1.1.3集合的基本运算教案第1课时
1.1.3 集合的基本运算(1)并集与交集-讲义版
1.1.3
集合的基本运算
第 1 课时 并集和交集
已知一个班有 30 人,其中 5 人有兄弟,5 人有姐妹,你能判断这个班有多少是独生子女吗?如果不能 判断,你能说出需哪些条件才能对这一问题做出判断吗? 事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的条件不足以判断这个班独 生子女的人数,为了解决这个问题,我们还必须知道“有兄弟且有姐妹的同学的人数”.应用本小节集 合运算的知识,我们就能清晰地描述并解决上述问题了. 1、并集和交集的定义 定义 自然语言 符号语言
变式训练 3: 已知集合 M={x|2x-4=0},N={x|x2-3x+m=0}. (1)当 m=2 时,求 M∩N,M∪N;(2)当 M∩N=M 时,求实数 m 的值.
第 4 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 4:利用交集、并集运算求参数
精讲例题 4: 已知集合 A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的 a 值. (1)9∈A∩B; (2){9}=A∩B.
(3)已知 A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则 A∩B=________. 变式训练 2: (1)若综合 M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则 M∩N=( A.{1,4} A.{2} B.{-1,-4} B.{x|1<x<3} C.{0} ) D.{x|3<x<5} C.{x|2<x<3} D. (2)已知集合 A={x|1<x<3},B={x|2<x<5},则 A∩B=(
第 7 页 共 7 页
第 2 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 1:并集的概念及运算
必修一课件:1.1.3(第1课时)并集、交集及综合应用
类型 二 集合交集的运算
【典型例题】
1.(2013·安阳高一检测)若A={0,1,2,3},B={0,3,6,9},则
A∩B=( )
A.{1,2}
B.{0,1}
C.{0,3}
D.{3}
2.(2013·潍坊高一检测)已知M={x|y=x2-1},N={y|y=
【解题探究】1.两个集合求并集的实质是什么? 2.题2中在已知M∪N及集合M的条件下,如何确定集合N? 3.当并集中的元素个数与构成并集的两个集合的元素个数和 相等时,如何确定其中的参数?
探究提示: 1.两个集合求并集的实质是把两个集合中的所有元素合在一 起,组成一个新的集合. 2.根据集合M∪N及集合M的关系,可以确定集合N一定含有 的元素,集合的个数则由可能含有的元素确定. 3.此类问题,一般是去掉已知元素,把参数与并集中的元素 对应相等,构成方程(组)求解.
提示:(1)错误.虽然两集合无公共元素,但两个集合的交集存 在且为空集,故不正确.(2)错误.当两个集合有公共元素时, 在并集中只能算作一个,故不正确.(3)错误.若A∩B=C∩B,A 与C也可能不相等,故不正确. 答案:(1)×(2)×(3)×
【知识点拨】 1.对并集概念的理解(关键词“或”) (1)并集概念中的“或”字与生活中的“或”字含义不同.生活 中的“或”字是非此即彼,必居其一,而并集中的“或”字 可以是兼有的,但不是必须兼有的.x∈A,或 x∈B包含三种 情况: ①x∈A,但x∉B; ②x∈B,但x∉A; ③x∈A且x∈B.
【解析】1.选B.结合数轴分析可知,A∪B={x|-1≤x≤5}. 2.选D.∵M={1,2},M∪N={1,2,3,4}, ∴N={3,4}或{1,3,4}或{2,3,4}或{1,2,3,4},即集合N有4 个. 3.选D.∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16}, ∴a=4,a2=16或a=16,a2=4,解得a=4.
1.1.3集合的基本运算(并集交集)
评卷人 王
得分 0
解:由y=-x2-2x,(y=x2-4x+3,) 得2x2-2x+3=0, ∵Δ=(-2)2-4×2×3=4-24=-20<0, ∴方程2x2-2x+3=0无解. 故M∩N=∅.
提示:在上述问题中,集合C是由那些既属于集合A同时 又属于集合 B的所有元素组成的.
交集 且 属于集合 B 一般地, 由属于集合 A_____ 自然 所有元素 组成的集合,称为 A 与 的____________ 语言 B 的交集 A∩B={x|x∈A且x∈B} (读作“A 交 符号 _______________________ 语言 B”)
(6)两个集合的交集是其中任一集合的子集,即 ( A B) A,( A B) B
1.设集合 M={x|-3<x<2},N={x|1≤x≤3},则 M∩ N = ( ) A.{x|1≤x<2} B.{x|1≤x≤2} C.{x|2<x≤3} D.{x|2≤x≤3}
解析:
在数轴上表示集合 M、N 为
1.1.3
集合的基本运算
第1课时 并集、交集
考察下列各个集合,你能说出集合C与集合A、B之间的关系 吗? (1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6} (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数} 提示:在上述两个问题中,集合A,B与集合C之间都具有 这样一种关系:集合C是由所有属于集合A或属于集合B的 元素组成的.
①当B=∅时,只需2a>a+3, 即a > 3 ; ②当 B≠∅时,根据题意作出如图所示的数轴,
2020-2021高中数学第一册学案:1.1.3 第1课时交集与并集含解析
2020-2021学年高中数学新教材人教B版必修第一册学案:1.1.3 第1课时交集与并集含解析1.1.3集合的基本运算素养目标·定方向课程标准学法解读1.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.2.在具体情境中,了解全集的含义.3.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.4.能使用Venn图表达集合的基本运算,体会图形对理解抽象概念的作用。
1.学习本节时,重视对“交集”“并集”“补集"等概念的理解,特别是“且”“或”的区别,可结合维恩图或数轴理解.2.解题时注意运用图示法(维恩图、数轴、函数图像等)表示集合及进行运算,可以直观、快速地解答集合的运算问题.3.注意“集合运算"⇔“集合关系”间的转化,容易解决集合运算中的参数问题.4.养成用“交集、并集、补集”的思想去解决实际问题,提升数学学科素养。
第1课时交集与并集必备知识·探新知基础知识1.交集思考1:两个非空集合的交集可能是空集吗?提示:两个非空集合的交集可能是空集,即A与B无公共元素时,A与B的交集仍然存在,只不过这时A∩B=∅。
反之,若A∩B=∅,则A,B这两个集合可能至少有一个为空集,也可能这两个集合都是非空的,如:A={1,3,5,7,9},B={2,4,6,8,10},此时A∩B =∅.2.并集思考2:集合A∪B中的元素个数如何确定?提示:①当两个集合无公共元素时,A∪B的元素个数为这两个集合元素个数之和;②当两个集合有公共元素时,根据集合元素的互异性,同时属于A和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个集合元素个数之和减去公共元素的个数.3.交集与并集的运算性质交集的运算性质并集的运算性质A∩B=B∩A A∪B=B∪AA∩A=A A∪A=AA∩∅=∅∩A=∅A∪∅=∅∪A=A如果A⊆B,则__A∩B=A__,反之也成立如果A⊆B,则__A∪B=B__,反之也成立思考3:判断集合A={2,3}与集合B={2,3,5}的关系,并写出A∩B和A∪B,你能发现什么规律?提示:A与B的关系为A B,A∩B={2,3},A∪B={2,3,5},由以上结论可推测A⊆B⇔A∩B=A⇔A∪B=B.基础自测1.已知集合M={-1,0,1},N={0,1,2},则M∪N=(C) A.{0,1}B.{-1,0,2}C.{-1,0,1,2}D.{-1,0,1}解析:M∪N={-1,0,1,2}.2.设集合M=(-3,2),N=[1,3],则M∩N=(A)A.[1,2)B.[1,2]C.(2,3]D.[2,3]解析:因为M=(-3,2),且N=[1,3],所以M∩N=[1,2).3.已知集合M={x|x2=9},N={x|-3≤x〈3,x∈Z},则M∩N =(B)A.∅B.{-3}C.{-3,3}D.{-3,-2,0,1,2}解析:由题意,得M={-3,3},由于N={-3,-2,-1,0,1,2},则M∩N={-3}.4.若集合A={x|-5<x〈2},B={x|-3<x<3},则A∪B=__{x|-5〈x<3}__,A∩B=__{x|-3〈x<2}__.5.已知A={-1}且A∪B={-1,3},则所有满足条件的集合B=__{3}或{-1,3}__.关键能力·攻重难类型交集的运算┃┃典例剖析__■典例1(1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=(A)A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}(2)已知A={x|x≤-2或x>5},B={x|1<x≤7},则A∩B=__(5,7]__。
1.1.3集合的基本运算教案
1.1.3集合的基本运算教案篇一:第一课时1.1.3集合的基本运算教案20XX-20XX学年上学期高一数学备课组教案主备课教师:邱惠彬备课组老师:篇二:高中数学1.1.3集合的基本运算教案新人教a版必修11.1.3集合的基本运算学习目标:(1)理解交集与并集的概念;(2)掌握两个较简单集合的交集、并集的求法;(3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;(4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念教学难点:交集和并集的概念、符号之间的区别与联系合作探究展示:一、问题衔接我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P8思考题),引入并集概念。
二、新课教学1.并集一般地,由所有属于集合a或属于集合B的元素所组成的集合,称为集合a与B的并集(Union)记作:a∪B读作:“a并B”即:a∪B={x|x∈a,或x∈B}Venn图表示:说明:B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合a与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与B的交集。
2.交集一般地,由属于集合a且属于集合B的元素所组成的集合,叫做集合a与B的交集(intersection)。
记作:a∩B读作:“a交B”即:a∩B={x|∈a,且x∈B}交集的Venn 图表示1说明:两个集合求交集,结果还是一个集合,是由集合a与B的公共元素组成的集合。
例题(P9-10例6、例7)拓展:求下列各图中集合a与B的并集与交集a集3.探索研究a∩B?a,a∩B?B,a∩a=a,a∩?=?,a∩B=B∩aa?a∪B,B?a∪B,a∪a=a,a∪?=a,a∪B=B∪a三、归纳小结(略)四、作业布置书面作业:P12习题1.1,第6-8题拓展提高:题型一已知集合的交集、并集求参数问题22例1已知集合a?a,a?1,?3,B?a?3,2a?1,a?1,若a?B???3?,???2?求实数a解:∵a?B???3?,∴?3?B,而a?1??3,∴当a?3??3,a?0,a??0,1,?3?,B???3,?1,1?,这样a?B???3,1?与a?B???3?矛盾;当2a?1??3,a??1,符合a?B???3?∴a??1练习1已知集合a??4,2a?1,a,B??a?5,1?a,9?,若a?B??9?,求a的值2??答案a=-3例2.已知a?x2a?x?a?3,B?xx??1或x?5,若a?B??,求a的取值范围.解(1)若a??,由a?B??,此时2a?a?3?a?32????a??,由a?B??,(2)若?2a??11???a?3?5解得??a?22?2a?a?3?综上所述,a的取值范围是?a????1?a?2或a?3?.2?练习2上题中若a?B?R,求a的取值范围。
1.1.3集合的基本运算(1)---(5)
§1.1.3集合的基本运算(1)学习目标(1)理解交集与并集的概念;(2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的交集、并集的求法;学习过程一、课前准备我们知道实数集中的元素是实数,实数之间具有加、减、乘、除等四则运算及其运算律,那么作为整体的集合之间是否也可以定义类似的加、减、乘、除等运算及其运算律呢? 二、新课导学(1 )方程x 2+2x-3=0的解集是A ={-3.1},方程x 2+2x-3=0的解集是B ={-4,1}请问方程│x 2+2x-3│+│x 2+2x-3│=0的解集是什么?与集合A 、B 有什么关系?方程(x 2+2x-3)(x 2+2x-3)=0的解集是什么?与集合A 、B 有什么关系? 分析:│x 2+2x-3│+│x 2+2x-3│=0的解集是{1}(x 2+2x-3)(x 2+2x-3)=0的解集是{-3,1,-4}用图示法表示为( 2 )、如果集合A= {a, b, c, d } B={a, b, e, f} (1)由集合A, B 的公共元素组成的集合;(2)把集合A, B 合并在一起所成的集合.公共部分 A ∩B 合并在一起 A∪B-3-31-41-4结论:如上图,集合A和B的公共部分叫做集合A和集合B的交,集合A和B合并在一起得到的集合叫做集合A和集合B的并.新知1、交集定义:一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集。
记作:A∩B(读作“A交B”)即A∩B={x∣x∈A,且x∈B }注:符号语言为:A∩B={x∣x∈A,且x∈B }图示语言为:试一试1:已知A={1,3,4,7},B={2,4,7,9}则A∩B=_______新知2.并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}).注:符号语言为:A∪B={x|x∈A,或x∈B})图示语言为:试一试2 (1 ).已知A={1,3,4,7},B={2,4,7,9}则A∪B=_______({1,2,3,4,7,9})( 2 ).设A={x|x>3},B={x|x<8},A∩B=_____ ({x|3<x<8}) A∪B=_____ ({R})(3)设A={x|-3<x<4},B={x|0<x<7},A∩B=_____({ x|0<x<4}) A∪B=_____({ x|-3<x<7})典型例题例1、设A={(x,y)|y=-4x+6}, B={(x,y)|y=5x-3},求A∩B解:A∩B=A={(x,y)|y=-4x+6}∩B={(x,y)|y=5x-3}y=-4x+6= (x,y )︱ y=5x-3 ={(1,2)}注:本题中,(x,y )可以看作直线上的点的坐标,也可以看作二元一次方程的一个解。
数学课件:1.1.3集合的基本运算(第1课时并集、交集)
第十页,编辑于星期日:十一点 三十七分。
第十一页,编辑于星期日:十一点 三十七分。
已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A∪B =A,求实数m的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①集合A确定,集合B中元素不确定; ②A∪B=A.解答本题时,可由A∪B=A知B⊆A.从而分B=Ø和 B≠Ø分类讨论. ③本题中B={x|2m-1<x<2m+1},由于2m+1>2m-1,故B≠Ø.
1.(1)若本例(1)中,问题改为求A∪B. (2)本例(2)中,问题改为求M∩N. 【解析】 (1)由例1中的数轴表示知A∪B=R,故选D. (2)由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 【答案】 (1)D;(2)C
第九页,编辑于星期日:十一点 三十七分。
设集合A={x|-1<x<a},B={x|1<x<3}且A∩B=Ø,求a的取值范 围.
①当a-1=2,即a=3时,B={1,2}; ②当a-1=1,即a=2时,B={1}. 于是a=2或a=3都满足题意. 所以a的取值范围是{a|a=2,或a=3}.
第十八页,编辑于星期日:十一点 三十七分。
1.对并集概念的理解 “x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B, 但x∉A”;“x∈A,且x∈B”.Venn图如图.另外,在求两个集合的 并集时,它们的公共元素只出现一次.
新课标必修一示范教案(1.3 集合的基本运算第1课时)
1.1.3 集合的基本运算整体设计三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?图1-1-3-1②观察集合A与B与集合C={1,2,3,4}之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素所组成了集合C.③C={x|x∈A,或x∈B}.④如图1131所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用Venn图表示,如图1132所示.图1-1-3-2应用示例思路11.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.图1-1-3-3活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.答案:{-1,1,2,3,5,6,7} ∅2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.-,0.因m=1不合题意,故舍去.分析:由题意得m2=1或2或m,解得m=-1,1,2,2-,0答案:-1,2,23.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为( )A.2B.5C.7D.9分析:∵A∪B={0,2},∴A⊆{0,2}.则A=∅或A={0}或A={2}或A={0,2}.当A=∅时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=∅或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.答案:D4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8分析:转化为求集合A子集的个数.很明显3∉A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.答案:C2.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A={x|-1<x<2}及B={x|1<x<3}在数轴上表示出来.如图1134所示的阴影部分即为所求.图1-1-3-4由图得A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3},A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.变式训练1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.答案:A∪B=R,A∩B={x|2<x<3}.2.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.[0,2]B.[1,2]C.[0,4]D.[1,4]分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].图1-1-3-5答案:A课本P11例6、例7.思路21.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0<x<5}, B∪C={x|x>0},A∩B∩C=∅.图1-1-3-6点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn图)写出结果.变式训练1.设A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.而10∈B但10∉A,即A B,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a-1=9或a2=9,a=10或a=±3,当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意.当a=-3时,a-1=-4不合题意.故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于( )A.{x|-3<x<1}B.{x|1<x<2}C.{x|x>-3}D.{x|x<1}分析:集合A={x|2x+1<3}={x|x<1},观察或由数轴得A∩B={x|-3<x<1}.答案:A2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.活动:明确集合A、B中的元素,教师和学生共同探讨满足A∩B=B的集合A、B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,B⊆A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A、B均是方程的解集,通过画Venn图发现集合A、B的关系,从数轴上分析求得a的值.解:由题意得A={-4,0}.∵A∩B=B,∴B⊆A.∴B=∅或B≠∅.当B=∅时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,则Δ=4(a+1)2-4(a 2-1)<0,解得a<-1.当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a+1)2-4(a 2-1)=0,解得a=-1,此时,B={x|x 2=0}={0}⊆A,即a=-1符合题意.若集合B 含有两个元素,则这两个元素是-4,0,即关于x 的方程x 2+2(a+1)x+a 2-1=0的解是-4,0.则有⎩⎨⎧=⨯+=+ 1.-a 04-1),-2(a 04-2 解得a=1,则a=1符合题意.综上所得,a=1或a≤-1.变式训练1.已知非空集合A={x|2a+1≤x≤3a -5},B={x|3≤x≤22},则能使A ⊆(A∩B)成立的所有a 值的集合是什么?解:由题意知A ⊆(A∩B),即A ⊆B,A 非空,利用数轴得⎪⎩⎪⎨⎧≤-≥+-≤+.2253,312,5312a a a a 解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A ∪B=A,试求实数m 的取值范围. 分析:由A ∪B=A 得B ⊆A,则有B=∅或B≠∅,因此对集合B 分类讨论.解:∵A ∪B=A,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅.当B=∅时,有m+1>2m-1,∴m<2.当B≠∅时,观察图1-1-3-7:图1-1-3-7由数轴可得⎪⎩⎪⎨⎧≤-+≤--≤+.512,12,121m m m m 解得-2≤m≤3.综上所述,实数m 的取值范围是m<2或-2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.知能训练课本P 11练习1、2、3.【补充练习】1.设a={3,5,6,8},B={4,5,7,8},(1)求A∩B,A ∪B.(2)用适当的符号(⊇、⊆)填空:A∩B ________A,B________A∩B,A ∪B________A,A ∪B________B,A∩B ________A ∪B. 解:(1)因A 、B 的公共元素为5、8,故两集合的公共部分为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A、B两集合的元素3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)由文氏图可知A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.2.设A={x|x<5},B={x|x≥0},求A∩B.解:因x<5及x≥0的公共部分为0≤x<5,故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分. 所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2), (2,1)}.7.2006江苏高考,7若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆CB.C⊆AC.A≠CD.A=∅分析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;(2)当A=∅时,A∩B,A∪B这两个运算结果与集合A,B的关系;(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.图1-1-3-8解:A∩B=A⇔A⊆B⇔A∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪∅=A,A⊆B⇔A∪B=B;A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A⊆B⇔A∩B=A.课堂小结本节主要学习了:1.集合的交集和并集.2.通常借助于数轴或Venn图来求交集和并集.作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本P12习题1.1A组6、7、8.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)。
1.1.3 集合的基本运算(第1课时)
A、30 B、31
C、32
D、64
林老师网络编辑整理
4
二、新课讲解
观察:集合C的元素与集合A,B的元素之间有何关系? (1)A={1,3,5},B={2,4,6}, C={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}
(3)A={1,3,5},B={2,3,4,5,6}, C={1,2,3,4,5,6}
BA
AB
A
B
2、交集:A∩B={ x | x ∈A,且 x∈B}
BA
AB
林老师网络编辑整理
A
B
17
六、作业
1、(上交)P12 习题1.1 A组 第6 、7题; P12 B组 第3题
2、思考题: P44 A组 第5题
林老师网络编辑整理
18
解:A、B用数轴表示
。 。。。
-2 -1 0 1 2 3 4 5
A ∩ B= {x︱-1<x<2 t;x<2 }
林老师网络编辑整理
x
11
二、新课讲解 2、交集
1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
注意端点
x
A∪B = {x︱-1<x<2 }∪{x︱1<x<3 }
= {x︱-1<x<3 }
林老师网络编辑整理
9
二、新课讲解 2、交集
1A 2 B 3
一般地,由所有属于A且属于B的元素组成的集合,
称为集合A与B的交集,记作A∩B(读作“A交B”).
即A∩B={ x | x ∈A,且 x∈B}
1.1.3_集合的基本运算_教案(内含五份教案,人教A版)
2011-2012学年上学期高一数学备课组教案主备课教师:备课组老师:教案二1.1.3 集合的基本运算(第一课时)一,教学目标1, 知识与技能:(1) 理解并集和交集的含义,会求两个简单集合的交集与并集(2) 能够使用Venn 图表达两个集合的运算,体会直观图像对抽象概念理解的作用 2, 过程与方法(1) 进一步体会类比的作用(2) 进一步树立数形结合的思想 3, 情感态度与价值观集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美.二,教学重点与难点教学重点:并集与交集的含义教学难点:理解并集与交集的概念,符号之间的区别与联系三,教学过程1, 创设情境(1) 通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。
(2) 用Venn 图表示(阴影部分)2, 探究新知(1)通过Venn 图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。
记作:A ∪B ,读作:A 并B ,其含义用符号表示为:{|,}A B x x A x B =∈∈ 或.(2)解剖分析: 1> “所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素 2> “或”:“B x A x ∈∈或”这一条件,包括下列三种情况: B x A x ∉∈但;A B ∉∈x x 但;B x A x ∈∈且3> 用Venn 图表示A ∪B :(3) 完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。
)(4) 思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A 与B 相交的Venn 图)(5) 交集的含义:一般地,由属于集合A 和集合B 的所有元素组成的集合,称为A 与B 的交集,记作:A ∩B ,读作:A 交B ,其含义用符号表示为{|,}.A B x x A x B =∈∈ 且(6) 解剖分析: 1>“且”2>用Venn 图表示A ∩B :B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)B A A 与B 相交(有公共元素) A 与B 分离(无公共元素)(7) 完成教材P9的例6(口述)(8) B A },52|{B }41|{A ⋂≤<=≤<-=求,x x x x (运用数轴,答案为4}x 2|{x B A ≤<=⋂)3, 巩固练习(1) 教材P9的例7 (2) 教材P11 #1 #24, 小结作业:(1) 小结:1> 并集和交集的含义及其符号表示 2> 并集与交集的区别(符号等) (2) 作业:1> 必做题:教材P12 #6 #7 2> 选做题:已知}2{B A },1,52{B A },|{},2|{A 22-=⋂-=⋃++=--=,且r qx x x B px x x ,的值。
集合的基本运算(第一课时)
1.3集合的基本运算(第1课时)(人教A版普通高中教科书数学必修第一册第一章)一、教学目标1.数学抽象:理解两个集合的并集与交集的含义;2.数学运算:会求两个简单集合的并集与交集;3.直观想象:能使用Venn图、数轴表示集合的关系及运算。
二、教学重难点1.【重点】理解并集与交集的概念,求两个简单集合的并集与交集;2.【难点】理解并集与交集的概念。
三、教学过程1.创设情境,引发思考问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】集合C是由所有属于集合A或属于B的所有元素组成的.【设计意图】通过实例,让学生感知、了解并集的含义,提高学生用数学抽象的思维方式思考并解决问题的能力。
1.2 新知初探2.1.1并集的概念【设计意图】用图形来表示并集,提高学生用数形结合法解决问题的能力。
回到问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】因为集合C是由所有属于集合A或属于B的所有元素组成的,所以集合C是集合A与B的并集.【设计意图】学以致用,既巩固了新知,又提高了学生运用所学知识解决问题的意识和能力。
2.1.2对并集概念的理解(1)运算结果:A∪B仍是一个集合,由所有属于A或属于B的元素组成,公共元素只能算一次(元素的互异性).(2)并集概念中的“或”指的是只要满足其中一个条件即可,符号语言“x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B,但x∉A”;“x∈A,且x∈B”.【设计意图】加深学生对并集的理解。
1.3 集合的基本运算(第一课时) 课件(共15张PPT)
课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A
1.1.3.1集合的基本运算 第一课时 并集、交集
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
【归纳提升】 (1)用符号语言表示为 A∩B={x|x∈A 且 x ∈B}. (2)用自然语言叙述为:由属于集合 A 且属于集合 B 的元 素组成的集合. (3)用 Venn 图表示,如下图阴影部分所示.
第一章
1.1
1.1.3
第1课时
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
(3)如图所示
探究:上述问题中,集合 C 是由那些既属于集合 A,又 属于集合 B 的所有元素组成的,我们称之为交集.
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
总结:一般地,由属于集合 A 且 属于集合 B,的所有元 素组成的集合称为 A 与 B 的交集,记作 A∩B ,读作 A 交 B.
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
自主预习 问题 1:观察引入中的(1)(2),分析集合 C 与集合 A、B 间的关系. 探究:上述两个问题中,集合 A、B 与庥合 C 之间都具有 这样一种关系:集合 C 是由所有属于集合 A 或属于集合 B 的 元素组成的,我们称集合之间的这种运算为并集.
)
B.7 个 D.5 个
[答案]
B
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
6.下列各式中正确的是( A.{0}∈R C.{0,1}≠{1,0}
[答案] D
) B.{1}∈{1,2,3} D.Ø {1}
1.1.3集合的基本运算(第一课时)
2020年10月1日星期四
合作探究
2、交集的含义:
2020年10月1日星期四
合作探究
例3:新华中学开运动会,设 A = {x | x是新华中学高一年级参加百米赛跑的同学}, B = {x | x是新华中学高一年级参加跳高比赛的同学}, 求A∩B.
分析:A∩B就是新华中学高一年级中那些既参加百米赛跑又 参加跳高比赛的同学组成的集合.
学习目标:
2020年10月1日星期四
检查自主学习
1、并集
一般地,由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的
并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn
图表示为:
A
B
2、交集:
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交
解: .
2020年10月1日星期四
合作探究
例4: 设平面内直线l1上点的集合为L1,直线l2上点
的解:平面内直线 l1,l2可能有三种位置关系,即相交于一点,平行或重合. (1)直线 l1,l2相交于一点 P 可表示为 L1∩L2 = {点 P}; (2)直线 l1,l2平行可表示为
解:
可用数轴表示为:
–1 0 1 2 3
x
2020年10月1日星期四
合作探究
思考:考擦下面的问题,集合A、B与C之间有什么关系?
(1)A = {2,4,6,8,10},B = {3,5,8,12}, C = {8}.
(2)A = {x | x是新华中学2020年9月在校的女同学}, B = {x | x是新华中学2020年9月在校的高一年级同学}, C= {x | x是新华中学2020年9月在校的高一年级女同学}
高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修1
(B){x|x<3}
(C){x|0<x<3} (D){x|x<0或x>3}
C)
5.(集合间的关系及运算)若A⊆B则A∩B= 答案:A B
,A∪B=
.
课堂探究·素养提升
题型一 集合的并集、交集的简单运算 【例1】 (1)(202X·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B 等于( ) (A){1,3} (B){3,5} (C){5,7} (D){1,7}
又A={1,2,3},所以A∪B={0,1,2,3}.
故选C.
【备用例1】 满足M∪N={a,b}的集合M,N共有( ) (A)7组 (B)8组 (C)9组 (D)10组
解析:满足M∪N={a,b}的集合M,N有:
M= ,N={a,b};
M={a},N={b}; M={a},N={a,b}; M={b},N={a}; M={b},N={a,b};
(1)因为 A∩B=B,所以 B⊆ A,B= ,{0},{2},{0,2}. 当 B= 时,Δ=4a2-4(a2-a)=4a<0,所以 a<0;
当
B={0}或{2}时,则
4a 0,
a
2
a
0
⇒
a=0,或
4a 0
4
4a
a
2
a
0
无解,所以
a=0;
B={0,2},则
a2 a 4 4a
变式探究2:若本例题中将A∪B=A,改为A∩B=A,其他条件不变,求实数a的值.
解:因为 A={1,2},A∩B=A,所以 A⊆ B. 又 B={x|x2-ax+a-1=0}. 所以 B 中含元素 1,2,即 1,2 是方程 x2-ax+a-1=0 的两根,
集合的基本运算(第1课时)交集与并集
新课标A版 ·数学 ·必修1
7.已知集合M={x|y=x2-1},N={y|y=x2-1},那么
M∩N等于( )
A.∅
B.N
C.M
D.R
答案 B
解析 ∵M=R,N={y|y≥-1},∴M∩N=N.
第35页
第一章 1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
8.满足条件M∪{1}={1,2,3}的集合M的个数是________.
(3)设A={(x,y)|x+y=0},B={(x,y)|x-y=4},求A∩B.
第17研
新课标A版 ·数学 ·必修1
【解析】 (1)A={正偶数},B={正奇数}, ∴A∪B=N*,A∩B=∅. (2)A={2,3},B={2,4}, ∴A∪B={2,3,4},A∩B={2}.
合A∩B=( )
A.{0,1,2}
B.{0,1,2,3}
C.{0,1,3}
D.B
答案 A
第32页
第一章 1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
5.设集合A={x|-5≤x<1},B={x|x≤2},则A∩B等于
() A.{x|-5≤x<1} B.{x|-5≤x≤2}
C.{x|x<1}
高考调研
新课标A版 ·数学 ·必修1
思考题3 设A={x|a≤x≤a+3},B={x|x<-1,或x>5}, 当a为何值时,
(1)A∩B=∅; (2)A∩B≠∅; (3)A∩B=A.
【答案】 (1)-1≤a≤2 (2)a<-1或a>2 (3)a<-4或a>5
第27页
第一章 1.1 1.1.3 第1课时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1.理解并集、交集的概念和意义. 2.掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集 合,能用图示法表示集合之间的关系.
3.掌握两个较简单集合的并集、交集的求法.
重、难点
重点:并集、交集的概念. 难点:并集、交集的概念、符号之间的区别与联系.
个案内 容
-1-
第四环节:巩固提升 1.课本 P11 页练习第 1、2、3 题. 2.已知A a, b, B a, b, c, d , e ,则满足A C B的集合C共有
≠
个. 4.课本 P11 练习第 业布置 及 课后反思
1.教材 P12 A 组 6, 2.教材 P12 A 组 9,
7. 10. B 组 4.
-2-
授课方法
探究式,讨论式 第一环节:自主学习 请同学们仔细阅读课本第 8 页到第 11 页,并回答以下问题: 设集合 A={4,5,6,8},B={3,5,7,8,9},求 A∪B,A∩B,A∪φ , A∩φ .
教学流程
第二环节:合作交流 设集合 A={x |-1<x<2},B={x | 1<x<3},求 A∪B,A∩B. 性质: ⑴ A∩A = A∩φ = A∩B= ⑵ A∪A = A∪φ = A∪B= 第三环节:教师精讲 例 1.设集合 A={x |1<x<5},B={x | x<6},求 A∪B,A∩B.