九年级数学上册:第24章 《圆》同步练习及答案24.1.4圆周角(人教版)
人教版九年级数学上册【推荐】24.1.4圆周角同步练习(3).docx
初中数学试卷桑水出品24.1.4 圆周角5分钟训练(预习类训练,可用于课前)1.在⊙O中,同弦所对的圆周角( )A.相等B.互补C.相等或互补D.都不对思路解析:同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补.答案:C( )2.如图24-1-4-1,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数有A.5对B.6对C.7对D.8对思路解析:在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2=∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.答案:D3.下列说法正确的是( )A.顶点在圆上的角是圆周角B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍D.圆周角度数等于它所对圆心角度数的一半思路解析:本题考查圆周角的定义.答案:D4.(2010东北师大附中月考)如图24-1-4-2,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=度.图24-1-4-2思路解析:根据圆周角定义,求得弧的度数是半圆周的一半.答案:90°10分钟训练(强化类训练,可用于课中)1.(山东济南模拟)如图24-1-4-3,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A.30°B.60°C.15°D.20°图24-1-4-3 图24-1-4-4 图24-1-4-5思路解析:根据圆周角与圆心角的关系解答.答案:C2.(2010南京建邺一模)如图24-1-4-4,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A.75°B.60°C.45°D.30°思路解析:根据圆周角和圆心角的关系求得.答案:B3.(重庆模拟)如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=__________.思路解析:连结AO,则AO=OB,OA=OC,所以∠A=∠B+∠C=20°+30°=50°.答案:50°4.(经典回放)在半径为1的⊙O中,弦AB、AC分别是3和2,则∠BAC的度数是__________.思路解析:如图(1)和图(2),分两种情况,作直径AD,连结BD,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.(1) (2)答案:15°或75°5.如图24-1-4-6所示,设P、Q为线段BC上两定点,且BP=CQ,A为BC外一动点,当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.图24-1-4-6思路分析:利用同圆和等圆中,等弧所对的弦相等.解:当∠BAP=∠CAQ时,△ABC是等腰三角形.证明:如图,作出△ABC的外接圆,延长AP、AQ交该圆于D、E,连结DB、CE,由∠BAP=∠CAQ,得弧BD=弧CE.从而弧BDE=弧CED,所以BD=CE,∠CBD=∠BCE.又BP=CQ,则△BPD≌△CQE,这时∠D=∠E,由此弧AB=弧AC,故AB=AC,即△ABC是等腰三角形.快乐时光某足球队队员添了一个小孩,所有队友被邀请参加洗礼,来到教堂.突然孩子从母亲手中滑落,守门员果断地扑出,在离地几厘米的地方接住了孩子.大伙儿鼓掌欢呼,守门员习惯地拍了两下,接着熟练地大脚开出.30分钟训练(巩固类训练,可用于课后)1.如图24-1-4-7,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.图24-1-4-7思路分析:已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.解:∵AB 是直径,∴∠ACB=∠ADB=90°.在Rt △ACB 中,BC=22AC AB -=22610-=8.∵CD 平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt △ADB 中,AD=BD=22AB=52(cm). 2.用直角钢尺检查某一工件是否恰好是半圆环形,根据图24-1-4-8所表示的情形,四个工件哪一个肯定是半圆环形?( )图24-1-4-9思路解析:本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B 符合定理的推论.实际问题应读懂题意,看懂图形,并将实际问题转化成数学模型.A 和C 中的直角显然不是圆周角,因此不正确,D 中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.答案:B3.(辽宁大连模拟)如图24-1-4-9,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( )A.10°B.20°C.40°D.80°思路解析:由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.答案:B4.如图24-1-4-10(1),已知△ABC 是等边三角形,以BC 为直径的⊙O 交AB 、AC 于D 、E.(1)求证:△DOE 是等边三角形.(2)如图24-1-4-10(2),若∠A=60°,AB ≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.图24-1-4-10思路分析:△ABC 是等边三角形,所以∠B 、∠C 均为60°,利用60°的圆周角定理,可知△DOB 、△EOC 均为等边三角形.第二种情形类似.(1)证明:∵△ABC 为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD 和△OEC 都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE 为等边三角形.(2)解:当∠A=60°,AB ≠AC 时,(1)中的结论仍然成立.证明:连结CD.∵BC 为⊙O 的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE 为等边三角形.5.四边形ABCD 中,AB ∥DC ,BC=b ,AB=AC=AD=a ,如图24-1-4-11,求BD 的长.图24-1-4-11思路分析:由AB=AC=AD=a 可以得到点B 、C 、D 在以A 为圆心,以a 为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.解:∵AB=AC=AD=a ,∴点B 、C 、D 到A 点距离相等.故以A 为圆心,以a 为半径作⊙A ,并延长BA 交⊙A 于E ,连结DE.∵AB ∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE 为⊙A 的直径,∴∠EDB=90°.在Rt △EDB 中,BD=22DE BE -=224b a -,∴BD 的长为224b a -.6.在足球比赛中,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?图24-1-4-12思路分析:在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.解:考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.7.如图24-1-4-13所示,在小岛周围的APB内有暗礁,在A、B两点建两座航标灯塔,且∠APB=θ,船要在两航标灯北侧绕过暗礁区,应怎样航行?为什么?图24-1-4-13思路分析:根据圆周角定理和三角形内角和定理解答.船在航行过程中,始终保持对两灯塔A、B的视角小于θ,即可安全绕过暗礁区.解:船在航行过程中,始终保持对两灯塔A、B的视角小于θ,即可安全绕过暗礁区.(1)在弧APB外任取一点C,连结CA、CB,设CA交弧APB于F,连结FB.∵∠AFB=∠θ,∠AFB>∠C,∴∠C<θ.(2)在弧APB的弓形内任取一点D,连结AD并延长交弧APB于E,连结DB、EB.∵∠E=θ,∠ABD>∠E,∴∠ADB>θ.由(1)(2)知,在航标灯A 、B 所在直线北侧,在圆弧弧APB 外任一点对A 、B 的视角都小于θ;在圆弧弧APB 上任一点对A 、B 的视角都等于θ;在圆弧弧APB 内任一点对A 、B 的视角都大于θ.为此只有当对两灯塔的视角小于θ的点才是安全点.8.(湖北恩施自治州课改区模拟)在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图24-1-4-14(1)所示:图24-1-4-14∵∠AOC 是△ABO 的外角,∴∠AOC=∠ABO+∠BAO.又∵OA=OB,∴∠OAB=∠OBA.∴∠AOC=2∠ABO,即∠ABC=21∠AOC. 如果∠ABC 的两边都不经过圆心,如图24-1-4-14(2)(3),那么结论会怎样?请你说明理由.思路分析:本题设计很巧妙,实际上是圆周角定理的证明,可分三种情况讨论:(1)圆心在圆周角的一边上(是已给的情况);(2)圆心在圆周角内部;(3)圆心在圆周角外部.解:如果∠ABC 的两边都不经过圆心,结论∠ABC=21∠AOC 仍然成立. (1)对图(2)的情况,连结BO 并延长交圆O 于点D, 由题图(1)知:∠ABD=21∠AOD, ∠CBD=21∠COD. ∴∠ABD+∠CBD=21∠AOD+21∠COD, 即∠ABC=21∠AOC. (2)对图(3)的情况仿图(2)的情况可证.9.(经典回放)如图24-1-4-15所示,已知AB 为⊙O 的直径,AC 为弦,OD ∥BC ,交AC 于D ,BC=4 cm.(1)求证:AC ⊥OD ;(2)求OD 的长;(3)若∠A=30°,求⊙O 的直径.图24-1-4-15思路分析:根据圆周角定理的推论以及三角形中位线定理计算.(1)证明:∵AB 是⊙O 的直径,∴∠C=90°.∵OD ∥BC ,∴∠ADO=∠C=90°.∴AC ⊥OD.(2)解:∵OD ∥BC ,又∵O 是AB 的中点,∴OD 是△ABC 的中位线.∴OD=21BC=21×4=2(cm ). (3)解:∵∠A=30°,在Rt △ABC 中,∠A=30°, ∴BC=21AB. ∴AB=2BC=8(cm ),即⊙O 的直径是8 cm.10.(经典回放)如图24-1-4-16所示,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2=__________. 思路解析:∠1所对的弧是弧AE ,∠2所对的弧是弧BE ,而弧AE +弧BE=弧AB 是半圆,因此连结AD ,∠ADB 的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA 和∠EOB,而∠EOA +∠EOB=180°,所以∠1+∠2=90°,这是圆周角定理的直接应用.答案:90°图24-1-4-16 图24-1-4-1711.(经典回放)如图24-1-4-17所示,AB 为⊙O 的直径,P 、Q 、R 、S 为圆上相异四点,下列叙述正确的是( )A.∠APB 为锐角B.∠AQB 为直角C.∠ARB 为钝角D.∠ASB <∠ARB思路解析:AB 为直径,根据直径所对的圆周角是直角,所以∠APB 、∠AQB 、∠ARB 、∠ASB 都是直角.由于四个角都是直角,所以∠ASB=∠ARB=90°.答案:B。
人教版 九年级数学上册 第24章 圆 同步课时训练 (含答案)
人教版九年级数学第24章圆同步课时训练一、选择题1. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π2. 如图所示,AB是⊙O的直径,C,D是⊙O上的两点,CD⊥AB.若∠DAB=65°,则∠BOC等于()A.25°B.50°C.130°D.155°3. 如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得扇形ADB的面积为()A.6 B.7 C.8 D.94. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A.⊙O1B.⊙O2C.⊙O3D.⊙O45.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,排水管水面上升了0.2 m,则此时排水管水面宽为()A.1.4 m B.1.6 mC.1.8 m D.2 m二、填空题9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.10. 如图是一个圆锥形冰激凌外壳(不计厚度),已知其母线长为12 cm,底面圆的半径为3 cm,则这个冰激凌外壳的侧面积等于________ cm2(结果精确到个位).11. 2018·孝感已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.13. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)14. 如图,在扇形ABC 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为________.15. 如图,⊙O与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则BD ︵所对的圆心角∠BOD 的大小为________度.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.18. 如图,在正六边形ABCDEF中,点O是中心,AB=10,求这个正六边形的半径、边心距、周长、面积.19. 在平面直角坐标系中,圆心P的坐标为(-3,4),以r为半径在坐标平面内作圆:(1)当r为何值时,⊙P与坐标轴有1个公共点?(2)当r为何值时,⊙P与坐标轴有2个公共点?(3)当r为何值时,⊙P与坐标轴有3个公共点?(4)当r为何值时,⊙P与坐标轴有4个公共点?20.(2020·临沂)已知的半径为,的半径为.以为圆心,以的长为半径画弧,再以线段的中点为圆心,以的长为半径画弧,两弧交于点,连接,,交于点,过点作的平行线交于点.(1)求证:是的切线;(2)若,,,求阴影部分的面积.人教版九年级数学第24章圆同步课时训练-答案一、选择题1. 【答案】B[解析] 连接OA,OC,则∠OAE=∠OCD=90°.∵五边形ABCDE 为正五边形,∴∠E=∠D=108°,∴∠AOC=540°-∠OAE-∠OCD-∠E-∠D=144°,∴劣弧AC的长度为144180×π×1=45π.2. 【答案】C3. 【答案】D[解析] ∵正方形的边长为3,∴BD ︵的长度为6,∴S 扇形ADB =12lR =12×6×3=9.4. 【答案】B5.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C7.【答案】D【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】B[解析] 如图,过点O 作OE ⊥AB 于点E ,交CD 于点F ,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m. ∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.二、填空题9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.10. 【答案】113[解析] 这个冰激凌外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为113.11. 【答案】2或14[解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB和CD在圆心异侧时,连接OA,OC,过点O作OE⊥CD于点E并反向延长交AB于点F,如图②,∵AB=16 cm,CD=12 cm,∴AF=8 cm,CE=6 cm.∵OA=OC=10 cm,∴OF=6 cm,OE=8 cm,∴EF=OF+OE=14 cm.∴AB与CD之间的距离为2 cm或14 cm.12. 【答案】15[解析] ∵OC⊥OB,∴∠COB=90°.又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.13. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).14. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.15. 【答案】144 [解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°,∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB-S △OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.三、解答题17. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.18. 【答案】解:连接OB ,OC ,过点O 作OH ⊥BC 于点H.∵正六边形的中心角为360°6=60°,OB =OC ,∴△OBC 是等边三角形,∴半径R =OB =BC =AB =10.∵OH ⊥BC ,∴∠BOH =30°,∴BH =12OB =5.在Rt △OBH 中,边心距r =OH =102-52=5 3,周长l =6AB =6×10=60.∵S △OBC =12BC·OH =12×10×5 3=25 3,∴正六边形的面积S=6S△OBC=6×25 3=150 3.19. 【答案】解:(1)根据题意,知⊙P和y轴相切,则r=3.(2)根据题意,知⊙P和y轴相交,和x轴相离,则3<r<4.(3)根据题意,知⊙P和x轴相切或经过坐标原点,则r=4或r=5.(4)根据题意,知⊙P和x轴相交且不经过坐标原点,则r>4且r≠5.20. 【答案】证明:(1)连接AP,过点作直线BC的垂线,垂足为点M,如下图:∵线段的中点是点,以的长为半径画弧∴∴∠PAO1=∠PO1A,∠PAO2=∠PO2A,∴∠O1A O2=∠PAO1+∠PAO2=90°∴△O1A O2是直角三角形∵∴∠O1A O2=∠ABC=90°又∵∠O2MB=90°∴四边形ABM O2是平行四边形∴O2M=AB= O1A-O1B=∴是的切线;M(2)∵,,,∴O1A =又∵∠O1A O2=90°∴cos∠A O1 O2=∴∠A O1 O2=60°在Rt△B O1 C中:设O1 O2与的交点为点N,则阴影部分的面积为:.NM【解析】(1)证切线常用的方法有“作垂线证半径”和“作半径证垂直” ,考虑到题目中的已知条件,用“作垂线证半径”更简便一些,为此我们可以过点作直线BC的垂线,垂足为点M;同时考虑到∠O1A O2可能是直角,可以连接AP用等腰三角形的等角对等边和三角形内角和定理进行证明;条件中还给出了平行线,因此可以证明∠ABC=90°,则四边形ABM O2是平行四边形,最后证明O2M=AB= O1A-O1B=,问题得以解决.(2)求阴影部分的面积,可以根据割补法来求.解决问题的关键是分别求出△BO1C和扇形BO1N的面积,根据已知条件,可以先求出O1A =,然后根据三角函数求出∠A O1 O2的度数,需要的数据再通过三角函数求出,问题得解.。
2019-2020学年人教版九年级数学上册24.1.4: 圆周角同步练习(含答案)
九年级数学上册24.1.4 圆周角基础闯关全练1.下列各图中,∠BAC为圆周角的是( )A. B.C. D.2.如图24-1-4-1,点O为所在圆的圆心,∠BOC= 112º,点D在BA的延长线上,AD =AC,则∠D=_________.3.(2018广西柳州中考)如图24 -1-4-2,A,B ,C,D是⊙O上的四个点,∠A= 60°,∠B=24°,则∠C的度数为( )A.84°B.60°C.36°D.24°4.(2019黑龙江哈尔滨香坊期中)如图24 -1-4-3,已知BD是⊙O的直径,BD⊥AC于点E,∠AOC=120°,则∠BDC的度数是( )A.20°B.25°C.30°D.40°5.(2019江苏扬州高邮期中)如图24-1-4-4,若AB是⊙O的直径,CD是⊙O的弦,∠ABD= 50°,则∠BCD的度数为( )A.40°B.50°C.35°D.55°6.如图24-1-4-5,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD= 28°,则∠ABD=________°7.(2018湖南邵阳中考)如图24 -1-4 -6所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )A.80°B.120°C.100°D.90°8.如图24-1-4-7,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是________.能力提升全练1.如图24-1-4-8,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°2.(2019四川广元苍溪期中)如图24-1-4-9,AB是⊙O的直径,C,D是⊙O上的点,且OC ∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②BC平分ABD;③BD=2OF;④△CEF≌△BED,其中一定成立的是( )A.②④B.①③④C.①②③D.①②③④3.(2019江苏盐城盐都期中)已知⊙O上有两定点A、B,点P是⊙O上一动点(不与A、B 两点重合),若∠OAB=30°,则∠APB的度数是____________________.4.(2018山东德州乐陵期中)如图24-1-4-10,⊙O的半径为1,A、P、B、C足⊙O上的四个点,∠APC=∠CPB=60°,则四边形APBC的最大面积是_________.三年模拟全练一、选择题1.(2019浙江温州苍南期中,5,★☆☆)如图24-1-4-11所示,点A,B,C,D在⊙O上,CD是直径,∠ABD= 75°,则∠AOC的度数为( )A.15°B.25°C.30°D.35°2.(2019河南洛阳期中,8,★☆☆)如图24-1-4-12,一个三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是46°,则∠ACD的度数为( )A.46°B.23 °C.44°D.67°二、填空题3.(2018浙江湖州吴兴期中,12,★★☆)一个圆形人工湖如图24-1-4 - 13所示,弦AB是湖上的一座桥,已知AB的长为80 m,∠C=45°,则这个人工湖的直径为_________.五年中考全练一、选择题1.(2018浙江衢州中考,5,★☆☆)如图24-1-4-14,点A,B,C在⊙O 上,∠ACB= 35°,则∠AOB的度数是( )A.75°B.70°C.65°D.35°2.(2018江苏盐城中考,7,★☆☆)如图24-1-4-15,AB为⊙O的直径,CD是⊙O的弦,∠ADC= 35°,则∠CAB的度数为( )A.35°B.45°C.55°D.65°二、填空题3.(2018青海中考,9,★★☆)如图24-1-4-16,A、B、C是⊙O上的三个点,若∠AOC= 110°,则∠ABC=________.4.(2018四川甘孜州中考,25,★★☆)如图24-1-4-17,半圆的半径OC=2,线段BC与CD 是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为_________.核心素养全练1.图24 -1-4 -18是一个暗礁区(弓形)的示意图,两灯塔A,B 之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须( )A.大于60°B.小于60°C.大于30°D.小于30°2.如图24-1-4-19,AB是半圆O的直径,将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )A.B .8C. D .九年级数学上册24.1.4 圆周角基础闯关全练1.A 依据圆周角的概念来判断,点A 必须在圆上,边AB ,AC 必须分别与圆还有另一个交点,故选A .2.答案 28°解析 ∵∠BOC= 112°,∴∠BAC=∠BOC=56°,∵AD=AC ,∴ ∠ACD=∠D ,∵∠BAC=∠ACD+∠D ,∴∠D=∠BAC=28°.3.D ∵∠B 与∠C 都是所对的圆周角,∠B=24°,∴∠C=∠B=24°,故选D .736515221214.C ∵BO ⊥AC , ∠AOC= 120°,∴∠BOC=∠AOC= 60°,则∠BDC=∠BOC=30°.故选C .5.A 如同,连接,AC ,∵AB 为直径,∴∠ACB= 90°,∵∠ABD=50º,∴∠ACD=∠ABD= 50°,∴∠BCD= ∠ACB-∠ACD= 90°-50°= 40°.故选A .6.答案 62解析 ∵AB 是⊙O 的直径,∴∠ACB= 90°.∵∠BCD=28°,∴ ∠ACD=90°-28°=62°, ∴∠ABD=∠ ACD=62°.7.B ∵四边形ABCD 为⊙O 的内接四边形,∠BCD= 120°,∴ ∠A=180°-∠BCD=60°,由圆周角定理,得∠BOD=2∠A=120°,故选B .8.答案 AB//CD解析 ∵四边形ABCD 为圆内接四边形,∴∠A+ ∠C= 180°,∵∠C=∠D ,∴∠A+∠D=180°,∴AB//CD.能力提升全练1.D 作半径OC ⊥AB 于D ,连接OA 、OB ,∵将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,∴OD= CD ,∴OD= OC=OA ,∴∠OAD= 30°,又OA=OB ,∴∠OBA=30°,∴∠AOB= 120°,∴∠APB=21∠AOB=60°.故选D . 212121212.C ∵AB 是直径,∴∠ADB= 90°,∴AD ⊥BD ,故①正确;∵OC//BD ,BD ⊥AD ,∴OC ⊥AD ,∴.∴∠ABC=∠CBD 、故②正确;∵AF= DF ,AO= OB ,∴OF 为△ABD 的中位线,∴BD=2OF ,故③正确;△CEF 和△BED 中,没有边相等,故④不一定成立.故选C .3.答案 60°或120°解析 如图,连接OB .当P 在优弧上时,∵OA= OB ,∠OAB= 30°,∴∠ OAB=∠ OBA=30°,∴∠AOB= 120°,∴∠P= ∠AOB= 60°,当点P 在劣弧上时(如图中点P ′所示),∠AP'B=180°-∠APB= 120°.故填60°或120°.4.答案解析 如图,过C 作直径CP ’,连接P'A 、P'B.∵∠ABC=∠APC=60°, ∠BAC=∠ CPB= 60°,∴△ABC 为等边三角形.∵CP ’为直径,∴∠CAP'=∠CBP'= 90°,P'A=P ’ B ,而∠AP'C= ∠APC=60°,∠BP'C=∠BPC= 60°,∴P'A=P'B= CP'=1,AC=BC=,∴四边形AP'BC 的面积为2××1×=.当点P 运动到点P ’的位置时,四边形APBC 的面积最大,最大面积为. 21321321333三年模拟全练一、选择题1.C ∵∠ABD=75º,∴∠AOD=2∠ABD=150°,∴∠AOC= 180°-150°=30°,故选C .2.D 如图,连接OD ,∵三角尺ABC 的斜边AB 与量角器的直径恰好重合,∴点A ,B ,C ,D 四点共圆,∴点D 对应的刻度是46°,∴∠BOD=46°,∴∠BCD=∠BOD=23°,∴ ∠ACD=90°- ∠BCD= 67°.故选D .二、填空题3.答案 m解析 连接AO 并延长交⊙O 于D ,连接BD.∵AD 是直径,∴∠ABD=90°.∵∠D 和∠C 都是劣弧所对的圆周角,∠C=45°,∴∠D=∠C=45°,∴BD=AB.∵AB=80 m ,∴,即这个人工湖的直径为m.五年中考全练一、选择题1.B ∵∠ACB 和∠AOB 分别是所对的圆周角和圆心角,∠ACB= 35°,∴∠AOB=2∠ACB=70°.故选B .2.C 由圆周角定理的推论得∠ABC= ∠ADC= 35°,∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠CAB= 90°-∠ABC=55°.故选C . 21280280二、填空题3.答案 125°解析 如图,在优弧上取点D ,连接AD 、CD ,∵∠AOC=110°,∴ ∠ADC=∠AOC= 55°,∴ ∠ABC=180°-∠ADC= 125°.4.答案解析 如图,连接OD ,AD ,∵BC=DC ,BO=DO ,∴∠BDC=∠DBC ,∠BDO= ∠DBO.∴ ∠CDO=∠CBO .又∵OC=OB=OD ,∴∠BCO=∠DCO ,即CO 平分∠BCD.又∵BC =DC ,∴BD⊥CO.又∵AB 是直径,∴AD ⊥BD ,∴AD ∥CO .又∵AE=AO=2,∴AD=CO=1,∴Rt △ABD 中,BD=核心素养全练1.D 设圆心为O ,AS 与圆的另一交点为C ,连接OA ,OB ,AB ,BC ,∵AB= OA =OB ,∴△AOB 为等边三角形,∴∠AOB= 60°,∴∠ACB=∠AOB=30°,又∠ACB 为△SCB 的外角, ∴∠ACB>∠ASB ,即∠ASB<30°.故选D .2.A 如图,连接CA 、CD ,∵所对的圆周角是∠CBD ,所对的圆周角是∠CBA ,又∠CBD=∠CBA ,∴AC= CD ,∴△CAD 是等腰三角形.过C 作CE ⊥AB 于E .∵AD=4,则AE=DE=2,∴BE= BD+DE=7.取AB 的中点O .连接OC ,则OB=OC=OA=4.5,∴ OE=2.5.在Rt △OCE 中,CE=。
新人教版数学九年级上册24.1.4圆周角课时练习(解析版)
新人教版数学九年级上册24.1.4圆周角课时练习一、选择题1、在⊙O中,同弦所对的圆周角()A、相等B、互补C、相等或互补D、都不对2、如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A、5对B、6对C、7对D、8对3、下列说法正确的是()A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半4、下列说法错误的是()A、等弧所对圆周角相等B、同弧所对圆周角相等C、同圆中,相等的圆周角所对弧也相等D、同圆中,等弦所对的圆周角相等5、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A、20°B、25°C、30°D、50°6、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A、25°B、40°C、30°D、50°7、在⊙O中,同弦所对的圆周角( )A、相等B、互补C、相等或互补D、都不对8、下列说法正确的是( )A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半9、如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A、30°B、60°C、15°D、20°10、如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A、75°B、60°C、45°D、30°11、用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?( )A、B、C、D、12、已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )A、10°B、20°C、40°D、80°13、如图24-1-4-17所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是( )A、为锐角B、为直角C、为钝角D、二、填空题14、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.15、如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.16、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.17、如图24-1-4-16所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________.18、如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=________°,∠ABD=________°19、如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF ,那么________(只需写一个正确的结论).20、圆周角是24度,那么它所对的弧是________度.三、解答题21、如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D ,求BC、AD 和BD的长.22、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:(1)△DOE是等边三角形.(2)如图(2),若∠A=60°,AB≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.23、四边形ABCD中,AB∥DC ,BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.图24-1-4-1124、在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?25、如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC ,交AC于D ,BC=4 cm.(1)求证:AC⊥OD;(2)求OD的长;答案解析部分一、选择题1、【答案】C【考点】圆周角定理【解析】【解答】同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补. 【分析】此题考查了圆周角定理,要考虑全面.2、【答案】D【考点】圆周角定理【解析】【解答】先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2= ∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC ,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.【分析】在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.3、【答案】D【考点】圆周角定理【解析】【解答】本题考查圆周角和圆心角的联系,解决本题的关键为在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.【分析】此题考查了圆周角定理.4、【答案】D【考点】圆周角定理【解析】【解答】同圆或是等圆中才存在等弦所对的圆周角相等或互补.【分析】此题考查了原周角定义,本题为常考题,容易弄错的是在同圆中等弦所对的圆周角相等,而忽略还有互补.5、【答案】B【考点】圆周角定理【解析】【解答】同弧所对的圆心角等于所对圆周角的二倍,∠AOC的对顶角∠BOD也为50度,弧BD所对的圆周角为∠C,所对的圆心角为∠BOD,∠BOD为∠C的二倍,故选B选项.【分析】此题考查了圆周角和圆心角的相互联系.6、【答案】A【考点】平行线的性质,圆周角定理【解析】【解答】根据两直线平行内错角相等和同弧所对的圆心角等于所对圆周角的二倍,可以得到∠C 的度数是25度.【分析】此题考查了圆周角定义.7、【答案】C【考点】圆周角定理【解析】【解答】同圆或是等圆中等弦所对的圆周角相等或互补.【分析】此题考查了圆周角定义,要考虑全面.8、【答案】D【考点】圆周角定理【解析】【解答】根据圆周角的定义做题,考察圆周角和圆心角的联系,记住圆周角的度数等于它所对圆心角的一半.【分析】此题考查了圆周角定义,审题一定要仔细,结合基础知识做题.9、【答案】C【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,根据量角器我们可以读出∠BOC的度数为30度,∠BOC为圆心角,∠BAC为圆周角,他们是二倍的关系,故选择C选项.【分析】此题考查了圆周角定义,利用圆心角去推出圆周角的度数.10、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,弧AB所对的圆心角和圆周角分别为∠AOB和∠ACB,圆心角为圆周角的二倍,故本题选择B选项.【分析】此题考查了圆周角和圆心角的联系,做题时要注意利用所给的条件结合图像去发现所求问题和所给条件之间的相互联系.11、【答案】B【考点】圆周角定理【解析】【解答】A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.【分析】本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形.12、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.【分析】此题考查了原周角和圆心角的联系.13、【答案】B【考点】圆周角定理【解析】【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.【分析】直径所对的圆周角等于90度.二、填空题14、【答案】90【考点】圆周角定理【解析】【解答】所求的弧等于半圆周的一半,即90度,∠A随对的弧加上∠B所对的弧加上∠C所对的弧等于弧AC ,弧AC所对的圆心角为180度,所以所对的圆周角为90度.【分析】根据圆周角的定义做题,注意圆心角和圆周角之间的相互联系.15、【答案】50°【考点】圆周角定理【解析】【解答】连结AO ,则AO=OB ,OA=OC ,所以∠A=∠B+∠C=20°+30°=50°.【分析】根据圆周角的定义做题,注意作好辅助线,利用半径相等构造等腰三角形,然后转化角度. 16、【答案】15°或75°【考点】勾股定理,圆周角定理【解析】【解答】图(1)和图(2),分两种情况,作直径AD ,连结BD ,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.图1 图2【分析】根据圆周角的定义做题,要考虑全面.17、【答案】90°【考点】等边三角形的性质,圆周角定理【解析】【解答】∠1所对的弧是弧AE,∠2所对的弧是弧BE ,而弧AE+弧BE=弧AB是半圆,因此连结AD ,∠ADB的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.【分析】根据圆周角的定义做题.18、【答案】60;90【考点】圆周角定理【解析】【解答】同弧所对的圆周角相等,所以∠ADB=60度,直径所对的圆周角等于90度.【分析】根据圆周角的定义做题,要注意所给条件中等边三角形个内角的度数,及圆周角所对半圆弧的度数.19、【答案】AB=CD【考点】圆心角、弧、弦的关系【解析】【解答】在同圆或是等圆中,等弦的弦心距相等.【分析】根据弦心距做题,在同圆或是等圆中,等弦的弦心距相等.20、【答案】48【考点】圆周角定理【解析】【解答】弧的度数等于它所对的圆心角的度数,圆心角与圆周角为2倍的关系.【分析】根据圆周角和圆心角的联系做题.三、解答题21、【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【考点】勾股定理,圆周角定理【解析】【解答】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【分析】已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.22、【答案】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)解:当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE为等边三角形.【考点】等边三角形的性质,圆周角定理【解析】【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△DOE为等边三角形.【分析】△ABC是等边三角形,所以∠B、∠C均为60°,利用60°的圆周角定理,可知△DOB、△EOC均为等边三角形.第二种情形类似.23、【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A ,并延长BA交⊙A于E ,连结DE.∵AB∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为.【考点】勾股定理,圆周角定理【解析】【解答】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为 .【分析】由AB=AC=AD=a可以得到点B、C、D在以A为圆心,以a为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.24、【答案】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.【考点】圆周角定理【解析】【解答】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C ,则∠MAN<∠MCN ,而∠MCN=∠MBN ,所以∠MAN<∠MBN.因此在B点射门为好..【分析】在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.25、【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC ,∴∠ADO=∠C=90°.∴AC⊥OD.(2)解:∵OD∥BC ,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【考点】三角形中位线定理,圆周角定理【解析】【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD.(2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【分析】根据圆周角定理的推论以及三角形中位线定理计算.。
人教版九年级数学上册 第24章24.1 ---24.4练习题(有答案)
人教版九年级数学上册第24章24.1 ---24.4练习题(有答案)24.1 圆的有关性质一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦2. 如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25∘,则∠AOC=()A.25∘B.30∘C.40∘D.50∘3. 如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3√5米B.5米C.7米D.8米4. 锐角△ABC的三条高AD、BE、CF交于H,在A、B、C、D、E、F、H七个点中.能组成四点共圆的组数是()A.4组B.5组C.6组D.7组5. 如图,在⊙O中,∠ABC=130∘,则∠AOC等于()A.50∘B.80∘C.90∘D.100∘6. 如图,在⊙O中,∠BAC=15∘,∠ADC=20∘,则∠ABO的度数为()A.70∘B.55∘C.45∘D.35∘7. 如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=3√2,CD的长为()A.2B.4C.6D.88. 如图,四边形ABCD 内接于半径为6的⊙O 中,连接AC ,若AB =CD ,∠ACB =45∘,∠ACD =12∠BAC ,则BC 的长度为( )A.6√3B.6√2C.9√3D.9√29. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =12米,净高CD =9米,则此圆的半径OA =( )A.122米B.132米C.142米D.152米10. 如图,四边形ABCD 是⊙O 的内接四边形,点D 是AĈ的中点,点E 是BC ̂上的一点,若∠CED =40∘,则∠ADC =( )A.100∘B.110∘C.95∘D.120∘二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 已知AB 、CD 是⊙O 的两条弦,若AB ̂=CD ̂,且AB =2,则CD =________.12. 如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为________∘.13. 如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=62∘,∠E =24∘,则∠F=________.14. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.15. 在△ABC中,∠B=60∘,∠BCA=20∘,∠DAC=20∘,∠BCA的平分线交AB于E,连DE,则∠BDE=________.16. 芳芳家今年搬进了新房,新房外飘的凉台呈圆弧形(如图所示),她测得凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为________.17. 已知一条弧的度数为120∘,则它所对的圆周角的度数是________∘.18. 如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为________.19. 如图,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105∘,∠BAC=25∘,则∠E的度数为________度.20. 如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为________m(精确到0.1m).三、解答题(本题共计6 小题,共计60分,)21. 如图,⊙O是△ABC外接圆,AB=AC,P是⊙O上一点.(1)分别出图①和图②中∠BPC的角平分线;(2)结合图②,说明你这样理由.22. 如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.23. 如图,⊙O的弦AC、BD交于点Q,AP、CP是⊙O的切线,O、Q、P三点共线.求证:PA2=PB⋅PD.24. 如图,AB、CD是⊙O中的两条弦,M、N分别是AB、CD的中点,且∠OMN=∠ONM.求证:AB=CD.25. 如图,⊙O的半径长为12cm,弦AB=16cm.(1)求圆心到弦AB的距离;(2)如果弦AB的两端点在圆周上滑动(AB弦长不变),那么弦AB的中点形成什么样的图形?̂上一点,AG、CD的延长线26. 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是AD相交于点F,求证:∠FGD=∠AGC.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】A二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】212.【答案】22.513.【答案】32∘14.【答案】11815.【答案】20∘16.【答案】5米17.【答案】6018.【答案】2√319.【答案】5020.【答案】6.1三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图①,连接AP,即为所求角平分线;如图②,连接AO并延长,与⊙O交于点D,连接PD,即为所求角平分线(2)∵ AD是直径,∵ 半圆ABD=半圆ACD又∵ AB=AC,̂=AĈ,∵ AB∵ BĈ=BD̂,∵ ∠BPD=∠CPD,即PD平分∠BPC.22.【答案】证明:连结OA、OC,如图,∵ E、F分别为弦AB、CD的中点,∵ OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵ AB=CD,∵ AE=CF,在Rt△AEO和Rt△COF中,{AE=CFAO=CO,∵ Rt△AEO≅Rt△COF(HL),∵ OE=OF.23.【答案】证明:连接OA、OB、OD、OC,设DP交⊙O于E.∵ AP、CP是⊙O的切线,∵ ∠OAP=∠PCO=90∘∵ A、O、C、P四点共圆,∵ OQ⋅PQ=AQ⋅CQ(相交弦定理);又∵ DQ⋅BQ=AQ⋅CQ(相交弦定理),∵ OQ⋅PQ=DQ⋅BQ,∵ D、O、B、P四点共圆;∵ OD=OB,∵ ∠ODB=∠OBD;又∵ ODPB四点共圆∵ ∠ODB=∠OPB;∠OBD=∠OPD;∵ ∠OPD=∠OPB,∵ PB=PE,∵ PA2=PE⋅PD=PB⋅PD(切割线定理),即PA2=PB⋅PD.24.【答案】证明:∵ M、N分别是AB、CD的中点,∵ OM⊥AB,ON⊥CD,又∵ ∠OMN=∠ONM,∵ OM=ON,∵ AB=CD.25.【答案】解:(1)作OC⊥AB,垂足为C连接AO,则AC=8cm,在Rt△AOC中,OC=√OA2−AC2=√122−82=√80=4√5cm(或OC=8.944cm);即圆心到弦的距离是4√5cm.(2)形成一个以O为圆心,4√5cm为半径的圆.(答“以O为圆心,OC长为半径的圆”亦可,如果只答“是一个圆”得1分)26.【答案】证明:连接AC,∵ 四边形ACDG是圆内接四边形,∵ ∠FGD=∠ACD.∵ 弦CD⊥AB于点E,∵ AĈ=AD̂,∵ ∠AGC=∠ACD,∵ ∠FGD=∠AGC.24.2 点和圆、直线和圆的位置关系(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知⊙O的半径为7cm,OA=5cm,那么点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定2. 等边三角形的内切圆与它的外接圆的半径比是()A.√22B.12C.1D.23. 如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70∘,则∠A等于()A.10∘B.15∘C.20∘D.30∘4. 如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50∘,则∠AOC的度数为()A.40∘B.50∘C.80∘D.100∘5. 如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在AĈ上.若∠AOD=∠BAC,则CD的长为()A.5B.6C.7D.86. 下列关于圆的切线的说法正确的是()A.垂直于圆的半径的直线是圆的切线B.与圆只有一个公共点的射线是圆的切线C.经过半径的一端且垂直于半径的直线是圆的切线D.如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线7. 已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设()A.∠B=∠CB.∠A=∠BC.AB=ACD.∠A=∠C8. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD,现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120∘,其中正确的结论有()A.1个B.2个C.3个D.4个9. 如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.125B.6013C.5D.无法确定10. 如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.50二、填空题(本题共计7 小题,每题3 分,共计21分,)11. 如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________.12. 已知⊙O1与⊙O2相交于A,B两点,且⊙O1经过点O1,∠AO1B=100∘,则∠AO2B=________.13. 如图,一圆内切于四边形ABCD,且AB=8,CD=5,则AD+BC的长为________.14. 如图,在边长为54√3的正三角形ABC中,O1为△ABC的内切圆,圆O2与O1外切,且与AC、BC相切;圆O3与O2外切,且与AC、BC相切…如此继续下去,请计算圆O5的周长为________.(结果保留π)15. 已知⊙O是等腰梯形ABCD的内切圆,上底AD=a,下底BC=b,则其内切圆的半径OP为________.16. 已知在直角ABC中,∠C=90∘,AC=8cm,BC=6cm,则△ABC的外接圆半径长为________cm,△ABC的内切圆半径长为________cm,△ABC的外心与内心之间的距离为________cm.17. 如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF= 3,则内切圆的半径r=________.三、解答题(本题共计5小题,共计69分,)18. 如图,在△ABC中,∠ACB=90∘.(1)尺规作图(保留作图痕迹,不写作法):①作AC的垂直平分线,垂足为D;②以D为圆心,DA长为半径作圆,交AB于E(E异于A),连接CE;(2)探究CE与AB的位置关系,并证明你的结论.19. 如图,在Rt△ABC中,∠C=90∘,∠A=30∘,O为AB上一点,BO=x,⊙O的半径为2.(1)当x为何值时,直线BC与⊙O相切?(2)当x在什么范围内取值时,直线BC与⊙O相离、相交?20. 如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5√3,∠CDF=30∘,求⊙O的半径.21. 如图,⊙O的半径为5cm,AB、AC是⊙O的两条弦,AB=6√2cm,AC=8cm.过点O作一个圆与AC相切,则这个圆的半径是多少?它与AB具有怎样的位置关系?为什么?22 如图,Rt△ABC中,∠C=90∘,AC=4.BC=3,点M是AB上一点,以M为圆心作⊙M,(1)若⊙M经过A、C两点,求⊙M的半径,并判断点B与⊙M的位置关系.(2)若⊙M和AC、BC都相切,求⊙M的半径.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:∵ ⊙O的半径为7cm,OA=5cm,∵ d<r,∵ 点A与⊙O的位置关系是:点A在圆内,故选A.2.【答案】B【解答】解:如图,连接OD、OE;∵ AB、AC切圆O与E、D,∵ OE⊥AB,OD⊥AC,∵ AO=AO,EO=DO,∵ △AEO≅△ADO(HL),∵ ∠DAO=∠EAO;又∵ △ABC为等边三角形,∵ ∠BAC=60∘,×60∘=30∘,∵ ∠OAC=12∵ OD:AO=1:2.,∵ 等边三角形的内切圆与外接圆半径的比是12故选B.3.【答案】C【解答】解:连接OB,∵ BC是⊙O的切线,∵ OB⊥BC,∵ ∠CBO=90∘,∵ ∠ABC=70∘,∵ ∠OBA=90∘−70∘=20∘,∵ OA=OB,∵ ∠A=∠OBA=20∘,故选C.4.【答案】C【解答】解:∵ 在⊙O中,AB为直径,BC为弦,CD为切线,∵ ∠OCD=90∘,∵ ∠BCD=50∘,∵ ∠OCB=40∘,∵ ∠AOC=80∘,故选C.5.【答案】B【解答】连接BD,∵ AB=AC,∵ ∠ABC=∠ACB,∵ ∠BAC+2∠ACB=180∘,∵ ∠BAC=∠AOD,∵ ∠AOD+2∠ACB=180∘,∵ ∠AOD=2∠ACD,∵ 2∠ACD+2∠ACB=180∘,∵ ∠ACD+∠ACB=90∘,即∠BCD=90∘,∵ BD为⊙O的直径,∵ BD=10,∵ CD=√BD2−BC2=√102−82=6,6.【答案】D【解答】解:A,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;B,与圆只有一个公共点的直线是圆的切线,故原命题错误;C,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;D,如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线,正确.故选D.7.【答案】C【解答】解:∵ 已知△ABC中,∠B≠∠C,求证:AB≠AC.∵ 若用反证法证这个结论,应首先假设:AB=AC.故选:C.8.【答案】D【解答】解:如图,连接CO,DO,∵ MC与⊙O相切于点C,∵ ∠MCO=90∘,在△MCO与△MDO中,{MC=MD,MO=MO,CO=DO,∵ △MCO≅△MDO(SSS),∵ ∠MCO=∠MDO=90∘,∠CMO=∠DMO,∵ MD与⊙O相切,故①正确;在△ACM与△ADM中,{CM =DM ,∠CMA =∠DMA ,AM =AM ,∵ △ACM ≅△ADM(SAS),∵ AC =AD ,∵ MC =MD =AC =AD ,∵ 四边形ACMD 是菱形,故②正确;如图连接BC ,∵ AC =MC ,∵ ∠CAB =∠CMO ,又∵ AB 为⊙O 的直径,∵ ∠ACB =90∘,在△ACB 与△MCO 中,{∠CAB =∠CMO ,AC =MC ,∠ACB =∠MCO , ∵ △ACB ≅△MCO(SAS),∵ AB =MO ,故③正确;∵ △ACB ≅△MCO ,∵ BC =OC ,∵ BC =OC =OB ,∵ ∠COB =60∘,∵ ∠MCO =90∘,∵ ∠CMO =30∘,又∵ 四边形ACMD 是菱形,∵ ∠CMD =60∘,∵ ∠ADM =120∘,故④正确;故正确的有4个.故选D .9.【答案】B【解答】解:∵ 在△ABC中,AB=13,AC=5,BC=12,∵ AB2=AC2+BC2.∵ ∠ACB=90∘,∵ PQ一定是直径.要使过点C且与边AB相切的动圆的直径最小,则PQ即为斜边上的高,则PQ=AC⋅BCAB =6013.故选B.10.【答案】C【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.二、填空题(本题共计7 小题,每题 3 分,共计21分)11.【答案】∠ABC=90∘【解答】解:当△ABC为直角三角形时,即∠ABC=90∘时,BC与圆相切,∵ AB是⊙O的直径,∠ABC=90∘,∵ BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).故答案为:∠ABC=90∘.12.【答案】130∘或50∘【解答】解:①如图:∵ ∠AO1B=80∘,∠AO1B=50∘,∵ ∠ACB=12∵ A、C、B、O2四点共圆,∵ ∠AO2B+∠ACB=180∘,∵ ∠AO2B=130∘,②如图:∠AO1B=50∘;此时∠AO2B=12故答案为:130∘或50∘.13.【答案】13【解答】解:由题意可得圆外切四边形的两组对边和相等,所以AD+BC=AB+CD=5+8=13,故选答案是:13.14.【答案】2π3【解答】解:如图过点O2作O2D⊥O1E于D,∵ △ABC是等边三角形,O1为△ABC的内切圆,∵ O1E⊥BC,∠O1BE=∠O1O2D=30∘,BE=12BC=27√3,∵ O1E=27,设⊙O1,⊙O2的半径为R,r,∴O1O2=12O1D,∵ r=13R,同理⊙O3的半径=13r=19R=3,⊙O4=13×3=1,⊙O5=13×1=13,∵ ⊙O5的周长=2×13π=23π.15.【答案】√ab2【解答】解:设⊙O的半径OP=r,过A作AE⊥BC于E,过D作DF⊥BC于F,过D作MN⊥AD交BC于N,则AE // MN // DF,∵ AD // BC,∵ 四边形AENM和四边形DFNM是平行四边形,∵ AE=NM=DF=2r,AD=EF=b−a,∵ AB=DC,∵ 由勾股定理得:BE=CF=12(b−a),∵ ⊙O是等腰梯形ABCD的内切圆,∵ AB=DC12(a+b),在Rt△ABE中,由勾股定理得:AE=√[12(a+b)]2−[12(b−a)]2=√ab,∵ OP=√ab2.故答案为:√ab2.16.【答案】5,2,√5【解答】解:(1)∵ ∠C=90∘,AC=8cm,BC=6cm,∵ AB=√82+62=10cm.∵ △ABC的外接圆半径长R=AB2=102=5cm.故答案为:5cm.(2)∵ AC=8cm,BC=6cm,由(1)知AB=10cm,∵ △ABC的内切圆半径长r=a+b−c2,=8+6−10=2cm.故答案为:2cm.(3)连接ID,IE,IF,∵ ⊙I是△ABC的内切圆,∵ ID⊥BC,IE⊥AC,IF⊥AB,∵ ∠CDI=∠CEI=∠C=90∘,又∵ DI=EI,∵ 四边形CDIE是正方形.∵ CD=CE=DI=IE,由(2)知DI=IE=IF2cm,∵ CD=2cm.∵ BC=6cm,∵ BD=4cm.∵ ⊙I是△ABC的内切圆,∵ BD=BF=4cm.∵ BO=5cm,∵ OF=1cm.在Rt△IFO中,IO=√22+12=√5cm.∵ △ABC的外心与内心之间的距离为√5cm.故答案为:√5cm.17.【答案】1【解答】解:∵ ⊙O是△ABC的内切圆,切点为D、E、F,∵ AF=AE,EC=CD,DB=BF,∵ AE=2,CD=1,BF=3,∵ AF=2,EC=1,BD=3,∵ AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∵ △ABC是直角三角形,=1.∵ 内切圆的半径r=3+4−52故答案为:1.三、解答题(本题共计7 小题,每题10 分,共计70分)18.【答案】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.【解答】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.19.【答案】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,∵ cos30∘=2,x,解得:x=4√33时,直线BC与⊙O相切;即当x为4√33(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√3;3.②若圆O与直线CB相交,则有OB小于x,即x<4√33【解答】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,,∵ cos30∘=2x解得:x=4√3,3即当x为4√33时,直线BC与⊙O相切;(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√33;②若圆O与直线CB相交,则有OB小于x,即x<4√33.20.【答案】【解答】此题暂无解答21.【答案】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.【解答】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.22.【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【解答】(1)如图,连接OD,:BC是○○的直径,________BAC=90∘AD平分么BAC,∵ ________BAC=2∠BAD,BOD=2BAD,.2BOD=∠BAC=90∘DPIIBC,.________ODP=∠BOD=90∘….PDLOD,:OD是○○半径,…PD是○O的切线;(2):PDIIBC,∵ ________ACB=2PACB=∠ADB∵ .ADB=2P________AB+∠ACD=180∘ ∴ ACD+∠DCP=180∘________DCP=∠ABD∵ ΔABD∼△DCP;(3):BC是○○的直径,∠BDC=∠BAC=90∘在Rt△ABC中,BC=√AB2+AC2=13cm:AD平分么BAC,∵ 2EAD=∠CAD∵ 2BOD=∠COD∵ BD=CE).在Rt△BCD中,BD2+CD2=BC2∴ BD=CD=√22BC=13√22ΔABD−△DCP∵ABCD=BDCPCP=16x−s rcm.BK−P22.【答案】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=√AC2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.【解答】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.24.3正多边形和圆一.选择题1.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个2.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根C.一次函数y=﹣3x+2的图象经过第一、二、四象限D.正六边形每个内角的度数是外角度数的2倍3.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°4.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5B.6C.8D.105.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣7.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S=AEDF.正八边形ABCDEFGH其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③8.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.29.如图,正五边形ABCDE与正三角形AMN都是⊙O的内接多边形,若连接BM,则∠MBC的度数是()A.12°B.15°C.30°D.48°10.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.4二.填空题11.正六边形的边长为2,则边心距为.12.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.13.中心角为36°的正多边形边数为.14.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.15.如图1,将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转°,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为.三.解答题16.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.17.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.18.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.2.【解答】解:A、为了解一种灯泡的使用寿命,此调查具有破坏性,宜采用抽查的方法;故此选项符合题意;B、一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根;故此选项不符合题意;C、一次函数y=﹣3x+2的图象经过第一、二、四象限;故此选项不符合题意;D、正六边形每个内角的度数是外角度数的2倍;故此选项不符合题意;故选:A.3.【解答】解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.4.【解答】解:∵正五边形的每个内角为:=108°,∴组成的正多边形的每个内角为:360°﹣2×108°﹣24°=120°,∵n个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,∴组成的正多边形为正n边形,则=120°,解得:n=6,故选:B.5.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.6.【解答】解:连接AC交EF于M,连接OF,∵四边形ABCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∴△ACD是等腰直角三角形,∴AC=AD=4,∴OA=OC=2,∵△AEF是等边三角形,∴AM⊥EF,∠OFM=30°,∴OM=OF=,∴CM=,∴∠ACD=45°,∠CMG=90°,∴∠CGM=45°,∴△CGH是等腰直角三角形,∴GH=2CM=2.故选:A .7.【解答】解:设圆心为O ,连接OD ,OF ,∵∠DOE =∠EOF ==45°,∴∠DOF =90°,∴弧DF 的度数为90°,∴①正确;∵∠DOF =90°,OD =OF ,∴2OD 2=DF 2,∴OD =, ∵AE =2OD ,∴AE =DF , ∴②正确;∵S 四边形ODEF =DFOE ,∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DFOE ,∵OE =AE ,∴S 正八边形ABCDEFGH =AEDF ,∴③正确;故选:D .8.【解答】解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OF A=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.9.【解答】解:连接OA、OC.∵五边形ABCDE是正五边形,∴∠AOB==72°,∴∠AOC=72°×2=144°,∵△AMN是正三角形,∴∠AOM==120°,∴∠COM=∠AOC﹣∠AOM=144°﹣120°=24°,∴∠MBC=∠COM=×24°=12°.故选:A.10.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.二.填空题(共5小题)11.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.【解答】解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.13.【解答】解:由题意可得:∵360°÷36°=10,∴它的边数是10.故答案为10.14.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.15.【解答】解:如图2所示:将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转,所得图形与原图的重叠部分是正多边形.在图2中,由题意得:PM=MN=NQ,AM=AP=BN=BQ,则MN=PM=AM,∵AM+MN+BN=AB=4,∴AM+AM+AM=4,解得:AM=4﹣2,则所得正八边形的面积为4×4﹣4××(4﹣2)2=32﹣32;故答案为:(),32﹣32.三.解答题(共4小题)16.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.17.【解答】解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.18.【解答】解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.19.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,。
新版新人教版九年级数学上册第24章、圆全章同步练习(word文档有答案)
第二十四章圆==本文档为word格式,下载后可随意编辑修改!==24.1 圆的有关性质一.选择题(共20小题)1.(安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.(2题图)(3题图)(4题图)(5题图)(6题图)4.(乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°6.(聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C 的度数是()A.25° B.27.5°C.30° D.35°7.(南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°8.(铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°(7题图)(8题图)(9题图)9.(菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°10.(张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30° B.45° C.55° D.60°11.(哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°(10题图)(11题图)(13题图)12.(潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.114.(乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米15.(金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm(14题图)(15题图)(16题图)16.(泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.817.(黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A. cm B.3cm C.3cm D.6cm18.(牡丹江)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5(17题图)(18题图)(19题图)19.(赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.π C.π D.2π20.(巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°(20题图)(22题图)二.填空题(共10小题)21.(孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD 之间的距离是cm.22.(曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.23.(金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.(23题图)(24题图)(25题图)24.(梧州)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.25.(烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.26.(雅安)⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.27.(湘西州)如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=28.(常州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC= .(27题图)(28题图)(29题图)(30题图)29.(湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .30.(安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .三.解答题(共5小题)31.(宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.32.(牡丹江)如图,在⊙O中, =,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.33.(济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.34.(福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.35.(宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.(泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.9.(自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.811.(内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A .46°B .47°C .48°D .49°16.(陕西)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D .517.(济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6cmD .12cm18.(邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD .若∠ACD=30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°19.(衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( )A.B.C.D.20.(襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.22.(临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.24.(泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A 内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.24.3 正多边形和圆一.选择题(共10小题)1.(株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形C.正五边形 D.正六边形2.(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.23.(河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.54.(滨州)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.15.(达州)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.6.(日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7.(南京)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.28.(莱芜)正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形9.(曲靖)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个10.(南平)若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.2 D.4二.填空题(共18小题)11.(陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.12.(玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .13.(呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为.14.(温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.15.(河北)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.16.(贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.17.(上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .18.(吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.(宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.20.(台州)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.21.(毕节市)正六边形的边长为8cm,则它的面积为cm2.22.(济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.23.(贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.24.(绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.25.(玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.26.(威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.27.(盐城)如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.28.(钦州)如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是.24.4 弧长和扇形面积一.选择题(共20小题)1.(盘锦)如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.(黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.3.(广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣4.(自贡)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.5.(德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A. 2B.C.πm2D.2πm26.(成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.(绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)π m2B.40π m2C.(30+5)π m2D.55π m28.(遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.(山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣810.(沈阳)如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.π C.2πD.π11.(广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.(丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣13.(重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π14.(衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD ∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π15.(宁夏)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12π B.15π C.24π D.30π16.(绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm217.(阿坝州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π18.(乌鲁木齐)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm19.(包头)120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.1820.(朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π二.填空题(共10小题)21.(安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.(连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.23.(郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)24.(荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.25.(乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.(济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD 的长度为cm.27.(盘锦)如图,在△ABC中,∠B=30°,∠C=45°,AD是BC边上的高,AB=4cm,分别以B、C为圆心,以BD、CD为半径画弧,交边AB、AC于点E、F,则图中阴影部分的面积是cm2.28.(呼伦贝尔)小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.29.(泰州)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.30.(邵阳)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三.解答题(共5小题)31.(湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.32.(贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC 于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).33.(张家界)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).34.(攀枝花)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E(1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)35.(新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.24.1 圆的有关性质参考答案一.选择题(共20小题)1.C.2.A.3.A.4.C.5.D.6.D.7.A.8.D.9.D.10.D.11.B.12.D.13.C.14.B.15.C.16.B.17.A.18.C.19.B.20.B.二.填空题(共10小题)21.2或14.22.n23.30,10﹣10,24.81.25.(﹣1,﹣2),26.4≤OP≤5.27.10.28.70°.29.60°30.4﹣.三.解答题(共5小题)31.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.32.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.33.解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.34.(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.35.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.24.2 点和圆、直线和圆的位置关系参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.24.3 正多边形和圆参考答案一.选择题(共10小题)1.A.2.B.3.C.4.A.5.A.6.A.7.B.8.B.9.C.10.A.二.填空题(共18小题)11.72°.12.12+4.13.:1.14.815.14,21.16.72.17..18.π+1.19.﹣1.20.≤a≤3﹣.21.96cm2.22..23.3.24.1::.25.8+8.26.2.27.8.28.3n﹣1•.24.4 弧长和扇形面积参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.A.8.B.9.A.10.A.11.D.12.A.13.C.14.A.15.B.16.C.17.B.18.A.19.C.20.C.二.填空题(共10小题)21.π.22.2π23.12π.24.﹣.25..26.20.27.(2+2﹣π).28.9.29.π.30..三.解答题(共5小题)31.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.32.解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.33.解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.34.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∴扇形ABG的面积==.35.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.。
人教版数学九年级上册 24.1.4 圆周角 同步练习题
人教版数学九年级上册第二十四章圆24.1.4圆周角同步测试一、选择题1. 下列图形中的角是圆周角的是()A B C D2. 下列说法中正确的是()A. 顶点在圆周上的角叫圆周角B. 圆周角等于圆心角的一半C. 同弦所对的所有圆周角相等D. 弦所对的圆周角有无数个3. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A. 22B. 4C. 42D. 8第3题第4题4. 如图,△ABC的顶点A,B,C均在⊙O中,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°5. 如图,四边形ABCD是圆内接四边形,E是线段BC延长线上的一点,若∠BAD=105°,则∠DCE 的大小是()A. 115°B. 105°C. 75°D. 85°6. ⊙O的半径为1,AB是⊙O的一条弦,且AB=3,则弦AB所对的圆周角为()A. 30°B. 60°C. 30°或150°D. 60°或120°7. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. 45°B. 50°C. 60°D. 75°第7题 第8题8. 如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =59°,则∠C 等于( ) A. 29° B. 31° C. 59° D. 62°9. 如图,在⊙O 中,∠AOB 的度数为m ,C 是ACB ︵上一点,D ,E 是AB ︵上不同的两点(不与A ,B 两点重合),则∠D +∠E 的度数为( )A. mB. 180°-m 2C. 90°+m 2D. m2第9题 第10题10. 如图,BA 是半圆O 的直径,点C 在⊙O 上,若∠ABC =50°,则∠CAB = .11. 如图所示,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D = ,∠B = .第11题 第12题12. 如图,AB 是⊙O 的直径,C 是圆上一点,连接BC ,AC ,∠BAC =60°,弦AD 平分∠BAC ,若AD =6,那么AC = .13. 如图所示,AB 是⊙O 的直径,AB =AC ,D ,E 在⊙O 上,说明:BD =DE .14. 如图,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E ,若BC =BE . 求证:△ADE 是等腰三角形.15. 如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是CAD ︵上一点(不与C ,D 重合),求证:∠CPD =∠COB ;(2)点P ′在CD ︵上(不与C ,D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.16. 如图,正方形ABCD 内接于⊙O ,M 为AD ︵中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2时,求BM ︵的长.17. 如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A ,B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD .(1)弦长AB = (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.18. 在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD . (1)如图①,若点D 与圆心O 重合,AC =2,求⊙O 的半径r ; (2)如图②,若点D 与圆心O 不重合,∠BAC =25°,求∠DCA 的度数.答案1. B2. D3. C4. C5. B6. D7. C8. B9. B 10. 40° 11. 80° 100° 12. 213. 解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC .又∵AB =AC ,∴∠BAD =∠EAD ,∴︵BD =︵DE,∴BD =DE .14. 证明:∵BC =BE ,∴∠E =∠BCE .∵四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°.∵∠BCE +∠DCB =180°,∴∠A =∠BCE .∴∠A =∠E .∴AD =DE .∴△ADE 是等腰三角形.15. (1)证明:连接OD ,∵AB 是直径,AB ⊥CD ,∴︵BC =︵BD ,∴∠COB =∠BOD =21∠COD .又∵∠CPD =21∠COD ,∴∠CPD =∠COB .(2)解:∠CP ′D +∠COB =180°.证明:∵四边形PCP ′D 是圆内接四边形,∴∠CPD +∠CP ′D =180°.∴∠CP ′D +∠COB =180°.16. (1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∴︵AB =︵CD ,∵M 为︵AD 中点,∴︵AM =︵DM ,∴︵AB +︵AM =︵CD +︵DM ,即︵BM =︵CM.∴BM =CM .(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π,∴︵BM 的长=83×4π=23π. 17. 解:(1)2(2)∵∠BOD 是△BOC 的外角,∠BCO 是△ACD 的外角,∴∠BOD =∠B +∠BCO ,∠BCO =∠A +∠D .∴∠BOD =∠B +∠A +∠D .又∵∠BOD =2∠A ,∠B =30°,∠D =20°,∴2∠A =∠B +∠A +∠D =∠A +50°,∴∠A =50°,∴∠BOD =2∠A =100°.18. 解:(1)如图①,过点O 作OE ⊥AC 于点E ,则AE =21AC =21×2=1.∵翻折后点D 与圆心O 重合,∴OE =21r .在Rt △AOE 中,AO 2=AE 2+OE 2,即r 2=12+(21r )2,解得r =33.(2)连接BC .∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°-∠BAC =65°.根据翻折的性质,︵AC 所对的圆周角为∠B ,︵ABC所对的圆周角为∠ADC ,∴∠ADC +∠B =180°,∴∠B =∠CDB =65°,∴∠DCA =∠CDB -∠A =65°-25°=40°.。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角检测(含解析)新人教版(2021年
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版的全部内容。
24.1.4 圆周角测试时间:30分钟一、选择题1。
(2017黑龙江哈尔滨中考)如图,☉O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B。
35°C。
34° D.44°2。
(2017贵州黔东南州中考)如图,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A。
2 B.—1 C。
D。
43.(2017山东潍坊中考)如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°4。
如图,AB是☉O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B方向运动(到点B终止运动),设运动时间为t(s),连接EF,当△BEF是直角三角形时,t=( )A。
1 s B。
人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
人教版九年级数学上册24.1.4圆周角 练习题(含答案)
人教版九年级数学上册24.1.4圆周角 练习题(含答案)一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是__120o ______.DDCB AO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有____5_____对相等的角。
3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=___160____度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=___23____度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为__50o ______.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O到CD 的距离___.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( A ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.解:连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.解:连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2.B A15.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.16.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?答案:1.120°2.3 13.160°4.44°5.50°7.A 8.C 9.B 10.C 11.B 12.C13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2. 15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′C D=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.。
人教版九年级数学上册24.1.4圆周角同步测试及答案【新】
圆周角1.如图21-1-41,在⊙O 中,∠ABC =50°,则∠AOC 等于( D )图21-1-41A .50°B .80°C .90°D .100°2.如图21-1-42,点A ,B ,C 在⊙O 上,∠BOC =100 °,则∠A 的度数为( B )图21-1-42A .40°B .50°C .80°D .100°3.如图24-1-43,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD =100°,则∠DCE 的度数为( C )A .40°B .60°C .50°D .80°【解析】 根据圆周角定理,可求得∠A 的度数;由于四边形ABCD 是⊙O 的内接四边形,根据圆DCE =∠A =50°.4.如图21-4-44,在⊙O 中,已知∠OAB =22.5°,则∠C 的度数为( D )图21-4-44A .135° B. 122.5° C. 115.5° D .112.5°【解析】 ∵OA =OB ,∴∠OAB =∠OBC =22.5°,∴∠AOB =180°-22.5°-22.5°=135°.∴∠C =12(360°-135°)=112.5°. 5.[2013·苏州]如图21-4-45,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB 等于( C )图21-4-45 第5题答图A .55°B .60°C .65°D .70°【解析】 连接BD ,如图,∵点D 是弧AC 的中点,即弧CD =弧AD ,∴∠ABD =∠CBD ,而∠ABC =50°,∴∠ABD =12×50°=25°, ∵AB 是半圆的直径,∴∠ADB =90°,∴∠DAB =90°-25°=65°.6.[2012·湘潭]如图24-1-46,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( D )图24-1-46A .20°B .40°C .50°D .80°【解析】 ∵弦AB ∥CD ,∴∠ABC =∠BCD ,∴∠BOD =2∠BCD =2∠ABC =2×40°=80°.7.如图24-1-47,弦AB ,CD 相交于点O ,连接AD ,BC ,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是__答案不唯一,如∠A =∠C 等__.图24-1-478.[2013·张家界]如图24-1-48,⊙O 的直径AB 与弦CD 垂直,且∠BAC =40°,则∠BOD =__80°__. 24-1-489.如图24-1-49,若AB 是⊙O 的直径,AB =10 cm ,∠CAB =30°,则BC =__5__cm.图24-1-4910.如图24-1-50,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D为⊙O上的一点,若∠CAB=55°,则∠ADC的大小为__35__度.【解析】∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=55°,∴∠B=90°-∠CAB=35°,∴∠ADC=∠B=35°.图24-1-5011.如图24-1-51,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC 的度数为__30°__.【解析】因为AB为⊙O的直径,所以∠ADB=90°.又因为△ABC是等边三角形,所以AD是∠BAC 的平分线,所以∠DAC=30°.图24-1-5112.如图24-1-52,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.解:如图,连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF,∴∠BDC=∠C.又∵∠BDC=12∠BOC,∴∠C=12∠BOC.∵AB⊥CD,即∠OEC=90°,∴∠C+∠BOC=90°,∴∠C=30°,∴∠ADC=90°-∠C=60°.图24-1-52第12题答图13.如图24-1-53,CD⊥AB于E,若∠B=70°,则∠A=__20°__.图24-1-53【解析】 因为CD ⊥AB ,∠B =70°,所以∠C =20°,所以∠A =20°.14.如图24-1-54,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =__27°__. 【解析】 ∠ABC =12∠AOC =12×108°=54°.因为BD =BC ,所以∠D =12∠ABC =12×54°=27°.15.如图24-1-55,已知AB ,CD 是⊙O 的直径,DF ∥AB 交⊙O 于点F ,BE ∥DC 交⊙O 于点E .(1)求证:BE =DF ;(2)写出图中4组不同的且相等的劣弧(不要求证明).【解析】 (1)首先由平行线性质得到∠EBA =∠COA =∠CDF ,然后根据相等的圆周角所对的弧相等即可证明ECA ︵=CAF ︵,进一步得到BE ︵=DF ︵,再根据等弧对等弦即可得到BE =DF ;(2)根据等弦对等弧和相等的圆周角所对的弧相等即可得到4组不同的且相等的劣弧.解:(1)证明:∵DF ∥AB ,BE ∥DC ,∴∠EBA =∠COA =∠CDF ,∴ECA ︵=CAF ︵,∴BE ︵=DF ︵,∴BE =DF .(2)图中相等的劣弧有:DF ︵=BE ︵,EC ︵=F A ︵,AC ︵=BD ︵,DA ︵=BC ︵,BF ︵=DE ︵等.图24-1-5616.已知:如图24-1-56,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点.证明:(1)∵BD 平分∠CBA ,∴∠CBD =∠DBA .∵∠DAC 与∠CBD 都是弧CD 所对的圆周角,∴∠DAC =∠CBD ,∴∠DAC =∠DBA .(2)∵AB 为⊙O 的直径,∴∠ADB =90°.又∵DE ⊥AB ,∴∠DEB =90°,∴∠ADE +∠EDB =∠ABD +∠EDB =90°,∴∠ADE =∠ABD =∠DAP ,∴PD =P A .又∵∠DF A +∠DAC =∠ADE +∠PD F =90°,∠ADE =∠DAC ,∴∠PDF =∠PFD , ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点.17.已知:如图24-1-57(1),在⊙O 中,弦AB =2,CD =1,AD ⊥BD .直线AD ,BC 相交于点E .(1)求∠E 的度数;(2)如果点C ,D 在⊙O 上运动,且保持弦CD 的长度不变,那么,直线AD ,BC 相交所成锐角的大小是否改变?试就以下两种情况进行探究,并说明理由(图形未画完整,请你根据需要补全). ①如图(2),弦AB 与弦CD 交于点F ;②如图(3),弦AB 与弦CD 不相交.图1-57【解析】 (1)连接OC ,OD , 则∠COD =60°,且∠DBE =12∠DOC =30°. 解:(1)如图(1),连接OC ,OD .∵AD ⊥BD ,∴AB 是⊙O 的直径,∴OC =OD =CD =1,∴△DOC是等边三角形,∴∠COD =60°,∴∠DBE =12∠COD =30°,∴∠E =90°-∠DBE =60°.(2)(2),,=CO =CD =1,∴△DOC 为等边三角形,∴∠DOC =60°,∴∠DAC =12∠DOC =30°,∴∠EBD =∠DAC =30°.∵∠ADB =90°,∴∠E =90°-∠EBD =60°.②如图(3),连接OD ,OC ,同理可得出∠CBD =30°,∠BED =90°-∠CBD =60°.。
人教版九年级数学上册第24章24.1《圆的基本性质》同步练习及答案(3).docx
初中数学试卷 桑水出品24.1 圆(第四课时 )--------圆周角知识点1、圆周角定义:顶点在 ,并且两边都和圆 的角叫圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于这条弧所对的圆心角的 。
推论1、在同圆或等圆中,如果两个圆周角 ,那么它们所对的弧 。
推论2、半圆(或直径)所对的圆周角是 ; 900的圆周角所对的弦是 。
3、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做 ,这个圆叫做 。
性质:圆内接四边形的对角一、选择题1.如图,在⊙O 中,若C 是»BD的中点,则图中与∠BAC 相等的角有( ) A.1个 B.2 个 C.3个 D.4个2.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( )A . 20°B . 40°C . 60° D.80°3.如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A=40 º,则∠B 的度数为( )A .80 ºB .60 ºC .50 ºD .40 º4.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°5.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°6.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的半径为()A.6 B.5 C.3 D.327、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=23,则⊙O的半径为()A.43B.63C.8 D.128、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B.A F=BF C.O F=CF D.∠DBC=90°»»A.AD BD二、填空题1.如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.2.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.3.已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.4.如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..5、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.7、如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.8、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=.9、如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=.10、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是度.A B CO三、解答题1、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.2. 如图,AB 是⊙O 的直径,C 是»BD的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .3、如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .4、如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD(1)求证:BD 平分∠ABC ;(2)当∠ODB=30°时,求证:BC=OD .CBDE FO5、如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.24.1 圆(第四课时)--------圆周角知识点1.圆上相交2.相等一半相等一定相等直角直径3.圆内接多边形这个多边形的外接圆互补一、选择题1.C2.D3.C4.C5. C6.C7、A8、C二、填空题1.150°2.25°3.60°4. 40°.5、20°6、57、50°8.9、30°10、144°三、解答题1、ArrayA B»»2222222BC AB AC1068cmCD ACBACD BCD45AD BDAD BDBD AB100100AD BD52cm2∴∠∠︒∴=-=-=∠∴∠=∠=︒∴=∴=+==∴===Q eVQV解:AB是O的直径ACB=ADB=90在Rt ABC中,AB=10cm,AC=6cm,平分在Rt ADC中,AB=10cmAD2.解:(1) 证明:∵AB是⊙O的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2﹦90°-∠A﹦∠1又∵C是弧BD的中点,∴∠1﹦∠A∴∠1﹦∠2,∴CF﹦BF﹒(2) ⊙O的半径为5,CE的长是524﹒3、CBDEFO12解:(1)在△ABC中,∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形;(2)∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OD=8×12=4.4、证明:(1)∵OD⊥AC OD为半径,∴»»CD AD=,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12 AB,∵OD=»»CD AD=AB,∴BC=OD.5、(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.。
人教版初中数学九上同步测试 第24章《圆》(测试4 圆周角)测试卷及答案解析
人教版初中数学九上同步测试第24章《圆》测试4 圆周角学习要求1.理解圆周角的概念.2.掌握圆周角定理及其推论.3.理解圆内接四边形的性质,探究四点不共圆的性质.课堂学习检测一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.5题图6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠F AE=______,∠DAB=______,∠EF A=______.6题图7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.7题图二、选择题8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).10题图A.64°B.48°C.32°D.76°11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°综合、运用、诊断14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.拓广、探究、思考18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD=∠FMC.答案与提示第二十四章 圆测试41.顶点,与圆相交. 2.该弧所对的,一半. 3.同弧或等弧,相等.4.半圆(或直径),所对的弦. 5.72°,36°,72°,108°.6.90°,30°,60°,120°. 7.60°,120°.8.C . 9.B . 10.A . 11.B . 12.A . 13.C .14.提示:作⊙O 的直径A B ',连结C A '.不难得出A B '=cm.38 15.cm.3416.提示:连结AH ,可证得∠H =∠C =∠AFH .17.提示:连结CE .不难得出cm .25=AC18.提示:延长AO 交⊙O 于N ,连结BN ,证∠BAN =∠DAC .19.提示:连结MB ,证∠DMB =∠CMB .。
2019版九年级数学上册第24章圆24.1.4圆周角同步检测题含解析 新人教版
2019版九年级数学上册第24章圆24.1.4圆周角同步检测题含解析新人教版一、夯实基础1.(xx·泰安中考)如图,点A,B,C在☉O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )A.60°B.70°C.120°D.140°【解析】选D.延长CO交AB于D,则∠BOC=∠ODB+∠B=∠A+∠C+∠B,又因为∠BOC=2∠A,即2∠A=∠A+∠C+∠B,2∠A=∠A+32°+38°,所以∠A=70°,所以∠BOC=140°.2.(xx·珠海中考)如图,▱ABCD的顶点A,B,D在☉O上,顶点C在☉O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为( )A.36°B.46°C.27°D.63°【解析】选A.∵四边形ABCD是平行四边形,∴∠B=∠ADC=54°.∵BE是☉O的直径,∴∠BAE=90°,∴∠AEB=90°-∠B=90°-54°=36°.3.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为( )A.35°B.40°C.50°D.80°【解析】选B.连接OA,OB,∵四边形AOBD内接于圆,∠ADB=100°,∴∠AOB=180°-100°=80°.∵∠ACB=∠AOB,∴∠ACB=×80°=40°.二、填空题(每小题4分,共12分)4.(xx·青海中考)如图,在☉O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB= .【解析】∵CD是直径,CD⊥AB,∴=,∴∠DCB=∠AOD=×52°=26°.答案:26°【方法技巧】同一圆中证明两角相等、两弧相等的“两种方法”(1)证明两角相等①同弧或者等弧所对的圆心角相等;②同弧或者等弧所对的圆周角相等(在同圆或者等圆中,同弧或者等弧所对的圆周角都等于这条弧所对圆心角的一半).(2)证明两弧相等①垂径定理及其推论中弧、弦、圆心角三者之间的关系;②在同圆或等圆中,相等的圆周角所对的弧也相等.即有弧找角、有角找弧是证明弧相等或者角相等常用的思维方法.5.(xx·株洲中考)如图AB是☉O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.【解析】方法一:∵AB是☉O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∴∠B=90°-∠A=48°,∴∠AOC=2∠B=96°,∵OA=OC,AD=CD,∴∠DOC =∠AOC=48°.方法二:∵AD=CD,∴OD⊥AC,∴∠CDO=90°,∴∠DOC+∠ACO=90°,∵OA=OC,∴∠ACO=∠A=42°,∴∠DOC =90°-∠A=48°.答案:486.如图,AB是半圆O的直径,C,D是上两点,∠ADC=120°,则∠BAC的度数是度.【解析】∵∠ADC=120°,∴∠B=180°-∠ADC=60°.∵AB是直径,∴∠ACB=90°,∴∠BAC=90°-60°=30°.答案:30【拓展延伸】同一条弧所对的四类角及两关系四类角:(1)圆心角:顶点在圆心的角.(2)圆周角:顶点在圆上,两边和圆相交的角.(3)圆内角:顶点在圆内,两边和圆相交的角.(4)圆外角:顶点在圆外,两边和圆相交的角.两关系:(1)一条弧所对的圆周角是其所对的圆心角的一半.(2)一条弧对的圆内角>该弧对的圆周角>该弧对的圆外角.二、能力提升7.(8分)如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC交☉O于点F,点F 不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.【解析】(1)AB=AC.连接AD,∵AB是直径,∴∠ADB=90°,又∵DC=BD,∴AB=AC.(2)△ABC是锐角三角形.由(1)知,∠B=∠C<90°,连接BF,则∠AFB=90°,∴∠A<90°,∴△ABC是锐角三角形.【方法技巧】有直径时,常常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题,结合等腰三角形的性质,可判断线段或角相等.8.(8分)(xx·温州中考)如图,AB为☉O的直径,点C在☉O上,延长BC至点D,使DC=CB.延长DA与☉O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D.(2)若AB=4,BC-AC=2,求CE的长.【解析】(1)∵AB为☉O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D.(2)设BC=x,则AC=x-2.在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=16,解得x1=1+,x2=1-(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.三、课外拓展9.(10分)如图,☉O的直径AB的长为6,弦AC的长为2,∠ACB的平分线交☉O于点D,求四边形ADBC 的面积.【解析】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,AB=6,AC=2,∴BC===4.∵∠ACB的平分线交☉O于点D,∴∠DCA=∠BCD,∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=3,∴四边形ADBC的面积=S△ABC+S△ABD=AC·BC+AD·BD=×2×4+×(3)2=9+4.四、中考链接答案1.(xx·泰安中考)如图,点A,B,C在☉O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )A.60°B.70°C.120°D.140°【解析】选D.延长CO交AB于D,则∠BOC=∠ODB+∠B=∠A+∠C+∠B,又因为∠BOC=2∠A,即2∠A=∠A+∠C+∠B,2∠A=∠A+32°+38°,所以∠A=70°,所以∠BOC=140°.2.(xx·珠海中考)如图,▱ABCD的顶点A,B,D在☉O上,顶点C在☉O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为( )A.36°B.46°C.27°D.63°【解析】选A.∵四边形ABCD是平行四边形,∴∠B=∠ADC=54°.∵BE是☉O的直径,∴∠BAE=90°,∴∠AEB=90°-∠B=90°-54°=36°.3.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为( )A.35°B.40°C.50°D.80°【解析】选B.连接OA,OB,∵四边形AOBD内接于圆,∠ADB=100°,∴∠AOB=180°-100°=80°.∵∠ACB=∠AOB,∴∠ACB=×80°=40°.二、填空题(每小题4分,共12分)4.(xx·青海中考)如图,在☉O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB= .【解析】∵CD是直径,CD⊥AB,∴=,∴∠DCB=∠AOD=×52°=26°.答案:26°【方法技巧】同一圆中证明两角相等、两弧相等的“两种方法”(1)证明两角相等①同弧或者等弧所对的圆心角相等;②同弧或者等弧所对的圆周角相等(在同圆或者等圆中,同弧或者等弧所对的圆周角都等于这条弧所对圆心角的一半).(2)证明两弧相等①垂径定理及其推论中弧、弦、圆心角三者之间的关系;②在同圆或等圆中,相等的圆周角所对的弧也相等.即有弧找角、有角找弧是证明弧相等或者角相等常用的思维方法.5.(xx·株洲中考)如图AB是☉O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.【解析】方法一:∵AB是☉O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∴∠B=90°-∠A=48°,∴∠AOC=2∠B=96°,∵OA=OC,AD=CD,∴∠DOC =∠AOC=48°.方法二:∵AD=CD,∴OD⊥AC,∴∠CDO=90°,∴∠DOC+∠ACO=90°,∵OA=OC,∴∠ACO=∠A=42°,∴∠DOC =90°-∠A=48°.答案:486.如图,AB是半圆O的直径,C,D是上两点,∠ADC=120°,则∠BAC的度数是度.【解析】∵∠ADC=120°,∴∠B=180°-∠ADC=60°.∵AB是直径,∴∠ACB=90°,∴∠BAC=90°-60°=30°.答案:30【拓展延伸】同一条弧所对的四类角及两关系四类角:(1)圆心角:顶点在圆心的角.(2)圆周角:顶点在圆上,两边和圆相交的角.(3)圆内角:顶点在圆内,两边和圆相交的角.(4)圆外角:顶点在圆外,两边和圆相交的角.两关系:(1)一条弧所对的圆周角是其所对的圆心角的一半.(2)一条弧对的圆内角>该弧对的圆周角>该弧对的圆外角.二、能力提升7.(8分)如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC交☉O于点F,点F 不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.【解析】(1)AB=AC.连接AD,∵AB是直径,∴∠ADB=90°,又∵DC=BD,∴AB=AC.(2)△ABC是锐角三角形.由(1)知,∠B=∠C<90°,连接BF,则∠AFB=90°,∴∠A<90°,∴△ABC是锐角三角形.【方法技巧】有直径时,常常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题,结合等腰三角形的性质,可判断线段或角相等.8.(8分)(xx·温州中考)如图,AB为☉O的直径,点C在☉O上,延长BC至点D,使DC=CB.延长DA与☉O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D.(2)若AB=4,BC-AC=2,求CE的长.【解析】(1)∵AB为☉O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D.(2)设BC=x,则AC=x-2.在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=16,解得x1=1+,x2=1-(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.三、课外拓展9.(10分)如图,☉O的直径AB的长为6,弦AC的长为2,∠ACB的平分线交☉O于点D,求四边形ADBC 的面积.【解析】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,AB=6,AC=2,∴BC===4. ∵∠ACB的平分线交☉O于点D,∴∠DCA=∠BCD,∴=,∴AD=BD, ∴在Rt△ABD中,AD=BD=AB=3, ∴四边形ADBC的面积=S△ABC+S△ABD=AC·BC+AD·BD=×2×4+×(3)2=9+4.。
2019年人教版九年级数学上24.1.4圆周角同步练习卷含答案
24.1.4 圆周角一、选择题1.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.10° B.20° C.40° D.80°2.如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是()A.1 B.2 C.3 D.43.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78° C.39° D.12°4.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120°D.140°5.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36° B.46° C.27° D.63°6.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35° B.140°C.70° D.70°或140°7.下列四个图中,∠x是圆周角的是()A.B.C.D.8.如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2 D.49.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°10.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32° C.58° D.64°11.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B12.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75° B.60° C.45° D.30°13.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数是()A.40° B.50° C.60° D.100°14.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20° B.46° C.55° D.70°15.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°16.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB•AEC.△ADE是等腰三角形D.BC=2AD二、填空题17.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.18.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,则α的最大值是______.19.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,则∠APB的范围是______.20.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为______.21.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是______.22.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______度.23.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是______.24.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是______.25.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB 上任意一点(与A、B不重合),则∠APB=______.26.如图,AD、AC分别是直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5cm,则CD等于______cm.27.如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=______.三、解答题28.(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.29.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.30.如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F,求证:(1)△AEB∽△OFC;(2)AD=2FO.24.1.4 圆周角答案一、选择题1.C;2.D;3.C;4.D;5.A;6.B;7.C;8.C;9.D;10.B;11.B;12.B;13.B;14.C;15.D;16.D;二、填空题17.50°;18.90°;19.0°<∠APB<30°;20.50°;21.55°或125°;22.52;23.;24.;25.30°;26.5;27.26°;三、解答题28.29.30.。