七年级数学数轴同步练习及答案
【七年级数学】数轴练习题(含答案)
数轴练习题(含答案)§2.2 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点2,-3,,0,,5,。
6.指出数轴上A,B,c,D,E,F各点所代表的数字.7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-15,-2,0,15,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?基础巩固训练一、选择题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 c.非负数 D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是() A.2.5 B.-2.5 c.±2.5 D.这个数无法确定4.关于- 这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边 c.在原点与-1之间 D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 c.+3 D.-96.不小于-4的非正整数有()A.5个 B.4个 c.3个 D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是() A.a 0 B.a 1 c.b -1 D.b -1二、填空题1.数轴的三要素是______ _______.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“ ”将a,b,•c•三个数连接起________.5.大于-3.5小于4.7的整数有_______个.6.用“ ”、“ ”或“=”填空.(1)-10______0;(2) ________- ;(3)- _______- ;(4)-1.26________1 ;(5) ________- ;(6)- _______3.14;(7)-0.25______- ;(8)- ________ .7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起.-3 ,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下A队-50分;B队150分;c队-300分;D队0分;E队100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?c队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,c,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回顾六、中考题1.(7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃c.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2.3.(.4.(2答案一、1.D 2.D 3.c 4.D 5.c 6.A 7.D二、1.原点、正方向和单位长度 2.右左 3.右 6 左 8 14 4.ca b • 5.86.(1)(2)(3)(4)(5)(6)(7)= (8)7.6或-10三、1.画图(略) -5 -3 -1 0 1 2.5 4 72.A0 B-1 c4 D-2.5 E2 F-43.如图所示(1)(2)(3)(4)四、1.(1)c队 A队 D队 E队 B队;(2)如图所示(3)A队与B队相差a;(3)当a 0时,a -a.2.B为原点.六、1.c 2. 3. 4.-3 2。
苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)
2.3数轴一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣12.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.43.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣74.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣75.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣56.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.20157.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣18.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.810.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?答案解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣1【分析】由题意得AB=5,即﹣2+5即为点B表示的数.【解析】﹣2+5=3,故选:A.2.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解析】点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.3.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣7【分析】分点在﹣2的左边和右边两种情况讨论求解.【解析】若点在﹣2的左边,则﹣2﹣5=﹣7,若点在﹣2的右边,则﹣2+5=3,所以,在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是﹣7或3.故选:D.4.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣7【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解析】由M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N可列:﹣2+5=3,故选:A.5.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣5【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解析】数轴上与表示﹣2的点距离等于3的点所表示的数是﹣5或1,故选:D.6.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.2015【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数可能正好是2016个,也可能不是整数,而是有两个半数那就是2015个.【解析】依题意得:①当线段AB起点在整点时覆盖2016个数,②当线段AB起点不在整点,即在两个整点之间时覆盖2015个数,综上所述,盖住的点为:2015或2016.故选:A.7.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【分析】分点在原点左边与右边两种情况讨论求解.【解析】①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.8.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解析】在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.8【分析】根据数轴上点的表示方法,直接判断即可.【解析】刻度尺上5.8cm对应数轴上的点距离数轴上原点(刻度尺上表示3的点)的距离为2.8,且该点在原点的左侧,故刻度尺上“5.8cm”对应数轴上的数为﹣2.8.故选:B.10.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【分析】理解两地国际标准时间的差简称为时差.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解析】汉城与多伦多的时差为9﹣(﹣4)=13小时;汉城与纽约的时差为9﹣(﹣5)=14小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是±2.【分析】根据数轴上两点间距离的定义进行解答即可.【解析】设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得,x=±2.故答案为:±2.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为7.【分析】根据数轴上两点距离公式进行计算即可.【解析】AB=|﹣2﹣5|=7,故答案为:7.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是﹣6或﹣2.【分析】根据题意,分两种情况:(1)点B在点A的左边;(2)点B在点A的右边;求出点B表示的数为多少即可.【解析】(1)点B在点A的左边时,点B表示的数为:﹣4﹣2=﹣6.(2)点B在点A的右边时,点B表示的数为:﹣4+2=﹣2.∴点B表示的数为﹣6,﹣2.故答案为﹣6或﹣2.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数﹣3或7.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.【解析】在A点左边与A点相距5个单位长度的点所对应的有理数为﹣3;在A点右边与A点相距5个单位长度的点所对应的有理数为7.故答案为:﹣3或7.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解析】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是﹣1和5.【解析】2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.【分析】根据向右为“+”、向左为“﹣”分别表示为+5和﹣8,再相加即可得出答案.【解析】点从数轴的原点开始,向右移动5个单位长度,表示为+5,在此基础上再向左移动8个单位长度,表示为﹣8,则到达的终点表示的数是(+5)+(﹣8)=﹣3,故答案为:﹣3.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:﹣2,﹣1.【分析】把和1之间的负整数在数轴上表示出来,通过观察数轴来解答,正整数、0、负整数统称为整数.【解析】如图所未,通过数轴观察,可以确定出和1之间的负整数为:﹣2,﹣1.故答案为:﹣2,﹣1.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1.【分析】根据题意画出数轴,借助数轴找出点N的位置即可.【解析】根据题意画图如下:M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1;故答案为:﹣1.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是2﹣2π.【分析】因为圆形纸片从2沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解析】∵半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在2的左边,∴A′点对应的数是2﹣2π.故答案是:2﹣2π.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?【分析】(1)利用数轴上点的移动规律:左减右加得出点P、Q各表示什么数即可;(2)根据得出Q点表示的数与原点的位置,回答问题即可.【解析】(1)点M表示﹣2,P点表示﹣2+3=1,Q点表示1﹣5=﹣4;(4)﹣4在原点的左边,距离原点4个单位,所以向右移动4个单位,才能回到原点.22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是 1.5;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是﹣1.5,0,1.5,5.5.【分析】(1)在数轴上描出四个点的位置即可;(2)根据两点之间的距离公式可求B、C两点的距离;(3)原点取在B处,相当于将原数加上1.5,从而计算即可.【解析】(1)如图所示:(2)B、C两点的距离=0﹣(﹣1.5)=1.5;(3)点A表示的数为:﹣3+1.5=﹣1.5,点B表示的数为0,点C表示的数为0+1.5=1.5,点D表示的数为4+1.5=5.5.故答案为:1.5;﹣1.5,0,1.5,5.5.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴把邮递员骑行的路程相加即可求解.【解析】(1)如图所示:(2)C村离A村的距离为2+2=4(km);(3)邮递员一共行驶了2+3+7+2=14(千米).故邮递员一共骑行了14千米.24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?【分析】(1)画出数轴,然后根据题意标注点A、B、C即可;(2)根据图形列出算式计算即可得解.【解析】(1)A,B,C三个村庄的位置,如图所示;(2)小明一共行:4+3+10+3=20km.。
数轴 浙教版七年级数学上册同步练习(解析版)
第1章有理数1.2数轴基础过关全练知识点1数轴的概念1.下列选项中,数轴的画法正确的是()A BC D2.下列语句中,错误的是()A.数轴上,原点的位置可以任意选取B.数轴上,正方向一定是从左向右C.数轴上,可根据需要任意选取单位长度D.数轴上,与原点对应的数是0知识点2数轴与有理数的关系3.如图,数轴上表示有理数3的点是()A.AB.BC.CD.D4.表示-5的点在原点的边,表示6的点在原点的边.5.在数轴上,点A、B、C、D、O分别表示-3、-1、2.5、4、0.画出数轴并在数轴上标出点A、B、C、D、O.知识点3相反数6.(2022浙江金华义乌宾王中学月考)3的相反数是()A.3B.-3C.13D.-137.(2021广西百色中考)-2 022的相反数是()A.-2 022B.2 022C.±2 022D.2 0218.在数轴上,表示m与-m的两个点到原点的距离()A.表示m的点距离原点较远B.表示-m的点距离原点较远C.一样远D.无法比较9.画出数轴,并在数轴上标出表示下列各数及其相反数的点:1.5,-3,0,-21.2能力提升全练10.数轴上表示1,-1,-5,2这四个数的点,其中与表示-2的点最近的点表示的数是()A.1B.-1C.-5D.211.如图,一滴墨水洒在一个数轴上,根据图中标出的数据判断被墨迹盖住的整数的个数是()A.22B.20C.19D.2112.一只小虫在数轴上的点A处开始爬行,它先向右爬行3个单位,再向左爬行7个单位,正好停在-3的位置,则小虫的起始位置点A所表示的数是.素养探究全练13.[数学运算]化简下列各数:①+(-3);②-(+5);③-(-3.4);④-[+(-8)];⑤-[-(-9)].化简过程中,你有何发现?化简结果的符号与原式中的“-”的个数有什么关系?14.[数学运算]我国上海的“磁悬浮”列车依靠“磁悬浮”技术使列车悬浮在轨道上行驶,从而减小阻力,因此列车时速可超过400千米.在一个轨道长为180 cm的“磁悬浮”轨道架上做钢球碰撞试验,如图所示,轨道架上安置了三个大小、质量完全相同的钢球A、B、C,左右各有一个钢制挡板D和E,其中C到左挡板的距离为40 cm,B到右挡板的距离为50 cm,A、B两球相距30 cm.(1)假设轨道为数轴,若A球在原点处,B球代表的数为30,求出C球及右挡板E代表的数;(2)碰撞试验中(钢球大小、相撞时间不计),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动,现A球以每秒10 cm的速度向右匀速运动,问:多少秒后B球第二次撞向右挡板E?(3)在前面的条件下,当三个钢球运动的路程和为600 cm时,哪个球正在运动?此时A、B、C三个钢球在数轴上代表的数分别是多少?答案全解全析基础过关全练1.C A缺少单位长度;B缺少正方向;C符合数轴的定义;D原点左侧从右往左数应该是-1,-2.故选C.2.B数轴上,原点的位置可以任意选取,故A选项不符合题意;数轴上,正方向一般是从左向右,故B选项符合题意;数轴上,可根据需要任意选取单位长度,故C选项不符合题意;数轴上,与原点对应的数是0,故D 选项不符合题意.故选B.3.D数轴上点A表示的数是-3,点B表示的数是-1.5,点C表示的数是0,点D表示的数是3,故选D.4.左;右解析正数在原点的右边,负数在原点的左边.-5是负数,∴表示-5的点在原点的左边;6是正数,∴表示6的点在原点的右边.5.解析如图.6.B只有符号不同的两个数互为相反数,-3 与3只有符号不同,所以3的相反数是-3,故选B.7.B-2 022与2 022只有符号不同,它们互为相反数.8.C∵m与-m互为相反数,∴表示m与-m的两个点到原点的距离一样远.9.解析因为1.5的相反数是-1.5,-3的相反数是3,0的相反数是0,-212的相反数是21,所以画出的数轴及各数对应的点在数轴上的位置如图2所示.能力提升全练10.B在数轴上,表示1的点与表示-2的点的距离是3,表示-1的点与表示-2的点的距离是1,表示-5的点与表示-2的点的距离是3,表示2的点与表示-2的点的距离是4,∴与表示-2的点最近的点表示的数是-1,故选B.11.D因为墨迹最左端的数是-10.2,最右端的数是10.5,所以墨迹盖住部分最左侧的整数是-10,最右侧的整数是10.所以被墨迹盖住的整数共有21个.故选D.12.1解析将数轴上表示-3的点向右移动7个单位后表示的数是4,再向左移动3个单位后表示的数是1.故小虫的起始位置点A所表示的数是1.素养探究全练13.解析①+(-3)=-3;②-(+5)=-5;③-(-3.4)=3.4;④-[+(-8)]=8; ⑤-[-(-9)]=-9.最后结果的符号与“-”的个数有着密切联系,当“-”的个数是奇数时,最后的结果为负数,当“-”的个数是偶数时,最后的结果为正数.14.解析(1)依题意得A、C两球之间的距离为180-40-30-50=60 cm,A 球到右挡板E的距离为30+50=80 cm,又∵A球在原点处,∴C代表的数是-60,E代表的数是80.(2)设t秒后B球第二次撞向右挡板E,依题意得t=(180×2+80)÷10=44. 故44秒后B球第二次撞向右挡板E.(3)当三个钢球运动的路程和为600 cm时,C球正在运动,此时A、B、C三个钢球在数轴上代表的数分别是-60、30、-80.。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
新人教版 七年级(上)数学 1.2.2 数轴 同步练习卷 (解析版)
1.2.2 数轴同步练习一、选择题(共10小题).1.(3分)a、b在数轴上位置如图所示,则a、b、﹣a、﹣b的大小顺序是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a 2.(3分)在数轴上,原点及原点左边的点表示的数是()A.正数B.负数C.非正数D.非负数3.(3分)点A为数轴上的表示﹣2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2B.﹣6C.2或﹣6D.不同于以上答案4.(3分)下列关于数轴的说法正确的是()A.数轴是一条规定了原点、正方向和单位长度的直线B.数轴的正方向一定向右C.数轴上的点只能表示整数D.数轴上的原点表示有理数的起点5.(3分)点A是数轴上表示﹣2的点,当点A沿数轴移动4个单位长度到点B时,则点B表示的有理数是()A.﹣4B.﹣6C.2或﹣4D.2或﹣66.(3分)若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5B.﹣1C.1D.57.(3分)下列一组数:1,4,0,,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A.2个B.3个C.4个D.5个8.(3分)实数a、b在数轴上的位置如图所示用下列结论正确的是()A.a+b>a>b>a﹣b B.a>a+b>b>a﹣bC.a﹣b>a>b>a+b D.a﹣b>a>a+b>b9.(3分)点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2018,A2019所表示的数分别为()A.2018,﹣2019B.1009,﹣1010C.﹣2018,2019D.﹣1009,1010 10.(3分)下列语句:①数轴上的点仅能表示整数:②数轴是一条直线:③数轴上的一个点只能表示一个数:④数轴上找不到既不表示正数,又不表示负数的点:⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个二、填空题11.(3分)若A、B、C是数轴上三点,且点A表示的数是﹣3,点B表示的数为1,点C 表示的数为x,当其中一点是另外两点构成的线段中点时,则x的值是.12.(3分)在数轴上,离原点距离等于3的数是.13.(3分)数轴上与原点距离小于4的整数点有个.14.(3分)已知点A在数轴上,且和表示1的点相距a个单位长度,则点A表示的数为.15.(3分)点A,B,C在同一条数轴上,且点A表示的数为﹣1,点B表示的数为5.若BC=2AC,则点C表示的数为.16.(3分)如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.17.(3分)若数轴经过折叠,﹣5表示的点与1表示的点重合,则﹣2018表示的点与数表示的点重合.18.(3分)已知点A和点B在同一数轴上,点A表示数﹣2,点B和点A相距5个单位长度,则点B表示的数是.三、解答题19.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?20.画出一条数轴,在数轴上表示数﹣12,2,﹣(﹣3),﹣|﹣2|,0,并把这些数用“<”连接起来.21.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?22.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m 到小夏家C处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?参考答案一、选择题1.(3分)a、b在数轴上位置如图所示,则a、b、﹣a、﹣b的大小顺序是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a 解:从数轴上可以看出b<0<a,|b|>|a|,∴﹣a<0,﹣a>b,﹣b>0,﹣b>a,即b<﹣a<a<﹣b,故选:B.2.(3分)在数轴上,原点及原点左边的点表示的数是()A.正数B.负数C.非正数D.非负数解:∵原点表示的数是0,原点左边的点表示的数是负数,∴原点及原点左边的点表示的数是非正数.故选:C.3.(3分)点A为数轴上的表示﹣2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2B.﹣6C.2或﹣6D.不同于以上答案解:∵点A为数轴上的表示﹣2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为﹣2﹣4=﹣6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为﹣2+4=2.故选:C.4.(3分)下列关于数轴的说法正确的是()A.数轴是一条规定了原点、正方向和单位长度的直线B.数轴的正方向一定向右C.数轴上的点只能表示整数D.数轴上的原点表示有理数的起点解:由数轴的意义可知选项A是正确的;数轴的正方向是一种规定,不一定向右为正,也可以向上为正,因此选项B不正确;数轴上的点也可以表示分数、小数,即数轴上的点与实数一一对应,因此选项C不正确;数轴上的原点是正数和负数的分界点,正数在原点的右侧,负数在原点的左侧,因此选项D不正确;故选:A.5.(3分)点A是数轴上表示﹣2的点,当点A沿数轴移动4个单位长度到点B时,则点B表示的有理数是()A.﹣4B.﹣6C.2或﹣4D.2或﹣6解:∵点A为数轴上的表示﹣2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为﹣2﹣4=﹣6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为﹣2+4=2.故选:D.6.(3分)若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5B.﹣1C.1D.5解:因为3﹣(﹣2)=5故选:D.7.(3分)下列一组数:1,4,0,,﹣3在数轴上表示的点中,不在原点右边的点的个数为()A.2个B.3个C.4个D.5个解:1,4是正数在数轴的右边,0在原点,﹣,﹣3是负数在数轴的左边,所以不在原点右边的点的数是﹣,﹣3,0,共3个,故选:B.8.(3分)实数a、b在数轴上的位置如图所示用下列结论正确的是()A.a+b>a>b>a﹣b B.a>a+b>b>a﹣bC.a﹣b>a>b>a+b D.a﹣b>a>a+b>b解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=﹣2,则a+b=6﹣2=4,a﹣b=6+2=8,又∵﹣2<4<6<8,∴a﹣b>a>a+b>b.故选:D.9.(3分)点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2018,A2019所表示的数分别为()A.2018,﹣2019B.1009,﹣1010C.﹣2018,2019D.﹣1009,1010解:根据题意得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,当n为奇数时,An=﹣,当n为偶数时,An=,∴A2019=﹣=﹣1010,A2018==1009.故选:B.10.(3分)下列语句:①数轴上的点仅能表示整数:②数轴是一条直线:③数轴上的一个点只能表示一个数:④数轴上找不到既不表示正数,又不表示负数的点:⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个解:①数轴上的点与实数一一对应,故原来的说法错误;②数轴是一条直线的说法正确;③数轴上的点与实数一一对应,故原来的说法正确;④数轴上既不表示正数,又不表示负数的点是0,故原来的说法错误;⑤数轴上的点与实数一一对应,故原来的说法错误.故正确的说法有2个.故选:B.二、填空题11.(3分)若A、B、C是数轴上三点,且点A表示的数是﹣3,点B表示的数为1,点C 表示的数为x,当其中一点是另外两点构成的线段中点时,则x的值是﹣1或﹣7或5.解:∵A、B、C是数轴上三点,且点A表示的数是﹣3,点B表示的数为1,点C表示的数为x,当其中一点是另外两点构成的线段中点时,①C为线段AB的中点,∴x的值为:﹣1;②A为线段CB的中点,∴x的值为:﹣7;③B为线段AC的中点,∴x的值为:5;故答案为:﹣1或﹣7或5.12.(3分)在数轴上,离原点距离等于3的数是±3.解:如下图所示:因为点A、B与原点O的距离为3,即|x|=3,所以x=3或x=﹣3,即:A=﹣3,B=3,所以,到原点等于3的数是:﹣3和3.13.(3分)数轴上与原点距离小于4的整数点有7个.解:数轴上与原点距离小于4的整数点有﹣3、﹣2、﹣1、0、1、2、3共7个,故答案为:7.14.(3分)已知点A在数轴上,且和表示1的点相距a个单位长度,则点A表示的数为1+a或1﹣a.解:∵点A在数轴上,且和表示1的点相距a个单位长度,∴点A表示的数为:1+a或1﹣a,故答案为:1+a或1﹣a.15.(3分)点A,B,C在同一条数轴上,且点A表示的数为﹣1,点B表示的数为5.若BC=2AC,则点C表示的数为﹣7或1.解:AB=5﹣(﹣1)=6C在A左边时,∵BC=2AC∴AB+AC=2AC∴AC=6此时点C表示的数为﹣1﹣6=﹣7;C在线段AB上时,∵BC=2AC∴AB﹣AC=2AC∴AC=2此时点C表示的数为﹣1+2=1,故答案为:﹣7或1.16.(3分)如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是m<0.解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.17.(3分)若数轴经过折叠,﹣5表示的点与1表示的点重合,则﹣2018表示的点与数2014表示的点重合.解:∵数轴经过折叠,﹣5表示的点与1表示的点重合,∴折点表示的数为:﹣2,∵﹣2018表示的点到﹣2的距离是:2016,∴到﹣2的距离为2016的点为:﹣2+2016=2014,故答案为:2014.18.(3分)已知点A和点B在同一数轴上,点A表示数﹣2,点B和点A相距5个单位长度,则点B表示的数是﹣7或3.解:﹣2+5=3或﹣2﹣5=﹣7,故答案为:﹣7或3.三、解答题19.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.20.画出一条数轴,在数轴上表示数﹣12,2,﹣(﹣3),﹣|﹣2|,0,并把这些数用“<”连接起来.解:因为﹣12=﹣1,﹣(﹣3)=3,﹣|﹣2|=﹣2,把各数表示在数轴上,如下图所示:所以﹣|﹣2|<﹣12<0<2<﹣(﹣3)21.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是3,此时A,B两点间的距离是5.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是2;此时A,B两点间的距离是1.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?解:(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是3,此时A,B两点间的距离是5.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是2;此时A,B两点间的距离是1.故答案为3,5,2,1;(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时终点B表示的数为m+n﹣t此时A、B两点间的距离为:AB=|(m+n﹣t)﹣m|=|n﹣t|22.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m 到小夏家C处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?解:(1)因为学校是原点,向南方向为正方向,用1个单位长度表示1000m.从学校出发南行1000m到达小华家,所以点A在1处,从A向北行3000m到达小红家,所以点B在﹣2处,从B向南行6000m 到小夏家,所以点C在4处.(2)点B是﹣2,所以小红家在学校的北面,距离学校2000m.。
人教版初一七年级上册数学 数轴 课时练含答案(1)
1.2.2数轴1.关于数轴,下列说法中,最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下面给出的四条数轴中,画法正确的是()A. B.C. D.3.(2021西安碑林区模拟)如图,在数轴上,若点B表示一个负数,则原点可以()A.点EB.点DC.点CD.点A4.如图,数轴上点A表示的数是()A.-1B.0C.1D.25.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A.0B.1C.2D.36.如图,在数轴上有A,B,C,D,E,F六个点,且AB=BC=CD=DE=EF,则点C表示的数是()A.-2B.0C.2D.47.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是______.拓点2数轴上两点之间的距离8.如图,数轴上A,B两点所表示的数分别是-4和2,点C是线段AB 的中点,则点C所表示的数是______.9.如图,数轴上表示-2的点A到原点的距离是()A.-2B.2C.-12D.1 210.数轴上点A表示的数是-3,将点A在数轴上平移7个单位长度得到点B,则点B表示的数是()A.4B.-4或10C.-10D.4或-1011.如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位长度至点B,则点B对应的数是()A.12-B.-2 C.72D.1212.下列说法:①数轴上的点只能表示整数;②数轴是一条线段;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.其中正确的有()A.1个B.2个C.3个D.4个13.下面所画数轴,画法正确的是___________.(填序号)14.如图,已知点A,B,C在数轴上表示的数分别是-1,-5,2.回答下列问题:(1)将B点向右移动6个单位长度,此时B点表示的数是多少?(2)将C点向左移动6个单位长度,此时C点表示的数是多少?(3)移动A,B,C三个点中的任意两个,能使三个点表示的数相等吗?你有几种移动方法?15.如图,数轴的单位长度为1,点A表示的数是-4.(1)在数轴上用0标出原点;(2)写出点B表示的数;(3)在数轴上找一点C,使它与点B的距离为2个单位长度,那么点C表示什么数?16.找规律.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是__________;②从-2到2有5个整数,分别是__________;③从-3到3有7个整数,分别是__________;④从-100到100有_______________个整数;⑤从-n到n有_______个整数;(n为正整数)(2)根据以上规律,知从-3.9到3.9有___________个整数,从-10.1到10.1有__________个整数;(3)在单位长度是1cm的数轴上任意画一条长度为1000cm的线段AB,线段AB盖住的整数点最多有多少个?17.如图,已知在纸面上有一个数轴.操作一(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-2的点与表示______的点重合.操作二(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示______的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B两点重合,求A,B两点表示的数.参考答案1.D2.B3.D4.C5.D6.C7.p8.-19.B10.D11.A12.A13.①④14.(1)将B点向右移动6个单位长度,此时B点表示的数是1.(2)将C点向左移动6个单位长度,此时C点表示的数是-4.(3)能.有三种移动方法:①A点不动,将B点向右移动4个单位长度,并将C点向左移动3个单位长度;②B点不动,将A点向左移动4个单位长度,并将C点向左移动7个单位长度;③C点不动,将A点向右移动3个单位长度,并将B点向右移动7个单位长度.15.(1)原点在点A的右侧4个单位长度处,如图.(2)点B表示3.(3)点C表示1或5.16.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④201⑤(2n+1)(2)7;21(3)1000+1=1001(个).17.(1)2(2)①-3②A点表示的数是-3.5,B点表示的数是5.5.。
人教版七级上《1.2.2数轴》同步练习含解析
人教版数学七年级上册第1章 1.2.2数轴同步练习一、单选题(共12题;共24分)1、有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是( )A、ab>0B、C、a﹣1>0D、a<b2、数轴上原点和原点左边的点表示的数是( )A、负数B、正数C、非负数D、非正数3、在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数( )A、3B、﹣1C、﹣5D、44、下列所画的数轴中正确的是( )A、B、C、D、5、大于﹣2.6而又不大于3的整数有( )A、7个B、6个C、5个D、4个6、有理数a,b,c在数轴上大致位置如图,则下列关系式正确的是( )A、a<b<cB、a<c<bC、b<c<aD、|a|<|b|<|c|7、数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D 在点B、C之间,则下列式子中,可能成立的是( )A、a<b<c<dB、b<c<d<aC、c<d<a<bD、c<d<b<a8、已知a,b两数在数轴上的位置如图所示,则下列结果错误的是( )A、a>0B、a>1C、b<﹣1D、a>b9、如图,数a,b在数轴上对应位置是A、B,则﹣a,﹣b,a,b的大小关系是( )A、﹣a<﹣b<a<bB、a<﹣b<﹣a<bC、﹣b<a<﹣a<bD、以上都不对10、如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A、b>c>0>aB、a>b>c>0C、a>c>b>0D、b>0>a>c11、数m、n在数轴上的位置如图所示,则化简|m+n|﹣m的结果是( )A、2m+nB、2mC、mD、n12、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是( )A、0B、﹣2C、2aD、2c二、填空题(共6题;共6分)13、数轴上点A表示﹣1,则与A距离3个单位长度的点B表示________.14、在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是________.15、数轴上点A表示的数是﹣5,若将点A向右平移3个单位到点B,则点B表示的数是________.16、在数轴上到表示﹣2的点的距离为4的点所表示的数是________.17、点A在数轴上距原点5个单位长度,且位于原点左侧,若将A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是________.18、如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是________.三、解答题(共5题;共25分)19、画数轴,在数轴上表示下列各数,并用“<”号把它们连接起来﹣3、+2、﹣1.5、0、1.2020出一条数轴,在数轴上表示数﹣12,2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.21、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来: ﹣,0,2,﹣(+3),|﹣5|,﹣1.5.22、小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?23、画出数轴,把22,0,﹣2,(﹣1)3,﹣|﹣3.5|,这六个数在数轴上表示出来;按从小到大的顺序用“<”号将各数连接起来.答案解析部分一、单选题1、【答案】D【考点】数轴【解析】【解答】解:由表示a和b的点位置可知,a<﹣1,b>0;所以ab<0,<0,a﹣1<0;故A,B,C不成立;a<b,故D成立;故选D.【分析】根据数轴上的点表示的数的规则进行分析即可.2、【答案】D【考点】数轴【解析】【解答】解:∵从原点发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应0;∴数轴上原点和原点左边的点表示的数是0和负数,即非正数.故选D.【分析】根据数轴的意义进行作答.3、【答案】B【考点】数轴【解析】【解答】解:由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3﹣8+4=﹣1;故选B【分析】根据数轴的特点进行解答即可.4、【答案】D【考点】数轴【解析】【解答】解:根据数轴的三要素判定可得D正确.故选:D.【分析】运用数轴的三要素判定即可.5、【答案】B【考点】数轴【解析】【解答】解:则大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数.故选B.【分析】首先把大于﹣2.6并且不大于3的数在数轴上表示出来,即可判断.6、【答案】A【考点】数轴,有理数大小比较【解析】【解答】解:∵数轴上右边的数总比左边的大,∴a<b<c.故选A.【分析】根据各点在数轴上的位置即可得出结论.7、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:∵A在点B的左侧,∴a<b;∵点C在点B的左侧,∴c<b;∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.故选:C.【分析】数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,据此判定出a、b、c、d 的大小关系即可.8、【答案】B【考点】数轴,有理数大小比较【解析】【解答】解:A、∵a在原点的右边,∴a>0,故本选项错误;B、∵a在1的左边,∴a<1,故本选项正确;C、∵b在﹣1的左边,∴b<﹣1,故本选项错误;D、∵b在a的左边,∴a>b,故本选项错误;故选B.【分析】在数轴上表示的数,右边的数总比左边的数大,根据以上结论逐个判断即可.9、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:由数轴可知a<0,b>0,所以所以﹣a>0,﹣b<0,且|a|<|b|,所以﹣b<a,﹣a<b,所以其大小关系为:﹣b<a<﹣a<b,故选:C.【分析】由数轴可知a<0,b>0,且|a|<|b|,所以﹣a>0,﹣b<0,进一步即可确定其大小关系.10、【答案】D【考点】数轴,有理数大小比较【解析】【解答】解:根据数轴上点的位置可知:b>0>a>c.故选D.【分析】根据数轴上点的位置即可得出a、b、c及0之间的大小关系,此题得解.11、【答案】D【考点】数轴,绝对值,整式的加减【解析】【解答】解:∵m<0,n>0,且|m|<|n|,∴|m+n|﹣m=m+n﹣m=n.故选:D.【分析】由题意可知,m<0,n>0,且|m|<|n|,由此利用绝对值的意义与整式的加减运算方法化简即可.12、【答案】B【考点】数轴,绝对值,整式的加减【解析】【解答】解:根据数轴上点的位置得:b<a<0<c<1,∴a+b<0,b﹣1<0,a﹣c<0,1﹣c>0,则原式=﹣a﹣b+b﹣1+a﹣c﹣1+c=﹣2,故选B【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.二、填空题13、【答案】﹣4或2【考点】数轴【解析】【解答】解:①点B在点A的左边时,∵点A表示﹣1,∴点B表示﹣1﹣3=﹣4,②点B在点A的右边时,∵点A表示﹣1,∴点B表示﹣1+3=2,综上所述,点B表示的数是﹣4或2.故答案为:﹣4或2.【分析】根据数轴上的数右边的总比左边的大,分点B在点A的左边与右边两种情况讨论求解.14、【答案】-3【考点】数轴【解析】【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.15、【答案】-2【考点】数轴【解析】【解答】解:∵A为数轴上表示﹣5的点,将点A沿数轴向右平移3个单位到点B,∴﹣5+3=﹣2,即点B所表示的数是﹣2,故答案为:﹣2【分析】根据题意得出﹣5+3=﹣2,即得出了答案.16、【答案】﹣6或2【考点】数轴【解析】【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.17、【答案】-2【考点】数轴【解析】【解答】解:因为点A在数轴上距原点5个单位长度,且位于原点左侧,所以,点A表示的数为﹣5,移动后点A所表示的数是:﹣5+4﹣1=﹣2.故答案为:﹣2.【分析】根据题意先确定点A表示的数,再根据点在数轴上移动的规律,左加右减,列出算式,计算出所求.18、【答案】m<0【考点】数轴【解析】【解答】解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.【分析】如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,即已知2m<m,m<1﹣m,2m<1﹣m,即可解得m的范围.三、解答题19、【答案】解:如图所示: ﹣3<﹣1.5<0<1<+2.【考点】数轴,有理数大小比较【解析】【分析】首先在数轴上表示各数,然后再根据在数轴上右边的点表示的数大于左边的点表示的数用“<”号把它们连接起来.2020答案】解:因为﹣12=﹣1,﹣(﹣3)=3,﹣|﹣2 |=﹣2 ,把各数表示在数轴上,如下图所示:所以﹣|﹣2 |<﹣12<0<2<﹣(﹣3)【考点】数轴,绝对值,有理数大小比较【解析】【分析】先化简﹣12,﹣(﹣3),﹣|﹣2 |,再把各数表示在数轴上,最后用“<”连接各数.21、【答案】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣(+3)<﹣1.5<﹣<0<|﹣5|【考点】数轴,绝对值,有理数大小比较【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.22、【答案】解:∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,∴他又东走了5m,记为点B,点B表示的数是3+5=8,数轴如图所示:∴接着他又向西走了10m到点C,点C表示表示的数是:8+(﹣10)=﹣2,∴当小明到点C时,要回家,小明应向东走2米即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2米【考点】数轴【解析】【分析】根据小明的位置以及行走的方向和距离,可以求得点B和点C的坐标,从而可以知道小明要回家应如何走.23、【答案】解:22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,如图,用“<”号把这些数连接起来为:﹣|﹣3.5|<﹣2<(﹣1)3<0<<22【考点】数轴,绝对值,有理数大小比较【解析】【分析】先计算22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,再根据数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.。
人教版七年级数学上册1.2.2数轴同步练习题含答案
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( )A .-4B .-6C .2或-4D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为( )A.8 B.7 C.6 D.517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A表示-3,点B表示-1,点C表示4.4.A5.B .6.D7.D8.-29.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C . 15.3 . 16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B 表示爷爷的年龄,A 表示小红的年龄,把小红与爷爷的年龄差看作木棒AB . 当爷爷的年龄是小红现在的年龄时,即将B 向左移与A 重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A 向右移与B 重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
七年级数学上册《第一章 数轴》同步练习及答案-人教版
七年级数学上册《第一章 数轴》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列四个选项中,所画数轴正确的是( ) A . B . C . D .2.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( )A .4B .4-或10C .4或10-D .10-3.如图,数轴上蚂蚁所在点表示的数可能为( )A .3B .0C .1-D .2-4.如图,一条不完整的数轴上两个点表示的数分别是a 和2-,则a -可能是( )A .4B .2C .1-D .4-5.数轴上一点A 在原点左侧,离开原点4个单位长度,点A 表示的数是( ) A .4 B .4- C .4± D .2-6.在数轴上点A 表示的数是1,到点A 的距离是3个单位长度的点表示的数是( ) A .3 B .3- C .3± D .4或2-7.点A 在数轴上表示﹣3,将A 向右移动4个单位长度,再向左移动7个单位长度,此时A 点所表示的数是( )A .0B .﹣6C .8D .68.如图,在数轴上点M 表示的数可能是( )A . 2.3B . 1.5-C .1.5D .2.3二、填空题9.已知点A,B,O,C在数轴上的位置如图所示,O为原点,点B、C到原点O的距离相三、解答题个数连接起来.-和 4.3,那么点A与点B之间的距18.数轴上的点A,点B分别表示有理数 2.1离为多少?如果数轴上另有一点C,且点C和B到点A的距离相等,那么点C所对应的有理数是多少?19.在数轴上,一只蚂蚁从原点出发,先向右爬行了4个单位长度到达点A ,再向右爬行了2个单位长度到达点B ,然后又向左爬行了10个单位长度到达点C .(1)画出数轴并标出A ,B ,C 三点在数轴上的位置;(2)写出点A 、B 、C 三点表示的数;(3)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬行了几个单位长度得到的?20.已知数轴上有A 、B 、C 三个点,分别表示有理数-20,-8,8,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为x 秒.(1)当6x =时,点P 到点A 的距离PA = ______ ;此时点P 所表示的数为______ ;(2)当点P 运动到B 点时,点Q 同时从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后也停止运动,则点Q 出发5秒时与P 点之间的距离QP = ______ ;(3)在(2)的条件下,当点Q 到达C 点之前,请求出点Q 移动几秒时恰好与点P 之间的距离为2个单位?参考答案:1.C2.C3.A4.A5.B6.D7.B8.A9.1a -/1a -+。
初中七年级上册数学122_数轴同步专项练习题含答案
初中七年级上册数学1.2.2 数轴同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图,在数轴上点A表示的数最可能是()A.−2B.−2.5C.−3.5D.−2.92. 下列说法正确的是()A.数轴是一条规定了原点、单位长度和正方向的直线B.数轴一定取向右为正方向C.数轴是一条带箭头的线段D.数轴上的原点表示有理数的起点3. A为数轴上表示−1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为()A.−3B.3C.1D.1或−34. 如图,在数轴上,点A,B表示的数分别是a,b;原点用点O来表示,则下列说法正确的有( )①线段AB的长度就是A,B两点之间的距离;②|a|等于线段OA的长度;③ab>0;④a−b>a+b;⑤点A到原点O的距离是线段OA.A.2个B.3个C.4个D.5个5. 如图,数轴上相邻刻度间的线段表示一个单位长度,点A、B、C、D对应的数a、b、c、d,且2a+b+d=−2,那么数轴的原点应是( )A.点AB.点BC.点CD.点D6. 如图,数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,那么,原点应是点()A.PB.QC.SD.T7. 点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:①−a>b;②−b>−a;③|a|>|b|;④|−b|>|−a|,其中正确的是( )A.①②③B.②③④C.①③④D.①②④8. 有理数a,b在数轴上的位置如图所示,则下列结论不正确的是()A.a−(−b)<0B.a−b<0C.−a−b>0D.−a+b<09. 一只小蚂蚁停在数轴上表示2的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为()A.7或−3B.−7C.+3D.–7或310. 如图,在数轴上有a,b两个有理数,则下列结论中,不正确的是())3>0A.a+b<0B.a−b<0C.a⋅b<0D.(−ab二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是________.12. 如图,在数轴上1,√2的对应点分别是A,B,A是线段BC的中点,则点C所表示的数是________.13. P从数轴上的原点开始,向右移动2个单位,再向左移动5个单位,此时P点所表示的数是________.14. 在数轴上与表示−3的点相距4个单位长度的点所表示的数是________.15. 如图,数轴上有A,B,C,D四点,则所表示的数与5−√11最接近的是_________.16. 数轴上A点表示的数为−2,则A点相距3个单位长度的点表示的数为________.17. 已知点A在数轴上原点左侧,距离原点3个单位长度,点B到点A的距离为2个单位长度,则点B对应的数为________.18. 已知在纸面上有一数轴,折叠纸面:(1)若3表示的点与−3表示的点重合,则−4表示的点与数________表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数________表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为________.19. 数轴上表示6与2的两个点之间的距离是________个单位长度.20. 数轴上与−1距离3个长度的点表示的数是________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 一辆货车从超市出发,向东走3千米到达小华家,继续走了1.5千米到达小红家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东为正方向,用1个单位长度表示1千米,你能在数轴上表示出小华家、小红家和小明家的位置吗?(2)小明家距小华家多远?(3)若货车耗油量为3升/千米,问共耗油多少升?22. 数轴上的点A 对应的数是−3,一只蚂蚁从点A 出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点.休息2秒后按原路返回A 点,共用了10秒,则蚂蚁爬行了多少个单位长度?点B 对应的有理数是多少?23. 把下面的直线补充成一条数轴,然后在数轴上表示出下列各数:并用"<"把它们连接起来.−3,+1,212,−1.5,6.24. 已知数轴上表示a ,b 两个点的位置,如图所示,试判断下列各式的符号:(1)a +b ,(2)a −b ,(3)b −a ,(4)|a|−b .25. 操作与探究:对数轴上的点P 进行如下操作:先把点P 表示的数乘以2,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.(1)如图,若点A 表示的数是−3,则点A ′表示的数是________;(2)若点B ′表示的数是2,则点B 表示的数是________;(3)已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是________.26. 在数轴上表示出下列各有理数:−0.7,−3,−213,0,112,2.27. 一只蚂蚁从原点O 出发,它先向左爬行2个单位长度到达A 点,再向左爬行3个单位长度到达B 点,再向右爬行8个单位长度到达C 点.(1)写出A ,B ,C 三点表示的数,并将它们的位置标注在数轴上;(2)根据C 点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?28. 对数轴上的点P 进行如下操作:先把点P 表示的数乘以m(m ≠0),再把所得数对应的点沿数轴向左平移n(n >0)个单位长度,得到点P ′.称这样的操作为点P 的“倍移”,对数轴上的点A ,B ,C 进行“倍移”操作得到的点分别记为A ′,B ′,C ′.(1)当,n =2时,①若点A 表示的数为−6,则它的对应点A ′表示的数为________. ②若点B ′表示的数是3,则点B 表示的数为________.③数轴上点M 表示的数为1,若点M 到点C 和点C ′的距离相等,求点C 表示的数.(2)若点A ′到点B ′的距离是点A 到点B 距离的3倍,求m 的值.29. 点A 、B 在数轴上的位置如图所示:(1)点A 表示的数是________,点B 表示的数是________;(2)在原图中分别标出表示+3的点C 、表示−1.5的点D ;(3)在上述条件下,B 、C 两点间的距离是________,A 、C 两点间的距离是________.30. 请把下面不完整的数轴画完整,并在数轴上标出下列各数:−3,−12,4.31. 画出数轴,并在数轴上表示下列各数:+5,−3.5,12,−112,−4,0,2.5.32. 观察数轴,仔细思考,回答下列问题.(1)有没有最小的正整数?如果有,是什么?如果没有,说明理由;(2)有没有最大的负整数?如果有,是什么?如果没有,说明理由;(3)不超过2的自然数有哪些?33.操作探究:小明在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与−1表示的点重合,则−3表示的点与________表示的点重合;操作二:(2)折叠纸面,使−1表示的点与5表示的点重合,请你回答以下问题:①−3表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为12,其中A在B的左侧,且A、B两点经折叠后重合,则A表示的数是________,B表示的数是________.③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为14,则m的值的是________.34. 邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?35. 圆通快递公司员工小明骑车从快递公司出发,先向南骑行4km到达A单位,然后向北骑行2km到达B公司,继续向北骑行5km到达C村,最后回到快递公司.(1)以快递公司为原点,向南方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三地的位置;(2)C学校离A单位有多远?(3)小明一共骑行了多少千米?36. 根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(点B在−2, −3的正中间)两点的位置,分别写出它们所表示的有理数A:________ B:________(2)在数轴上画出与点A的距离为2的点(用不同于A、B、M、N的其他字母表示),并写出这些点表示的数:________________(3)若经过折叠,A点与−3表示的点重合,则B点与数________表示的点重合;(4)若数轴上M、N两点之间的距离为9(M在N的左侧),且M、N两点经过(5)中折叠后重合,M、N两点表示的数分别是:M:________ N:________37. 观察有理数a、b、c在数轴上的位置并化简:|b−c|+|a+c|.38. 如图,数轴上的点A、B、C、D分别表示−4,−3,2.5,5.回答下列问题:2(1)B、C两点之间的距离是多少?(2)A、C两点之间的距离是多少?(3)A、D两点之间的距离是多少?39. (1)借助数轴,回答下列问题.①从−1到l有3个整数,分别是________;②从−2到2有5个整数,分别是________;③从−3到3有个整数,分别是________;④从−200到200有________个整数;⑤从−n到n(n为正整数)有________个整数; 39.(2)根据以上规律,直接写出:从−2.9到2.9有________个整数,从−10.1到10.1有________个整数;39.(3)在单位长度是1厘米的数轴上随意画出一条长为1000厘米的线段AB,求线段AB 盖住的整点的个数.40. 一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?参考答案与试题解析初中七年级上册数学1.2.2 数轴同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】数轴【解析】根据数轴上的点表示数的方法得到点A表示的数在−3与−2中间,然后分别进行判断即可.【解答】解:∵点A表示的数在−3与−2中间,∴A、C、D三选项错误,B选项正确.故选:B.2.【答案】A【考点】数轴【解析】根据规定了原点、正方向、单位长度的直线叫做数轴对各选项分析判断后利用排除法求解.【解答】解:A、数轴是一条规定了原点、单位长度和正方向的直线正确,故本选项正确;B、数轴一定取向右为正方向,错误,故本选项错误;C、数轴是一条带箭头的线段,错误,故本选项错误;D、数轴上的原点表示有理数的起点,错误,故本选项错误.故选A.3.【答案】A【考点】数轴【解析】此题借助数轴用数形结合的方法求解.【解答】解:由题意得,把A点向左移动2个单位长度,即是−1−2=−3,故B点所表示的数为−3.故选A.4.【答案】B【考点】数轴【解析】本题考查了数轴、绝对值及数轴上两点间的距离,解题关键是掌握绝对值的几何意义及数轴上两点间的距离等知识.【解答】解:①线段AB的长度就是A,B两点之间的距离,故①正确;②|a|等于线段OA的长度,故②正确;③b<0,a>0,则ab<0,故③错误;④b<0,则−b>0,−b>b,a−b>a+b,故④正确;⑤点A到原点O的距离是线段OA的长度,故⑤错误.即①②④正确,共有3个.故选B.5.【答案】B【考点】数轴【解析】先根据数轴上各点的位置可得到d−c=3,d−b=4,d−a=7,,再分别用d表示出a、b、c,再代入2a+b+d=2,求出d的值即可.【解答】解:由数轴上各点的位置可知d−c=3,d−b=4,d−a=7,故c=d−3,b=d−4,a=d−7,代入2a+b+d=−2得,2(d−7)+d−4+d=−2,解得d=4,故数轴上原点应是B点.故选B.6.【答案】C【考点】数轴【解析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=−2,若原点在T点,则p+q+s+t=−14,∵数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,∴原点应是点S,故选C.7.【考点】数轴【解析】根据a+b<0,a在坐标轴的位置,结合各项结论进行判断即可.【解答】解:①由数轴可得,a>0,|a|<|b|,所以−a>b,故①正确;③错误;②因为a>0,b<0,所以a>b,所以−b>−a,故②正确;④因为|−b|=|b|,|−a|=|a|,|a|<|b|,所以|−b|>|−a|,故④正确,综上可得①②④正确.故选D.8.【答案】B【考点】数轴【解析】观察数轴得:b<0<a|>|a|由此对四个选项依次判断即可.【解答】观察数轴得:b<0<a||b|>|a|选项A,a−(−b)=a+b<0,选项A正确;选项B,a−b>0,选项B错误;选项C,−a−b>0,选项C正确;选项D,−a+b=b−a<0,选项D正确;故选B.9.【答案】A【考点】数轴【解析】分两种情况讨论,分别求出所表示的数,即可解答.【解答】解:向左爬行5个点为,则表示的数为:2+(−5)=−3;向右爬行5个点为,则表示的数为:2+5=7,则表示的数为−3或7.故选A.10.【答案】B【解析】根据a,b在数轴上的位置就可得到a,b的符号,以及绝对值的大小,再根据有理数的运算法则进行判断.【解答】解:根据数轴上的数:右边的数总是大于左边的数,可以得到:b<0<a,且|a|<|b|.∴a<−b,∴a+b<0,故A正确;a−b>0,故B错误;∵a<0,b>0,∴根据有理数的乘法法则得到:a⋅b<0,故C正确;根据有理数除法法则得到(−ab)3>0,故D正确.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−0.5或5.5【考点】数轴【解析】根据数轴的特点可知与A点相距3个单位长度的点有两个,一个在点A的左边,一个在右边,从而可以解答本题.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5−3=−0.5或2.5+3=5.5.故答案为:−0.5或5.5.12.【答案】2−√2【考点】数轴【解析】设出C点坐标为x,得到x+√22=1,即可求出x的值.【解答】解:设C点坐标为x,根据题意得,x+√2−x2=x+√22=1,解得,x=2−√2.故答案为:2−√2.13.【答案】−3【考点】数轴根据题意(向右为正,向左为负)得出算式0+(+2)+(−5),求出即可.【解答】解:根据题意得:0+(+2)+(−5)=−3,即此时P点所表示的数是−3,故答案为:−3.14.【答案】1或−7【考点】数轴【解析】根据题意得出两种情况:当点在表示−3的点的左边时,当点在表示−3的点的右边时,列出算式求出即可.【解答】解:分为两种情况:①当点在表示−3的点的左边时,数为−3−4=−7;②当点在表示−3的点的右边时,数为−3+4=1;故答案为:1或−7.15.【答案】D点【考点】数轴【解析】此题暂无解析【解答】解:∵9<11<16,∴3<√11<4,∴1<5−√11<2.故答案为:D点.16.【答案】1或−5【考点】数轴【解析】设与A点相距3个单位长度的点表示的数为x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设与A点相距3个单位长度的点表示的数为x,则|x+2|=3,解得x=1或x=−5.故答案为:1或−5.17.【答案】−1或−5【考点】数轴【解析】根据在数轴上,点A所表示的数为−3,可以得到到点A的距离等于2个单位长度的点所表示的数是什么,本题得以解决.【解答】解:∵在数轴上,点A所表示的数为−3,∴到点A的距离等于2个单位长度的点所表示的数是:−3+2=−1或−3−2=−5.故答案为:−1或−5.18.【答案】(1)4;(2)−2;(3)−1008;1008【考点】数轴【解析】根据题意,结合数轴确定出所求数字即可.【解答】解:(1)若3表示的点与−3表示的点重合,则−4表示的点与数4表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数−2表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为−1008;1008,19.【答案】4【考点】数轴【解析】此题暂无解析【解答】解:6−2=4,故答案为:4.20.【答案】−4或2【考点】数轴【解析】此题可借助数轴用数形结合的方法求解.由于点与−1的距离为3,那么应有两个点,记为A1,A2,分别位于−1两侧,且到−1的距离为3,这两个点对应的数分别是−1−3和−1+3,在数轴上画出A1,A2点如图所示.【解答】解:如图,因为点与−1的距离为3,所以这两个点对应的数分别是−1−3和−1+3,即为−4或2.故答案为−4或2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).【考点】数轴【解析】(1)根据小明,超市,小华,小红的位置画在数轴上即可;(2)列出算式,求出即可;(3)求出共走的距离,再乘以3即可.【解答】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).22.【答案】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.【考点】数轴【解析】先求出从A点到B点所需的时间,故可得出从A点到B点单位长度的个数,再由A点表示的数是−3即可得出B点表示的数.【解答】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.23.【答案】解:由分析画图如下:<6.所以−3<−1.5<+1<212【考点】数轴【解析】数轴是规定了原点((0点)、方向和单位长的直线,在数轴上原点(0点)的左边是负数,从原点(0点)向左分别是−1、−2、−3−、−4、−5、−6…,右边是正数,从原点(0点)向右分别是+1、+2、+3−、+4、+5、+6…,−3表示原点左边第3个单位的点,把−1到−2这个单位长平均分成2份,−1.5在表示中间的点,+1表示原点右边第所表示正中间的点,6所表示原点右一个单位的点,把2到3这个单位平均分成2份,212边第六个单位的点.【解答】解:由分析画图如下:<6.所以−3<−1.5<+1<21224.【答案】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.【考点】数轴【解析】先根据数轴得出b<0<a,|b|>|a|,再根据有理数的加减法则判断各个算式的符号即可.【解答】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.25.【答案】−51−1【考点】数轴【解析】①根据题目规定,以及数轴上的数向右平移用加法计算即可求出点A′;②设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数;③设点E表示的数为b,根据题意列出方程计算即可得解.【解答】解:(1)点A′:−3×2+1=−5.故答案为:−5.(2)设点B表示的数为a,则2a+1=2,.解得a=12.故答案为:12(3)设点E表示的数为b,则2b+1=b,解得b=−1.故答案为:−1.26.【答案】解:在数轴上表示出各有理数,如下图所示:【考点】数轴【解析】利用数轴表示数的方法画出数轴进行描点即可.【解答】解:在数轴上表示出各有理数,如下图所示:27.【答案】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.【考点】数轴【解析】此题暂无解析【解答】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.28.【答案】−5,10【考点】数轴【解析】此题暂无解析【解答】此题暂无解答29.【答案】−4,12,7【考点】数轴【解析】(1)根据数轴上点的位置找出A与B表示的点即可;(2)在数轴上找出表示+3与−1.5的两个点C与D即可;(3)找出B、C之间的距离,以及A,C之间的距离即可.【解答】解:(1)点A表示的数是−4,点B表示的数是1;(2)根据题意得:;(3)根据题意得:BC=|3−1|=2,AC=|3−(−4)|=7.30.【答案】解:【考点】数轴【解析】应有原点,正方向和单位长度,进而根据距离原点的距离和正负数的相关位置标出所给数即可.【解答】解:31.【答案】解:如图所示;【考点】数轴【解析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【解答】解:如图所示;32.【答案】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.【考点】数轴【解析】(1)最小的正整数是1;(2)最大的负整数是−1;(3)不超过2的自然数有0,1,2.【解答】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.33.【答案】(1)3(2)解:①7;②7;−4;8;③−5或9.【考点】数轴【解析】此题主要考查了一元一次方程的应用以及数轴的应用,正确利用分类讨论得出是解题关键.(1)直接利用已知得出中点进而得出答案;(2)①利用−1表示的点与5表示的点重合得出中点,进而得出答案;②利用数轴再结合A、B两点之间距离为12,即可得出两点表示出的数据;③利用②中A,B的位置,利用分类讨论进而得出m的值.【解答】解:(1)折叠纸面,使1表示的点与−1表示的点重合,则对称中心是0,∴−3表示的点与3表示的点重合,故答案为3.(2)∵−1表示的点与5表示的点重合,∴对称中心是数2表示的点,①−3表示的点与数7表示的点重合.故答案为7.②若数轴上A、B两点之间的距离为12(A在B的左侧),则点A表示的数是2−6=−4,点B表示的数是2+6=8;故答案为7;−4;8.③当点M在点A左侧时,则8−m−(−4−m)=14,解得:m=−5;当点M在点B右侧时,则m−(−4)+m−8=14,解得:m=9;综上,m=−5或9.故答案为−5或9.34.【答案】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).【考点】数轴【解析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴可得邮递员骑行的路程是BC的2倍,据此即可求解.【解答】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).35.【答案】小明一共骑行了14千米.【考点】数轴【解析】(1)根据运动方向,在数轴上标出即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)数轴上这些点的绝对值之和.【解答】解:(1)如图所示,(2)C离A有7km;(3)4+2+5+3=14km,答:小明一共骑行了14千米.36.【答案】(1)根据下面给出的数轴,解答下面的问题:,(2)A:β:−2.5.(3)−1或3;(4)0.5(5)−5.5,3.5;【考点】数轴【解析】(1)【解31J(2)由数轴易得A:1B:−2.5(3)1+2=3或1−2=−1,则与点A的距离为2的点为−1或3;(4)经过折叠,A点与−3表示的点重合,说明中点时−1,则B:−2.5与0.5重合;(5)−1+4.5=3.5,−1−1−4.5=−5.5,故M:−5.5,N:3.5【解答】此题暂无解答37.【答案】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.【考点】数轴【解析】根据数轴上点的位置确定出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.38.【答案】解:(1)∵点B表示−3,点C表示2.5,2∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.【考点】数轴【解析】(1)、(2)、(3)根据两点间的距离公式求解即可.【解答】,点C表示2.5,解:(1)∵点B表示−32∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.39.【答案】−1,0,1,−2,−1,0,1,2,−3,−2,−1,0,1,2,3,401,2n+15,21(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.【考点】数轴【解析】(1)①②③根据题意画出数轴,根据数轴上各数的位置即可得出结论;根据①②③中整数的个数,找出规律即可;(2)、(3)根据(1)中的规律即可得出结论.【解答】解:(1)如图所示:①(2)∵从−n到n(n为正整数)有2n+1个整数,∴−2.9到2.9有2×2+1=5个整数;从−10.1到10.1有2×10+1=21个整数.(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.40.【答案】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).【考点】数轴【解析】根据数轴的作法可得(1),进而根据在数轴上确定两点的距离方法求得小明家与小刚家相距多远.【解答】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).。
人教版,数学七年级 上,1.2.2 数轴同步练习及答案详解
一、选择题(共7小题,每小题4分,满分28分)1.(4分)以下是四位同学画的数轴,其中正确的是( )C .D .2.(4分)如图所示,点M 表示的数是( )3.(4分)下列说法正确的是( )4.(4分)(2001•呼和浩特)在数轴上,原点及原点右边的点表示的数是( )5.(4分)数轴上点M 到原点的距离是5,则点M 表示的数是( )6.(4分)在数轴上表示﹣2,0,6.3,的点中,在原点右边的点有( )7.(4分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( )二、填空题(共4小题,每小题5分,满分20分)8.(5分)最大的负整数是 _________ ;小于3的非负整数有 _________ .9.(5分)一个点从数轴上表示﹣1的点开始,先向右移动6个单位长度,再向左移动8个单位长度,则此时这个点表示的数是 _________ .10.(5分)在数轴上表示下列各数,2,,﹣4.5,0,.11.(5分)数轴上与原点的距离是6的点有 _________ 个,这些点表示的数是 _________ ;与原点的距离是9的点有 _________ 个,这些点表示的数是 _________ .三、解答题(共3小题,满分0分)12.小明距离A地东15米,他走了15米,结果离A地有30米,这是怎么回事?13.若向东走8米,记作+8米,如果一个人从A地出发向东走12米,再走﹣12米,又走了+13米,你能判断此人这时在何处吗?14.如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据C点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?《1.2.2 数轴》2010年同步练习参考答案与试题解析一、选择题(共7小题,每小题4分,满分28分)1.(4分)以下是四位同学画的数轴,其中正确的是().B...2.(4分)如图所示,点M表示的数是()3.(4分)下列说法正确的是()4.(4分)(2001•呼和浩特)在数轴上,原点及原点右边的点表示的数是()5.(4分)数轴上点M到原点的距离是5,则点M表示的数是()6.(4分)在数轴上表示﹣2,0,6.3,的点中,在原点右边的点有()两个.这两个数大于7.(4分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()二、填空题(共4小题,每小题5分,满分20分)8.(5分)最大的负整数是﹣1;小于3的非负整数有2、0、1.9.(5分)一个点从数轴上表示﹣1的点开始,先向右移动6个单位长度,再向左移动8个单位长度,则此时这个点表示的数是﹣3.10.(5分)在数轴上表示下列各数,2,,﹣4.5,0,.11.(5分)数轴上与原点的距离是6的点有两个,这些点表示的数是6和﹣6;与原点的距离是9的点有两个,这些点表示的数是9和﹣9.三、解答题(共3小题,满分0分)12.小明在A地东15米,他走了15米,结果离A地还有30米,这是怎么回事?13.若向东走8米,记作+8米,如果一个人从A地出发向东走12米,再走﹣12米,又走了+13米,你能判断此人这时在何处吗?14.如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据C点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?参与本试卷答题和审题的老师有:冯延鹏;117173;wdxwwzy;cook2360;CJX;workholic;wangming;心若在;开心;bjy;zhjh;自由人(排名不分先后)菁优网2013年5月12日一、。
人教版七年级上册数学数轴同步练习(含答案)
人教版七年级上册数学1.2.2数轴同步练习一、单选题1.下列图形表示数轴正确的是()A.B.C.D.2.a,b在数轴上对应的点如图,下列结论正确的是()A.b﹣a<0B.a+b>0C.ab<0D.ab>03.数轴上表示数m和m+4的点到原点的距离相等,则m为()A.﹣2B.﹣1C.2D.14.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.-2D.-45.如图,数轴上的两个点分别表示数a和-2,则a可以是()A.-3B.-1C.1D.26.如图,数轴上被阴影盖住的点表示的数可能是()A.3B.0C.-1D.-2=,则点C所对应7.如图,数轴上A,B两点对应的实数分别是3和-1,且AB AC的实数是()A.4B.5C.6D.78.数轴上点A表示的数是-2,将点A在数轴上移动6个单位长度得到点B,则点B表示的数是()A.4B.-4或8C.-8D.4或-8二、填空题9.数轴的概念:规定了______、_____、______的直线叫做数轴.10.如图,在已知的数轴上,表示 1.75的点可能是____.11.数轴上一个点到-2所表示的点的距离为5,那么这个点在数轴上所表示的数是__.12.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的所有整数的和是______.13.数轴上的点A到原点的距离为2,点B到点A的距离是3且在原点的右边,则点B表示的数是为_____.14.在数轴上表示8的点和表示m的点的距离为5,则这个数m=________.15.数轴上表示数﹣14和表示数﹣5的两点之间的距离是_____.16.已知数轴上的点A到原点的距离是2个单位长度,那么数轴上到A点的距离是3个单位长度的点所表示的数有______个.三、解答题17.在数轴上画出表示下列各数的点,并用<连接起来.-412,-4,1,0,21218.点A在数轴上距离原点5个单位长度,且位于原点右侧,若将点A向左移动7个单位长度到点B,求点B表示的数.19.已知,在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.20.一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?参考答案:1.B2.C3.A4.C5.A6.A7.D8.D9.原点正方向单位长度10.B11.3或-712.4-13.5或114.3或1315.916.417.11 4<401222 --<<<18.点B表示的数为-219.(1) 3±(2) 5±(3)8或2,20.6答案第1页,共1页。
北师大版七年级数学上册《数轴》同步练习1(含答案)
2.2 数轴一.填空题:1.若数轴规定了向右为正方向,则原点表示的数为______,负数所对应的点在原点的______,正数所表示的点在原点的_____ _;2.在数轴上A 点表示31-,B 点表示21,则离原点较近的点是____ ; 3.两个负数较大的数所对应的点离原点较____ _;4.数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____ ;5.数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____ ;6.数轴上B 点表示1-,那么距离B 点2个单位的数是___ _ _;7.比较大于(填写“>”或“<”号)(1)-2.1_____1 ;(2)-3.2_____-4.3 ;(3)-21_____-31 ;(4)-41 _____0 ; 8.指出数轴上A 、B 、C 、D 、E 各点分别表示什么数:解:A 点表示______,B 点表示______,C 点表示______,D 点表示______,E 点表示______;二.选择题9.下面正确的是( )(A )数轴是一条规定了原点,正方向和长度单位的射线(B )原点在数轴的正中间(C )离原点近的点所对应的有理数较小(D )数轴上的点可以表示任意有理数10.下列图形中不是数轴的是( )( D )( C )( B )( A )-4-3-2-10432112340-1-2-3-40-4-3-2-104321(A ) (B ) (C ) (D )11.下列表示数轴的图形中正确的是( )(A ) (B ) (C ) (D ) 12.下面关于有理数的说法正确的有( )(A )有理数可分为正有理数和负有理数两大类.(B ) 整数和分数统称为有理数(C )正整数集合与负整数集合合在一起就构成整数集合(D )正数和负数统称为有理数13.每个有理数都可以用数轴上的以下哪项来表示( )(A )一个点 (B )线(C )单位 (D )长度14.下列说法错误的是( )(A )零是最小的整数(B )所有的有理数都可以用数轴上的点表示出来(C )有最大的负整数,没有最大的正整数(D )数轴上两点表示的数分别是-231与-2,那么-2在右边15.下面正确的是( )(A )数轴是一条规定了原点,正方向和长度单位的射线(B )原点在数轴的正中间(C )离原点近的点所对应的有理数较小(D )数轴可以表示任意有理数三.解答题16.写出大于1.4 小于5.2的所有整数,并把它们在数轴上表示出来.17.请指出下列各数的相反数,并把它们在数轴上表示出来 3,21,0,-221参考答案一.1.0 左方 右方 ;2.A 点 ;3.近 ; 4.A 、B 、C ;5. 3个单位 ;6. 3-和1 ;7.< > < < ; 8.5.1,5.0-,3-,3,2-;二.9.D ; 10.B ;11.D ;12.B ;13.A ;14.A ;15.D ; 三.16.-4,-3,-2,-1,0,1,2 数轴略17.-3,-21,0,221数轴略。
2019—2020年冀教版七年级数学第一学期《数轴》同步练习题及答案.doc
1.2数轴
基础训练
一、填空题
1.数轴上原点所表示的数是______,原点右边的点所表示的数是_____数,原点左边所表示的数是_______数.
2.数轴上表示-4.5的点到原点的距离是_____个单位长度;+4.5的点到原点的距离是
_____个单位长度;到原点距离4.5个单位长度的数有____个.
3.数轴上的点A所对应的数是-2,点B所对应的数是5,那么A、B两点的距离是_____,点A、B的中点表示的数是_____.
4.一个点从数轴的原点开始,先向右移动了3个单位长度,再向左移动4个单位长度,则终点表示的数是____.
二、选择题
5.下图中所画数轴正确的是().
A. B.
-2 -1 0 1 2 0
C. D.
-1 +1 -2 -1 0 1 2
6.a、b在数轴上的位置如图,则所表示的数是()
a 0
b A. a 是正数,b 是负数 B. a 是负数,b 是正数
Ca 、b 都是正数 D. a 、b 都是负数
7.在数轴上点A 表示的数是2,到A 点的距离是4个单位长度的点表示的数是( ).
A. 6
B. -2
C. 6 -2
D. 4 -4
三.解答题
8.在数轴上表示下列各数.
214 -3 0 -211 2
1 2
拓展与探究训练
9.甲乙两条船在海上A 处交货后,分别向东、西行驶,经一小时后甲船航行10海里,乙船航行8海里,把两船行程在数轴上表示出来,并求出他们之间的距离。
参考答案
1. 0;正;负;
2. 4.5;4.5 ;2 ;
3. 7;1.5 ;
4.-1
5.D
6.B
7.C
8.略
9. 18。
北师大版七年级数学上册2.2数轴同步练习包括答案
2数轴1.下边所画数轴正确的选项是()图 12. 如图 2,在数轴上点M表示的数可能是()图 2A.1.5 B.-C.-D.3.指出如图 3 所示的A,B,C,D,E各点分别表示什么数,并用“<”将它们连结起来.图 34.如图 4 所示,数轴上四点M,N, P, Q中表示负整数的点是()图4A.M B.N C.P D.Q5.在数轴上,原点及原点左侧的点表示的数是(A.正数B.负数C.非正数D.非负数.6. 以下说法中正确的选项是())A.在数轴上的点所表示的数,不是正数就是负数B.数轴的长度是有限的C.一个有理数总能够在数轴上找到一个表示它的点D.全部整数都能够用数轴上的点来表示,但分数就不必定能够找到表示它的点7.小明写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.图 58.点 A, B, C,D分别表示-3,-11,0,4.请解答以下问题:2(1)在如图 6 所示的数轴上描出A,B,C,D四个点;(2)此刻把数轴的原点取在点 B 处,其他均不变,那么点 A,B,C,D分别表示什么数?图69.数轴上表示整数的点称为整点,某数轴的单位长度是 1 cm,若在这个数轴上任意画出一条长2018 cm 的线段AB,它覆盖的整点有__________个.10.在同一数轴上表示数- 0.5 , 0.2 ,-2,+2,此中表示0.2 的点的左侧的点有() A.1个B.2个C.3个D.4个11.有理数a,b在数轴上对应的点的地点如图7 所示,试用“>”“=”或“<”填空:a________0, b________0, a________b.图 712.把以下各数按大小次序用“>”连结起来.11-2,3.5 ,-1 ,2.75 ,2 ,- 3.2313.如图 8,数轴上有A, B, C,D四个点,此中到原点距离相等的两个点是()图8A.点B与点D B.点A与点C C.点A与点D D.点B与点C方法点拨⑧数轴上表示数 a 的点与表示数- a 的点到原点的距离相等.14. 若数轴上表示-1和3的两点分别是A和 B,则点 A 和点 B 之间的距离是() A.-4B.-2C.2D.415.在数轴上与原点的距离不大于 4 的整数点表示的数有 ____________.16.B10如图9,数轴上有三个点A, B, C,请回答以下问题:图 9将点 C向左挪动6个单位长度后,这时点 B 所表示的数比点C所表示的数大多少?(4)如何挪动 A, B, C中的两个点,才能使三个点表示的数同样?有几种挪动方法?1.D3.解:点A表示的数是 3;点B表示的数是- 1;点C表示的数是- 1.5 ;点D表示的数是1.5 ;点E表示的数是 0.5. 用“ <”将它们连结起来为- 1.5< -1<0.5<1.5<3.4.A5.C6.C7.78.解: (1) 如下图:(2)点 A 表示-11,点 B 表示 0,点 C 表示 11,点 D表示 51. 2229.2018 或 201910.B11.<> <12.解:如图:11因此 3.5>2.75>2 >-1 >-2>-3.3213.C14.D15.- 4,- 3,- 2,- 1,0,1,2,3,416.解: (1) 点 B 向左挪动 3 个单位长度后表示- 5,点 A 表示- 4,点 C 表示 3.-5<-4<3,因此点B表示的数最小,是-5.(2)点 A 向右挪动 4个单位长度后表示 0,点 B 表示- 2,点 C表示 3.-2<0<3, 因此点 B 表示的数最小,是- 2.(3)点 C 向左挪动 6个单位长度后表示- 3,点 B 表示- 2, 因此点 B表示的数比点 C 表示的数大 1.(4)有三种挪动方法.方法一:点 A 不动,点 B 向左挪动 2 个单位长度,点 C 向左挪动 7 个单位长度,三个点表示的数均为- 4.方法二:点 B 不动,点 A 向右挪动 2 个单位长度,点 C 向左挪动 5 个单位长度,三个点表示的数均为- 2.方法三:点 C 不动,点 A 向右挪动 7 个单位长度,点 B 向右挪动 5 个单位长度,三个点表示的数均为 3.① 原点,正方向,单位长度.② 数轴上的点不是都表示有理数;有理数都能够用数轴上的点来表示.③ 在数轴上分别表示出两个有理数,数轴上右侧的数大于左侧的数.。
2.2 数轴 同步训练(含简单答案)2024-2025学年苏科版(2024)七年级上册数学
2.2 数轴 同步训练一、单选题1.在下图中,数轴表示正确的是( )A .B .C .D .2.数轴上表示的点在原点的( )A .右侧B .左侧C .原点上D .不能确定3.有理数在数轴上的对应点的位置如图所示,则是( ).A .非负数B .负数C .正数D .04.数轴上表示数的点和表示数的点之间的整数点个数为( )A .5B .6C .7D .85.在数轴上,位于和3之间的点表示的有理数有( )A .5个B .4个C .3个D .无数个6.A 为数轴上表示的点,将点A 在数轴上平移3个单位长度到点B ,则点B 所表示的数为( )A .3B .2C .或4D .2或7.如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系正确的是( )A .B .C .D .8.如图,数轴上点表示的数是2,点,到点的距离均为4个单位长度,则数轴上表示的点落在( )A .点左侧B .线段上C .线段上D .点右侧4-a a 2.3-1383-1-2-4-a b c <<-b c a <-<a c b -<<a c b <-<-C A B C 3-A AC BC B二、填空题9.数轴的三个要素是:原点、 和单位长度.10.数轴上到0距离为3的点表示的数为11.如图,数轴上的三个点中,表示负数的是点 .12.实数,在数轴上的位置如图所示,则-a -b(填“”,“”或“”)13.用长为个单位长度的线段放在数轴上,能覆盖 个整数点.三、解答题14.在数轴上画出表示下列各数的点.1,,,2,,4,0,.15.老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来.16.在数轴上有三个点,,,如图所示.(1)点表示的数是________;(2)将点向左平移4个单位,此时该点表示的数是________;(3)将点向左平移3个单位得到数,再向右平移2个单位得到数,则,分别是多少?a b ><=2020AB 5- 2.5- 1.5132-A B C A B C m n m n参考答案:1.D 2.B 3.C 4.B 5.D 6.D 7.B 8.A 9.正方向10.11.M 12.13.或14.15.16.(1)(2)(3),3±<2020202112,11,10,9,8,11,12,13,14,15,16,17-----2-2-0m =2n =。
七上数学同步练习答案
七上数学同步练习答案七年级上册数学同步练习册参考答案§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0||-0.01| (2)§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.七年级上册数学同步练习答案北师大版1.A;2.C;3.B;4.D; C; 6.∠α=∠β,内错角相等,两直线平行;5.平行或相交;6.AE、BC、CD、同位角,AE、BC、AB、内错角;7.∠1与∠3、∠4与∠6,∠2与∠4、∠3与∠5,∠2与∠5、∠1与∠6、∠3与∠4、∠1与∠2、∠5与∠6;8.答案不,如∠1=∠3;9.解:BC∥DE.因为∠2与∠DCE是对顶角,所以∠DCE=∠2=1350,因为∠D=450,所以∠D+ ∠DCE=1800.根据同旁内角互补,两直线平行可得BC∥DE. AB与CD平行.因为∠1与∠ABC是对顶角,所以∠ABC=∠1=450,因为∠2=1350,所以∠2+∠ABC=1800.根据同旁内角互补,两直线平行可得AB与CD平行.同步练习册七年级上册数学答案冀教版第二课时整式的加减答案【知识单一性训练】1、B2、D3、2a+b-ca-b-c2a-b十c+1-C-d-b+a4、A5、A6、37、解:原式=5a+2b+3a-2b=8a【巩固提升性训练】1-4:BBBD5、-x2-7xy+3y26、±27、ab+cd-88、解:(1)原式=5×-a-3b=4a-3b(2)原式=-3ab-3mn-2ab+2mn=-5ab-mn(3)原式=3x2-4+x2-5x-4x2+10x-12=5x-16(4)原式=3x2-xy-2y2-2x2-2xy+4y2=x2-3xy+2y2(5)原式=6x-9y+3z+4x-4y+6z=6x+4x-9y-4y+3z+6z=10x-13y+9z(6)原式=3a2+(a2+5a2-2a-3a2+9a)=3a2+(3a2+7a)=3a2+3a2+7a=6a2+7a9、解:2A-B=2(2x2-3x+1)-(3x2+2x-4)=4x2-6x+2-3x2-2x+4=x2-8x+6=-7×(-8)+3×4+(-12)-3=56+12-12-3=5311、解:(1)(10a+3b)-[(8a-2b)-(8a-2b)/2]=10a+3b-(4a-b)=6a+4b(人)(2)当a=4,b=2时,6a+4b=6×4+4×2=32所以在断桥景点上车乘客的实际人数为32人12、解:A-B=m2-(6+2a)mn-4n2,因为A-B中不含mn,所以-(6+2a)=0,故a=-313、解:(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由题意得2-2b=0,a+3=0,故a=-3,b=1时,14、解:A=(-x2+3x-8)+(2x2+5x-3)=-x2+3x-8+2x2+5x-3,=x2+8x-11,故A为x2+8x-11,所以x2+8x-11+(2x2+5x-3)=x2+8x-11+2x2+5x-3=3x2+13x-14 15、解:根据题意得A=(-7x2+10x+12)+(4x2-5x-6)=-7x2+10x+12+4x2-5x-6=-3x2+5x+6,所以A+B=(-3x2+5x+6)+(4x2-5x-6)=-3x2+5x+6+4x2-5x-6=x2,因此A+B的值应为x2。
七年级数学数轴配套练习及答案
2.2数轴(一)一、基础训练1.数轴的三要素是,和.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.在已知的数轴上,表示322-的点是.(填序号)①E点②F点③G点④H点二、典型例题例在所给的数轴上画出表示下列各数的点:2,-3,112-,0,32,5,123.5分析在数轴上画出表示已知数的点是经历由“数”到“形”的转换过程.三、拓展提升在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-1.5,-2,0,1.5,3.(1)表示哪些数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?5四、课后作业1.数轴是 .(填序号)①一条直线 ②有原点、正方向的一条直线③有长度单位的一条直线 ④规定了原点、正方向、单位长度的一条直线.2.下列所画数轴正确的是 .(填序号)-10(1)0(2)-1(3)1 -10(4) (5) (6)3.数轴上点M 表示2,点N 表示-3.5,点A 表示-1,点M 和点N 中,距离点A 较远的是___________________.4.在数轴上分别表示出下列各数:(1)0,-2,-3.5,41,2.5 (2)100,20, -200,-120,505.小明的家(记为A )与他上学的学校(记为B )、书店(记为C )依次坐落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条大街向东走了40米,接着又向西走了 70米达到D 处。
试用数轴表示上述A ,B ,C ,D 的位置.6.观察图,数轴上A 、B 、C 、D 四点对应的数都是整数,若A 点对应的数为a ,B 点对应的数为b ,C 点对应的数c ,且2c -3a =11,问数轴上的原点是A 点呢?还是B 点?还是C 点?还是D 点呢?2.2数轴(一)一、基础训练1.原点、正方向、单位长度2.左边;右边;03.2、2、2、2和-24.④二、典型例题例略三、拓展提升数轴略(1)-1.5和1.5;(2)5个单位长度四、课后作业1.④2.(4)3.点M4.略5.略6.B点(分情况讨论)2.2数轴(二)一、基础训练1.在数轴上,表示数-2,2.6,-2.2 ,4 , 0, -3,的点中,在原点左边的点有个.2.在数轴上,原点及原点右边的点表示的数是.,在数轴上点M表示数m,点N表示数n,那么下面说法正确的是3.若有理数m n________.(填序号)①点M在点N的右边②点M在点N的左边③点M在原点右边,点N在原点的左边④点M和点N都在原点的右边4.通过画数轴,下列说法正确的是________.(填序号)①有理数集合中没有最小数,也没有最大数②有理数集合中有最小数,也有最大数③有理数集合中有最小数,没有最大数④有理数集合中有最大数,没有最小数二、典型例题例1 把下列各数在数轴上表示出来,并用“<”连接.3,-32,-1.5,0,-5分析数的大小由数轴上所对应的点的位置确定,数轴上右边的点表示的数总比左边的点表示的数大.例2 大于-4而不大于4的整数有多少个?并利用数轴把它们表示出来.分析借助数轴可以把数通过形来体现,使问题变得直观、简单.三、拓展提升1.如图所示,在数轴上有三个点A、B、C,请回答:A B C(1)将B点向左移动3个单位后,三个点所表示的数谁最小?是多少?(2)将A点向右移动4个单位后,三个点所表示的数谁最小?是多少?(3)将C点向左移动6个单位后,这时B点表示的数比C点表示的数大多少?(4)怎样移动A、B、C中的两个点,才能使三个点表示的数相同?有几种移动的方法?四、课后作业1.大于-3而小于1的整数有.2.比较下列各组数的大小:(1)-7 4 (2)3 0(3)-1 0.01 (4) -3 1.5.3.一个点从数轴上表示2的点出发,向左移动了3个单位长度后又向右移动了6个单位长度,最后到达的终点表示的数是_________.4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A 表示的数是.5.在数轴上A点和B点所表示得数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应将A点________.(填序号)①向左移动5个单位②向右移动5个单位③向右移动4个单位 ④向左移动1个单位或向右移动5个单位6.如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是______.(填序号)①b c a >>>0 ②a b c >>>0 ③ a c b >>>0 ④b a c >>>07.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2008厘米的线段AB ,则线段AB 盖住的整点共有 个.8.一个负有理数a 在数轴上的位置为A ,那么在数轴上与A 相距d 个单位(d >0)的点中,与原点距离最远的点所对应的数是多少?2.2数轴(二)一、基础训练1.32.非负数3.①4.①二、典型例题例1 略例2 有8个,数轴略三、拓展提升(1)最小的是B 是-5(2)最小的是B 是-2(3)大1(4)有三种移动的方法:方法一将点A向右移动2个单位,点C向左移动5个单位;方法二将点B向左移动2个单位,点C向左有移动7个单位;方法三将点A向右移动7个单位,点B右移动5个单位四、课后作业1.-2、-1、02.(1)<、(2)>、(3) <、(4)<3.54.-2.55.②6.④7.2008或20098.与原点距离最远的点所对应的数是a d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学数轴同步练习及答案
七年级数学数轴同步练习及答案
1.数轴的定义:规定了原点、正方向和单位长度的直线叫数轴.原点、•正方向、单位长度称为数轴的三要素.
2.数轴的画法:三要素缺一不可,单位长度统一.
3.利用数轴比较有理数的大小
(1)在数轴上表示的两个数,右边的数总比左边的数大.
(2)正数都大于0,负数都小于0,正数大于一切负数.
思维点击
正确画出数轴,利用数轴比较有理数的大小.
两个负数大小的比较方法:将两个数用数轴上的点表示,看两个点哪个在左,哪个在右,然后利用“数轴上表示的两个数,右边的数总比左边的数大”的性质进行比较.
考点浏览
☆考点
1.能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点表示的数.
3.会比较数轴上数的大小.
例判断下列图形中所画数轴是否正确,如不正确,指出错在哪里?
解析画数轴三要素缺一不可.故以上数轴都不正
确.A缺少单位长度;•B缺少正方向;C缺少原点;D单位长度不一致.
在线检测
1.画一条水平直线,在直线上取一点表示0,叫做
_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的
______来表示.
2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.
3.数轴上表示-2的点离原点的距离是______个单位
长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.
4.判断下列所画的数轴是否正确,如不正确,请指出.
5.在所给的数轴上画出表示下列各数的点:2,-3,,0,,5,。
6.指出数轴上A,B,C,D,E,F各点所代表的数字.
7.在数轴上画出表示下列各数的点,并回答下列问
题.
-3,2,-1.5,-2,0,1.5,3.
(1)哪两个数的点与原点的距离相等?
(2)表示-2的点与表示3的点相差几个单位长度?
8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?
2.2 数轴(答案)
1.略
2.左边右边 0
3.2 2 2 2
4.(1)错误,单位长度不一致 (2)错误,没有单位长度 (3)错误,没有正方向
(4)正确 (5)错误,没有原点•(6)错误,负数排列次序颠倒
5.略
6.略
7.略
8.-2
2012年人教版七年级数学下册期末测验试题
七年级数学上册第一章丰富的图形世界检测题
更多初一数学试题,请关注。