 是等差数列{}n a 的前n 项和,若4813S S =,则816S S 等于()A.19 B.13 C.310 D.18答案:C练习8.(2014山东青岛期中)已知等差数列{}n a 的公差0d >,()122013...2013t a a a a t N ++++=∈ 则t = ()A.2014B.2013C.1007D.1006 答案:C例5.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且21n n S nT n =+则33a b =() A.32 B.43 C.53 D. 127解析:当n 为奇数时,等差数列{}n a 的前n 项和()1122n n n n a a S na ++== 同理12n n T nb +=令5n =得33533552555513a a Sb b T ⨯====+ 答案:C练习9.已知是{}n a 等差数列,n S 为其前n 项和,n N +∈若32016,20a S ==则10S 的值为______ 答案:110练习10.已知等差数列{}n a 的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为______________ 答案:20类型三:等差数列前n 项和公式的最值及与函数的关系 例6.已知数列{}n a 的前项和为2230n S n n =− (1) 这个数列是等差数列吗?求出它的通项公式 (2) 求使得n S 最小的n 值解析:(1)因为()14322n n n a S S n n −=−=−≥当1n =时1123028a S ==−=−也适合上式,所以这个数列的通项公式为432n a n =−又因为()()()1432413242n n a a n n n −−=−−−−=≥⎡⎤⎣⎦ 所以{}n a 是等差数列(2)2215225230222n S n n n ⎛⎫=−=−− ⎪⎝⎭因为n 是正整数,所以当7n =或8时n S 最小,最小值为-112答案:(1)是;432n a n =−(2)当7n =或8时n S 最小,最小值为-112练习11.已知等差数列{}n a 的前n 项和为715,7,75n S S S ==,n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求数列{}n T 的通项公式答案:2944n n T n =− 练习12.等差数列{}n a 中,若61024,120S S ==,求15S =_____________ 答案:15330S =例7.已知等差数列{}n a 中,19120,,a S S <=求使该数列前n 项和n S 取得最小值的n 的值 解析:设等差数列{}n a 的公差为d ,则由题意得111199812121122a d a d +⨯⨯⨯=+⨯⨯⨯ 即21112121330,10,00228n d a d a d a d S n d ⎛⎫=−∴=−<∴>∴=−− ⎪⎝⎭ 0n d S >∴有最小值;又,10n N n +∈∴=或11n =时,n S 取最小值答案:10n =或11n =时,n S 取最小值练习13.已知等差数列{}n a 中,128,4a d =−=则使前n 项和n S 取得最小值的n 值为() A.7 B.8 C.7或8 D.6或7 答案:C练习14.数列{}n a 满足211n a n =−+,则使得其前n 项和取得最大值的n 等于() A.4 B.5 C.6 D.7 答案:B1. 四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0 答案:A2. 设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值. 答案:C3. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 答案:B4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101C.99100D.101100 答案:A5. 在等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于( )A.910B.109 C .2 D.23 答案:A6. 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 答案:D7. (2014·福建理,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案:C_________________________________________________________________________________ _________________________________________________________________________________基础巩固 1. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =( ) A .38 B .20 C .10 D .9 答案:C2.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A .160 B .180 C .200 D .220 答案:B3.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数中也为定值的是( )A .S 7B .S 8C .S 13D .S 15 答案:C4. 已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2 答案:C5. 在等差数列{a n }中,a 1>0,d =12,a n =3,S n =152,则a 1=________,n =________.答案:2 ,36. 设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________.答案:257. 设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99的值为________. 答案:-828.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案:89. 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{1a 2n -1a 2n +1}的前n 项和.答案:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =05a 1+10d =-5,解得a 1=1,d =-1.由{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12(12n -3-12n -1), 从而数列{1a 2n -1a 2n +1}的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n 1-2n. 10. 设{a n }是等差数列,前n 项和记为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n 的值. 答案:(1)设公差为d ,则a 20-a 10=10d =20, ∴d =2.∴a 10=a 1+9d =a 1+18=30, ∴a 1=12.∴a n =a 1+(n -1)d =12+2(n -1)=2n +10. (2)S n =n (a 1+a n )2=n (2n +22)2=n 2+11n =242, ∴n 2+11n -242=0, ∴n =11.能力提升11. 在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4 475C .8 950D .10 000 答案:C12. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11 答案:D13. 一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9答案:C14. 已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A .24 B .26 C .27 D .28 答案:B15. 设S n 为等差数列{a n }的前n 项和,S 3=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2 答案:A16. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18D.19 答案:A17. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线(该直线不过点O ),则S 200=( )A .100B .101C .200D .201 答案:A18. 已知等差数列{a n }的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n =________. 答案:2719. 已知数列{a n }的前n 项和S n =n 2-8,则通项公式a n =________.答案:⎩⎪⎨⎪⎧-7 (n =1)2n -1 (n ≥2)20. 设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 答案: A21. 等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________. 答案:5或622. 设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.答案:(1)依题意⎩⎨⎧S 12=12a 1+12×112d >0S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0, ①a 1+6d <0. ②由a 3=12,得a 1+2d =12. ③将③分别代入②①,得⎩⎪⎨⎪⎧24+7d >03+d <0,解得-247<d <-3.(2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得 a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 23. 已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 答案:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2. 从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35,可得2k -k 2=-35. 又k ∈N *,故k =7为所求. 24. 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n . 答案:(1)解法一:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58a 4+a 9=2a 1+11d =50, 解得⎩⎪⎨⎪⎧a 1=3d =4.∴S 10=10a 1+10×(10-1)2×d =10×3+10×92×4=210. 解法二:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=(a 1+a 10)+4d =58a 4+a 9=(a 1+a 10)+2d =50, ∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210. 解法三:由(a 5+a 10)-(a 4+a 9)=2d =58-50,得d =4由a 4+a 9=50,得2a 1+11d =50,∴a 1=3.故S 10=10×3+10×9×42=210. (2)S 7=7(a 1+a 7)2=7a 4=42,∴a 4=6. ∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.25.已知等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 答案:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=(-32n 2+2052n )-[-32(n -1)2+2052(n -1)] =-3n +104.又n =1也适合上式.∴数列通项公式a n =-3n +104.由a n =-3n +104≥0,得n ≤1043, 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =a 1+a 2+…+a n =S n =-32n 2+2052n . ②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n | =a 1+a 2+…+a 34-(a 35+a 36+…+a n ) =2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n ) =2S 34-S n=32n 2-2052n +3 502.故T n =⎩⎨⎧ -32n 2+2052n (n ≤34)32n 2-2052n +3 502 (n ≥35).。

6.2.3等差数列的前n项和公式(教案)

6.2.3等差数列的前n项和公式(教案)

【课题】 6.2.3 等差数列的前n 项和公式【教学目标】知识目标:理解等差数列通项公式及前n 项和公式.项和公式. 能力目标:通过学习前n 项和公式项和公式,,培养学生处理数据的能力.培养学生处理数据的能力.【教学重点】等差数列的前n 项和的公式.项和的公式.【教学难点】等差数列前n 项和公式的推导.项和公式的推导.【教学设计】本节的主要内容是等差数列的前n 项和公式项和公式,,等差数列应用举例等差数列应用举例..重点是等差数列的前n 项和公式;难点是前n 项和公式的推导以及知识的简单实际应用.项和公式的推导以及知识的简单实际应用.等差数列前n 项和公式的推导方法很重要项和公式的推导方法很重要,,所用方法叫逆序相加法,应该让学生理解并学会应用.等差数列中的五个量1a 、d 、n 、n a 、n S 中,知道其中三个知道其中三个,,可以求出其余两个可以求出其余两个,,例5和例6是针对不同情况是针对不同情况,,分别介绍相应算法.分别介绍相应算法.例7将末项看作是首项的思想是非常重要的将末项看作是首项的思想是非常重要的,,以这类习题作为载体以这类习题作为载体,,对培养学生的创新精神是十分重要的.精神是十分重要的.【教学备品】教学课件.教学课件.【课时安排】1课时.课时.((40分钟分钟) )【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题6.2 等差数列.等差数列. *创设情境 兴趣导入【趣味数学问题】 数学家高斯在上小学的时候就显示出极高的天赋.据传说,老师在数学课上出了一道题目:“把1到100的整数写下从小故事过 程行为 行为 意图 间来,然后把它们加起来!”对于这些十岁左右的孩子,这个题目是比较难的.但是高斯很快就得到了正确的答案,此时其他的学生正在忙碌地将数字一个个加起来,额头都流出了汗水.字一个个加起来,额头都流出了汗水.小高斯是怎样计算出来的呢?他观察这100个数个数1, 2, 3, 4, 5, …,96, 97, 98, 99, 100. 并将它们分成50对,依次计算各对的和:对,依次计算各对的和:1+100=101 2+99=101 3+98=101 4+97=101 5+96=101 …… 50+51=101 所以,前100个正整数的和为个正整数的和为101´50=5050. 质疑质疑引导引导 分析分析思考思考参与参与 分析分析讲起引起引起 学生学生 兴趣兴趣*动脑思考 探索新知从小到大排列的前100个正整数,组成了首项为1,第100项为100,公差为1的等差数列.小高斯的计算表明,这个数列的前100项和为项和为()21001001´+. 现在我们按照高斯的想法来研究等差数列的前n 项和.项和. 将等差数列{}n a 前n 项的和记作n S .即.即12321n n n n S a a a a a a --=++++++ . (1) 也可以写作也可以写作 12321n n n n S a a a a a a --=++++++ . (2)总结总结 归纳归纳思考思考 归纳归纳带领带领 学生学生 总结总结 问题问题 得到得到 等差过 程行为 行为 意图 间由于由于nn aa a a +=+11,()()2111n n n a a a d a d a a -+=++-=+,()()n n n aa d a d a aa +=-++=+-112322, …… (1)式与(2)式两边分别相加,得)式两边分别相加,得()12n n S n a a =+,由此得出等差数列{}n a 的前n 项和公式为项和公式为 (6.3)即等差数列的前n 项和等于首末两项之和与项数乘积的一半.半.知道了等差数列{}n a 中的1a 、n 和n a ,利用公式(6.3)可以直接计算nS .将等差数列的通项公式()d n a a n 11-+=代入公式(6.3),得,得知道了等差数列{}n a 中的1a 、n 和d ,利用公式(6.4)可以直接计算n S .()12n n n a a S +=.仔细仔细分析分析 讲解讲解 关键关键 词语词语理解理解 记忆记忆数列求和公式公式 引导启发学生思考求解求解(6.4)()112n n n S na d -=+过 程行为 行为 意图 间【想一想】在等差数列{}n a 中,知道了1a 、d 、n 、n a 、n S 五个量中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?*巩固知识 典型例题例5 已知等差数列{}n a 中,18a =-,20106a =, 求20S . 解 由已知条件得由已知条件得 ()202081069802S ´-+==. 例6 等差数列等差数列 ,3,1,5,9,13----… 的前多少项的和等于50?解 设数列的前n 项和是50,由于,由于 ,4)1(3,131=--=-=d a 故 (1)50134,2n n n -=-+× 即 0501522=--n n , 解得解得 (25,1021-==n n 舍去), 所以,该数列的前10项的和等于50. 【想一想】例6中为什么将负数舍去?说明说明 强调强调引领引领 讲解讲解 说明说明引领引领 分析分析 强调强调 含义含义说明说明 观察观察思考思考 主动主动 求解求解 观察观察思考思考 求解求解 领会领会思考思考 求解求解通过例题进一步领会注意注意观察观察 学生学生 是否是否 理解理解 知识知识 点反复反复 强调强调过 程行为 行为 意图 间30 *运用知识 强化练习 练习 6.2.31. 求等差数列1,4,7,10,…的前100项的和.项的和.2. 在等差数列{n a }中,4a =6,269=a ,求20S . 启发启发 引导引导 提问提问 巡视巡视 指导指导 思考思考 了解了解动手动手 求解求解可以可以 交给交给 学生学生 自我自我 发现发现 归纳归纳*理论升华 整体建构 思考并回答下面的问题:思考并回答下面的问题:等差数列的前n 项和公式是什么?项和公式是什么? 结论:()12n nn a a S +=,()112n n n S na d -=+.质疑质疑 归纳强调强调回答回答理解理解强化强化以小组讨论师生共同归纳的形式强调重点突破难点难点*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?本次课学了哪些内容?重点和难点各是什么? 引导引导回忆回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何提问提问反思反思培养学生总结反思学习过程的能力*继续探索 活动探究(1)读书部分:教材读书部分:教材(2)书面作业书面作业::《练与考》第5页说明说明 记录记录 分层次要求。

等差数列的前n项和公式说课稿

等差数列的前n项和公式说课稿

等差数列的前n项和公式说课稿《等差数列的前 n 项和公式说课稿》尊敬的各位评委、老师:大家好!今天我说课的内容是“等差数列的前n 项和公式”。

接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“等差数列的前 n 项和公式”是高中数学必修 5 第二章数列中的重要内容。

等差数列在现实生活中有着广泛的应用,而前 n 项和公式则是等差数列的核心内容之一,它不仅为后续学习等比数列的前 n 项和公式奠定了基础,也在数学建模和解决实际问题中发挥着重要作用。

本节课的教材内容编排注重从特殊到一般、从具体到抽象的认知规律,通过引导学生探究等差数列前 n 项和的计算方法,培养学生的逻辑推理和数学运算能力。

二、学情分析授课对象是高一年级的学生,他们已经掌握了等差数列的通项公式和基本性质,具备了一定的逻辑思维能力和数学运算能力。

但对于如何从特殊到一般地推导等差数列的前 n 项和公式,以及如何灵活运用公式解决实际问题,还需要进一步的引导和训练。

在学习过程中,学生可能会遇到以下困难:一是对公式的推导过程理解不够深入,容易机械记忆;二是在运用公式时,不能准确选择合适的公式和方法,导致计算错误。

三、教学目标基于以上教材和学情分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列前 n 项和公式的推导过程,掌握公式的两种形式。

(2)能够熟练运用等差数列的前 n 项和公式解决相关问题。

2、过程与方法目标(1)通过对公式推导过程的探究,培养学生的观察、分析、归纳和推理能力。

(2)经历从特殊到一般、从具体到抽象的思维过程,提高学生的数学思维品质。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中体验数学学习的乐趣,增强学习数学的信心。

(2)通过等差数列在实际生活中的应用,培养学生用数学的眼光观察世界、用数学的思维思考世界、用数学的语言表达世界的能力。

等差数列及前n项和公式教案设计关璐全

等差数列及前n项和公式教案设计关璐全

等差数列及前n项和公式教案设计-关璐全一、教学目标1. 理解等差数列的定义及其性质。

2. 掌握等差数列的通项公式。

3. 掌握等差数列的前n项和公式。

4. 能够运用等差数列的知识解决实际问题。

二、教学内容1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的前n项和公式5. 等差数列的应用三、教学方法1. 采用问题驱动法,引导学生探究等差数列的性质和公式。

2. 利用数形结合法,帮助学生直观理解等差数列的概念和特点。

3. 运用实例分析法,让学生学会运用等差数列解决实际问题。

四、教学步骤1. 导入新课:通过生活中的实例,引导学生认识等差数列。

2. 探究等差数列的性质:让学生分组讨论,发现等差数列的规律,归纳出等差数列的性质。

3. 讲解等差数列的通项公式:引导学生根据等差数列的性质,推导出通项公式。

4. 推导等差数列的前n项和公式:让学生通过小组合作,利用数学归纳法证明前n项和公式。

5. 应用实例:让学生运用等差数列的知识解决实际问题,如计算工资、投资收益等。

五、课后作业1. 复习等差数列的定义、性质、通项公式和前n项和公式。

2. 完成课后练习题,巩固所学知识。

3. 选择一道实际问题,运用等差数列的知识进行解答。

教学评价:通过课后作业的完成情况、课堂表现和实际问题解答的能力,评价学生对等差数列知识的掌握程度。

六、教学拓展1. 探讨等差数列的极限:引导学生思考当项数趋于无穷大时,等差数列的和是否有一个极限值。

2. 引出等差数列与其他数列的关系:如等比数列、斐波那契数列等,让学生了解它们之间的联系和区别。

七、课堂练习1. 设计一些有关等差数列的练习题,让学生独立完成,检验他们对等差数列知识的掌握。

2. 选取一些具有挑战性的题目,提高学生的思维能力和解决问题的能力。

八、知识点小结1. 让students 回顾本节课所学的内容,总结等差数列的定义、性质、通项公式和前n项和公式。

2. 强调等差数列在实际问题中的应用,让学生认识到学习等差数列的重要性。

等差数列前n项和公式教案

等差数列前n项和公式教案

等差数列前n项和公式教案等差数列前n项和的公式教案A、知识目标: 掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教学过程复习提问:1. 等差数列的定义2. 等差数列的通项公式3. 等差中项4. 由等差中项得到的等差数列的性质二、创设情景,导入新课。

先给学生讲一下高斯的故事,1+2+3+…+100=?这是200多年前高斯的老师给他们出的题目,高斯是怎样做出来的呢?他用了什么高明的方法.(学生说出做法)得到1+100=2+99=3+98=......=50+51=101,有50个101,所以得1+2+3+......+100=50×101=5050。

他用了等差数列的什么性质?:数列{a}是等差数列,若m+n=p+q,则am+an=a+a. (学生回答) npq教授新课(尝试推导)1 1+2+3+…+n-1+nn+n-1+n-2+…+2+1(n+1)+ (n+1)+(n+1)+ …+ (n+1)+ (n+1)S,a,(a,d),(a,2d),?,[a,(n,1)d]n1111S,a,(a,d),(a,2d),?,[a,(n,1)d]nnnnn,n(a,a)2Sn 1n)n(a,a1n1)nn(,S,nSnad,,2n12代入等差数列的通项公式an=a1+(n-1)d得到(可让学生推导)1)nn(,Snad,,n12学生思考:比较这两个公式,能说说它们分别从哪些角度反映了等差数列的性质.(1)、等差数列的任意第k项与倒数第k项等于首末两项的和等差数列的前n项和与他的首项、公差之间的关系,而且是关于n的“二次函数”。

“等差数列的前n_项和公式”教学设计

“等差数列的前n_项和公式”教学设计

相加求和 法”的 发 现 更 加 自 然 合 理,尽 管 笔 者 做 出 了
很大的努力,但是从问题 3 到 问 题 4 的 过 渡 还 不 是 很
自然 .
这是课后需要继续思考的问题 .
Z

(上接第 10 页)
问题 4 回 忆 梯 形 面 积 公 式 的 推 导 过 程,回 答 下
列问题:
(
1)梯形面积公式的推导体现了什么研究策略?
(
2)能否借助这样的策略研究“石子堆”问题?
础上介绍高斯的算法 .
利用首尾 配 对 相 加 求 和 法 解 决 项 数 为 偶 数 时 的
求和问题很 方 便,但 是 如 果 求 和 项 数 是 奇 数,那 又 该
导等差数列前 n 项 和 公 式 的 两 个 关 键 点 .
在公式的推
导过程中,学 生 最 大 的 疑 惑 是 “你 是 怎 样 想 到 倒 序 相
加求和法的?”因此,怎样 让 求 和 公 式 的 推 导 过 程 显 得
自然合理是本节课 的 关 键 .
笔者以毕达哥拉斯学派研
究的“三 角 形”为 学 习 情 境,设 计 了 一 条 探 究 路 径,让
怎么办呢? 于是设计了第二个问题 .
问 题 2 如果图 1 中的石子有 101 层,那么从第 1
层到第 101 层一共用了多少粒石子?
学生经过合 作 学 习,相 互 讨 论,形 成 以 下 两 种 求
解思路:
(
可以先拿出中 间 项,
1)先拿出一项,再首尾配对 .
图2
在学生借助几何图形(如图 2)发现倒 序 相 加 求 和
欲 证 g(
x)<1,去 分 母 整 理,即 证 x + (
1-x)

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

《等差数列前n项和公式》教学设计(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《等差数列的前n项和公式》教学设计职业技术学校刘老师大纲分析:高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

教材分析:数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。

学生分析:数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。

教学目标:知识与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。

过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。

教学重点与难点:等差数列前n项和公式是重点。

获得等差数列前n项和公式推导的思路是难点。

教学用具:ppt整节课分为三个阶段:问题呈现阶段探究发现阶段公式应用阶段问题呈现1:首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。

)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100)紧接着讲述高斯算法:高斯,德国着名数学家,被誉为“数学王子”。

200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+……+(50+51)=101×50=5050【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。

《等差数列前n项和》教案

《等差数列前n项和》教案

《等差数列前n项和》教案一、教学目标1. 让学生理解等差数列前n项和的定义及公式。

2. 培养学生运用等差数列前n项和公式解决实际问题的能力。

3. 引导学生通过探究等差数列前n项和的性质,提高其数学思维能力。

二、教学内容1. 等差数列前n项和的定义。

2. 等差数列前n项和的公式。

3. 等差数列前n项和的性质。

三、教学重点与难点1. 重点:等差数列前n项和的定义、公式及性质。

2. 难点:等差数列前n项和的公式的推导及应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列前n项和的定义及公式。

2. 利用案例分析法,让学生通过解决实际问题,掌握等差数列前n项和的性质。

3. 采用小组讨论法,培养学生的合作意识及数学交流能力。

五、教学过程1. 导入:回顾等差数列的基本概念,引导学生思考等差数列前n项和的定义。

2. 新课:讲解等差数列前n项和的定义,推导出等差数列前n项和的公式。

3. 案例分析:运用等差数列前n项和公式解决实际问题,引导学生发现等差数列前n项和的性质。

4. 课堂练习:布置练习题,让学生巩固等差数列前n项和的公式及性质。

5. 总结:对本节课的内容进行总结,强调等差数列前n项和的重要性质。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂问答:通过提问等方式了解学生对等差数列前n项和定义及公式的理解程度。

2. 练习题:分析学生完成练习题的情况,评估学生对等差数列前n项和的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解学生对等差数列前n项和性质的理解。

七、教学拓展1. 等差数列前n项和的公式在实际问题中的应用,如计算工资、奖金等。

2. 引导学生探究等差数列前n项和的公式的推导过程,提高学生的数学思维能力。

八、教学反思1. 反思教学方法的有效性,根据学生的反馈调整教学策略。

2. 分析学生的学习情况,针对性地进行辅导,提高学生的学习效果。

九、课后作业1. 巩固等差数列前n项和的公式及性质。

等差数列的前n项和公式

等差数列的前n项和公式

《等差数列的前n项和公式》教学设计一、教学内容分析《等差数列的前n项和公式》是高等教育出版社数学基础模块下册第六章的重要内容之一,本节课主要研究如何应用倒序相加法推导等差数列的前n项和公式以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法。

它反映了从特殊到一般的数学思维形式,这对发展学生的思维能力、培养学生的创新意识等方面有着重要的作用。

二、学情分析任教的班级是一年级物流专业。

1、知识基础:在本节课之前学生已经掌握了等差数列的通项公式,理解等差数列的基本性质,小学时对高斯算法有所了解,这三者形成了学生思维的“最近发展区”,为新课学习提供了基础;2、认知水平与能力:学生初步具有一定的逻辑思维能力,但思维不够深刻、片面、不严谨,对问题解决的一般性思维过程认识模糊.3、班级学生特点:多数学生能积极主动参与数学学习,动手操作能力较强。

但缺乏自信,同时渴望表现,渴望肯定。

三、设计思想建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的生成与发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从《张丘建算经》中等差数列的求和问题及泰姬陵陵寝三角形图案中的圆宝石谈起,结合小学高斯的算法,探究这种方法如何推广到一般等差数列的前n项和的求法.以问题驱动任务完成为主线,通过设计一些从简单到复杂、从特殊到一般、从具体到抽象的问题,层层铺垫,步步深入,组织和启发学生通过观察、类比、联想、猜测、实践操作获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.四、教学目标1、知识目标:掌握等差数列的前n项和公式,并能用公式解决简单的问题;2、能力目标:通过公式的探索、发现,体验从特殊到一般的研究方法,培养学生观察猜想、类比分析、归纳总结和逻辑推理的能力,渗透方程(组)思想.3、情感目标:通过生动有趣的数学史故事,激发学生求知的欲望和探究的热情,渗透数学文化,增强学生爱国主义情感。

等差数列前n项和优秀教案

等差数列前n项和优秀教案

等差数列前n项和优秀教案一、教学目标:1. 知识与技能:使学生理解等差数列前n项和的定义,掌握等差数列前n项和的计算公式,能够运用等差数列前n项和的知识解决实际问题。

2. 过程与方法:通过探究等差数列前n项和的规律,培养学生逻辑思维能力和归纳总结能力。

3. 情感态度价值观:激发学生对数学知识的兴趣,培养学生的团队合作精神。

二、教学重点与难点:重点:等差数列前n项和的定义,计算公式。

难点:等差数列前n项和的灵活运用。

三、教学过程:1. 导入新课:回顾等差数列的基本概念,引导学生思考等差数列前n 项和的意义。

2. 探究等差数列前n项和的规律:引导学生分组讨论,总结等差数列前n项和的计算公式。

3. 讲解等差数列前n项和的计算公式:详细讲解等差数列前n项和的计算公式,并通过例题演示应用过程。

4. 练习与拓展:布置适量练习题,巩固等差数列前n项和的计算方法,并引导学生运用所学知识解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列前n项和的规律。

2. 利用多媒体辅助教学,生动展示等差数列前n项和的应用过程。

3. 采用分组讨论法,培养学生的团队合作精神和沟通能力。

4. 运用实例分析法,使学生更好地理解等差数列前n项和的实际意义。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习完成情况:检查学生练习题的完成质量,评估学生对等差数列前n项和的掌握程度。

3. 小组讨论:评价学生在分组讨论中的表现,包括逻辑思维、沟通能力等。

4. 课后反馈:收集学生对课堂内容的反馈意见,为后续教学提供改进方向。

六、教学内容与课时安排:第六章:等差数列前n项和的性质与应用课时安排:2课时本章主要内容有:1. 等差数列前n项和的性质;2. 等差数列前n项和在实际问题中的应用。

七、教学内容与课时安排:第七章:等差数列前n项和的计算公式推导课时安排:2课时本章主要内容有:1. 等差数列前n项和的计算公式的推导过程;2. 等差数列前n项和的计算公式的应用。

等差数列的前n项和公式(第一课时)(教案)高二数学(人教A版2019选择性必修第二册)

等差数列的前n项和公式(第一课时)(教案)高二数学(人教A版2019选择性必修第二册)

等差数列的前n项和公式第一课时1.课时教学内容等差数列前n项和公式2.课时学习目标(1)会推导等差数列前n项和公式;(2)会用等差数列的前n项和公式解决简单问题。

3.教学重点与难点重点∶等差数列的前n项和的应用。

难点∶等差数列前n项和公式的推导方法。

4.教学过程设计环节一情景引入200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?你准备怎么算呢?高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一。

他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献。

问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释。

高斯的算法:(1+100)+(2+99)+…+(50+51)=101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,…前100项的和问题。

等差数列中,下标和相等的两项和相等。

设a n=n,则a1=1,a2=2,a3=3,…如果数列{a n}是等差数列,p,q,s,t∈N∗且 p +q =s +t,则a p +a q =a s +a t可得:a 1+a 100=a 2+a 99=⋯=a 50+a 51问题2:你能用上述方法计算1+2+3+… +101吗? 解:原式=(1+101)+(2+100)+⋯+(50+52)+52 =102×50+51 =5151解法2:原式=(1+2+⋯+100)+101=[(1+100)+(2+99)+⋯+(50+51)]+101=101×50+101 =5151解法3:原式=0+1+2+⋯+100+101=(0+101)+(1+100)+⋯+(50+51)=101×51 =5151问题3:你能计算1+2+3+… +n 吗? 需要对项数的奇偶进行分类讨论.当n 为偶数时, S n =(1+n )+[(2+(n −1)]+⋯+[(n2+(n2−1)] =(1+n )+(1+n )…+(1+n ) =n2(1+n ) =n(1+n)2当n 为奇数数时, n -1为偶数S n =(1+n )+[(2+(n −1)]+⋯+[(n +12−1)+(n +12+1)]+ n +12=(1+n )+(1+n )…+(1+n )+ n+12=n−12(1+n )+n+12=n(1+n)2对于任意正整数n ,都有1+2+3+… +n =n(1+n)2问题4:不分类讨论能否得到最终的结论呢? S n = 1+ 2 + 3 +⋯+nS n = n +(n −1)+(n −2)+⋯+1 将上述两式相加,得2S n=(n+1)+[(n−1)2]+[(n−2)+3]+⋯+(1+n)=(1+n)+(1+n)+⋯+(1+n)=n(1+n)所以S n=1+2+3+⋯+n=n(1+n)2问题5:上述方法的妙处在哪里?倒序求和法S n=a1+a2+a3+⋯+a n−2+a n−1+a nS n=a n+a n−2+a n−1+⋯+a3+a2+a1 2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)即:S n=n(1+n)2问题6:这种方法能够推广到求等差数列{a n}的前n项和吗?S n=a1+a2+a3+⋯+a n−2+a n−1+a n,S n=a n+a n−2+a n−1+⋯+a3+a2+a1.2S n=(a1+a n)+(a2+a n−1)+⋯+(a n+a1)因为:a1+a n=a2+a n−1=…=a n+a1所以:2S n=(a1+a n)+(a1+a n)+⋯+(a1+a n)=n(a1+a n)所以S n=n( a1+a n)2得到等差数列前n项和公式:S n=n( a1+a n)2追问1:你能用文字语言表达这个公式吗?首项加末项乘以项数除以2.追问2:这个公式还有什么含义?等式两边同除以n,S nn =(a1+a n)2,即a1+a2+a3+⋯+a nn =(a1+a n)2前n项平均数等于首项与第n项的平均数问题7:能不能用a1和d来表示S n呢?将a n=a1+(n−1)d代入公式整理得S n =na1+n(n−1)2d追问:如果不利用前面结论,你还有其他方法得到上述公式吗?S n=a1+a2+a3+⋯+a n,=a1+(a1+d)+(a1+2d)+⋯+[a1+(n−1)d]=na1+[1+2+3+(n−1)d]=na1+n(n−1)2d等差数列的前n项和公式公式S n=n(a1+a n)2功能1:已知a1,a n,n 求S n功能2:已知S n a1,a n,n中任意3个,求第4个。

高三数学必修五《等差数列的前n项和》教案

高三数学必修五《等差数列的前n项和》教案

【导语】正如你现在根据⾃⼰的爱好想确定某个专业领域的研究,就可以查阅资料哪个⼼仪的⼤学有这样的专业,再查阅该⼤学近⼏年的录取分数线,那就应该你现在就读的学校历年升学情况,估算出应该在年级的排名,这就是你现阶段的⽬标,并争取实现。

⽆忧考⾼三频道为你准备了以下⽂章,在浩瀚的学海⾥,助你⼀臂之⼒!【篇⼀】 教学准备 教学⽬标 掌握等差数列与等⽐数列的性质,并能灵活应⽤等差(⽐)数列的性质解决有关等差(⽐)数列的综合性问题. 教学重难点 掌握等差数列与等⽐数列的性质,并能灵活应⽤等差(⽐)数列的性质解决有关等差(⽐)数列的综合性问题. 教学过程 【⽰范举例】 例1:数列是⾸项为23,公差为整数, 且前6项为正,从第7项开始为负的等差数列 (1)求此数列的公差d; (2)设前n项和为Sn,求Sn的值; (3)当Sn为正数时,求n的值.【篇⼆】 教学准备 教学⽬标 数列求和的综合应⽤ 教学重难点 数列求和的综合应⽤ 教学过程 典例分析 3.数列{an}的前n项和Sn=n2-7n-8, (1)求{an}的通项公式 (2)求{|an|}的前n项和Tn 4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99= 5.已知⽅程(x2-2x+m)(x2-2x+n)=0的四个根组成⼀个⾸项为的等差数列,则|m-n|= 6.数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求{an}的通项公式 (2)令bn=anxn,求数列{bn}前n项和公式 7.四数中前三个数成等⽐数列,后三个数成等差数列,⾸末两项之和为21,中间两项之和为18,求此四个数 8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值 .已知数列{an},an∈N*,Sn=(an+2)2 (1)求证{an}是等差数列 (2)若bn=an-30,求数列{bn}前n项的最⼩值 0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N*) (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列 (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn. 11.购买⼀件售价为5000元的商品,采⽤分期付款的办法,每期付款数相同,购买后1个⽉第1次付款,再过1个⽉第2次付款,如此下去,共付款5次后还清,如果按⽉利率0.8%,每⽉利息按复利计算(上⽉利息要计⼊下⽉本⾦),那么每期应付款多少?(精确到1元) 12.某商品在最近100天内的价格f(t)与时间t的 函数关系式是f(t)= 销售量g(t)与时间t的函数关系是 g(t)=-t/3+109/3(0≤t≤100) 求这种商品的⽇销售额的值 注:对于分段函数型的应⽤题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过⽐较,确定值。

4.2.2等差数列的前n项和公式教学设计2023-2024学年高二下学期人教A版2019选择性必修二

4.2.2等差数列的前n项和公式教学设计2023-2024学年高二下学期人教A版2019选择性必修二

4.2.2等差数列的前项和公式(人教A版普通高中教科书数学选择性必修第二册第四章)一、内容与内容解析1.内容:等差数列前项和公式的推导和简单应用2.内容解析:(1)重要性:数列是刻画离散现象的函数,是一种重要的数学模型。

高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列的前项和公式及其简单应用。

它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时又为后面学习等比数列前项和、数列求和等内容作好准备。

(2)思想方法:本节课的学习还蕴涵着深刻的数学思想方法(倒序相加法、数形结合、方程思想等),教学中有针对性地对学生进行这方面渗透,有利于学生数学思维能力的提高。

(3)应用广泛:等差数列求和有着广泛的实际应用,如堆放物品总数的计算、剧场座位总数的计算、分期存款一次取出的储蓄利息的计算等。

3.教学重点:等差数列前项和公式的推导运用了倒序相加法,学生不但可以掌握数列中一类重要的求和方法,同时也为后面数列求和作好思想上的引导与知识上的准备。

本节课的重点:等差数列前项和公式的理解、推导及简单应用。

二、目标与目标解析1.目标(1)掌握等差数列前项和公式及其推导过程,会用等差数列的前项和公式解决一些简单的问题。

(2)从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比分析、归纳综合、逻辑推理的思维能力。

(3)从问题情境中抽象出等差数列的模型,运用所学知识解决实际问题,培养学生数学建模的能力。

2.目标解析达成上述目标的标志为:(1)知道等差数列前项和公式是倒序求和的推导结果。

(2)能够运用等差数列前项和公式“知三求二”。

(3)对于问题情境能够抽象出等差数列的模型,并成功解决问题。

三、教学问题诊断解析 1.问题诊断本节课之前学生已经学习了等差数列的通项公式和性质、数列的和等有关内容,对本节课的学习有了一定的知识铺垫。

经过初高中的数学学习,学生已具有一定的自主探究能力、从特殊到一般的类比推理能力,高斯的首尾配对相加的算法对学生来说都是能够理解掌握的,但学生对于倒序求和的思想还是初次见到,对于公式推导的思想方法,理解起来会存在一定的难度。

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案

等差数列前n项和的公式教案一、教学目标1.知道等差数列的定义;2.掌握等差数列前n项和的公式;3.能够运用前n项和的公式解决实际问题。

二、教学重点等差数列前n项和的公式三、教学难点如何运用前n项和的公式解决实际问题。

四、教学过程1. 导入新知识教师可以用一个具有代表性的例子导入等差数列这个概念,比如:有一个数列a1, a2, a3, …,知道其中第一个数为2,公差为5。

求第5个数 a5是多少?通过这个例子,学生可以理解等差数列的定义和公差的概念。

然后,教师可以引出等差数列前n项和的概念。

2. 讲解等差数列前n项和的公式让学生可以通过简单的推导得到公式,即:$$S_n = \\frac{(a_1 + a_n)n}{2}$$其中,S n表示前n项和,a1为等差数列的第一项,a n为等差数列的第n项。

3. 运用前n项和的公式解决实际问题在这一部分,教师可以给出一些实例,让学生通过前n项和的公式来解决问题。

比如:例1:一个等差数列的第一项为2,公差为3,求这个等差数列的前10项和。

答案:根据公式,$S_{10}=\\frac{(2+29)\\times10}{2}=155$。

例2:一个等差数列的前5项和为50,公差为3,求这个等差数列的首项。

答案:根据公式,$S_5=\\frac{(a_1+a_5)\\times5}{2}=50$,代入公差为3,得到a1=8。

4. 练习让学生自己编写几个例子,展示能否正确地使用前n项和的公式。

5. 总结归纳老师可以让学生自己总结等差数列前n项和的公式和运用方法。

五、教学反思本教案通过公式推导、实际例子演示和自主练习等途径,让学生掌握了等差数列前n项和的公式和运用方法。

同时,也为其后的数列计算打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等差数列的前n项和公式》教学设计
职业技术学校刘老师
大纲分析:
高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列前n项和公式的推导及其简单应用。

教材分析:
数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。

学生分析:
数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。

教学目标:
知识与技能目标:
掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。

过程与方法目标:
培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

情感、态度与价值观目标:
体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。

教学重点与难点:
等差数列前n项和公式是重点。

获得等差数列前n项和公式推导的思路是难点。

教学用具:ppt
整节课分为三个阶段:
问题呈现阶段
探究发现阶段
公式应用阶段
问题呈现1:
首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。

)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道
这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100)
紧接着讲述高斯算法:高斯,德国着名数学家,被誉为“数学王子”。

200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?
据说,当其他同学忙于把100个数逐项相加时,
10岁的高斯却用下面的方法迅速算出了正确答案:
(1+100)+(2+99)+……+(50+51)=101×50=5050
【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。

问题呈现2:
图案中,第1层到第21层一共有多少颗宝石?
在知道了高斯算法之后,同学们很容易把本题与高斯
算法联系起来,也就是联想到“首尾配对”摆出几何图形,引
引导学生去思考,如何将图与高斯的倒序相加结合起来,让
他们借助几何图形,将两个三角形拼成平行四边形.
获得算法:
【设计说明】
• 源于历史,富有人文气息.
• 图中算数,激发学习兴趣.
这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础.
探究发现1:
问题3: 由前面的例子,不难用倒序相加法推出
【设计说明】
在前面两个问题的基础上,问题呈现3提出了等差数列求和公式的推导,鼓励学生利用“倒序相加”的数学方法推导公式。

探究发现2:
根据等差数列求和公式1和等差数列通项公式,推出等差数列公式2
问题4 探究发现3:
)(1m a ,下底长为)(m a n ,高为)(m n ,求这
面积公式: 【设计说明】 利用梯形的面积公式,帮助学生记忆等差数列的求和公式,让学生对于“数形结合”
的理解更加深一层。

公式应用
• 根据题目选用公式
• 利用通项求中间量
• 依据条件变用公式 例1、已知等差数列{an}中,a 1=-8,a 20=106,求s 20
分析:本例提供了两个数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。

解:由已知条件得
s 20= =980 例2、求等差数列1,4,7,10…的前100项的和。

分析:本例已知首项,公差和项数,引导学生使用公式2。

事实上,根据提供的条件再与公式对比,通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。

解:已知a 1=1,d=3,n=100,
所以有s 100=100×1+ ×3=14950 巩固练习:
{}?
n n a 如何求等差数列的前n 项和S {},,?n n
a a 1已知首相项数n 公差d
如何求等差数列的前n 项和S ()
12n n a a S +=20-81062⨯(+)100(1001)2
⨯-
1、根据下列条件,求相应的等差数列{a
}的Sn
n
2、求等差数列-13,-9,-5,-1,3…的前100项的和
课堂小结:
回顾从特殊到一般的研究方法;
体会等差数列的基本元表示方法,逆序相加的算法,及数形结合的数学思想;
掌握等差数列的两个求和公式及简单应用。

作业布置:
必做题:课本第10页习题6.2.3:1、2
选做题:课本第12页第8题
【设计说明】出选做题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

教学反思:
本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.本节课的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的三个问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了。

相关文档
最新文档