第23章 二次函数(23.6反比例函数)

合集下载

沪科版初中数学重难点

沪科版初中数学重难点

七年级上册•第1章有理数o 1.1 天气预报中的数o 1.2 数轴o 1.3 有理数的大小o 1.4 有理数的加减(重点)o 1.5 有理数的乘除(重点)o 1.6 有理数的乘方(重点)o 1.7 近似数o同步练习o单元测试o本章综合•第2章走进代数o 2.1 用字母表示数o 2.2 代数式(重点)o 2.3 整式加减(重点)o同步练习o单元测试o本章综合•第3章一次方程与方程组(重点)o 3.1 一元一次方程及其解决方法o 3.2 二元一次方程组o 3.3 消元解方程组o 3.4 用一次方程(组)解决问题(难点)o同步练习o单元测试o本章综合•第4章直线与角o 4.1 多彩的几何图案o 4.2 线段、射线、直线o 4.3 线段的长短比较o 4.4 角的表示与度量o 4.5 角的大小比较o 4.6 作线段与角o同步练习o单元测试o本章综合•第5章数据处理o 5.1 数据的收集o 5.2 数据的整理o 5.3 统计图的选择o 5.4 从图表中获取信息o同步练习o单元测试o本章综合七年级下册•第6章实数o 6.1 平方根、立方根o 6.2 实数o同步练习o单元测试o本章综合•第7章一元一次不等式和不等式组(重点) o7.1 不等式及其基本性质o7.2 一元一次不等式o7.3 一元一次不等式组o同步练习o单元测试o本章综合•第8章整式乘除和因式分解(重点)o8.1 冥的运算o8.2 整式乘除o8.3 平方差公式和完全平方公式o8.4 整式除法o8.5 因式分解(难点)o同步练习o单元测试o本章综合•第9章分式(重点)o9.1 分式及其基本性质)o9.2 分式的运算o9.3 分式方程(难点)o同步练习o单元测试o本章综合•第10章相交线、平行线和平移o10.1 相交线o10.2 平行线的判定o10.3 平行线的性质o10.4 平移o同步练习o单元测试o本章综合•第11章(新)频数的分布o11.1 频数与频率o11.2 频数分布o同步练习o单元测试o本章综合•第11章数据的集中趋势o11.1 平均数o11.2 中位数与众数o11.3 从部分看整体o同步练习o单元测试o本章综合八年级上册•第12章平面直角坐标系o12.1 平面上的点坐标o12.2 图形在坐标中的平移o同步练习o单元测试o本章综合•第13章一次函数(重点)o13.1 函数o13.2 一次函数(难点)o13.1 一次函数与一次方程、一次不等式o13.4 二元一次方程的图像解法o同步练习o单元测试o本章综合•第14章三角形o14.1 三角形中的边角关系o14.2 命题与证明o同步练习o单元测试o本章综合•第15章三角形的全等(重点)o15.1 全等三角形o15.2 三角形全等的判定(难点)o同步练习o单元测试o本章综合•第16章轴对称图形和等腰三角形(重点) o16。

【推荐】沪科版数学目录-精选word文档 (16页)

【推荐】沪科版数学目录-精选word文档 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==沪科版数学目录篇一:沪科版初中数学目录沪科版初中数学目录备注:七年级上册:1-5七年级下册:6-11 八年级上册:12-17 八年级下册:18-22 九年级上册:23-25 九年级下册:26-28第1章有理数 1.1 正数和负数 1.2 数轴1.3 有理数的大小 1.4 有理数的加减 1.5 有理数的乘除 1.6 有理数的乘方1.7 近似数第2章整式加减 2.1 用字母表示数 2.2 代数式 2.3 整式加减第3章一次方程与方程组3.1 一元一次方程及其解法 3.2 二元一次方程组 3.3 消元解决方程组3.4 用一次方程(组)解决问题第4章直线与角 4.1 多彩的几何图形 4.2 线段、射线、直线 4.3 线段的长短比较 4.4 角的表示与度量 4.5 角的大小比较 4.6 作线段与角第5章数据处理5.1 数据的收集 5.2 数据的整理 5.3 统计图的选择5.4 从图表中获取信息第6章实数 6.1 平方根立方根 6.2 实数第7章一元一次不等式与不等式组 7.1 不等式及其基本性质 7.2 一元一次不等式 7.3 一元一次不等式组第8章整式乘除与因式分解 8.1 幂的运算 8.2 整式乘法8.3平方差公式与完全平方公式 8.4 整式除法 8.5 因式分解第9章分式9.1 分式及其基本性质 9.2 分式的运算 9.3分式方程第10章相交线平行线与平移 10.1 相交线 10.2 平行线的判定 10.3 平行线的性质10.4 平移第11章频率分布 11.1 频数与频率 11.2 频数分布第12章平面直角坐标系12.1 平面上点的坐标12.2 图形在坐标系中的平移第13章一次函数 13.1 函数13.2 一次函数-13.3 一次函数与一次方程、一次不等式 13.4 二元一次方程组的图象解法第14章三角形中的边角关系 14.1 三角形中的边角关系 14.2 命题与证明第15章全等三角形 15.1 全等三角形 15.2 三角形全等的判定第16章轴对称图形与等腰三角形 16.1 轴对称图形 16.2 线段的垂直平分线 16.3 等腰三角形 16.4 角的平分线第17章勾股定理 17.1 勾股定理17.2 勾股定理的逆定理第18章二次根式 18.1 二次根式18.2 二次根式的运算――――()第19章一元二次方程 19.1 一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系 19.5 一元二次方程的应用第20章四边形 20.1 多边形内角和 20.2平行四边形20.3 矩形菱形正方形 20.4 梯形第21章数据的集中趋势 21.1 平均数21.2 中位数与众数 21.3从部分看总体第22章数据的离散程度 22.1极差22.2 方差、标准差第23章二次函数与反比例函数 23.1 二次函数23.2 二次函数y=ax^2的图象和性质 23.3二次函数y=ax^2+bx+c的图象和性质 23.4 二次函数与一元二次方程 23.5.二次函数的应用 23.6反比例函数第24章相似形24.1 比例线段24.2 相似三角形的判定 24.3 相似三角形的性质 24.4 相似多边形的性质24.5 位似图形第25章解直角三角形 25.1 锐角三角函数 25.2 锐角三角函数值 25.3 解直角三角形及其应用第26章圆 26.1 旋转26.2 圆的对称性 26.3 圆的确定 26.4 圆周角 26.5 直线与圆的位置关系26.6 三角形的内切圆 26.7 圆与圆的位置关系 26.8正多边形与圆26.9 弧长与扇形面积第27章投影与视图 27.1 投影 27.2 三视图第28章概率初步28.1 随机事件28.2 等可能情形下的概率计算 28.3 用频数估计概率篇二:沪教版数学目录沪版数学目录一年级上学期:一、10以内的数说一说分一分数一数几个与第几个比一比数射线二、10以内数的加减法分与合加法讲讲算算(一)减法讲讲算算(二)加与减看数射线做加、减法 10的游戏连加、连减加减混合三、20以内的数及其加减法11—20的数十几就是十和几 20以内数的排列加减法(一)加减法(二)讲讲算算(三)加进来,减出去数字的墙四、识别图形物体的形状五、整体与提高分彩色图形片推算比较加倍与一半大家来做加法大家来做减法组算式数学游乐场一年级下学期:一、复习与提高游数城玩数图比一比二、位置左与右在街上上、中、下,左、中、右路(前后,左右)三、100以内的数及其加减法十个十个地数百数图数的表示数射线上的数百数表数龙——百的数列两位数加减整十数两位数加减一位数(一)两位数加减一位数(二)两位数加两位数(不进位)两位数加两位数(进位)笔算加法(进位)两位数减两位数(不退位)笔算减法(退位)郊外活动。

数学九年级上沪教版23章反比例函数

数学九年级上沪教版23章反比例函数

反比例函数(时间:60分钟 满分:100分)姓名 得分一、选择题(本大题共10小题,每小题3分,共30分) 1.反比例函数xk y 3+=的图象在二、四象限,则k 的取值范围是( ) A .k ≤3 B .k ≥-3 C .k >3 D .k <-3.2.反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( ) A .-1B .0C .1D .23.已知2)1(-+=m x m y 是反比例函数,则函数图象在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.如图,过双曲线y =kx(k 是常数,k >0,x >0)的图象上两点A 、B 分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则△AOC 的面积S 1和△BOD 的面积S 2的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .S 1和S 2的大小无法确定5.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是( ) A .x y 4-= B .x y 4= C . xy 8= D .x y 8-=(第4题) (第5题)6.在同一平面直角坐标系中,一次函数1-=kx y 与反比例函数xky =(其中0≠k )的图象的形状大致是( )A. B. C. D.7.若M(-1,y1),N(1,y2),P(2,y3)三点都在函数y=kx(k<0)的图象上,则y1,y2,y3,的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y3>y2>y18.反比例函数)0(>=kxky在第一象限内的图像如图,点M是图像上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是()A.1 B.2 C.4 D.219. 如图所示,过双曲线xy2=上两点A、B分别作x轴、y轴的垂线,若矩形ADOC与矩形BFOE的面积分别为S1、S2,则S1与S2的关系是()A. S1<S2B. S1=S2C. S1>S2D. 不能确定10.正比例函数y=-x与反比例函数xy1-=的图象相交于A、C两点。

反比例函数的图像及性质

反比例函数的图像及性质

反比例函数的图像及性质人教版数学九年级下册《反比例函数的图象和性质》教学设计一.内容和内容解析1.内容反比例函数的图象和性质2.内容解析本节课是人教版数学九年级下册第二十六章第一节反比例函数的内容,本节分为三课时,这是第二课时的新授课.是在学生已经经历了一次函数、二次函数的研究过程的基础上,在得到反比例函数的概念之后,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质.教学过程中首先引导学生用“描点法”画出反比例函数的图象,使反比例函数的解析式表示的函数关系直观化;然后分类观察图象,体现“分类”的思想,首先研究k>0的情况,从特殊k=4,k=6,k=8,k=12的图象观察,进而推广到一般,得出k>0时的反比例函数的图象的特征及反比例函数的特性,体现“从特殊到一般”的思想,然后教师再引导学生从解析式的角度分析图象特征,在整个教学过程中始终贯穿由“数”到“形”再由“形”到“数”的相互转化,让学生体会“数形结合”的数学思想和反比例函数的本质属性所在,对于k<0的研究,完全类比k>0的研究过程,体现“类比”的思想.反比例函数是初中阶段要求学习的三种函数中的最后一种,是继一次函数学习之后,知识的一次扩展,图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,是学习函数的一般方法和规律的再次强化,也是后续构建反比例函数模型的基础,起着承上启下的作用.本节课学生的学习重点是:用描点法画反比例函数的图象,并根据图象理解反比例函数的性质.学习难点是:对x≠0的理解及图象特征的分析.二.目标和目标解析1.目标(1)能画出反比例函数的图象,探索并理解图象的变化情况.(2)在画出反比例函数的图象,并探究其性质的过程中,体会“类比”、“分类讨论”、“从特殊到一般”以及“数形结合”的数学思想.(3)通过观察反比例函数的图象、探究反比例函数的性质,发展探究、归纳及概括的能力.2.目标解析(1)首先运用描点法画出反比例函数的图象,然后根据图象,通过观察、分析、归纳得出反比例函数的性质,因此正确画出反比例函数图象是前提条件,虽然学生之前用描点法经历过画一次函数、二次函数图象的经验,但是由于反比例函数图象结构复杂,具有自身的特殊性,因此,能用“描点法”画出反比例函数图象并根据图象探究其性质仍是本节课的目标.(2)类比正比例函数的研究方法,通过分类讨论的方式首先研究k>0的情况,在研究过程中从图象和解析式两个角度分析,体现了数形结合的思想,通过类比研究k<0的情况,同样体现从特殊到一般的数学思想.(3)在探究反比例函数的性质的过程中,教师利用几何画板给出一系列函数图象,通过对图象的观察、分析,利用数形结合的数学思想,归纳概括反比例函数的图像和性质,所以整个性质的探索过程发展了分析概括的能力.三.教学问题诊断分析学生已经学习了一次函数、二次函数的图象和性质,反比例函数的解析式,已具有描点法画函数图象的初步经验,但是由于反比例函数的图象结构复杂,具有自身的特殊性,因此在画反比函数的图象这个环节,可能遇到的问题有:1.在列表时没注意到自变量的取值范围是x≠0,或者对自变量x的取值只取正或只取负.2.由于列表时只取了有限的几个点,因此在连线时学生容易只把这几点连线,只画出图象的一部分,有明显端点,没有画出双曲线的延伸趋势.3.学生在画双曲线的延伸趋势时可能出现错误,这是因为学生仅仅是通过描点得出图象,并没有深入从解析式的角度分析问题,教师可以引导学生尝试分析理解.在学习一次函数、二次函数的时候,学生已经历过观察、分析图象的特征,概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解,因此,通过类比,结合反比例函数的图象和表达式探索性质,从使用的方法上不会存在障碍,但是双曲线的特殊性使学生在探究反比例函数增减性时可能会出现问题,教学中教师应该强调从“数”、“形”两方面统一分析.四.教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用几何画板,快速、准确的绘制反比例函数图象,另外通过动态的演示,观察相关数值的变化,研究图象的变化趋势,进而探索反比例函数的性质.五.教学过程分析(一)创设情境多媒体课件展示华罗庚先生的关于“数形结合”的一首词.设计意图:采用名人名言欣赏的方式进行情景引入,不仅调动了学生的积极性,同时又紧扣主题,为本节课的学习进行了方法上的准备.(二)知识链接1.已经学习了哪些函数?2.正比例函数y=kx(k≠0)的图象和性质是什么?3.反比例函数的定义是什么?4.描点法画图象的步骤是什么?师:了解了反比例函数的解析式,也就是从“数”的角度了解了反比例函数,那么对应的反比例函数的“形”的方面,也就是图象是什么呢?函数性质又是怎样的呢?设计意图:通过复习正比例函数的知识,为学习画反比例函数的图象奠定基础,同时提出问题,明确本节课的学习任务.(三)探究图象分以下5个环节完成.1.试一试:学生独立画出6y=的图象.x2.议一议:小组讨论所画作品,选出他们认为画的最好的作品.3.看一看:展示学生选出的作品,进行问题分析.然后教师示范正确画图过程.4.说一说:同桌互说一遍画图像时的注意事项,并修订已画图象.5.练一练:画出反比例函数6y=-的图象.x设计意图:首先让学生独立画图,充分暴露学生存在问题,关注画图的基本步骤及每个细节的处理,培养学生画图象的能力,通过再次画图,使学生及时巩固已获得的作图经验,并且为后面归纳性质增加感性认识.(四)探究性质探究1. 探究反比例函数6y x =和6y x=-的图象有什么共同特征以及不同点?学生活动:主要由学生观察发现,教师适时引导.共同特征:(1 )它们都由两条曲线组成.反比例函数的图象属于双曲线.(2)随着x 的不断增大(或减小),曲线越来越接近坐标轴.不同特点:(1)位置不同(2)增减性不同教师追问:这些不同特点是由什么因素决定的?生:k 的正负.设计意图:培养学生的观察能力,让学生体会分类的必要性.探究2.利用几何画板再准确作出k =4, k =8, k =12时的三个反比例函数图象.观察这一系列函数图象,思考下列问题:(1)图象形状是什么?(2)图象位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?学生活动:先由学生独立思考,然后小组讨论交流,小组代表发言,其他同学补充或质疑.教师板书:形状:双曲线位置:一三象限增减性:在每个象限内,y随x的增大而减小教师追问(1):哪位同学能从解析式的角度解释第二个和第三个问题?教师设问(2):第三个问题,如果去掉在每个象限内这个条件,y 随x的变化情况还一致吗?为什么?学生活动:学生尝试解释,教师及时点拨,并利用几何画板直观演示.师:把刚才所研究的问题推广到一般,就得到了k >0时的函数图象和性质.设计意图:使学生经历由特殊到一般的过程,体验知识的产生形成过程;教师的追问引导学生从“数”、“形”两方面解决问题,让学生体会数形结合的思想.探究3.观察下列函数图象特征,归纳k=(k<0)性质.yx学生活动:学生发言,教师板书.形状:双曲线位置:二四象限增减性:在每个象限内,y随x的增大而增大设计意图:让学生自己去观察、类比、发现的方式获得知识,培养学生积极参与的意识和自主探索的能力.归纳: 反比例函数y =k x(k 为常数,k ≠0)的图象和性质.(1)反比例函数y=k x (k 为常数,k ≠0)的图象是双曲线.(2)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内,y ?值随x 值的增大而减小.(3)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y ?值随x 值的增大而增大.设计意图:培养学生的分类讨论意识和归纳概括能力.探究4.在同一坐标系中反比例函数6y x =与6y x =-的图象之间在位置上有什么对称关系?学生活动:学生观察发现,教师动画演示.师:同学们能再从解析式上分析一下它的对称关系吗?结论:当k 互为相反数时,对应的反比例函数图象既关于x 轴对称,也关于y 轴对称.设计意图:培养学生的观察能力及让学生感知反比例函数图象的对称性和数学美.(五)目标检测1.下列图象中,可以是反比例函数的图象的().2.若反比例函数的图象经过(-3,4)则此函数的图象应在().A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限3.已知点A (-2,a )、B (-1,b ) 、C (3,c )都在反比例函数y =1x图象上,试比较a 、b 、c 的大小.解:把点A (-2,a )、B (-1,b )、C (3,c )分别带入1y x =中得:1a=-2,b =-1,13c = 所以b另解:因为k =1>0所以在每个象限内,y 随x 的增大而减小由图知,因为-2<-1<0,所以b 0所以b学生活动:前两题由学生讲解、第三题由学生板书展示.设计意图:通过三个题目巩固反比例函数图像和性质,渗透数形结合的思想方法.(六)课堂小结这节课你有什么收获?有什么疑惑?学生活动:学生发言交流自己的收获,其他同学补充.师:回顾反比例函数的学习过程,我们首先学习了反比例函数的解析式,以解析式为基础,运用数形结合的思想,画出了函数图象,进而研究函数的性质,体现了分类讨论的方法,这其实就是我们研究函数的一般方法.师:同学们,有关反比例函数的知识,经过我们的整理,形成了一颗知识树,像这样让知识体系化,是我们学习数学的一种很好的方法,如果对已每一个知识点,同学们都能进行这样的梳理,那么你就会收获一片知识的森林.设计意图:通过本环节,培养学生分类讨论的思想及归纳概括的能力,通过美丽的知识树,对学生进行了学习方法上的指导,给学生留下深刻印象. (七)分层作业A、习题26.1 第3题B、习题26.1 第8题课外延伸:探究反比例函数k=(k≠0)的图象关于直线y=x与y=-x的对yx称性.设计意图:根据分层教学和因材施教的原则,将作业分成A,B两类,让不同能力的学生在数学上都得到发展.课外延伸让学生带着问题走进课堂,再带着新的问题走出课堂.六、板书设计。

一次函数反比例函数及二次函数课件

一次函数反比例函数及二次函数课件
2.求解与二次函数有关的不等式问题,可借助二次函数的 图象特征,分析不等关系成立的条件.
考点 2 含参数问题的讨论 师生互动 考向 1 区间固定对称轴动型 [例 1]已知函数 f(x)=x2+2ax+2,求 f(x)在[-5,5]上的最 大值与最小值. 解:f(x)=x2+2ax+2=(x+a)2+2-a2,x∈[-5,5],对称 轴为直线 x=-a. (1)当-a<-5,即 a>5 时,函数 f(x)在[-5,5]上单调递 增,如图 2-8-2(1), ∴f(x)max=f(5)=52+2a×5+2=27+10a,
根据图象知,A 选项 b=0 不对 ; B 选项,若 g(x)成立,则 a>0,b>0,- 2ba<0,此时 f(x)图 象不对;
C 选项,若 g(x)成立,则 a<0,b>0,- b >0,此时 f(x)图 2a
象不对;
D 选项显然是正确的,故选 D. 答案:D
2. 设 abc >0,二次函数 f(x) =ax2 +bx +c 的图象可能是 ()
∴f(10)-f(t)=12-t,即 t2-17t+72=0.
解得 t=8(舍去)或 t=9.∴t=9. 综上所述,存在常数 t=15-2 17或 t=8 或 t=9 满足条件.
【考法全练】 2.(多选题)一般地,若函数 f(x)的定义域为[a,b],值域为[ka, kb],则称[a,b]为 f(x)的“k 倍跟随区间”;特别地,若函数 f(x) 的定义域为[a,b],值域也为[a,b],则称[a,b]为 f(x)的“跟随
(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;

沪科版初中数学目录

沪科版初中数学目录
沪科版初中数学目录
备注:
七年级上册:1-5
七年级下册:6-11
八年级上册:12-17
八年级下册:18-22
九年级上册:23-25
九年级下册:26-28
第1章有理数
1.1正数和负数
1.2数轴
1.3有理数的大小
1.4有理数的加减
1.5有理数的乘除
1.6有理数的乘方
1.7近似数
第2章
整式加减
2.1用字母表示数
23.3二次函数y=ax^2+bx+c的图象和性质
23.4二次函数与一元二次方程
23.5.二次函数的应用
23.6反比例函数
第24章
相似形
24.1比例线段
24.2相似三角形的判定
24.3相似三角形的性质
24.4相似多边形的性质
24.5位似图形
第25章
解直角三角形
25.1锐角三角函数
25.2锐角三角函数值
2.2代数式
2.3整式加减
第3章
一次方程与方程组
3.1一元一次方程及其解法
3.2二元一次方程组
3.3消元解决方程组
3.4用一次方程(组)解决问题
第4章直线与角
4.1多彩的几何图形
4.2线段、射线、直线
4.3线段的长短比较
4.4角的表示与度量
4.5角的大小比较
4.6作线段与角
第5章
数据处理
5.1数据的收集
5.2数据的整理
5.3统计图的选择
5.4从图表中获取信息
第6章实数
6.1平方根立方根
6.2实数
第7章一元一次不等式与不等式组
7.1不等式及其基本性质
7.2一元一次不等式

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交K≠0..2、性质:1.当k>0时;图象分别位于第一、三象限;同一个象限内;y随x的增大而减小;当k<0时;图象分别位于二、四象限;同一个象限内;y随x的增大而增大..2.k>0时;函数在x<0上同为减函数、在x>0上同为减函数;k<0时;函数在x<0上为增函数、在x>0上同为增函数..定义域为x≠0;值域为y≠0..3.因为在y=k/xk≠0中;x不能为0;y也不能为0;所以反比例函数的图象不可能与x轴相交;也不可能与y轴相交..4. 在一个反比例函数图象上任取两点P;Q;过点P;Q分别作x轴;y轴的平行线;与坐标轴围成的矩形面积为S1;S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形;又是中心对称图形;它有两条对称轴y=x y=-x即第一三;二四象限角平分线;对称中心是坐标原点..6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点m、n同号;那么A B两点关于原点对称..7.设在平面内有反比例函数y=k/x和一次函数y=mx+n;要使它们有公共交点;则n^2+4k·m≥不小于0..8.反比例函数y=k/x的渐近线:x轴与y轴..9.反比例函数关于正比例函数y=x;y=-x轴对称;并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线;交于q、w;则矩形mwqoo为原点的面积为|k|11.k值相等的反比例函数重合;k值不相等的反比例函数永不相交..12.|k|越大;反比例函数的图象离坐标轴的距离越远..13.反比例函数图象是中心对称图形;对称中心是原点一次函数(一)函数1、确定函数定义域的方法:1关系式为整式时;函数定义域为全体实数; 2关系式含有分式时;分式的分母不等于零;3关系式含有二次根式时;被开放方数大于等于零; 4关系式中含有指数为零的式子时;底数不等于零;5实际问题中;函数定义域还要和实际情况相符合;使之有意义.. (二)一次函数 1、一次函数的定义一般地;形如y kx b =+k ;b 是常数;且0k ≠的函数;叫做一次函数;其中x 是自变量..当0b =时;一次函数y kx =;又叫做正比例函数..⑴一次函数的解析式的形式是y kx b =+;要判断一个函数是否是一次函数;就是判断是否能化成以上形式. ⑵当0b =;0k ≠时;y kx =仍是一次函数.⑶当0b =;0k =时;它不是一次函数.⑷正比例函数是一次函数的特例;一次函数包括正比例函数. 2、正比例函数及性质一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数.注:正比例函数一般形式 y=kx k 不为零 ① k 不为零 ② x 指数为1 ③ b 取零当k>0时;直线y=kx 经过三、一象限;从左向右上升;即随x 的增大y 也增大;当k<0时;•直线y=kx 经过二、四象限;从左向右下降;即随x 增大y 反而减小.(1) 解析式:y=kxk 是常数;k ≠0 (2) 必过点:0;0、1;k(3) 走向:k>0时;图像经过一、三象限;k<0时;•图像经过二、四象限 (4) 增减性:k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小 (5) 倾斜度:|k|越大;越接近y 轴;|k|越小;越接近x 轴 3、一次函数及性一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;y=kx +b 即y=kx;所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b k 不为零 ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过0;b 和-kb;0两点的一条直线;我们称它为直线y=kx+b;它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时;向上平移;当b<0时;向下平移 1解析式:y=kx+bk 、b 是常数;k ≠0 2必过点:0;b 和-kb;0 3走向: k>0;图象经过第一、三象限;k<0;图象经过第二、四象限 b>0;图象经过第一、二象限;b<0;图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限4增减性: k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小.5倾斜度:|k|越大;图象越接近于y 轴;|k|越小;图象越接近于x 轴.6图像的平移: 当b>0时;将直线y=kx 的图象向上平移b 个单位;当b<0时;将直线y=kx 的图象向下平移b 个单位.一次函数()0k kx b k =+≠k ;b 符号 0k >0k < 0b > 0b < 0b = 0b >0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线;并且只能画出一条直线;即两点确定一条直线;所以画一次函数的图象时;只要先描出两点;再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:0;b;.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限图象从左到右上升;y 随x 的增大而增大k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限图象从左到右下降;y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线;它可以看作是由直线y=kx 平移|b|个单位长度而得到当b>0时;向上平移;当b<0时;向下平移6、正比例函数和一次函数及性质正比例函数 一次函数概 念 一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数 一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;是y=kx;所以说正比例函数是一种特殊的一次函数.自变量 范 围X 为全体实数图 象 一条直线必过点 0;0、1;k 0;b 和-k b ;0 走 向 k>0时;直线经过一、三象限; k<0时;直线经过二、四象限 k >0;b >0;直线经过第一、二、三象限 k >0;b <0直线经过第一、三、四象限 k <0;b >0直线经过第一、二、四象限 k <0;b <0直线经过第二、三、四象限 增减性 k>0;y 随x 的增大而增大;从左向右上升 k<0;y 随x 的增大而减小..从左向右下降 倾斜度 |k|越大;越接近y 轴;|k|越小;越接近x 轴 图像的 平 移 b>0时;将直线y=kx 的图象向上平移b 个单位;b<0时;将直线y=kx 的图象向下平移b 个单位.7、直线11b x k y +=01≠k 与22b x k y +=02≠k 的位置关系 1两直线平行⇔21k k =且21b b ≠ 2两直线相交⇔21k k ≠3两直线重合⇔21k k =且21b b = 4两直线垂直⇔121-=k k8、用待定系数法确定函数解析式的一般步骤:1根据已知条件写出含有待定系数的函数关系式;2将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; 3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0a;b 为常数;a ≠0的形式;所以解一元一次方程可以转化为:当某个一次函数的值为0时;求相应的自变量的值. 从图象上看;相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0a;b 为常数;a ≠0的形式;所以解一元一次不等式可以看作:当一次函数值大小于0时;求自变量的取值范围.11、一次函数与二元一次方程组1以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b c x b a +-的图象交点.二次函数一、二次函数概念:1.二次函数的概念:一般地;形如2y ax bx c =++a b c ,,是常数;0a ≠的函数;叫做二次函数.. 这里需要强调:和一元二次方程类似;二次项系数0a ≠;而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数;右边是关于自变量x 的二次式;x 的最高次数是2. ⑵ a b c ,,是常数;a 是二次项系数;b 是一次项系数;c 是常数项.二、二次函数的基本形式① 一般式:()()20f x ax bx c a =++≠ ② 顶点式:()()()20f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠当240b ac∆=->时;二次函数的图像和x轴有两个交点()11,0M x;()22,0M x;线段1212M M x xa a=-==.当240b ac∆=-=时;二次函数的图像和x轴有两个重合的交点,02bMa⎛⎫-⎪⎝⎭.特别地;当且仅当0b=时;二次函数()()20f x ax bx c a=++≠为偶函数.1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大;抛物线的开口越小..2. 2y ax c=+的性质:上加下减..3. ()2y a x h=-的性质:左加右减..4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+;确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变;将其顶点平移到()h k ,处;具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移;负左移;k 值正上移;负下移”. 概括成八个字“左加右减;上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位;c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位;c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看;()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式;后者通过配方可以得到前者;即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭;其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+;确定其开口方向、对称轴及顶点坐标;然后在对称轴两侧;左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,;()20x ,若与x 轴没有交点;则取两组关于对称轴对称的点.画草图时应抓住以下几点:开口方向;对称轴;顶点;与x 轴的交点;与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时;抛物线开口向上;对称轴为2bx a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时;y 随x 的增大而减小;当2b x a >-时;y 随x 的增大而增大;当2bx a =-时;y 有最小值244ac b a -.2. 当0a <时;抛物线开口向下;对称轴为2b x a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时;y 随x 的增大而增大;当2b x a >-时;y 随x 的增大而减小;当2bx a=-时;y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ;b ;c 为常数;0a ≠;2. 顶点式:2()y a x h k =-+a ;h ;k 为常数;0a ≠;3. 两根式:12()()y a x x x x =--0a ≠;1x ;2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式;但并非所有的二次函数都可以写成交点式;只有抛物线与x 轴有交点;即240b ac -≥时;抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中;a 作为二次项系数;显然0a ≠.⑴ 当0a >时;抛物线开口向上;a 的值越大;开口越小;反之a 的值越小;开口越大;⑵ 当0a <时;抛物线开口向下;a 的值越小;开口越小;反之a 的值越大;开口越大.总结起来;a 决定了抛物线开口的大小和方向;a 的正负决定开口方向;a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下;b 决定了抛物线的对称轴.⑴ 在0a >的前提下;当0b >时;02ba-<;即抛物线的对称轴在y 轴左侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba->;即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下;结论刚好与上述相反;即 当0b >时;02ba->;即抛物线的对称轴在y 轴右侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba-<;即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ;在y 轴的右侧则0<ab ;概括的说就是“左同右异”3. 常数项c⑴ 当0c >时;抛物线与y 轴的交点在x 轴上方;即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时;抛物线与y 轴的交点为坐标原点;即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时;抛物线与y 轴的交点在x 轴下方;即抛物线与y 轴交点的纵坐标为负. 总结起来;c 决定了抛物线与y 轴交点的位置. 总之;只要a b c ,,都确定;那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式;通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点;选择适当的形式;才能使解题简便.一般来说;有如下几种情况:1. 已知抛物线上三点的坐标;一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值;一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标;一般选用两根式;4. 已知抛物线上纵坐标相同的两点;常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况;可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后;得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后;得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后;得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后;得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后;得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后;得到的解析式是()2y a x h k =-+-;4. 关于顶点对称即:抛物线绕顶点旋转180° 2y ax bx c =++关于顶点对称后;得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后;得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后;得到的解析式是()222y a x h m n k =-+-+-根据对称的性质;显然无论作何种对称变换;抛物线的形状一定不会发生变化;因此a 永远不变.求抛物线的对称抛物线的表达式时;可以依据题意或方便运算的原则;选择合适的形式;习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向;再确定其对称抛物线的顶点坐标及开口方向;然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时;图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠;其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时;图象与x 轴只有一个交点;③ 当0∆<时;图象与x 轴没有交点.1' 当0a >时;图象落在x 轴的上方;无论x 为任何实数;都有0y >;2' 当0a <时;图象落在x 轴的下方;无论x 为任何实数;都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交;交点坐标为(0;)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标;需转化为一元二次方程;⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ;b ;c 的符号;或由二次函数中a ;b ;c 的符号判断图象的位置;要数形结合;⑷ 二次函数的图象关于对称轴对称;可利用这一性质;求和已知一点对称的点坐标;或已知与x 轴的一个交点坐标;可由对称性求出另一个交点坐标.二次函数与一元二次方程、一元二次不等式的关系从函数观点来看;一元二次不等式()200ax bx c a ++>≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点的横坐标的集合;一元二次不等式()200ax bx c a ++<≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点的横坐标的集合;一元二次不等式()200ax bx c a ++≥≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点和与x 轴的交点的横坐标的集合;一元二次不等式()200ax bx c a ++≤≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点和与x 轴的交点的横坐标的集合.一元二次方程()200ax bx c a ++=≠的解就是二次函数()()20f x ax bx c a =++≠的图像上;与x 轴的交点的横坐标.。

初中数学教材目录人教版北京版

初中数学教材目录人教版北京版

附:人教版初中数学各章详细内容卜z~^_z z—z-z-z-^_z z-^_z z-^_z z-^_z z~^_z z-^_z z-^_z z-^_z z-^_z z-^_z ,z'^_z z-^_z z-^_z z-^_z z-^_z z-^_z z-^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z- 第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差2.2有理数3.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数4.4有理数的乘除法观察与思考翻牌游戏中的数学道理5.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话6.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程7.1从算式到方程阅读与思考“方程”史话3. 2 ― 一元一次方程(一)一一合并同类项与移项实验与探究无限循环小数化分数3. 3 ― 一元一次方程(二)一一去括号与去分母3. 4实际问题与一元一次方程数学活动小结复习题3 第四章图形认识初步4. 1多姿多彩的图形阅读与思考几何学的起源4. 2直线、射线、线段阅读与思考长度的测量4. 3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4部分中英文词汇索引z-^.七年级下册第五章相交线与平行线?5. 1 相交线?6.2平行线?7.3平行线的性质?8.4平移?数学活动?小结?复习题5第六章平面直角坐标系?9.1平面直角坐标系?6.2坐标方法的简单应用?数学活动?小结?复习题6第七章三角形?7.1与三角形有关的线段?7.2与三角形有关的角?7.3多边形及其内角和?10.4课题学习镶嵌?数学活动?小结?复习题7第八章二元一次方程组?10.1元一次方程组?11.2消元?8.3再探实际问题与二元一次方程组?数学活动?小结?复习题8第九章不等式与不等式组?9. 1 不等式?9.2实际问题与一元一次不等式?9. 3 一元一次不等式组?12.4课题学习利用不等关系分析比赛(1)?数学活动?小结?复习题9第十章实数?13.1 平方根?14.2立方根?10.3实数?数学活动?小结?复习题10部分中英文词汇索引第十一章一次函数?11.1变量与函数?信息技术应用用计算机画函数图象?15.2 一次函数?阅读与思考科学家如何测算地球的年龄?11.3用函数观点看方程(组)与不等式?数学活动?小结?复习题11第十二章数据的描述?12.1几种常见的统计图表?16.2用图表描述数据?信息技术应用利用计算机画统计图?阅读与思考作者可能是谁?12.3课题学习从数据谈节水?数学活动?小结?复习题12第十三章全等三角形?13.1 全等三角形?13.2三角形全等的条件?阅读与思考为什么要证明?13.3角的平分线的性质?数学活动?小结?复习题13第十四章轴对称?14.1 轴对称?15.2轴对称变换?信息技术应用探索轴对称的性质?16.3等腰三角形?实验与探究三角形中边与角之间的不等关系?数学活动?小结?复习题14第十五章整式?17.1 整式的加减?18.2整式的乘法?19.3乘法公式?阅读与思考杨辉三角?20.4整式的除法?15.5因式分解?观察与猜想x2+(p+q)x+pq型式子的因式分解?数学活动?小结?复习题15八年级下册第十六章分式?16.1 分式?17.1分式的运算?阅读与思考容器中的水能倒完吗?18.1分式方程?数学活动?小结?复习题16第十七章反比例函数?19.1反比例函数?20.1实际问题与反比例函数?阅读与思考生活中的反比例关系?数学活动?小结?复习题17第十八章勾股定理?21.1勾股定理?22.2勾股定理的逆定理?数学活动?小结?复习题18 第十九章四边形?23.1平行四边形?24.1特殊的平行四边形?实验与探究巧拼正方形?25.1梯形?观察与猜想平面直角坐标系中的特殊四边形?数学活动?小结?复习题19第二十章数据的分析?26.1数据的代表?27.2数据的波动?信息技术应用用计算机求几种统计量?阅读与思考数据波动的几种度量?20.3课题学习体质健康测试中的数据分析?数学活动?小结?复习题20第二十一章二次根式?21. 1 二次根式?22.2二次根式乘除?阅读与思考海伦——秦九韶公式?小结?复习题21第二十二章一元二次方程?23. 1 一元二次方程?24.2降次——解一元二次方程?阅读与思考黄金分割数?25.3实际问题与一元二次方程?观察与猜想发现一元二次方程根与系数的关系?数学活动?小结?复习题22第二十三章旋转?26.1图形的旋转?27. 2 中心对称?信息技术应用探索旋转的性质?23.3课题学习图案设计?数学活动?小结?复习题23第二十四章圆?24. 1 圆?24.2与圆有关的位置关系?28.3正多边形和圆?阅读与思考圆周率冗?24.4弧长和扇形面积?实验与研究设计跑道?小结?复习题24 第二十五章概率初步?25. 1 概率?25.2用列举法求概率?阅读与思考概率与中奖?29.3利用频率估计概率?阅读与思考布丰投针实验?25.4课题学习键盘上字母的排列规律?数学活动?小结?复习题25九年级下册第二十六章二次函数?26. 1 二次函数?实验与探究推测植物的生长与温度的关系?26.2用函数观点看一元二次方程?信息技术应用探索二次函数的性质?30.3实际问题与二次函数?数学活动?小结?复习题26第二十四章相似?31.1图形的相似?32.2相似三角形?观察与猜想奇妙的分形图形?33.3位似?信息技术应用探索位似的性质?数学活动?小结?复习题27第二十八章锐角三角函数?34.1锐角三角函数?阅读与思考一张古老的三角函数?28.2解直角三角形?数学活动?小结?复习题28第二十九章投影与视图?29. 1 投影?29.2三视图?阅读与思考视图的产生与应用?35.3课题学习制作立体模型?数学活动?小结?复习题29七年级上册第一章走进数学世界1.2我们周围的“数”1.3计算工具的发展1.4科学计算器的使用第二章对数的认识的发展2.1负数的引入2.2用数轴上的点表示有理数2.3相反数和绝对值2.4有理数的加法2.5有理数的减法2.6有理数加减法的混合运算2.7有理数的乘法2.8有理数的除法2.9有理数的乘方2.10有理数的混合运算2.11有效数字和科学记数法2.12用计算器做有理数的混合运算第三章一元一次方程3.1 字母表示数3.2同类项与合并同类项3.3等式与方程3.4等式的基本性质3.5'兀'次方程3.6列方程解应用问题第四章简单的几何图形4.1平•面图形与立体图形4.2某些立体图形的展开图4.3从不同方向观察立体图形4.4点、线、面、体4.5直线4.6射线4.7线段4.8角及其表示4.9角的分类4.10角的度量4.11 用科学计算器进行角的换算4.12 角平分线4.13两条直线的位置关系4.14相交线与平行线4.15用计算机绘图七年级下册第五章一元一次不等式和一元一次不等式5.1不等式5.2不等式的基本性质5.3不等式的解集5.4一元一次不等式及其解法5.5一元一次不等式组及其解法第六章二元一次方程组6.1二元一'次方程和它的仰华6.2二元一'次方程组和它的角星6.3用代入消元法解二元一次方程组6.4用加减消元法解二元一次方程组6.5二元一次方程组的应用第七章整式的运算7.2幕的运算7.3整式的乘法7.4乘法公式7.5整式的除法第八章观察、猜想与证明8.1观察8.2实验8.3归纳8.4类比8.5猜想8.6证明8.7几种简单几何图形及其推理第九章因式分解9.1因式分解9.2提取公因式法9.3运用公式法第十章数据的收集与表示10.1 总体与样本10.2数据的收集与整理10.3数据的表示10.4用计算机绘制统计图10.5平•均数10.6用科学计算器求平均数10.7众数10.8中位数八年级上册第十一章分式11.1分式11.2分式的基本性质11.3分式的乘除法11.4分式的加减法11.5可化为一元一次方程的分式方第十二章实数和二次根式12.1平方根12.2 立方根12.4无理数与实数12.5二次根式及其性质12.6二次根式的乘除法12.7二次根式的加减法第十三章三角形13.1三角形13.2三角形的性质13.3三角形中的主要线段13.4全等三角形13.5全等三角形的判定13.6等腰三角形13.7直角三角形13.8基本作图13.9逆命题、逆定理13.10轴对称和轴对称图形13.11勾股定理13.12勾股定理的逆定理第十四章事件与可能性14.1确定事件与不确定事件14.2事件发生的可能性14.3求简单事件发生的可能性八年级下册第十五章一次函数,15.1函数15.2函数的表示法15.3函数图象的画法15.4一次函数和它的解析式15.5一次函数的图象15.6一次函数的性质15.7一次函数的应用第十六章四边形,16.1多边形16.2平行四边形和特殊的平行四边.16.3平行四边形的性质与判定16.4 特殊的平行四边形的性质与判.16.6中心对称图形16.7梯形16.8等腰梯形与直角梯形第十七章一元二次方程,17.1一元二次方程17.2一元二次方程的解法17.3列方程解应用问题第十八章方差与频数分布,18.1极差、方差与标准差18.2用计算器计算标准差和方差18.3频数分布表与频数分布图九年级上册第十九章相似形,19.1比例线段19.2黄金分割19.3平行线分三角形两边成比例19.4 相似多边形19.6相似三角形的性质19.7应用举例第二十章二次函数和反比例函数,20.1二次函数20.2二次函数的图象20.3二次函数解析式的确定20.4二次函数的性质20.5二次函数的一些应用20.6反比例函数20.7反比例函数的图象、性质和应第二十一章解直角三角形,21.1锐角三角函数21.2锐角的三角函数伯21.3用计算器求锐角三角函数值21.4解直角三角形21.5应用举例第二十二章圆(上),22.1 圆的有关概念22.2过三点的圆22.3圆的对称性22.4圆周角第二十三章概率的求法与应用,23.1求概率的方法23.2概率的简单应用九年级下册第二十四章圆(下),24.1直线和圆的位置关系24.2圆的切线24.3圆和圆的位置关系24.4正多边形的有关计算第二十五章图形的变换,25.1平移变换25.2旋转变换25.3轴对称变换25.4 位似变换第二十六章投影、视图与展开图,26.1中心投影与平行投影26.2简单几何体的三视图26.3简单几何体的平面展开图第二十七章探索数学问题的一些方法.27.1探索数学问题的一些方法27.2探索数学问题举例第二十八章数学应用的一般思路,28.1数学应用的一般思路28.2数学应用举例。

二次函数图表总结

二次函数图表总结

【最新】二次函数图表总结二次函数图表总结y=a_图象2a>0ay=a_+k图象2a>0a0开口对称性顶点k0ky=a(_-h)2图象a>0a0开口对称性顶点增减性h0hy=a(_-h)+k2a>0a0,k>0h>0,k0,kh0顶点是最低点左右平移y=a_2+k上下平移y=a(_h)2+k上下平移y=a(_h)2左右平移y=a_2一般地,抛物线y=a(_-h)+k与y=a_2的形状相同,位置不同.2y=a_2向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k扩展阅读:二次函数单元总结二次函数单元总结【知识归纳和总结】一.知识网络二次函数的定义ya_2b_c(a0)ya_2(a0)二次函数的图像ya(_m)2k(a0)ya_2b_c(a0)二次函数二次函数的性质开口方向.对称轴.顶点坐标.增减性,二次函数与一元二次方程的关系二次函数的应用最大面积.利润等二.知识要点分布1.二次函数的定义:形如ya_2b_c(a.b.c为常数,a0〕的函数叫二次函数.任何一个二次函数的表达式都可以化为ya_2b_c的形式,这就是二次函数的一般形式.2.二次函数表达式的几种形式:〔1〕y=a_2;〔2〕y=a_2+k;〔3〕y=a(_+h)2;〔4〕〔5〕y=a_2+b_+c(a0).y=a(_+h)2+k;3.二次函数表达式的形式及对称轴.顶点坐标.〔1〕一般式:ya_b_c(a.b.c为常数,a0〕,其对称轴为直线_=-2b,顶点2ab4ac-b2坐标为-,.2a4a〔2〕顶点式:y=a(_+h)+k(a.h.k为常数,a0〕,其对称轴为直线_=-h,顶点坐标为-h,k.〔3〕交点式:y=a_-_1_-_2,其中a0,_1._2是抛物线与_轴两个交点的横坐标,即一元二次方程a_-_1_-_2=0的两个根.4.二次函数图像之间的平移关系1向上〔k>0〕或向下〔k0〕或向下〔k0〕或向下〔k0a对称轴顶点坐标直线_=-b2a 直线_=-b2ab4ac-b2-,2a4a当_-小;当_-大;b4ac-b2-,2a4a当_-大;性质增减性b 时,y随_的增大而减2ab时,y随_的增大而增2ab时,y随_的增大而增2ab时,y 随_的增大而减2a当_-小;最值当_=-b时,y有最小值,2a当_=-b时,y有最大值,2a4ac-b2y最小值=4a〞,〞p〞:{“h〞:19.298,〞w〞:9.111,〞_〞:407.786,〞y〞:455.644,〞z〞:象而具体了.7.抛物线的平移与解析式的变化.抛物线上最重要的点是它的顶点,最重要的线是它的对称轴,抛物线的平移首先表现为对称轴和顶点的平移.在抛物线y=a_-h+k中,令_-h=0易得对称轴为直线_=h,抛物线向右〔左〕平移那么对称轴也向右〔左〕平移,h的值将随之增大〔减小〕,反之也成立;抛物线上〔下〕平移,对称轴不会改变,即顶点的横坐标h的值不变,但顶点的纵坐标k的值将随之增大〔减小〕,反之也成立.抛物线的平移不会改变抛物线的形状,即a不变.在抛物线y=a_2+b_+c中研究平移是很不方便的,要先将y=a_2+b_+c的形式转化成2y=a(_-h)2+k再研究.抛物线平移的题型一般有以下几种:〔1〕抛物线的解析式,求平移后抛物线的解析式.例1将抛物线y=-3(_-1)2-3先向左平移2个单位,再向上平移5个单位,所得抛物线的解析式为.〔2〕平移后抛物线是解析式,求原抛物线的解析式.例2将抛物线y=a(_-h)2+k先向左平移5个单位,再向下平移4个单位后所得抛物线为y=-12_+2-3,那么原抛物线的解析式为.222〔3〕平移前后抛物线的解析式,求平移的方式.例3将抛物线y=-2_-2-5经过怎样的平移,可得抛物线y=-2_+4+3?8.图像共存问题的解法解决此类问题的关键是分析两函数的解析式有什么共同的特点,从这些特点入手,在利用抛物线的顶点位置和开口方向.双曲线所在象限.直线所在象限加以判断,决定取舍.例函数y=a_与函数y=a_+a在同一直角坐标系中的图像大致为〔〕A.B.C.D.29.抛物线的对称性的妙用.二次函数的图像是一条抛物线,其具有轴对称性.假设设抛物线上两个对称点的坐_+_标为_1,y1._2,y2,那么一定有y1=y2,且该抛物线的对称轴为直线_=12,利用它2可以简便.快捷地解决相关问题.例:二次函数y=a_2+b_+c的局部对应值如下表:_y……-37-200-81-93-557……二次函数y=a_2+b_+c的图形的对称轴为直线_=;_=2对应的函数值y=.【典型例题分析】题型一利用图像求二次函数y=a_2+b_+c的增减性例1二次函数y=-12_+_+4.2〔1〕试确定抛物线的开口方向.顶点坐标和对称轴;〔2〕_为何值时,y有最大〔小〕值?〔3〕求出抛物线与两坐标轴的交点;1〔4〕画出函数图形的草图,并说明该图像是y=-_2经过怎样的平移得到的; 2〔5〕根据图像答复,当_取何值时,y>0?y=0?y题型三二次函数与几何知识的综合应用例3如下图,某场地为一直角三角形,∠C=90°,AC=6m,BC=12m,现在要对四边形ABPQ进行装修,装修费为50元/m,且四边形ABPQ的边AQ为PC的一半,问怎样设计四边形ABPQ才能使装修费最少?2B例4如下图,二次函数y=-_2+a_+b的图形与_轴交于PCQA1A-,0.B2,0两点,且与y轴交于点C,求该抛物线的解析2式,并判断△ABC 的形状.题型四二次函数与其他函数的综合应用例5二次函数y=a_+b_+c的图像如下图,反比例函数y=在同一坐标系中的大致图像可能是〔〕2a与正比例函数y=b+c__A.B.C.D.题型五二次函数在生活.生产中的应用例6王亮同学善于改良学习方法,他发现对解题过程进行回忆反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间_〔单位:分钟〕与学习收益量y的关系如图甲所示,用于回忆反思的时间_〔单位:分钟〕与学习收益量y的关系如图乙所示〔其中OA是抛物线的一局部,A为抛物线的顶点〕,且用于回忆反思的时间不超过用于解题的时间.〔1〕求王亮解题的学习收益量y与用于解题的时间_的函数解析式,并写出自变量_的取值范围;〔2〕求王亮回忆反思的学习收益量y与用于回忆反思的时间_之间的函数解析式;〔3〕王亮如何分配解题和回忆反思的时间,才能使这30分钟的学习收益总量最大?〔学习收益总量=解题的学习收益量+回忆反思的学习收益量〕y4O2_甲例7甲车在弯路做刹车试验,收集到的数据如下表所示:速度_/〔kmh〕10510152025…刹车距离y/m034215416354…〔1〕请用上表中的各对数据〔_,y〕作为点的坐标,在如图所示的坐标系中画出刹车距离y〔m〕与速度_〔kmh〕的函数图像,并求函数的解析式;〔2〕在一个限速为40kmh的弯路上,甲.乙两车相向而行,同时刹车,但还是相撞了,事后测得甲.乙两车刹车距离分别为12m和10.5m,又知乙车刹车距离y〔m〕与速度_〔km/h〕满足函数y析相撞原因.11_,请你就两车速度方面分4题型六二次函数与图形变换相结合例8如下图,在矩形ABCD中,BC=acm,AB=bcm,ab,且a.b是方程8-4_2_+3+=1的两个根.P是BC上一动点,动点Q在PC或_(_+5)_+5其延长线上,BP=PQ,以PQ为一边的正方形为PQRS.点P从B点开始沿射线BC方向运动.设BP=_cm,正方形PQRS与矩形ABCD重叠局部的面积为ycm. 〔1〕求a.b的值;〔2〕分别求出0_2和2_4时,y与_之间的函数关系式.2SADRBPCQ。

二次函数及反比例函数知识点

二次函数及反比例函数知识点

二次函数及反比例函数知识点1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同. ②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=,最值为纵坐标.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:(左同右异)①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab .10.几种特殊的二次函数的图像特征如下:函数解析式 开口方向对称轴 顶点坐标 2ax y =当0>a 时开口向上当0<a 时开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -= h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2ab x 2-=(ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组⎩⎨⎧++=+=c bx ax y nkx y 2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点. (6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=44422212212212113.二次函数与一元二次方程的关系:(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.(3)当二次函数c bx ax y ++=2的图象与x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程02=++c bx ax 有两个相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴没有交点时,则一元二次方程02=++c bx ax 没有实数根14.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.15. 解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等. 反比例函数1.反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

初中数学答案沪科版

初中数学答案沪科版

初中数学答案沪科版篇一:沪科版初中数学-目录沪科版初中数学目录备注:七年级上册:1-5七年级下册:6-11 八年级上册:12-17 八年级下册:18-22 九年级上册:23-25 九年级下册:26-28第1章有理数1.1 正数和负数1.2 数轴1.3 有理数的大小 1.4 有理数的加减 1.5 有理数的乘除1.6 有理数的乘方1.7 近似数第2章整式加减2.1 用字母表示数2.2 代数式2.3 整式加减第3章一次方程与方程组3.1 一元一次方程及其解法 3.2 二元一次方程组 3.3 消元解决方程组3.4 用一次方程(组)解决问题第4章直线与角4.1 多彩的几何图形4.2 线段、射线、直线 4.3 线段的长短比较 4.4 角的表示与度量 4.5 角的大小比较 4.6 作线段与角第5章数据处理5.1 数据的收集5.2 数据的整理5.3 统计图的选择5.4 从图表中获取信息第6章实数6.1 平方根立方根6.2 实数第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2 一元一次不等式7.3 一元一次不等式组第8章整式乘除与因式分解8.1 幂的运算8.2 整式乘法8.3平方差公式与完全平方公式8.4 整式除法8.5 因式分解第9章分式9.1 分式及其基本性质9.2 分式的运算9.3分式方程第10章相交线平行线与平移10.1 相交线10.2 平行线的判定10.3 平行线的性质10.4 平移第11章频率分布11.1 频数与频率11.2 频数分布第12章平面直角坐标系12.1 平面上点的坐标12.2 图形在坐标系中的平移第13章一次函数13.1 函数13.2 一次函数-13.3 一次函数与一次方程、一次不等式13.4 二元一次方程组的图象解法第14章三角形中的边角关系14.1 三角形中的边角关系14.2 命题与证明第15章全等三角形15.1 全等三角形15.2 三角形全等的判定第16章轴对称图形与等腰三角形16.1 轴对称图形16.2 线段的垂直平分线16.3 等腰三角形16.4 角的平分线第17章勾股定理17.1 勾股定理17.2 勾股定理的逆定理第18章二次根式18.1 二次根式18.2 二次根式的运算第19章一元二次方程19.1 一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5 一元二次方程的应用第20章四边形20.1 多边形内角和20.2平行四边形20.3 矩形菱形正方形20.4 梯形第21章数据的集中趋势21.1 平均数21.2 中位数与众数21.3从部分看总体第22章数据的离散程度22.1极差22.2 方差、标准差第23章二次函数与反比例函数23.1 二次函数23.2 二次函数y=ax的图象和性质23.3二次函数y=ax+bx+c的图象和性质23.4 二次函数与一元二次方程23.5.二次函数的应用23.6反比例函数第24章相似形24.1 比例线段24.2 相似三角形的判定24.3 相似三角形的性质24.4 相似多边形的性质24.5 位似图形第25章解直角三角形25.1 锐角三角函数25.2 锐角三角函数值25.3 解直角三角形及其应用第26章圆26.1 旋转26.2 圆的对称性26.3 圆的确定26.4 圆周角26.5 直线与圆的位置关系26.6 三角形的内切圆26.7 圆与圆的位置关系26.8 正多边形与圆26.9 弧长与扇形面积第27章投影与视图27.1 投影27.2 三视图第28章概率初步28.1 随机事件28.2 等可能情形下的概率计算28.3 用频数估计概率篇二:沪科版初中数学全目录沪科版初中数学全目录七年级上册第1章有理数1.1天气预报中的数 1.2数轴 1.3有理数的大小1.4有理数的加减 1.5 有理数的乘除 1.6有理数的乘方1.7近似数第2章走进代数2.1用字母表示数 2.2代数式 2.3整式加减第3章一次方程与方程组3.1一元一次方程及其解法 3.2二元一次方程组 3.3消元解方程组 3.4用一次方程(组)解决问题第4章直线与角4.1多彩的几何图形 4.2线段、射线、直线 4.3线段的长短比较 4.4角的表示与度量 4.5角的大小比较 4.6作线段与角第5章数据的收集与整理5.1数据的收集 5.2数据的整理 5.3统计图的选择 5.4从图表中获取信息七年级下册第6章实数6.1平方根、立方根 6.2实数第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组第8章整式乘除与因式分解8.1幂的运算8.2 整式乘法8.3 平方差公式与完全平方公式8.4 整式除法8.5 因式分解第9章分式9.1分式及其基本性质9.2分式的运算9.3 分式方程第10章相交线、平行线与平移10.1相交线10.2平行线的判定10.3 平行线的性质10.4 平移第11章数据的集中趋势11.1平均数11.2中位数与众数11.3 从部分看总体八年级上册第12章平面直角坐标系12.1平面上的点坐标12.2图形在坐标中的平移第13章一次函数13.1函数13.2一次函数13.3一次函数与一次方程、一次不等式13.4二元一次方程组的图象解法第14章三角形14.1三角形中的边角关系14.2命题与证明第15章三角形的全等15.1全等三角形15.2三角形全等的判定第16章轴对称图形与等腰三角形16.1轴对称图形16.2线段的垂直平分线16.3等腰三角形16.4角的平分线八年级下册第17章二次根式17.1二次根式17.2二次根式运算第18章一元二次方程18.1一元二次方程18.2一元二次方程解法18.3一元二次方程应用第19勾股定理19.1勾股定理19.2 勾股定理的逆定理第20章四边形20.1多边形的内角和20.2平形四边形20.3矩形菱形正方形20.4中心对称图形20.5梯形第21章数据的集中趋势和离散程度21.1数据的集中超势21.2数据的离散程度21.3用样本估计总体九年级上册第22章二次函数与反比例函数22.1二次函数22.2二次函数y=ax2的图象22.3二次函数y=ax2+bx+c的图象和性质22.4二次函数与一元二次方程22.5二次函数的应用22.6反比例函数第23章相似形23.1比例线段23.2相似三角形的判定23.3相似三角形的性质23.4相似多边形的性质23.5位似图形第24章解直角三角形24.1锐角的三角函数24.2锐角的三角函数值24.3解直角三角形及其应用九年级下册第25章圆25.1旋转25.2圆的对称性25.3圆的确定25.4圆周角25.5直线与圆的位置关系25.6三角形的内切圆25.7圆与圆的位置关系25.8弧长与扇形面积第26章投影与视图26.1投影26.2 三视图第28章概率初步28.1随机事件28.2等可能情形下的概率计算28.3用频率估计概率篇三:沪科版初中数学七年级上册期末测试题及答案沪科版七年级上学期期末检测题(后附答案)(满分100分,答题时间90分钟)一、精心选一选(每题3分,共30分)1、计算(?2)?(?3)的结果为【】A、+1B、-1C、+5D、-52、如果把高于警戒水位0.1米,记作+0.1米,则低于警戒水位0.2米,记作【】A、+0.2米B、-0.2米C、0.3米D、-0.3米3、数轴上,到表示数3的点距离5个单位长度的点所表示的数是【】A、8 B、2 C、-2 D、8或-24、下列四组数:①1和-1;②-1和-1;③?2121和1;④?和?1.互为倒数的是【】3232A、①②B、①③C、②③D、②④5、n个球队进行单循环比赛(参加比赛的任何一只球队都与其他所有的球队各赛一场),总的比赛场数应为【】A、2n B、n C、n(n?1) D、6、多项式xy?xy?3是【】A、三次三项式B、四次三项式C、三次二项式D、四次二项式7、方程3x?4?x的解是【】A、x?1B、x?2C、x?3D、x?48、一天,小明和小梅两位同学一起到饭店吃早餐,小明买了4个包子、1个麻元,共付2.7元;小梅买了1个包子、3个麻元,共付2.6元.设包子每个x元、麻元每个y元,则适合x、y的方程组是【】A、?321n(n?1) 24xy2.74xy2.74xy2.74xy2.7(xy)B、?C、?D、?3xy2.6x3y2.6x3y2.6x3y2.6(xy)9、下图中,不可能围成正方体的是【】AB C D10、下列统计活动中,比较适合用抽样调查的是【】A、班级同学的体育达标情况B、近五年学校七年级招生的人数C、学生对数学教师的满意程度D、班级同学早自习到校情况二、耐心填一填(每题3分,共30分)11、?5?;(?5)2?.12、将?2,?4,?321,?0.5,?1,0按从小到大的顺序排列为213、2009年4月,5.12地震重灾区映秀镇灾后恢复重建基本完成,总投入约20亿元人民币,此数据可以用科学计数法表示为元.14、将多项式y?12x?xy按x的降幂排列为22?x2y15、单项式?的系数是.316、有理数的减法法则:“减去一个数,等于加上这个数的相反数”(转载于: 小龙文档网:初中数学答案沪科版).可字母表示这一法则,可写成.17、在方程x?3y?6中,当x?1时,y? .x2axby218、若?是方程?的解,则a=;b=.y?12ax?3by?4??19、25°20′24″=°.20、如图是根据某市2004~2008年工业生产总值绘制的折线图.观察统计图可得:增长幅度最大的年份是.三、专心做一做21、(4分)计算?7?13?(?16)?(?17)22、(4分)计算?1?(?5)?(?)?0.8?1223a?(4a?3a)?23、(4分)化简求值:5a?2,其中a??工业生产总值/亿元160 140 120 100 80 20042005200620072008年份/年第20题42531.224、(4分)解方程1?2x3x?42 3725、(4分)解方程组?3x2y2?2x?y?126、(4分)某中学组织七年级同学到汶川地震灾区遗址参观。

二次函数概念的说课稿

二次函数概念的说课稿

二次函数概念的说课稿一、说课内容:人教版九年级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。

进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、*作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过知识再现,孕伏教学过程2、从学生活动出发,通过以旧引新,顺势教学过程3、利用探索、研究手段,通过思维深入,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx,ky=,k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件?k值对函数*质有什么影响?【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

2023九年级数学上册第23章图形的相似23.6图形与坐标1用坐标确定位置教案(新版)华东师大版

2023九年级数学上册第23章图形的相似23.6图形与坐标1用坐标确定位置教案(新版)华东师大版
设计课堂互动环节,提高学生学习用坐标确定位置的积极性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入坐标确定位置的学习状态。
回顾旧知:
简要回顾上节课学习的坐标系的概念和坐标的意义,帮助学生建立知识之间的联系。
提出问题,检查学生对坐标系的掌握情况,为用坐标确定位置的新课学习打下基础。
2023九年级数学上册 第23章 图形的相似23.6 图形与坐标 1用坐标确定位置教案 (新版)华东师大版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课为人教版九年级数学上册第23章“图形的相似”的第6节“图形与坐标”。本节课的主要内容是用坐标来确定物体的位置,进一步理解坐标系的含义,以及横纵坐标之间的关系。通过对本节课的学习,学生能够掌握利用坐标来确定物体的位置,能灵活运用坐标知识解决生活中的实际问题。
6. 坐标之间的转换:坐标之间的转换是指将一个点的坐标从横纵坐标互换,或者将坐标轴旋转一定角度后进行变换。在坐标系的变换中,需要保持坐标系的整体性和一致性,确保坐标值的正确性。
7. 坐标与图形的关系:坐标与图形之间存在密切关系,可以通过坐标来描述和分析图形的特点和性质。例如,可以通过坐标来确定图形的顶点、边长、角度等。
答案:物体在平面直角坐标系中的位置可以通过横坐标和纵坐标来确定。横坐标为5表示物体在横轴上的位置距离原点5个单位,纵坐标为6表示物体在纵轴上的位置距离原点6个单位。因此,物体在坐标系中的位置可以通过点(5,6)来表示。
4. 题型平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-1,2),求点A和点B之间的距离。
2. 请将点B的坐标(-2,3)转换为点C的坐标(3,-2)。

二次函数----反比例函数图像和性质

二次函数----反比例函数图像和性质

21.5反比例函数第二课时(反比例函数图象与性质)教学目标1.知识与技能知道反比例函数的图象是双曲线,利用描点法画出反比例函数图象,说出它的性质。

2.过程与方法(1)经历对反比例函数图象的观察、分析、讨论、概括过程,总结出它的性质。

(2)探索反比例函数的图象的性质,体会并掌握用数形结合思想解决数学问题的方法。

3.情感、态度与价值观调动学生的主观能动性,积极参与数学活动,培养合作、交流意识,提高观察、分析、抽象的能力。

教学重点结合图象分析总结出反比例函数的性质教学难点描点法画反比例函数的图象及其性质的归纳教学准备多媒体课件、学生用坐标纸、铅笔、橡皮等教学方法然后这两个函数的图象进行观察与总结:(1)一般地,反比例函数的图像由两条曲线组成,叫做双曲线;(2)这两条曲线不相交;(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交。

关于(3)可问学生:为什么图像与x和y轴不相交?通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性再让学生观察黑板上的图,提问:1、当k>0时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎三、例题解析例3.已知反比例函数y= (1)如果这个函数图象经过点(-3,5),求k 值;(2)如果这个函数图象在它所处的象限内,函数y 随x 的增大而减小,求k 的范围.解 (1)因为函数图象经过点(-3,5),代入函数的表达式,得解方程,得k=-7(2)根据题意,有 2k-1 >0解不等式,得k >0.5五、课堂练习P47练习1,2六、本节小结1、进一步巩固复习了作函数图象的一般方法和步骤2、亲手画出函数的图象,用类比的方法,数形结合的思想,有了对图形进行观察、分析和归纳的体验,掌握了反比例函数的图象和性质3、反比例函数x ky =(k 为常数,k≠0)的图象是双曲线4.反比例函数的性质:(1)分布情况(2)对称性(3)增减性21k x -(4)面积不变性七、作业布置必做题:教材第49页5,6选做题:教材第50页9名校课堂:第35页至36页第2课时反比例函数的图象和性质八、板书设计。

(完整)二次函数讲义-详细

(完整)二次函数讲义-详细

第一讲 二次函数的定义知识点归纳:二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例1、 函数y=(m +2)x22-m+2x -1是二次函数,则m= .例2、 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x +x .A .1个B .2个C .3个D .4个例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.例4 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x,△ADQ 的面积为y,用含x 的代数式表示y .训练题:1、已知函数y=ax 2+bx +c (其中a ,b,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.2、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

3、已知函数y=(m -1)x2m +1+5x -3是二次函数,求m 的值。

4、已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.5、请你分别给a ,b,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC,DF ⊥BC ,垂足分别为E 、F,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ;(2)求y 与x 之间的函数表达式,并求出x 的取值范围; (3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.第二讲 二次函数的图像和性质知识点归纳:1、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=。

一次函数、反比例函数、二次函数知识点归纳总结(最新整理)

一次函数、反比例函数、二次函数知识点归纳总结(最新整理)

二次函数知识点详解(最新原创助记口诀)知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当时,(a ,b )和(b ,a )是两个不同点的坐标。

b a ≠知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上,x 为任意实数0=⇔y 点P(x,y)在y 轴上,y 为任意实数0=⇔x 点P(x,y)既在x 轴上,又在y 轴上x ,y 同时为零,即点P 坐标为(0,0)⇔3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x 与y 相等⇔点P(x,y)在第二、四象限夹角平分线上x 与y 互为相反数⇔4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

并能解决实际问题.会求一元二次方程的近似值.分析近年中考,尤其是课改实验区的试题,预计2009年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.十二,初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

二次函数 概念

二次函数 概念

2、若函数 y(m21)m x2m为二次函数,求 m的值。
解:因为该函数为二次函数,

m2 m 2(1) m2 1 0(2)
解(1)得:m=2或-1
解(2)得: m1且 m1
所以m=2
典例分析
函数 yax 2bx c其 ( 中 ab , c,是常 ),数 当 ab , c,满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
二次函数
问题1: 正方体的六个面是全等的正方形,设正
方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关 系可以表示为
y=6x2
x
此式表示了正方体的表面积y与棱长x之间的 关系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
2
;是二次函数
(3)如图所示,在直径为20 cm的圆
形铁片中,挖去了四个半径都为x cm
的圆,剩余部分的面积为y cm2,则y与x
间的函数关系式 y1004x20x1( 0 2-1.) 是二次函数
比一比
下列函数中,哪些是二次函数?是二次函数 的请说出它的a,b,c的值。
(1)y=3x-1
(2)y=3x2
(1) y x 2

(2) y
Байду номын сангаас
1 x2
(3 ) y x (1 x )
不是 是
(4) y (x 1)2 x 2
不是
先化简后判断
观察与发现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第23章 二次函数(23.6反比例函数)》测试卷
(时间:60分钟 满分:100分) 姓名 得分
一、选择题(本大题共10小题,每小题3分,共30分) 1.反比例函数x
k y 3+=
的图象在二、四象限,则k 的取值范围是( )
A .k ≤3
B .k ≥-3
C .k >3
D .k <-3. 2.反比例函数1k y x
-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( )
A .-1
B .0
C .1
D .2
3.已知2)1(-+=m x m y 是反比例函数,则函数图象在( )
A.第一、三象限
B.第二、四象限
C.第一、二象限
D.第三、四象限
4.如图,过双曲线y =k
x
(k 是常数,k >0,x >0)的图象上两点A 、B 分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则△AOC
的面积S 1和△BOD 的面积S 2的大小关系为( )
A .S 1>S 2
B .S 1=S 2
C .S 1<S 2
D .S 1和S 2的大小无法确定 5.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是( )
A .x
y 4-= B .x
y 4=
C . x
y 8=
D .x
y 8-
=
(第4题) (第5题)
6.在同一平面直角坐标系中,一次函数1-=kx y 与反比例函数x
k y =
(其中0≠k )的图象的形状大致是( )
A .
B .
C .
D .
7.若M (-1,y 1),N (1,y 2),P (2,y 3)三点都在函数y= k
x
(k <0)的图象上,则y 1,y 2,y 3,的大小关系
为( )
A .y 1 >y 2>y 3 B.y 1>y 3>y 2 C .y 3 >y 1>y 2 D.y 3>y 2>y 1 8.反比例函数)0(>=
k x
k y 在第一象限内的图像如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面
积为1,那么k 的值是( )
A .1
B .2
C .4
D .2
1
9. 如图所示,过双曲线x
y 2=
上两点A 、B 分别作x 轴、y 轴的垂线,若矩形ADOC 与矩形BFOE 的面积分别为S 1、
S 2,则S 1与S 2的关系是( )
A. S 1<S 2
B. S 1=S 2
C. S 1>S 2
D. 不能确定 10.正比例函数y=-x 与反比例函数x
y 1-
=的图象相交于A 、C 两点。

AB ⊥x 轴于B ,
CD ⊥y 轴于D(如图),则四边形ABCD 的面积为( )
A.1
B.32
C.2
D.
52
(第8题) (第9题) (第10题) 二、填空题(本大题共4小题,每小题3分,共12分) 11.若反比例函数k y x
=的图象经过点(-2,3),则这个反比例函数的表达式为__________。

12.
若点-
在反比例函数)0(≠=
k x
k y 的图象上,则=k __________。

13.已知y 与x 成反比例,并且当x =2时,y =-1,则当y=3时,x 的值是__________。

14.当m=______ ____时,函数2
2
(1)m
y m x -=+是反比例函数。

三、解答下列各题(第15题8分,其余每小题10分,满分58分) 15.反比例函数x
k y =
的图象经过点A(2 ,3),
⑴求这个函数的解析式;
⑵请判断点B(1 ,6)是否在这个反比例函数的图象上,并说明理由。

16.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数x
k y
的图象上。

(1)求m ,k 的值;
(2)求直线AB 的函数表达式。

17.若反比例函数的图象经过(1,3)点。

(1)求该反比例函数的解析式;
(2)求一次函数y=2x+1与该反比例函数的图象的交点坐标。

18.甲、乙两地相距100千米,一辆汽车从甲地开往乙地,将汽车由甲地到达乙地所用的时间t (小时)表示为汽
车速度v (千米/小时)的函数,并画出函数的图象。

19.如图,已知反比例函数x
y 1=
的图像上有一点P ,过点P 分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边
形OAPB 为正方形。

又在反比例函数的图像上有一点P 1,过点P 1分别作BP 和y 轴的垂线,垂足分别为A 1、B 1,使四边形BA 1P 1B 1为正方形,求点P 和点P 1的坐标。

20.两个反比例函数k y x
=
和1y x
=
在第一象限内的图象如图所示,点P 在k y x
=
的图象上,PC ⊥x 轴于点C ,交1y x =
的图象于点A ,PD ⊥y 轴于点D ,交1y x
=的图象于点B ,当点P 在k y x
=
的图象上运动时,以下结论:
①△ODB 与△OCA 的面积相等;
②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;
④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的结论有哪几个?对正确的结论要说明理由!
k y x
=
1y x
=
《第23章 二次函数(23.6反比例函数)》答案
一、选择题
1.D ; 2.D ; 3.A ; 4.C ; 5.D ; 6.C ; 7.B ; 8.B ; 9.B ; 10.C 。

二、填空题: 11. 6y x
=-
; 12. -3; 13.3
2-
; 14. 1 。

三、解答题: 15.解:⑴x
y 6=
;⑵点B(1 ,6)在这个反比例函数x
y 6=
的图象上。

16.解:(1)由题意可知,()()()131-+=+m m m m ,解得 m =3。

∴ A (3,4),B (6,2); ∴ k =4×3=12。

(2)63
2+-
=x y 。

17.(1) y=
x
3;(2)(1,3),(-2
3,-2)。

18.解:由t=s v
,s =100千米,得t=100v
(v>0)。

用描点法画出函数t=
100v
的图象。

如图:
19.点P 的坐标是(1,1),点P 1的坐标是)2
15,
2
15(+-。

20.其中一定正确的结论有①、②、④。

①△ODB 与△OCA 的面积相等都为
2
1;
②四边形PAOB 的面积不会发生变化为k -1;
④当点A 是PC 的中点时,点B 一定是PD 的中点。

连结OP ,说明△OBD 与△OBP 面积相等。

相关文档
最新文档