必修一2.2.2对数函数及其性质
高一数学:2.2.2《对数函数的性质》课件
大家都知道,新手玩抖音缺乏经验和方法,拍摄的视频无看点、无内容,尤其没有人关注的新抖音,抖音视频靠前,无疑天荒夜谈。也就是说,不注重维持粉丝的亲密关系,就会慢慢失去粉丝,被对 方取消关注,那么就失去增粉的价值了。,俗话说,任何的成功,都不是一蹴而就的
2.2.2 对数函数及其性质 第二课时 对数函数的性质
问题提出
1.什么是对数函数?其大致图象如何?
2.由对数函数的图象可得到哪些基本性 质?
知识探究(一):函数y = loga x(a 1)的性质
y
思考1:函数图象分布
在哪些象限?与y轴的 相对位置关系如何?
1
0
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
理论迁移
例1 比较下列各组数中的两个值的大小: (1)log23.4,log28.5 ; (2)log0.31.8,log0.32.7; (3)loga5.1,loga5.9(a>0,a≠1); (4)log75,log67.
例2 求下列函数的定义域、值域: (1) y= 1+ log3(x −1) ; (2) y=log2(x2+2x+5).
例3 溶液酸碱度的测量: 溶液酸碱度是通过pH刻画的. pH
的计算公式为pH=-lg[H+],其中[H+] 表示溶液中氢离子的浓度,单位是摩 尔/升. (1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢 离子的浓度之间的变化关系; (2)已知纯净水中氢离子的浓度为[H+ =10-7摩尔/升,计算纯净水的pH.
【高中数学必修一】2.2.2对数函数及其性质
1 例4. 比较log23和 log 3 两个值的大小。 2
1 若把 log 3 改为 log 3 2呢? 2
钥匙:底真都不同,利用中间数法。
1.课堂作业:
阅读教材73页有关反函数的 概念,并理解反函数的概念。
2.课后自主学习:
阅读并掌握教材72页,例9
小结:两个对数比较大小
(一)底同真不同比较大小 1.当底数确定时,则可由函数的 单调性直接进行判断; 2.当底数不确定时,应对底数进 行分类讨论。 (二)真同底不同及底真都不同比较大小
法二:
log2 5 log7 5
l og2 5 l og7 5
1 log 5 2 1 log 5 7
log2 5 log7 5
0
y
y log2 x
y log7 x
1
x
图象法
法三:
x5
又 0 log5 2 log5 7 倒数公式 钥匙:1 真同底不同,利用中间数法、 1 log 2 log 7 log2 5 log7 5 图象法或倒数公式
引入新知
1.定义: 形如
y loga x(a 0, 且a 1) 的函数
叫做对数函数,其中x是自变量,定义
域为 (0,+)
在同一坐标系中,用描点法画出图象
y log2 x
y log 1 x
2
2.图象
y
x
1 2
y log2 x y log 1 x
2
y log2 x
4 3 1 A. 3 , , , 3 5 10
4 C. , 3
4 1 3 B. 3 , , , 3 10 5
1 3 3, , 10 5
高中数学人教A版必修1课件:2、2、2对数函数及其性质
个元素和它对应,那么这样的对应(包括集合A,B以及A到B
的对应法则f)叫做集合A到集合B的映射,记作: f : A B
其中,如果 a A,b B ,且元素a和元素b对应,那么我们
把元素b叫做元素a的象,元素a叫做元素b的原象
说明:1 映射 f : A B有方向性,即它只表示从集合A
a 1
0 a 1
y
y
图
y loga x
(1,0)
像
o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
⑧ y log 1 x
概念辨析
例2 下列函数是对数函数的是(D) A. y=log2(3x-2) B. y=log(x-1)x C. y=log0.3x2 D. y=lnx
2.对数函数的图像和性质
用描点法作y=log2x与y=log0.5x的图象.
x
1 4
高中数学必修1课件:2.2.2《对数函数及其性质》 (共22张PPT)
值域: R
自左向右看图象逐渐上升 在(0,+∞)上是: 增函数
列
x … 1/4 1/2 1 2 4 …
表 y log 2 x … -2 -1 0 1 2 …
y log 1 x … 2
2
1 0 -1 -2 …
y
描
2
点
1 11
这两个函数 的图象有什
42
0 1 23 4
x 么关系呢?
连 线
-1
-2
关于x轴对称
2.2 对数函数
2.2.2 对数函数及其性质 Nhomakorabea复习回顾
1 指数函数的概念;
复 习
2 指数函数的图像与性质:
3 对数的概念和基本运算法则
对数函数的概念
一般地,函数y =
(a>0,且a≠1)
叫做对数函数.其中 x是自变量.
注意:
1.对数函数对底数的限制条件:a>0,且a≠1
2.函数的定义域是(0,+∞).
a>1
0<a<1
图y
y
象 0 (1,0)
x
0 (1,0) x
定义域 : ( 0,+∞)
性
值域 : R
过定点(1 ,0), 即当x =1时,y=0
在(0,+∞)上是增函数
质 当x>1时,y>0
当x=1时,y=0 当0<x<1时,y<0
在(0,+∞)上是减函数
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
作y=log2x的图象
列
x
1/4 1/2 1 2
表 y=log2x -2 -1 0 1
2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质
2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质一、教材分析本节课选自人教版高一数学(必修一)第二单元2.2.2《对数函数及其性质》第一课时。
对数函数是重要的基本初等函数之一,是指数函数知识的拓展和延伸. 它的教学过程,体现了“数形结合”的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨论证的思维能力有重要作用.本节课也为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情分析学生前面已经学习了指数函数,用研究指数函数的方法,进一步研究和学习对数函数的概念、图像和性质以及初步应用,启发引导学生进一步完善初等函数的知识的系统性,加深对函数的思想方法的理解。
教学过程中,发挥大多数学生动手能力较强的特点,让学生自己通过列表、描点、连线画对数函数图像。
这样也利于对对数函数性质的理解。
三、教学目标1.知识目标:让学生掌握对数函数的概念,能正确描绘对数函数的图象,掌握对数函数的性质.2.能力目标:通过对对数函数的学习,培养学生观察,思考,分析,归纳的思维能力.3.情感目标:培养学生勇于探索的精神,让学生主动融入学习.四、教学重点和难点重点:在理解对数函数定义的基础上,掌握对数函数的图象和性质。
难点:对数函数性质的应用。
五、教法与学法说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,教师主导,学生为主体,根据这样的原则和所要完成的教学目标,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
人教版高中数学必修一课件:2.2.2 对数函数的图像及其性质(共20张PPT)
(书面作业)
•P73 2,3
19
Thank you!
要善于退,足够的退,退到不失去重 要性的地方就是解决数学问题的诀窍。
20
比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函数
小
2.比较真数值的大小;
0<a<1时为减函数)
结
3.根据单调性得出结果。
14
•(3) loga5.1与 loga5.9 (a>0,且a≠1)
解: 若a>1 则函数y=log a x在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9
16
函数 yloga x,ylogb x,ylogc x,ylogd x
C 的图像如图,则 所下 示列式子中正( 确) 的
y ylogb x A .0 a b 1 c d
yloga x B .0 b a 1 d c
x
O
ylogd x C .0 d c 1 b a
2.2.2对数函数的图象与性质
y
x
o 1
1
(一)对数函数的定义 ★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量, 定义域是(0,+∞)
想 对数函数解析式有哪些结构特征? 一 ①底数:a>0,且 a≠1 想 ②真数: 自变量x ? ③系数函数?(导学与评价P53) ① y log a x 2 ; ② y log 2 x 1; ③ y 2 log 8 x ; ④ yloxga(x0,且x1); ⑤ ylo5gx.
人教A版必修1第二章2.2.2对数函数及其性质重难点题型(举一反三)(含解析版)
2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】1.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】 对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是()A.y=log3(x+1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【变式7-3】(2019秋•松江区期末)函数的值域为.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】 1.对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是( ) A .y =log 3(x +1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【分析】根据对数函数的定义即可得出.【答案】解:根据对数函数的定义可得:只有y=lnx为对数函数.故选:C.【点睛】本题考查了对数函数的定义,考查了推理能力与计算能力,属于基础题.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【分析】由对数函数的定义依次判断即可.【答案】解:①y=x2的真数为x2,故不是对数函数;②y=log3(x﹣1)的真数为x﹣1,故不是对数函数;③y=log x+1x的底数为x+1,故不是对数函数;④y=logπx是对数函数;故选:A.【点睛】本题考查了对数函数的定义的应用.【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【分析】根据对数函数的定义,y=log a x(a>0,且a≠1),逐一分析给定函数是否为指数函数,可得结论.【答案】解:①y=log x2不是对数函数;②y=log a x(a∈R)不是对数函数;③y=log8x是对数函数;④y=lnx是对数函数;⑤y=log x(x+2)不是对数函数;⑥y=2log4x不是对数函数;⑦y=log2(x+1)不是对数函数;综上所述,对数函数有2个,故选:B.【点睛】本题考查的知识点是对数函数的定义,熟练掌握对数函数的定义,是解答的关键.【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【分析】根据对数函数的定义进行判断即可.【答案】解:①y=log a x2(a>0,且a≠1),真数不是变量x,不是对数函数;②y=log2x﹣1,不是对数函数;③y=2log8x;系数不是1,不是对数函数④y=log x a(x>0,且x≠1),底数不是常数,不是对数函数;⑤y=log5x,满足对数函数的定义,是对数函数;⑥y=log a x(a>0,a≠1)满足对数函数的定义,是对数函数,故是对数函数的有⑤⑥,共有2个,故选:B.【点睛】本题主要考查函数概念的判断,根据对数函数的定义是解决本题的关键.【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【分析】根据对数的换底公式可得出,从而可得出2<log420<log315,且可得出,这样即可得出a,b,c的大小关系.【答案】解:,,,且log54>log53>0,∴,∴2=log416<log420<log315,∴a<c<b.故选:C.【点睛】考查对数的换底公式,以及指数函数和对数函数的单调性,增函数的定义,不等式的性质.【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【分析】根据条件可得出,从而得出a6=8,b6=9且c6=7,a,b,c都是正数,这样即可得出a,b,c的大小关系.【答案】解:∵log a2=2,log3b=,c6=7,∴∴a6=8,b6=9,c6=7,且a,b,c都是正数,∴c<a<b故选:C.【点睛】考查对数的定义,对数与指数的互化,以及指数的运算,幂函数的单调性.【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【分析】容易得出,从而可得出a,b,c的大小关系.【答案】解:∵log30.3<log31=0,30.3>30=1,0<0.30.2<0.30=1∴a<c<b.故选:B.【点睛】考查对数函数、指数函数的单调性,以及增函数、减函数的定义.【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【分析】容易得出,从而可得出正确的选项.【答案】解:∵log34>log33=1,0<0.31.7<0.30=1,log0.310<log0.31=0,∴.故选:A.【点睛】考查对数函数和指数函数的单调性,增函数和减函数的定义.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【分析】根据a与b的正负,利用指数函数与对数函数的性质判断即可确定出其图象.【答案】解:∵a>0,b>0,且ab=1,a≠1,∴函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是,故选:B.【点睛】此题考查了指数函数与对数函数的图象,熟练掌握指数、对数函数的图象与性质是解本题的关键.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【分析】由于当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,利用指数函数的图象和性质可得0<a<1.先画出函数y=log a|x|的图象,此函数是偶函数,当x>0时,即为y=log a x,而函数y=log a||=﹣log a|x|,即可得出图象.【答案】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.因此,必有0<a<1.先画出函数y=log a|x|的图象:红颜色的图象.而函数y=log a||=﹣log a|x|,其图象如黑颜色的图象.故选:B.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【分析】先求出函数的定义域,再判断函数为奇函数,即图象关于原点对称,故可以排除BC,再根据函数值域,可排除D.【答案】解:∵f(x)=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f(x)为奇函数,图象关于原点对称,故排除B、C,∵当0<x<1时,lnx<0,∴f(x)=<0,x∈(0,1)故排除D.故选:A.【点睛】本题主要考查了绝对值函数以及函数的值域、奇偶性和单调性,属于基础题.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【答案】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X轴的交点是(1,0),故函数y=lg(x+1)的图象与X轴的交点是(0,0),即函数y=|lg(x+1)|的图象与X轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意故选:A.【点睛】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化规律,由这些规律得出函数y=|lg(x+1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【分析】根据对数函数的性质求出定点的坐标即可.【答案】解:y=log a(x﹣1)+log a(x+1)=log a(x2﹣1),令x2﹣1=1,解得:x=±,而x﹣1>0,解得:x>1,故x=,故函数的图象过(,0),故选:C.【点睛】本题考查了对数函数的性质,考查特殊值问题,是一道基础题.【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【分析】令2x+3=1,求得x的值,从而求得P点的坐标.【答案】解:令2x+3=1,可得x=﹣1,此时y=3.即函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点P的坐标为(﹣1,3).故选:C.【点睛】本题主要考查对数函数的单调性和特殊点,属于基础题.【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【分析】根据log a1=0,a0=1,求出定点的坐标即可.【答案】解:令x+2=1,解得:x=﹣1,故y=0+1+2=3,故图象过(﹣1,3),故选:D.【点睛】本题考查了对数函数,指数函数的性质,根据log a1=0,a0=1是解题的关键.【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【分析】令=1,解得x=﹣2,y=0,进而得到f(x)=log a的图象恒过点的坐标.【答案】解:令=1,解得:x=﹣2,故f(﹣2)=log a1=0恒成立,即f(x)=log a的图象恒过点(﹣2,0),故选:B.【点睛】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【分析】求出函数的定义域,根据函数奇偶性的定义以及复合函数的单调性判断即可.【答案】解:由得:x∈(﹣10,10),故函数f(x)的定义域为(﹣10,10),关于原点对称,又由f(﹣x)=lg(10﹣x)+lg(10+x)=f(x),故函数f(x)为偶函数,而f(x)=lg(10+x)+lg(10﹣x)=lg(100﹣x2),y=100﹣x2在(0,10)递减,y=lgx在(0,10)递增,故函数f(x)在(0,10)递减,故选:D.【点睛】本题考查了函数的单调性和函数的奇偶性问题,考查转化思想,是一道基础题.【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【分析】把(4,0)和(7,1)代入f(x)列出方程组解出a,m,根据对数函数的性质判断.【答案】解:∵f(x)的图象过点(4,0)和(7,1),∴,解得.∴f(x)=log4(x﹣3).∴f(x)是增函数.∵f(x)的定义域是(3,+∞),不关于原点对称.∴f(x)为非奇非偶函数.故选:A.【点睛】本题考查了对数函数的性质,属于基础题.【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【分析】根据函数奇偶性的定义判断函数的奇偶性即可.【答案】解:由>0,解得:﹣1<x<1,故函数f(x)的定义域是(﹣1,1),关于原点对称,而f(﹣x)=log2=﹣log2=﹣f(x),故f(x)是奇函数,故选:A.【点睛】本题考查了函数的奇偶性问题,是一道基础题.【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【分析】首先令h(x)=f(x)+g(x),求出h(x)的定义域,而后用函数奇偶性定义求证.【答案】解:令h(x)=f(x)+g(x)=ln(2x+1)+ln(1﹣2x)由得:﹣<x<,h(x)定义域为(﹣,),∴h(﹣x)=ln(1﹣2x)+ln(1+2x)=h(x),所以,h(x)为偶函数.故选:B.【点睛】本题主要考查了奇偶函数的定义域要求,以及函数奇偶性定义,属基础题.【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【分析】根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.【答案】解:要使函数有意义则解得x>1且x≠2∴函数的定义域为(1,2)∪(2,+∞)故选:C.【点睛】本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【分析】由函数的解析式列出不等式进行求解即可.【答案】解:由题意得,,解得x>,则函数的定义域是,故选:C.【点睛】本题考查了函数的定义域的求法,属于基础题.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【分析】首先由根式有意义得到log0.5(4x﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log0.5(4x﹣3)≥0,即0<4x﹣3≤1,解得.所以原函数的定义域为(].故选:B.【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题.【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【分析】利用对数的性质求解.【答案】解:函数y=的定义域满足:,解得.故选:D.【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题.【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y=log4x为(0,+∞)上的增函数,∴当u(x)取得最大值时,原函数取得最大值,即y max=log4u(x)max=log44=1,因此,函数y=log4(2x+3﹣x2)的值域为(﹣∞,1],故填:(﹣∞,1].【点睛】本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【分析】先将原函数y=log0.5(x2+x+)转化为两个基本函数令t=x2+x+=(x+)2+,y=log0.5t 的,再用复合函数的单调性求解.【答案】解:令t=x2+x+=(x+)2+∈[,+∞],∵函数y=log0.5t的在定义域上是减函数,∴y∈(﹣∞,2];故答案为(﹣∞,2].【点睛】本题主要考查用复合函数的单调性来求函数的值域,本题关键是求出二次函数的值域,属于基础题.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【分析】利用换元法,令t=由2≤x≤4 可得﹣1≤t≤﹣,由题意可得y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,从而可求函数的值域.【答案】解:令t=,因为2≤x≤4,所以﹣1≤t≤﹣,则y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,当t=﹣是函数有最小值,当t=﹣1时函数有最大值8;故答案为:{y|}【点睛】本题主要考查了对数的运算性质,换元法的应用,二次函数性质的应用及函数的单调性的应用,属于基础知识的简单综合试题.【变式7-3】(2019秋•松江区期末)函数的值域为.【分析】由函数的解析式可得,当x<1时,f(x)>;当x≥1时,f(x)≥0,综上可得f(x)的值域.【答案】解:由于函数,故当x<1时,f(x)=>.当x≥1时,f(x)=log2x≥log21=0.综上可得,f(x)≥0,故函数的值域为[0,+∞),故答案为[0,+∞).【点睛】本题主要考查求函数的值域,指数函数、对数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【分析】由已知中x≥0,y≥0且x+2y=,可得y∈[0,],8xy+4y2+1=﹣12y2+8y+1,结合二次函数的图象和性质及对数函数的图象和性质,可得答案.【答案】解:∵x+2y=,∴x=﹣2y,由x≥0,y≥0,可得y∈[0,],则8xy+4y2+1=﹣12y2+8y+1,令t=﹣12y2+8y+1,当y∈[0,]时,t∈[1,],又由u=log0.5t为减函数,故当t=1时函数u=log0.5(8xy+4y2+1)的最大值为0,故答案为:0.【点睛】本题考查的知识点是对数函数的值域和最值,其中熟练掌握对数函数的图象和性质是解答的关键.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【分析】对a分a>1与0<a<1两类讨论,利用函数的单调性即可.【答案】解:若a>1,f(x)=log a(x+1)在[0,3]上单调递增,∴f(x)max=log a4=2log a2,f(x)min=log a1=0,∵f(x)max﹣f(x)min=2,∴2log a2﹣0=2,∴log a2=1,故a=2;若0<a<1,f(x)=log a(x+1)在[0,3]上单调递减,同理可得a=.故答案为:2或.【点睛】本题考查对数函数的单调性与最值,考查分类讨论思想,属于中档题.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【分析】先根据复合函数的单调性确定函数g(x)=x2﹣ax+1的单调性,进而分a>1和0<a<1两种情况讨论:①当a>1时,考虑对数函数的图象与性质得到x2﹣ax+1的函数值恒为正;②当0<a<1时,△=a2﹣4<0恒成立,x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值.最后取这两种情形的并集即可.【答案】解:令g(x)=x2﹣ax+1(a>0,且a≠1),①当a>1时,y=log a x在R+上单调递增,∴要使y=log a(x2﹣ax+1)有最小值,必须g(x)min>0,∴△<0,解得﹣2<a<2∴1<a<2;②当0<a<1时,g(x)=x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值,不符合题意.综上所述:1<a<2;故答案为:1<a<2.【点睛】本题考查对数函数的值域最值,着重考查复合函数的单调性,突出分类讨论与转化思想的考查,是中档题.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【分析】根据f(x)的定义域为[1,9]先求出y=[f(x)]2+f(x2)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3的最大值.【答案】解:由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3,∵1≤x≤3,∴0≤log3x≤1.∴当x=3时,g(x)有最大值13.故答案为:13【点睛】根据f(x)的定义域,先求出g(x)的定义域是正确解题的关键步骤,属于易错题.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【分析】(1)由题意可得,从而求定义域;(2)可判断函数f(x)是奇函数,再证明如下;(3)当a>1时,由复合函数的单调性及四则运算可得f(x)为增函数,从而求最值.【答案】解:(1)由题意知,;解得,﹣3<x<3;故函数f(x)的定义域为(﹣3,3);(2)函数f(x)是奇函数,证明如下,函数f(x)的定义域(﹣3,3)关于原点对称;则f(﹣x)=log a(﹣x+3)﹣log a(3+x)=﹣f(x),故函数f(x)是奇函数.(3)当a>1时,由复合函数的单调性及四则运算可得,f(x)=log a(x+3)﹣log a(3﹣x)为增函数,则函数f(x)在区间[0,1]上单调递增,故f max(x)=f(1)=log a2.【点睛】本题考查了函数的定义域,奇偶性,单调性,最值的判断与应用,属于基础题.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【分析】(1)根据奇函数的特性,可得f(0)=0,再由f(﹣x)=﹣f(x),m≠﹣1,可得实数m的值;(2)结合对数函数的图象和性质,及复合函数同增异减的原则,可得函数f(x)在区间(﹣1,1)上的单调性;(3)由f()>0,可得函数f(x)在区间(﹣1,1)上的单调递增,结合函数的定义域和奇偶性,解不等式,可得实数b的取值范围.【答案】解:(1)∵f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,∴f(0)=0,且f(﹣x)=﹣f(x),即=﹣,即+==log a1=0,故m2=1,又∵m≠﹣1,故m=1,(2)由(1)得f(x)==,令t=,则t在区间(﹣1,1)上单调递减,当0<a<1时,y=log a t为减函数,此时函数f(x)在区间(﹣1,1)上的单调递增;当a>1时,y=log a t为增函数,此时函数f(x)在区间(﹣1,1)上的单调递减;(3)若f()=>0,则0<a<1,由(1)得,函数f(x)在区间(﹣1,1)上的单调递增,若f(b﹣2)+f(2b﹣2)>0,则f(b﹣2)>﹣f(2b﹣2),则f(b﹣2)>f(2﹣2b),则﹣1<2﹣2b<b﹣2<1,解得:b∈(,)【点睛】本题考查的知识点是对数函数的图象与性质,难度不大,属于基础题.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【分析】(1)解不等式得出x的范围,从而得出函数f(x)的定义域;(2)将﹣x代入函数f(x)的解析式,利用对数的运算性质得到f(﹣x)=﹣f(x),从而得出答案;(3)在区间(1,+∞)上任取x1>x2>1,作差f(x1)﹣f(x2),通过对数的运算性质以及对数函数的单调性得出差值f(x1)﹣f(x2)的符号,从而得出函数f(x)在区间(1,+∞)上的单调性,再利用同样的方法可得出函数f(x)在区间(﹣∞,1)上的单调性.【答案】解:(1),零和负数无对数,,可得x<﹣1或x>1,则定义域为(﹣∞,﹣1)∪(1,+∞);(2)函数f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),关于原点对称,=,因此,函数f(x)为奇函数;(3)函数f(x)在区间(﹣∞,﹣1)和(1,+∞)上都是减函数,下面利用定义来证明.先利用定义证明函数f(x)在区间(1,+∞)上的单调性.任取x1>x2>1,则==,∵x1>x2>1,则x1x2+x2﹣x1﹣1<x1x2+x1﹣x2﹣1,此时,g a1=0,即f(x1)<f(x2),所以,函数f(x)在区间(1,+∞)上单调递减,同理可证函数f(x)在区间(﹣∞,﹣1)上也为减函数.【点睛】本题考察函数的定义域的求解,考察对数型函数的奇偶性与单调性的定义,关键在于利用定义来判断函数的基本性质,以及熟悉定义法判断函数基本性质的基本步骤,属于中等题.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.【分析】(1)根据对数函数的性质以及函数的定义域,根据函数的奇偶性的定义判断函数的奇偶性即可;(2)根据函数单调性的定义判断函数的单调性即可;(3)根据函数的单调性以及函数的奇偶性判断即可.【答案】解:(1)要使函数f(x)=log3(1+x)﹣log3(1﹣x)有意义,必须满足,解得:﹣1<x<1,∴函数f(x)的定义域是(﹣1,1),综上所述,结论是:函数f(x)的定义域是(﹣1,1).f(x)=log3(1+x)﹣log3(1﹣x)=log3().f(﹣x)=log3=﹣log3.∴f(x)为奇函数.(2)函数f(x)=log3(),在区间(﹣1,1)上任取两个不同的自变量x1,x2,且设x1<x2,则f(x1)﹣f(x2)=log3,又(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0,即(1+x1)(1﹣x2)<(1﹣x1)(1+x2),∵﹣1<x1<x2<1,∴1+x1>0,1﹣x2>0,∵(1+x1)(1﹣x2)>0,∴<1,∴log3<0,即f(x1)>f(x2),∴函数f(x)是定义域内的单调递增函数.(3)∵f(x)为奇函数,∴f(1﹣x)+f(1﹣x2)>0∴f(1﹣x)>f(x2﹣1),又∵f(x)在定义域上单调递增,∴1﹣x>x2﹣1,x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,而,解得:0<x<,综上:0<x<1.【点睛】本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.。
2.2.2 对数函数及其性质
第一课时 对数函数的概念、图象与性质
学习目标
1. 理解对数函数的概念;
2. 掌握对数函数的图象与性质; 3. 对数函数的图象与性质应用.
北京青年报曾报道:潮 白河底挖出冰冻古树可 能是山杨,专家经过检 测可推断树的埋藏时 间.
• 你知道专家是根据什 么推断树的埋藏时间 的吗?
y
描 点
2
1 11
42
0 1 23 4
连 -1
线
-2
2 4 ….. 1 2…
x
作y=log0.5x图像
列
x
1/4 1/2 1 2 4
表 y log 2 x -2 -1 0 1 2
y log 1 x
2
1 0 -1 -2
y
2
描
2
点
1 11
42
0 1 23 4
x 这两个函
连
-1
线
-2
数的图象 有什么关
系呢?
关于x轴对称
(3)根据对称性(关于x轴对称)已知 f (x) log3 x
的图象,你能画出 f (x) log 1 x
3
y
的图象吗?
1
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图
0<a<1
象
定义域 : 值域:
3.已知对数函数过点(16,4)则函数解析式为—
2. 对数函数:y = loga x (a>0,且a≠ 1)
图象与性质
在同一坐标系中用描点法画出对数函数
y log2 x和y log 1 x 的图象。
高中数学必修一新课标人教版 第二章 基本初等函数(Ⅰ) 对数函数及其性质
故所求的函数的定义域为(-1,7)∪(7,+∞). 3x-2>0, (2)要使函数有意义,则有2x-1>0, 2x-1≠1, 解得 2 x>3且x≠1.
2 故所求的定义域为(3,1)∪(1,+∞).
求下列函数的定义域:
(1)y=log2(x-1)2;
(2)y= .
[解析]
(1)要使函数有意义,须(x-1)2>0,
c<d<1<a<b.
[ 点评 ] 两个单调性相同的对数函数,它们的图象在 位于直线x=1右侧的部分是“底大图低”.
[例2] 求下列函数的定义域:
1 y= ; log2(x+1)-3 (2)y=log(2x-1)(3x-2).
[解析]
(1)要使函数有意义,则有 即x>-1且x≠7.
x+1>0, log2(x+1)-3≠0,
如右图是对数函数①y=logax,②y=logbx,③y=logcx, ④y=logdx的图象,则a、b、c、d与1的大小关系是 ( A.a>b>1>c>d B.b>a>1>d>c C.1>a>b>c>d )
D.a>b>1>d>c
[答案] B
[ 解析 ] 方法 1 :对数函数的图象分布与底数 a 的关系 是第一象限内逆时针a值由大到小,故b>a>d>c,∴选B. 方法2:在上图中画出直线y=1,分别与①、②、③、 ④ 交 于 A(a,1) 、 B(b,1) 、 C(c,1) 、 D(d,1) , 由 图 可 知
总结评述:(1)是利用对数函数的单调性比较两个数
的大小,底数范围未明确指定时,要对底数进行讨论来比
2.2.2对数函数及其性质
三 、 课 堂 结 构 设 计
对数函数概念的建构
(约需6分钟) 约需6分钟)
复习知识—打下基础 复习知识 打下基础 创设情境—感知概念 创设情境 感知概念 辨析讨论—深化概念 辨析讨论 深化概念 思考问题—猜想结果 思考问题 猜想结果 动手操作—画出图像 动手操作 画出图像 观察图像—探究性质 观察图像 探究性质 尝试练习—巩固定理 尝试练习 巩固定理
二、教学目标分析
课程标准》 1. 《课程标准》 2.本节课目标 2.本节课目标
理解对数函数的概念,掌握对数函数的性质,了解 理解对数函数的概念,掌握对数函数的性质, 对数函数在生产实践中的简单应用。 对数函数在生产实践中的简单应用。 通过学习,使学生掌握对数函数的单调性及其判定, 通过学习,使学生掌握对数函数的单调性及其判定, 会进行同底数和不同底数对数大小的比较。 会进行同底数和不同底数对数大小的比较。渗透数形结 合思想、 合思想、分类讨论的思想 让学生亲身经历数学研究的过程, 让学生亲身经历数学研究的过程,培养用联系的观 从而解决问题的能力。 点分析问题、观察问题,从而解决问题的能力。培养学 生勇于提问善于探索的思维品质。 生勇于提问善于探索的思维品质。
x =N a
1.对数函数概念的建构 1.对数函数概念的建构
(2)创设情境—感知概念 创设情境—
引例:某种细胞分裂时, 个分裂成2个 个分裂成4个 引例:某种细胞分裂时,由1个分裂成 个,2个分裂成 个,……. 个分裂成 个分裂成 以此类推,设细胞分裂的次数为y 得到的细胞个数为x. ,以此类推,设细胞分裂的次数为 ,得到的细胞个数为 (1)填表: )填表: 细胞个数x 分裂次数y
直线与平面垂直的判定方法
定义:如果一 条直线垂于一 个平面内的任 何一条直线, 则此直线垂直 于这个平面. 于这个平面.
2.2.2 对数函数及其性质
2.2.2对数函数及其性质1.对数函数的概念形如y=log a x (a>0且a≠1)的函数叫做对数函数.对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.m (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba,log b a ,log a b 的大小.点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解. 解点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 323.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .23.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<08.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log ax ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值.。
2.2.2对数函数的图象及性质
比较大小应该注意: 比较大小应该注意:
1、若底数为同一常数,则可由对数函数的 若底数为同一常数, 单调性直接进行判断 (例1 (1),(2)) 例 2、若底数为同一字母,则按对数函数的单 若底数为同一字母, 调性对底数进行分类讨论 (例1(3)) 3、若底数、真数都不相同,则常借助 若底数、真数都不相同, 1、0、-1等中间量进行比较. ( 例2 ) 、-1等中间量进行比较.
1 y = 2
x
反之,设截取木棒次数为 , 反之,设截取木棒次数为y,木棒剩 余长度为x 的关系是: 余长度为 ,则y与x的关系是: 与 的关系是
y = log 1 x
2
一、对数函数的定义: 对数函数的定义:
函数y=log (a>0,且a≠1)叫做对数 函数y=logax (a>0,且a≠1)叫做对数 函数. 是自变量。 函数 其中 x是自变量。 是自变量 定义域是 函数的定义域 函数的定义域是( 0 , +∞) ) 思考: 为什么定义域为( 思考:(1)为什么定义域为( 0 , +∞)? )
练习3: 练习 :
将0.32,log20.5,log0.51.5由小到大 , 由小到大 log20.5< log0.51.5<0.32 排列,顺序是: 排列,顺序是:
课堂总结: 课堂总结:
1、对数函数的定义 、 2、对数函数的图象和性质 、 3、比较两个对数值的大小 、
图 象
指数函数y=ax (a>0,a≠1) y y=ax y=ax (0<a<1) (a>1) 1 x o (1)定义域:R 定义域: 定义域 (2)值域:(0,+∞) 值域: 值域
对数函数及其性质( 2.2.2 对数函数及其性质(一)
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)
2。
2。
2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。
因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。
只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。
像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。
对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。
5x 的图象.利用换底公式可以得到:y=log 0。
5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。
5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。
"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。
(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。
【高中数学必修一】2.2.2 对数函数及其性质-高一数学人教版(必修1)(解析版)
一、选择题1.如果对数函数y =log 2x 的图象经过点(a ,–2),则a 的值为A .14B .14-C .4D .–4【答案】A【解析】因为对数函数y =log 2x 的图象经过点(a ,–2),所以log 2a =–2,解得2124a -==.故选A . 2.函数y =lg (|x |+1)的单调性为A .在(–∞,+∞)单调递增B .在(–∞,+∞)单调递减C .在(0,+∞)单调递增D .在(0,+∞)单调递减【答案】C3.如图所示曲线是对数函数y =log a x 的图象,已知a 的取值为43133510,,,,则相应图象C 1,C 2,C 3,C 4中的a 的值依次为A 43133510,,,B 41333105,,,C .43133510,,,D .41333105,,,【答案】C【解析】函数y =log a x 的图象过(a ,1),在平面直角坐标系内作直线y =1,可知在第一象限不同底数的图象逆时针按其底数从大到小排列,则图象C 1,C 2,C 3,C 4中的a 的值由大到小应为C 2,C 1,C 3,C 4,又∵a 的取值为43133510,,,,故C1,C 2,C 3,C 4中的a 的值分别为43133510,,,,故选C . 4.函数21log 21y x =-的反函数的定义域为 A .(–∞,+∞) B .(0,+∞)C .(–∞,0)D .(–∞,0)∪(0,+∞)【答案】A【解析】反函数的定义域即为原函数的值域,由1021x >-得21log 21x ∈-R ,所以函数21log 21y x =-的值域为R ,由于反函数的定义域即为原函数的值域,∴反函数的定义域为R ,故选A . 5.函数y =log 2x 与y =x –2的图象的交点个数为A .0B .1C .2D .3【答案】 C6.函数f (x )=log (2x –1)(2–x )的定义域是A .12⎛⎫+∞ ⎪⎝⎭,B .(–2,2)C .()11122⎛⎫⎪⎝⎭,,D .()12122⎛⎫- ⎪⎝⎭,,【答案】C【解析】由题意,原函数有意义时应满足20210211x x x ->⎧⎪->⎨⎪-≠⎩,解得2121x x x <⎧⎪⎪>⎨⎪≠⎪⎩,∴11122x x <<<<或,∴原函数点的定义域为()11122⎛⎫⎪⎝⎭,,,故选C .7.f (x )=log a (2x +b –1)(a >0,且a ≠1)的图象如下图所示,则a ,b 满足的关系是A .0<a –1<b <1B .0<b <a –1<1C .a –1>b >1D .b >a –1>1【答案】C8.若某对数函数的图象过点(4,2),则该对数函数的解析式为A .y =log 2xB .y =2log 4xC .y =log 2x 或y =2log 4xD .不确定【答案】A【解析】由对数函数的概念可设该函数的解析式为y =log a x (a >0,且a ≠1,x >0),则2=log a 4=log a 22=2log a 2,即log a 2=1,解得a =2.故所求对数函数的解析式为y =log 2x .故选A . 9.函数y =log 0.5(5+4x –x 2)的递增区间是A .(–∞,2)B .(2,+∞)C .(–1,2)D .(2,5)【答案】D【解析】令t =5+4x –x 2>0,得–1<x <5,由t =–x 2+4x +5知,其对称轴为x =2,故内函数在(–1,2)上是增函数,在(2,5)上是减函数.∵函数y =log 0.5t 的在定义域上是减函数,故函数y =log 0.5(–x 2+4x +5)在(2,5)上是增函数.故选D . 二、填空题 10.函数()212log 2y x =-__________,值域是__________.【答案】(21][12)-,,、[0,+∞) 【解析】由题意,要使函数有意义,需满足()2122log 2020x x ⎧-≥⎪⎨⎪->⎩,解得2112x x -<≤-≤<,,故函数的定义域是(21][12)--,,,又()212log 2y x =-≥0,故函数的值域是[0,+∞).故答案为(21][12)--,,、[0,+∞).11.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b –a 的最小值为__________.【答案】2312.若函数y =log a (x +m )+n (a >0,且a ≠1)经过定点(3,–1),则m +n =__________.【答案】–3【解析】若函数y =log a (x +m )+n 恒过定点(3,–1),即–1=log a (3+m )+n ,则311m n +=⎧⎨=-⎩,即21m n =-⎧⎨=-⎩,∴m +n =–3,故答案为:–3.13.已知对数函数f (x )的图象过点(9,2),则函数f (x )=__________.【答案】log 3x【解析】设f (x )=log a x (a >0且a ≠1).因为f (x )的图象过点(9,2),所以f (9)=2,即log a 9=2,则a 2=9,a =±3.又a >0且a ≠1,所以a =3.故答案为:log 3x . 14.y =lg (–x 2+x )的递增区间为__________.【答案】(0,12) 【解析】由–x 2+x >0,可得0<x <1,令t =–x 2+x =–(x –12)2+14,则函数在(0,12)上单调递增;在(12,1)上单调递减,∵y =lg t 在定义域内为增函数,∴y =lg (–x 2+x )的递增区间为(0,12),故答案为:(0,12). 三、解答题15.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,利用图象判断是否有满足f (a )>f (2)的a 值. 【解析】(1)作出函数y =log 3x 的图象如图所示:16.求函数()lg lg 5y x x =-的定义域.【解析】要使函数有意义,需满足lg 050x x ≥⎧⎨->⎩,即1≤x <5,故函数的定义域为[1,5}.17.已知f (x )=log a (a x –1)(a >0,且a ≠1),(1)求其定义域;(2)解方程f (2x )=f –1(x ).【解析】(1)由已知条件,知a x –1>0,即a x >1. 故当a >1时,x >0,当0<a <1时,x <0. 即当a >1时,函数的定义域为(0,+∞), 当0<a <1时,函数的定义域为(–∞,0). (2)令y =log a (a x –1),则该式等价于a y =a x –1, x =log a (a y +1),即f –1(x )=log a (a x +1).又∵f(2x)=f–1(x),∴log a(a2x–1)=log a(a x+1),即a2x–1=a x+1.∴(a x)2–a x–2=0.∴a x=2,或a x=–1(舍去).∴x=log a2.18.求函数y=2lg x+lg(x–1)的定义域和值域.【解析】由题意得,x应满足:10xx>⎧⎨->⎩,解得:x>1,故函数的定义域为(1,+∞),值域为R.19.求不等式log12(x+1)≥log2(2x+1)的解集.。
高中数学必修1-2.2.2对数函数及其性质
高中数学必修1-2.2.2对数函数及其性质课时1 对数函数由前面的学习我们知道:如果有一种细胞分裂时,由1个分裂成2个,2个分裂成4个,···,1个这样的细胞分裂x次会得到多少个细胞?Y=2x如果知道了细胞的个数y,如何确定分裂的次数x呢?由对数式与指数式的互化可知:上式可以看作以y为自变量的函数表达式对于每一个给定的y值都有惟一的x的值与之对应,把y看作自变量,x就是y的函数,但习惯上仍用x表示自变量,y表示它的函数:即这就是本节课要学习的:对数函数:判断:以下函数是对数函数的是()1. y=log2(3x-2)2. y=log(x-1)x3. y=log1/3x24.y=lnx5.对数函数的图象:1.描点画图注意只要把指数函数y=a x (a>0,a≠1) 的变量x,y 的对应值对调即可得到 y=log a x (a>0,a≠1)的变量对应值表如下.在同一坐标系中用描点法画出对数函数xy x y 212log log ==和的图象。
作图步骤: ①列表,②描点,③连线。
我试试我理解下列是6个对数函数的图象,比较它们底数的大小规律:在 x=1的右边看图象,图象越高底数越小.即图高底小xx f 31log )(=练一练:比较下列各组中,两个值的大小:(1)log23.4与log28.5 (2)log 0.3 1.8与log 0.3 2.7解法1:画图找点比高低解法2:利用对数函数的单调性(3) log a 5.1与 log a 5.9解: ①若a>1则函数在区间(0,+∞)上是增函数; ∵5.1<5.9∴ log a 5.1 < log a 5.9②若0<a<1则函数在区间(0,+∞)上是减函数; ∵5.1<5.9 ∴ log a 5.1 > log a 5.9注意:若底数不确定,那就要对底数进行分类讨论即0<a<1 和 a > 1小结:比较两个同底对数值的大小时:1.观察底数是大于1还是小于1( a>1时为增函数0<a<1时为减函数) 2.比较真数值的大小; 3.根据单调性得出结果。
必修1《2_2_2对数函数及其性质》
必修1《2.2.2 对数函数及其性质》一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有很多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,水平要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提升,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生很多学习特点,水平发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
因为函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算水平有所下降,这双重问题增加了对数函数教学的难度。
教师必须理解到这个点,教学中要控制要求的拔高,注重学习过程。
三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据实行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标1.通过具体实例,直观理解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并理解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生使用函数的观点解决实际问题。
五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,假设要求这种细胞经过多少次分裂,大约能够得到细胞1万个,10万个……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;图12.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数.②对数函数对底数的限制:,且.3.根据对数函数定义填空;例1 (1)函数y=log a x2的定义域是___________ (其中a>0,a≠1)(2) 函数y=log a(4-x) 的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a > 0且a ≠ 1)
y 2 1
0
11 42
y log2 x
y log3 x
1 2 3
4
x
y log1 x
y l og1 x
2
底 大 图 低
-1 -2
3
对数函数在第一象限越靠近y轴底数越小
由下面对数函数的图像判断底数a,b,c,d的大小
y
logc x logd x
1
loga x logb x
注意: 1、对数函数的定义与指数函数类似,都是形式定义,
2、对数函数对底数的限制:
(a 0
且
a 1)
判断是不是对数函数
(2) y log2 ( x 2)
x (1) y log 5 5
哈哈 ,我们都不是对数函数
(×) (×)
你答对了吗???
(3) y 2 log5 x (×)
x
-1
-2
这两个函 数的图象 有什么关 系呢?
关于x轴对称
猜猜: 对数函数 y 2 1
0
y log3 x和y log1 x 的图象。
y log2 x
3
y log3 x
11 42
1 2 3
4
x
y log1 x
y l og1 x
2
-1 -2
3
y = loga x与y = log 1 x关于x轴对称
与轴交点(1,0)
图象向上、向下无限延伸
定点(1,0)
值 域 :
R
自左向右看图象逐渐下降 在(0,+∞)上是: 减函数
2.对数函数的图象和性质
a>1
y
x =1
y loga x (a 1)
0<a<1
y
X
x =1
我很重要
图
象
(1,0)
O
(0,+) R 过点(1,0)
O
定义域 值域
(1,0)
y loga x (0 a 1)
y 2
1
0
11 42
1 2 3
4
x
-1 -2
探究:对数函数:y
= loga x (a>0,且a≠ 1) 图象与性质
列 y log2 x 表 描 点 连 线
x
…
1/4 1/2
-1 1 2
1
0 0
2 4
1 -1
…
… -2
2 … -2 …
y log1 x … 2 y 2
1
0
11 42
1 2 3
4
图象特征
代数表述
图象位于y轴右方
定义域 : ( 0,+∞)
与轴交点(1,0)
图象向上、向下无限延伸 自左向右看图象逐渐上升
定点(1,0)
值 域 :
R
在(0,+∞)上是: 增函数
探究:对数函数:y
= loga x (a>0,且a≠ 1) 图象与性质
列 表 描 点 连 线
x
y = log 1 x
2
… …
2.2.2对数函数及其性质
温故而知新
定义:一般地,如果 aa 0, a 1 的b次幂等于N,
b a N 那么数 b叫做 以a为底 N的对数,记作: 就是
loga N b .a叫做对数的底数,N叫做真数。
问题情境 某种细胞1个分裂成2个,2个分裂成4个,4个 分裂成8个……则1个这 样的细胞分裂x次后得到细 胞个数y为? y =2x
火箭的最大速度v和燃料质量M、火箭质 量m的函数关系是:
M v 2000 ln(1 ) m
数学源于实践
生物学家研究发现:洄游鱼类的游速v和鱼的 耗氧量O之间的函数关系:
1 O v log 3 2 100
学习函数的一般模式(方法): 解析式(定义) 图像
数形结合
①定义域 ②值域
性质 应用
思考一般地,原函数与反函数的定义域、值域 有什么关系?函数图象之间有什么关系?单调性 有什么关系? 原函数的定义域就是反函数的值域,原函数的值 域是反函数的定义域,它们的图象关于直线y=x对 称,原函数与反函数具有相同的单调性.
例 函数f(x)=loga (x-1)(a>0且a≠1) 的反函数的图象经过点(1, 4),求a的值. 解:依题意,得
(4) y = log2 x x (×)
(×) (×)
1 (6) y = log5 x (7) y = log x 5
我们是对数型函数 请认清我们
例1 已知函数f(x)为对数函数,且图象过点(4, 2),求f(1),f(8)
解: f ( x)为对数函数 (a 0且a 1)
设f ( x) loga x 又 f ( x)过(4, 2) 2 loga 4 a2 4 a 2(a 2舍) f ( x) log2 x f (1) log2 1 0 f (8) log2 8 log2 23 3
(3)当a>1时,函数y=log ax在(0,+∞)上是增函数,于是 log a5.1<log a5.9
当0<a<1时,函数y=log ax在(0,+∞)上是减函数,于是 log a5.1>log a5.9
你能口答吗?
1 、 log0.5
6
变一变还能口答吗?
3、 若 log3 m log3 n,则m___n; <
X
(0,+) R 过点(1,0) 在(0,+)上是增函数
性
特殊点
单调性
奇偶性
在(0,+)上是减函数
非奇非偶函数 无最值
非奇非偶函数 无最值
当x>1时,y<0; 当0<x<1时,y>0.
质
最值
当x>1时,y>0; 当0<x<1时,y<0.
练习1:比较大小
① log76 ③ log67
<
1
② log0.53
1 log 7 4 log 4 7
0 log 4 1 log 4 6 log 4 7 1 1 log 4 6 log 4 7 log 6 4 log 7 4
例
解:
比较大小:
11
1) log53
<
log43
方法
当底数不相
同,真数相 同时,利用 图象判断大 y1=log4x 小. y2=log5x
x
利用对数函数图象 得到 log53 < log43
y
o
1
3
例.比较大小
(1) log35
10
> log 3
5
(2) log32
> log 0.8
2
解:
① 因为log35 > log33 =1 ② 因为log 32
log53 < log55 =1
得:log 35
>
log 53
> 0 log 20.8 < 0 得:log 32 > log 20.8
… …
1/4
1/2
1
2
4
16
… …
-2
-1
0
1
2
4
关系:二者的变量x,y的值互换,即:---
深入探究:函数 y=2 X与 y=log 2x 的图象关系
观察(2):
从图象中你能发现两个函数的图象间有什么关系
y=2 X y=x y=log 2 x
●
●
y 2
B 1●
0
A●
11 42
A*
1 2 3
B*
4
x
<
1
> > <
1
④ log0.60.1
0 ⑥ log0.12 ⑧ log0.20.6
>1 <
0
⑤ log35.1 ⑦ log20.8
0
>
0
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性
质
作y=log2x图象
列 表
X
1/4
1/2
1
2
4
…
y=log2x
-2
-1
0
1
2
…
描 点
连 线
当a>1时, loga3.1 < loga4.3 当0<a<1时, loga3.1 > loga4.3
深入探究:函数 y=2 X与 y=log 2x的图象关系
观察(1):
x y=2x
从下表中你能发现两个函数变量间的什么关系
… … -2 -1 0 1 2 4 … …
1/4
1/2
1
2
4
16
x y=log2x
1 loga (4 1)
即 : loga 3 = 1,∴ a = 3.
小 结: 若函数y=f(x)的图象经过点(a, b),
则其反函数的图象经过点(b, a).
小结:
1.正确理解对数函数的定义; 2.掌握对数函数的图象和性质; 3.能利用对数函数的性质解决有关问题.
方 法
当底数不相同,真数也不相同时,
常需引入中间值 或 (各种变形式).
0 1
练习:填空(用>,<号填空):
⑴ log23 < log25
⑵ log0.23 > log0.25 ⑶ log23 > log32
Log23>1, log32<1
⑷ loga3.1