【新课标版】 2019年高考数学三轮讲练测核心热点总动员 专题19 立体几何大题(文) 含解析
高三高考数学总复习《立体几何》题型归纳与汇总
(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
2019年高考专题:立体几何试题及答案
2019年高考专题:立体几何试题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .2.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.3.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以117C E =,故417CH =. 从而点C 到平面1C DE 的距离为1717. 4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==. 作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 5.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM .因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2.所以四边形ACGD 的面积为4.6.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形.所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .7.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知ACBD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =.又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33. 8.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .9.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35。
【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案
1 【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案一、解答题 1.如图所示,在四棱锥P-ABCD 中,底面ABCD 是棱长为2的正方形,侧面PAD 为正三角形,且面PAD ⊥面ABCD ,E 、F 分别为棱AB 、PC 的中点. (1)求证:EF ∥平面PAD ; (2)求三棱锥B-EFC 的体积; (3)求二面角P-EC-D 的正切值.2.如图,三棱柱ABF-DCE 中,∠ABC=120°,BC=2CD ,AD=AF ,AF ⊥平面ABCD .(Ⅰ)求证:BD ⊥EC ;(Ⅱ)若AB=1,求四棱锥B-ADEF 的体积.3.正方体ABCD-A 1B 1C 1D 1,AA 1=2,E 为棱CC 1的中点. (1)求证:B 1D 1⊥AE ;(2)求三棱锥A-BDE 的体积.4.如图,四棱锥P-ABCD 中,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,且△PAD 是边长为2的等边三角形,PC= ,M 在PC 上,且PA ∥面MBD . (1)求证:M 是PC 的中点; (2)求多面体PABMD 的体积.25.已知四棱锥P-ABCD ,底面ABCD 为菱形,∠ABC=60°,△PAB 是等边三角形,AB=2,PC= ,AB 的中点为E.(1)证明:PE ⊥平面ABCD ; (2)求三棱锥D-PBC 的体积.6.一块边长为10cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数.(2)若x =6,求图2的主视图的面积.7.如图,矩形ABCD 中,BC=2,AB=1,PA ⊥平面ABCD ,BE ∥PA ,BE=PA ,F 为PA 的中点.(1)求证:PC ∥平面BDF .(2)记四棱锥C-PABE 的体积为V 1,三棱锥P-ACD 的体积为V 2,求的值.8.如图,直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=2,AB=2 .(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求锐二面角D-A 1C-E 的余弦值.9.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E、F分别为AB和PC的中点,连接EF、BF.(1)求证:直线EF∥平面PAD;(2)求三棱锥F-PBE的体积.10.如图,梯形FDCG,DC∥FG,过点D,C作DA⊥FG,CB⊥FG,垂足分别为A,B,且DA=AB=2.现将△DAF沿DA,△CBG沿CB翻折,使得点F,G重合,记为E,且点B在面AEC的射影在线段EC上.(Ⅰ)求证:AE⊥EB;(Ⅱ)设=λ,是否存在λ,使二面角B-AC-E的余弦值为?若存在,求λ的值;若不存在,说明理由.11.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E-BD-A的大小为90°(如图).已知Q为EO的中点,点P在线段AB 上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.12.如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.(Ⅰ)求证:PD⊥面ABCD;(Ⅱ)求二面角A-PB-D的大小.3413.如图在三棱锥A-BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD= ,BD=CD=1,另一个侧面是正三角形. (1)求证:AD ⊥BC ;(2)求二面角B-AC-D 的余弦值; (3)点E 在直线AC 上,当直线ED 与平面BCD 成30°角若时,求点C 到平面BDE 的距离.14.如图所示,在边长为 的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.15.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M 为PC 的中点,点N 在线段AD 上.(I )点N 为线段AD 的中点时,求证:直线PA ∥BMN ; (II )若直线MN 与平面PBC 所成角的正弦值为,求平面PBC 与平面BMN 所成角θ的余弦值.16.如图,在正方体ABCD-A 1B 1C 1D 1中,E 是CC 1的中点,求证: (1)AC 1⊥BD ;(2)AC 1∥平面BDE .17.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB ; (2)求三棱锥B-CD 1B 1的体积.18.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中点.(1)求证:PB∥平面AEC(2)求证:PB⊥AC.19.如图,已知平面ADC∥平面A1B1C1,B为线段AD的中点,△ABC≈△A1B1C1,四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1,A1C1=A1A,∠C1A1A=,M为棱A1C1的中点.(I)若N为线段DC1上的点,且直线MN∥平面ADB1A1,试确定点N的位置;(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.20.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点.(1)求证:直线AE∥平面BDC1;(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.21.如图所示,已知长方体ABCD中,AB=4,AD=2,M为DC的中点.将△ADM沿AM折起,使得AD⊥BM.(1)求证:平面ADM⊥平面ABCM;(2)若点E为线段DB的中点,求点E到平面DMC的距离.5622.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)若正方体的棱长为1,求三棱锥B 1-A 1BE 的体积;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥面A 1BE ?若存在,试确定点F 的位置,并证明你的结论.23.如图,三棱柱ABC-A 1B 1C 1中,BC ⊥平面AA 1C 1C ,BC=CA=AA 1=2,∠CAA 1=60°.(1)求证:AC 1⊥A 1B ;(2)求直线A 1B 与平面BAC 1所成角的正弦值.24.在图所示的几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD=AD=2EC=2,N 为线段PB 的中点. (1)证明:NE ⊥平面PBD ; (2)求四棱锥B-CEPD 的体积.25.已知梯形ABCD 中AD ∥BC ,∠ABC=∠BAD=,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE=x .沿EF 将梯形AEFD 翻折,使平面AEFD ⊥平面EBCF (如图).G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D-BCF 体积的最大值.26.如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.727.在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,∠ABF 为直角, ,,平面ABCD ⊥平面ABFE . (1)求证:DB ⊥EC ;(2)若AE=AB ,求二面角C-EF-B 的余弦值.28.如图,四棱锥P-ABCD 中,AD ⊥平面PAB ,AP ⊥AB . (1)求证:CD ⊥AP ; (2)若CD ⊥PD ,求证:CD ∥平面PAB .29.如图所示,四棱锥P-ABCD 的侧面PAD 是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M 为PC 的中点,PC= .(Ⅰ)求证:PC ⊥AD ;(Ⅱ)求三棱锥M-PAB 的体积.30.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,∠ADC=45°,AD=AC=2,O 为AC 的中点,PO ⊥平面ABCD 且PO=6,M 为BD的中点.(1)证明:AD ⊥平面PAC ; (2)求直线AM 与平面ABCD 所成角的正切值.31.如图,多面体EF-ABCD 中,ABCD 是正方形,AC 、BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点. (Ⅰ)求证:BD ⊥平面ACF ;(Ⅱ)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.32.如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠BCA=90°,且BC=CA=2,PC=PA .(1)求证:PA ⊥BC ;8 (2)当PC 的值为多少时,满足PA ⊥平面PBC ?并求出此时该三棱锥P-ABC 的体积.33.如图,直三棱柱ABC-A 1B 1C 1中,AA 1=AB ,AB ⊥BC ,且N 是A 1B 的中点.(1)求证:直线AN ⊥平面A 1BC ;(2)若M 在线段BC 1上,且MN ∥平面A 1B 1C 1,求证:M 是BC 1的中点.34..如图所示,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为DD 1的中点. (1)求证:直线BD 1∥平面PAC (2)求证:平面PAC ⊥平面BDD 1B 1.35.如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC=90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=AD=1,CD= . (1)求证:平面MQB ⊥平面PAD ; (2)若二面角M-BQ-C 大小的为60°,求QM 的长.36.如 图,正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 、G 分别为 AB 、BB 1、B 1C 1 的中点. (1)求证:A 1D ⊥FG ;(2)求二面角 A 1-DE-A 的正切值.37.四棱锥P-ABCD 的直观图与三视图如图,PC ⊥面ABCD(1)画出四棱锥P-ABCD 的侧视图(标注长度) (2)求三棱锥A-PBD的9 体积.38.如图,长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为棱DD 1上一点.(1)求证:平面PAC ⊥平面BDD 1B 1;(2)若P 是棱DD 1的中点,求CP 与平面BDD 1B 1所成的角大小.39.如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°,M 是线段PD 上的一点(不包括端点).(Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)求二面角D-PC-A 的正切值; (Ⅲ)试确定点M 的位置,使直线MA 与平面PCD 所成角θ的正弦值为.40.已知四棱锥P-ABCD 中,AD=2BC ,且AD ∥BC ,点M ,N 分别是PB ,PD 中点,平面MNC 交PA 于Q . (1)证明:NC ∥平面PAB(2)试确定Q 点的位置,并证明你的结论.41.一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体10 积.42.如图,四棱锥P-ABCD 的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)证明:BD ⊥CE .43.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 、G 、H 分别是BC 、C 1D 1、AA 1、的中点.(Ⅰ)求异面直线D 1H 与A 1B 所成角的余弦值(Ⅱ)求证:EG ∥平面BB 1D 1D .44.如图所示,在四棱锥P-ABCD 中,AB ∥CD ,AB ⊥AD ,AB=AD=AP=2CD=2,M 是棱PB 上一点. (Ⅰ)若BM=2MP ,求证:PD ∥平面MAC ; (Ⅱ)若平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD ,求证:PA ⊥平面ABCD ;(Ⅲ)在(Ⅱ)的条件下,若二面角B-AC-M 的余弦值为,求 的值.45.如图,已知在侧棱垂直于底面的三棱柱ABC-A 1B 1C 1中,AC=3,AB=5,BC=4,AA 1=4点D 是AB 的中点. (1)求证:AC 1∥平面B 1DC ;11 (2)求三棱锥A 1-B 1CD 的体积.46.如图,以正四棱锥V-ABCD 的底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中O x ∥BC ,O y ∥AB ,E 为VC 中点,正四棱锥的底面边长为2a ,高为h ,且有cos <, >=-. (1)求的值;(2)求二面角B-VC-D 的余弦值.47.如图1,四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=1,BC=2,E 为CD 上一点,F 为BE 的中点,且DE=1,EC=2,现将梯形沿BE 折叠(如图2),使平面BCE ⊥ABED .(1)求证:平面ACE ⊥平面BCE ;(2)能否在边AB 上找到一点P (端点除外)使平面ACE 与平面PCF 所成角的余弦值为?若存在,试确定点P 的位置,若不存在,请说明理由.48.如图,三棱柱ABC-A 1B 1C 1中,侧面ACC 1A 1⊥侧面ABB 1A 1,∠B 1A 1A=∠C 1A 1A=60°,AA 1=AC=4,AB=1. (Ⅰ)求证:A 1B 1⊥B 1C 1;(Ⅱ)求三棱锥ABC-A 1B 1C 1的侧面积.49.在四棱锥中P-ABCD ,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA=PD=AD 、E 、F ,分别为PC 、BD 的中点. (1)求证:EF ∥平面PAD ;(2)若AB=2,求三棱锥E-DFC 的体积.1250.如图,四棱锥P-ABCD 中,△PAD 为正三角形,AB ∥CD ,AB=2CD ,∠BAD=90°,PA ⊥CD ,E 为棱PB 的中点 (Ⅰ)求证:平面PAB ⊥平面CDE ;(Ⅱ)若直线PC 与平面PAD 所成角为45°,求二面角A-DE-C 的余弦值.51.如图,在边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P-BFDE 的体积.【答案】1.(1)证明:取PD 中点G ,连结GF 、AG ,∵GF 为△PDC 的中位线,∴GF ∥CD 且, 又AE ∥CD 且,∴GF ∥AE 且GF=AE ,13 ∴EFGA 是平行四边形,则EF ∥AG , 又EF ⊄面PAD ,AG ⊂面PAD , ∴EF ∥面PAD ;(2)解:取AD 中点O ,连结PO ,∵面PAD ⊥面ABCD ,△PAD 为正三角形,∴PO ⊥面ABCD ,且 , 又PC 为面ABCD 斜线,F 为PC 中点,∴F 到面ABCD 距离,故;(3)解:连OB 交CE 于M ,可得R t △EBC ≌R t △OAB , ∴∠MEB=∠AOB ,则∠MEB+∠MBE=90°,即OM ⊥EC .连PM ,又由(2)知PO ⊥EC ,可得EC ⊥平面POM ,则PM ⊥EC , 即∠PMO 是二面角P-EC-D 的平面角,在R t △EBC 中,,∴, ∴,即二面角P-EC-D的正切值为.2.(Ⅰ)证明:三棱柱ABF-DCE 中,AF ⊥平面ABCD .∴DE ∥AF ,ED ⊥平面ABCD ,∵BD ⊂平面ABCD ,∴ED ⊥BD , 又ABCD 是平行四边形,∠ABC=120°,故∠BCD=60°. ∵BC=2CD ,故∠BDC=90°.故BD ⊥CD . ∵ED∩CD=D ,∴BD ⊥平面ECD . ∵EC ⊂平面ECD , ∴BD ⊥EC ;(Ⅱ)解:由BC=2CD ,可得AD=2AB ,∵AB=1,∴AD=2,作BH ⊥AD于H ,∵AF ⊥平面ABCD ,∴BH ⊥平面ADEF ,又∠ABC=120°, ∴BH=,∴.3.解:(1)证明:连接BD ,则BD ∥B 1D 1, ∵ABCD 是正方形,∴AC ⊥BD . ∵CE ⊥面ABCD , ∴CE ⊥BD . 又AC∩CE=C , ∴BD ⊥面ACE . ∵AE ⊂面ACE , ∴BD ⊥AE ,∴B 1D 1⊥AE .-----------(6分)(2)S △ABD =2 △.-----------(12分) 4.证明:(1)连AC 交BD 于E ,连ME .14∵ABCD 是矩形,∴E 是AC 中点.又PA ∥面MBD ,且ME 是面PAC 与面MDB 的交线, ∴PA ∥ME ,∴M 是PC 的中点. 解:(2)取AD 中点O ,连OC .则PO ⊥AD , 由平面PAD ⊥底面ABCD ,得PO ⊥面ABCD ,∴ , ,∴ , ∴ , ,∴.5.证明:(1)由题可知PE ⊥AB ,CE ⊥AB . ∵AB=2,∴PE=CE= .又∵PC= ,∴PE 2+EC 2=PC 2, ∴∠PEC=90°,即PE ⊥CE . 又∵AB ,CE ⊂平面ABCD , ∴PE ⊥平面ABCD ;解:(2)S △BCD =×22×sin 120°= ,PE= . 由(1)知:PE ⊥平面ABCD ,V P-BCD =•S △BCD •PE=1.∵V D-PBC =V P-BCD ,∴三棱锥D-PBC 的体积为1. 6.解:(1)设所截等腰三角形的底边边长为x cm . 在R t △EOF 中,EF=5cm ,OF=x cm ,所以EO=. 于是V=x 2(cm 3).依题意函数的定义域为{x |0<x <10}.(2)主视图为等腰三角形,腰长为斜高,底边长=AB=6,底边上的高为四棱锥的高=EO==4,S==12(cm 2)7.(1)证明:连结BF ,连接BD 交AC 与点O ,连OF , 依题得O 为AC 中点,又F 为PA 的中点, 所以OF 为△PAC 中位线,所以OF ∥PC因为OF ⊂平面BDF ,PC ⊄平面BDF 所以PC ∥平面BDF . ∴V 1=梯形 =(2)解:设BE=a ,则PA=2BE=2a , V 2=△ =(a +2a )×1×2=a . =. ∴.8.解:(Ⅰ)连结AC 1,交A 1C 于点O ,连结DO ,则O 为AC 1的中点,因为D 为AB 的中点,所以OD ∥BC 1,又因为OD ⊂平面A 1CD ,BC 1⊄平面A 1CD ,∴BC 1∥平面A 1CD…(4分) (Ⅱ)由 , ,可知AC ⊥BC ,以C 为坐标原点,方向为x 轴正方向, 方向为y轴正。
专题19 立体几何综合-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)
【母题原题1】【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见详解;(2)30. 【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,专题19 立体几何综合则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0),AC =(2,–1,0). 设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.【母题原题2】【2018年高考全国Ⅲ卷,理数1】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BCCM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,||||DA DA DA ⋅==n n n2sin ,5DA =n , 所以面MAB 与面MCD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题.【母题原题3】【2017年高考全国Ⅲ卷,理数1】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【答案】(1)证明见解析;(2 【解析】(1)由题设可得,ABD CBD △≌△,从而AD DC =. 又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC △是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB △中,222BO AO AB +=.又AB BD =,所以2222BO DO BO AO AB BD 22+=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB的中点,得12E ⎛⎫ ⎪ ⎪⎝⎭. 故()()11,0,1,2,0,0,1,22AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n即0,10.22x z x y z -+=⎧⎪⎨-++=⎪⎩可取1,3⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,7⋅==n m n m n m . 所以二面角D -AE -C. 【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【命题意图】用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.主要考查考生的直观想象能力、数学运算能力、逻辑推理能力,以及转化与化归思想的应用.【命题规律】立体几何解答题第1问主要集中考查空间中直线、平面的位置关系的判断,注重对公理、定理的考查,而第2问多考查空间向量在空间立体几何中的应用,在证明与计算中一般要用到初中平面几何的重要定理,空间思维要求较高,运算量较大,对学生的空间想象能力、转化能力、计算能力要求较高.在考查考生运算求解能力的同时侧重考查考生的空间想象能力和推理论证能力,给考生提供了从不同角度去分析问题和解决问题的可能,体现了立体几何教学中课程标准对考生的知识要求和能力要求,提升了对考生的数学能力和数学素养的考查.本试题能准确把握相关几何元素之间的关系,把推理论证能力、空间想象能力等能力和向量运算、二面角作图、建立空间直角坐标系等知识较好地融入试题中,使考生的空间想象能力、推理论证能力和运算求解能力得到了有效考查.【答题模板】1.一个平面的法向量是与平面垂直的向量,有无数多个,任意两个都是共线向量.若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(1)设平面的法向量为n=(x,y,z);(2)找出(求出)平面内的两个不共线的向量的坐标a=(a1,b1,c1),b=(a2,b2,c2);(3)根据法向量的定义建立关于x,y,z的方程组·0·0=⎧⎨=⎩,;n an b(4)解方程组,取其中的一组解,即得法向量.注意:求平面的法向量时,建立的方程组有无数组解,利用赋值法,只要给x,y,z中的一个变量赋一特殊值(常赋值–1,0,1),即可确定一个法向量,赋值不同,所求法向量不同,但n=(0,0,0)不能作为法向量.2.用空间向量解决立体几何问题的步骤如下:(1)建系:根据题中的几何图形的特征建立适当的空间直角坐标系;(2)定坐标:确定点的坐标进而求出有关向量的坐标;(3)向量运算:进行相关的空间向量的运算;(4)翻译:将向量中的语言“翻译”成相应的立体几何中的语言,完成几何问题的求解.【方法总结】1.利用向量法证明平行问题(1)证明线线平行:证明两条直线的方向向量共线.(2)证明线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.(3)证明面面平行:①证明两个平面的法向量平行;②转化为线线平行、线面平行问题.注意:用向量法证明平行问题时,要注意解题的规范性.如证明线面平行时,仍需要说明一条直线在平面内,另一条直线在平面外.2.利用向量法证明垂直问题(1)证明线线垂直:证明两直线的方向向量垂直,即证它们的数量积为零.(2)证明线面垂直:①证明直线的方向向量与平面的法向量共线;②证明直线与平面内的两条相交直线的方向向量垂直;③证明直线的方向向量与平面α内的任一条直线的方向向量垂直.(3)证明面面垂直:①其中一个平面与另一个平面的法向量平行;②两个平面的法向量垂直.3.求线面角(1)定义法:①作,在斜线上选取恰当的点向平面引垂线,在这一步上确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,其证明的主要依据是直线与平面所成角的概念;③求,构造角所在的三角形,利用解三角形的知识求角.(2)公式法:sinθ=hl(其中h为斜线上除斜足外的任一点到所给平面的距离,l为该点到斜足的距离,θ为斜线与平面所成的角).(3)向量法:sinθ=|cos<AB,n>|=|?|||||ABABnn(其中AB为平面α的斜线,n为平面α的法向量,θ为斜线AB与平面α所成的角).4.求二面角(1)定义法:在二面角的棱上找一特殊点,过该点在两个半平面内分别作垂直于棱的射线,如图(1),∠AOB为二面角α–l–β的平面角;(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面的交线所形成的角即二面角的平面角,如图(2),∠AOB 为二面角α–l –β的平面角;(3)垂线法(三垂线定理法):过二面角的一个半平面内一点作另一个半平面所在平面的垂线,从垂足出发向棱引垂线,利用三垂线定理(线面垂直的性质)即可找到所求二面角的平面角或其补角,如图(3),∠AOB 为二面角α–l –β的平面角;(4)利用射影面积公式:cos θ=S S 射原,该法主要用来解决无棱二面角大小的计算,关键在于找出其中一个半平面内的多边形在另一个半平面内的射影;(5)向量法:利用公式cos<n 1,n 2>=1212·||||n n n n (n 1,n 2分别为两平面的法向量)进行求解,注意<n 1,n 2>与二面角大小的关系,是相等还是互补,需结合图形进行判断.如图(2)(4)中<n 1,n 2>就是二面角α–l –β的平面角的补角;如图(1)(3)中<n 1,n 2>就是二面角α–l –β的平面角.5.求空间距离(1)直接法:利用线线垂直、线面垂直、面面垂直等性质定理与判定定理,作出垂线段,再通过解三角形求出距离.(2)间接法:利用等体积法、特殊值法等转化求解.(3)向量法:空间中的距离问题一般都可转化为点到平面的距离问题进行求解. 求点P 到平面α的距离的三个步骤:①在平面α内取一点A ,确定向量PA 的坐标; ②确定平面α的法向量n ; ③代入公式d =||||PA n n 求解.1.【广西省南宁市2019届高中毕业班第二次适应性模拟测试高三数学】如图,在侧棱垂直于底面的三棱柱111ABC A B C -中,1. 1.2,4,AC BC AC BC AA ⊥===M 为侧面11AA CC 的对角线的交点,D E 、分别为棱,AB BC 的中点.(1)求证:平面MDE //平面11A BC ; (2)求二面角C ME D --的余弦值.【答案】(1)证明见解析;(2. 【解析】(1)证明D E 、分别为边,AB BC 的中点,可得DE AC ∥, 又由直三棱柱可知侧面11AAC C 为矩形,可得11AC AC ∥故有11AC DE ∥, 由直三棱柱可知侧面11AAC C 为矩形,可得M 为1A C 的中点, 又由E 为BC 的中点,可得1A BME .由DE ,ME ⊂平面MDE ,11A C ,1A B ⊂平面MDE ,得11A C 平面MDE ,1A B平面MDE ,11A C 1A B 1=A ,可得平面MDE 平面11A BC .(2)以CA ,CB ,1CC 所在直线分别为,,x y z 轴建立空间直角坐标系,如图,则()()()()1110,0,01,0,0,0,2,0,0,0,4,,0,2,,1,00,1,022C A B C M D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,(),111,1,2,,0,2,,0,0222ME CM ED ⎛⎫⎛⎫⎛⎫=--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面CME 的一个法向量为()11,,,22022x y z x y z x z =-+-=+=则m , 取1z =-,有4,0,(4,0,1)x y ===-m , 同样可求出平面DME 的一个法向量(0,2,1)=m ,cos ,||||⋅〈〉===m n m n m n ,结合图形可知二面角C ME D --的余弦值为85. 【名师点睛】本题属于基础题,线线平行的性质定理和线面平行的性质定理要熟练掌握,利用空间向量的夹角公式cos ,||||⋅〈〉=m nm n m n 求解二面角.2.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】如图,菱形ABCD 的对角线AC 与BD 相交于点O ,FO ⊥平面ABCD ,四边形OAEF 为平行四边形.(1)求证:平面DEF ⊥平面BDF ;(2)若2A B F O ==,BD =点H 在线段BF 上,且3BF HF =,求平面ACH 与平面DEF 所成角的正弦值.【答案】(1)见解析;(2)9【解析】(1)∵四边形ABCD 为菱形,∴AO BD ⊥. ∵FO ⊥平面ABCD ,AO ⊂平面ABCD ,∴AO FO ⊥. 又四边形OAEF 为平行四边形,∴EF ∥AO ,∴EF BD ⊥,EF FO ⊥, ∵BDFO O =,∴EF ⊥平面BDF .∵EF ⊂平面DEF ,∴平面DEF ⊥平面BDF . (2)∵FO ⊥平面ABCD ,∴FO AO ⊥,FO BO ⊥.∵2AB AD ==,BD =,∴AB AD ⊥,∴四边形ABCD 为正方形. 建立如图所示的空间直角坐标系Oxyz ,则()0,0,0O,)A,()B,()C,()0,D,)E,()0,0,2F ,∴()2,DE=,()DF =,()0,2BF =,()2,CB=,()AC =-,∵3BH HF =,∴2242,,333CH CB BF ⎛⎫=+= ⎪ ⎪⎭, 设平面DEF 的法向量为()1111,,x y z=n ,则111112020z z +=+=⎪⎩,令11z =,得()10,=n.同理可求得平面ACH 的一个法向量()20,=-n .∴211212cos,⋅===nn nnn n,∴12sin,9==nn,∴平面ACH与平面DEF.【名师点睛】(1)用向量法解决空间角问题的关键是建立适当的空间直角坐标系,然后得到相关点的坐标,求出直线的方向向量或平面的法向量,然后利用向量的运算进行求解.(2)向量法求二面角大小时,可分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.3.【广西南宁市、玉林市、贵港市等2019届高三毕业班摸底考试数学】如图,四棱锥P ABCD-中,底面ABCD是边长为2的正方形,PB BC PD CD⊥⊥,,且2PA E=,为PD中点.(1)求证:PA⊥平面ABCD;(2)求二面角A BE C--的正弦值.【答案】(1)见解析;(2)5.【解析】(1)∵底面ABCD为正方形,∴BC AB⊥,又BC PB AB PB B⊥=,,∴BC⊥平面PAB,∴BC PA⊥.同理CD PA BC CD C⊥=,,∴PA⊥平面ABCD.(2)建立如图的空间直角坐标系A xyz-,则()()()()000220011200A C E B,,,,,,,,,,,,设()x y z =,,m 为平面ABE 的一个法向量,又()()011200AE AB ==,,,,,,∴020y z x +==⎧⎨⎩, 令11y z =-=,,得()011=-,,m .同理()102=,,n 是平面BCE 的一个法向量,则cos ,||||5⋅〈〉===m n m n m n .∴二面角A BE C -- 【名师点睛】本题考查了线面垂直的的判定与性质及二面角的计算,属于中档题.4.【西藏拉萨市2019届高三第三次模拟考试数学】如图,等边三角形PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD BC ∥,2AB AD DC ===,4BC =.(1)证明:平面PAB ⊥平面PAC ; (2)求二面角B PC D --的余弦值. 【答案】(1)详见解析;(2)513. 【解析】(1)取BC 中点M ,连接AM , 则四边形AMCD 为菱形,即有12AM MC BC ==,∴AB AC ⊥.又AB Ì平面ABCD ,平面ABCD ⊥平面PAC ,平面ABCD 平面PAC AC =,∴AB ⊥平面PAC ,又AB Ì平面PAB ,∴平面PAB ⊥平面PAC .(2)由(1)可得AC =取AC 中点O ,连接PO ,则PO AC ⊥,3PO =, 又PO ⊂平面PAC ,平面PAC ⊥平面ABCD ,平面PAC 平面ABCD AC =,∴PO ⊥平面ABCD .以A 为原点建系如图,则()2,0,0B,()P,()C,()D -,()BC =-,()3PC =-,()1,CD =-,设平面BPC 的法向量为()1,,x y z =n ,则2030x z ⎧-+=⎪-=,取1z =,得()1=n . 设平面PCD 的法向量为()2,,x y z =n ,则030x z ⎧-=⎪-=,取1z =,得()2=-n ,212112513cos ,⋅===-n n n n n n .∴二面角B PC D --的余弦值为513. 【名师点睛】本题考查面面垂直的判定与求二面角.在立体几何证明中,得出结论时,注意定理的条件要写全,否则证明过程不全面.求空间角问题,可用向量法求解,即建立空间直角坐标系,写出各点坐标,求出直线的方向向量和平面的法向量,利用向量夹角与空间角的关系求解,这里对学生的计算能力要求较高.5.【四川省高2019届高三第一次诊断性测试(理科)数学】如图所示,四棱锥S ABCD -中,SA ⊥底面90ABCD ABC ∠=︒,,2160SA AB BC AD ACD E ====∠=︒,,,为CD 的中点.(1)求证://BC 平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.【答案】(1)见解析;(2)7.【解析】(1)因为190AB BC ABC ==∠=︒,, 所以260AC BCA ∠=︒=,,在ACD △中,260AD AC ACD ==∠=︒,,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅∠,解得4CD =, 所以222AC AD CD +=,所以ACD △是直角三角形, 又E 为CD 的中点,所以12AE CD CE ==, 又60ACD ∠=︒,所以ACE △为等边三角形, 所以60CAE BCA ∠=︒=∠,所以BCAE ,又AE ⊂平面SAE BC ⊄,平面SAE ,所以BC平面SAE .(2)由(1)可知90BAE ∠=︒,以点A 为原点,以AB AE AS ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则002000S B C D (,,,),,),(,).所以30231232SB SC SD =-=-=--(,,),(,,),(,,). 设x y z =(,,)n 为平面SBC 的法向量,则·0 ·0SB SC ⎧=⎪⎨=⎪⎩n n ,即2020z y z -=+-=设1x =,则0y z ==,,即平面SBC的一个法向量为10=(,n ,所以cos ,7||||7SD SD SD ⋅〈〉===-n n n , 所以直线SD 与平面SBC . 【名师点睛】不妨考查线面平行的证明以及利用空间向量求线面角,属中档题.6.【云南省2019届高三第一次高中毕业生复习统一检测数学】在四棱锥P ABCD -中,四边形ABCD 为菱形,且23ABC π∠=,M ,N 分别为棱AP ,CD 的中点.(1)求证:MN 平面PBC ;(2)若PD ⊥平面ABCD ,2PB AB =,求平面PBC 与平面PAD 所成二面角的正弦值. 【答案】(1)见证明;(2. 【解析】(1)设PB 的中点为G ,连接MG ,GC . ∵M ,G 分别是AP ,PB 的中点,∴MG AB ,且12MG AB =. 由已知得12CN AB =,且CN AB .∴MG CN ,且MG CN =.∴四边形MGCN 是平行四边形.∴MNGC .∵MN ⊄平面PBC ,CG ⊂平面PBC ,∴MN平面PBC .(2)连接AC ,BD ,设AC BD O =,连接CO ,连接OG .设菱形ABCD 的边长为a ,由题设得2PB a =,PD =,OGPD ,OG ⊥平面ABCD ,分别以OA ,OB ,OG 为x 轴,y 轴,z 轴的非负半轴,建立如图所示的空间直角坐标系O xyz -.由题设得0,2a P ⎛⎫- ⎪⎝⎭,,0,02A a ⎛⎫ ⎪ ⎪⎝⎭,0,,02a D ⎛⎫- ⎪⎝⎭,0,,02a B ⎛⎫⎪⎝⎭,,0,02C a ⎛⎫- ⎪ ⎪⎝⎭,∴()0,,P a B =,3,,02a CB ⎛⎫= ⎪⎪⎝⎭. 设(),,x y z =n 是平面PBC 的法向量,则00PB CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,化简得0y y ⎧-=⎪+=,令1x =,则y =1z =-,∴()1,1=-n .同理可求得平面PAD 的一个法向量()1,=m .∴||cos ,||||5⋅==mn m n m n. ∴平面PBC 与平面PAD【名师点睛】本题主要考查空间几何元素位置关系的证明,考查空间角的求法,意在考查学生对这些知识的理解掌握水平和分析推理转化能力.7.【云南省保山市2019年普通高中毕业生市级统一检测数学】如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l B C BC ,Q 是1A B 的中点,112AC BC B C ==,23ACB π∠=.(1)求证:1//QB 平面11A ACC ; (2)求二面角11A BB C --的余弦值.【答案】(1)详见解析;(2. 【解析】(1)如图所示,连接1AC ,1A C 交于M 点,连接MQ . 因为四边形11A ACC 是正方形,所以点M 是1AC 的中点, 又已知点Q 是1A B 的中点,所以MQ BC ,且12MQ BC =, 又因为11B C BC ,且112BC B C =,所以11MQ B C ,且11MQ B C =,所以四边形11B C MQ 是平行四边形,故11B Q C M ,因1B Q ⊄平面11A ACC ,1C M ⊂平面11A ACC , 故1B Q平面11A ACC .(2)如图所示,以C 为原点,1,CB CC 分别为y 轴和z 轴建立空间直角坐标系, 不妨设1122AC BC B C ===,则)1,0A -,)11,2A -,()0,2,0B ,()10,1,2B ,所以()113,2,0B A =-,()10,1,2B B =-.设平面11A BB 的法向量为(),,x y z =m ,则111·0·0B A B B ⎧=⎪⎨=⎪⎩m m ,即2020y y z -=-=⎪⎩,取4x=,则(4,=m ,平面1CBB 的一个法向量()1,0,0=n,所以cos ,||||31⋅〈〉===m n m n m n . 故二面角11ABB C --.【名师点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.8.【贵州省贵阳市2019年高三5月适应性考试(二)数学】如图(1)ABC △中,9024C AC BC E F =︒==,,,分别是AC 与AB 的中点,将AEF △沿EF 折起连接AC 与AB 得到四棱锥A BCEF -(如图(2)),G 为线段AB 的中点.(1)求证:FG平面ACE ;(2)当四棱锥A BCEF -体积最大时,求直线FG 与平面AFC 所成的角的正弦值. 【答案】(1)见解析;(2【解析】(1)取AC 的中点H ,连接EH GH ,,由于G 是AB 的中点,GH BC ∴,且12GH BC =, 又E F ,分别为AC 与AB 的中点,FE BC ∴,且12FE BC =, FE GH FE GH ∴=,,∴四边形EFGH 为平行四边形,FGEH ∴,又FG ⊄平面ACE EH ⊂,平面ACE ,FG∴平面ACE .(2)当四棱锥ACE 体积最大时,平面ACE 平面ACE , 由于AE EF AE ⊥∴⊥,平面BCEF , 建立如图所示的坐标系,002220020100111A B C F G ∴(,,),(,,),(,,),(,,),(,,). 022120011CA CF FG ∴=-=-=(,,),(,,),(,,).设平面ACE 的法向量x y z (,,)n ,则0CA CF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即22020y z x y -+=⎧⎨-=⎩,取一组解211x y z ==(,,)(,,)n ,记FG 与平面AFC 所成角为θ,则sin cos 3||||6FG FGFG θ⋅===⨯,n n n . 【名师点睛】本题主要考查线面平行的判定定理,考查了空间向量法解决空间角的问题,考查计算求解能力,属于中档题.9.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】如图所示,三棱锥P ABC -放置在以AC 为直径的半圆面O 上,O 为圆心,B 为圆弧AC 上的一点,D 为线段PC 上的一点,且3AB BC PA ===,PB =PA BC ⊥.(1)求证:平面BOD ⊥平面PAC ;(2)当二面角DAB C --的平面角为60︒时,求PD PC的值.【答案】(1)详见解析;(2.【解析】(1)由3AB PA ==,PB =∴222PA AB PB +=,∴PA AB ⊥,又PA BC ⊥且ABBC B =,∴PA ⊥平面ABC .∵BO ⊂平面ABC ,∴PA BO ⊥,由BA BC =,圆心O 为AC 中点,∴BO AC ⊥.∵ACPA A =,∴BO ⊥平面PAC ,又BO ⊂平面BOD , 所以平面BOD ⊥平面PAC .(2)由(1)知PA ⊥平面ABC ,且BA BC ⊥,过点B 作PA 的平行线, 建立如图所示的空间直角坐标系,由题意知()0,0,0B ,()3,0,0A ,()0,3,0C ,()3,0,3P , 设(01)PD PC λλ=<<,则()3,0,0BA =,()()3,0,33,3,3BD BP PD λ=+=+--()33,3,33λλλ=--, 设(),,x y z =m 为平面BAD 的一个法向量,则()()3003333300x BA x y z BD λλλ=⎧⎧⋅=⎪⇒⎨⎨-++-=⋅=⎪⎩⎩m m ,令1z =,则11y λ=-,所以10,1,1λ⎛⎫=-⎪⎝⎭m , 取平面ABC 的一个法向量为()0,0,1=n . 因为二面角D AB C --的平面角为60︒,所以1cos60cos ,2︒===m n ,解得λ=0λ=<(舍去), 所以当二面角D AB C --的平面角为60︒时,PD PC=【名师点睛】本题考查由线线垂直证明线面垂直,再证明面面垂直,利用空间坐标系表示二面角,求线段比,属于中档题.10.【四川省棠湖中学2019届高三4月月考数学】如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)若1AA AC =,求证:1AC ⊥平面11A B CD ;(2)若2CD =,1AA AC λ=,二面角11C A D C --的余弦值为4,求三棱锥11C A CD -的体积. 【答案】(1)见解析(2)4.【解析】(1)连接1A C 交1AC 于E ,因为1AA AC =,又1AA ⊥平面ABCD , 所以1AA AC ⊥,所以四边形11A ACC 为正方形,所以11A C AC ⊥,在ACD △中,2,60AD CD ADC =∠=︒, 由余弦定理得2222cos60AC AD CD AD CD =+-⋅︒,所以AC =,所以222AD AC CD =+,所以CD AC ⊥,又1AA CD ⊥, 所以CD ⊥平面11A ACC , 所以1CD AC ⊥,又因为1,CDA C C =AC 1⊥平面A 1B 1CD ;(2)如图建立直角坐标系,则()()()()112,0,0,,,D A C A()()112,0,23,DC DA λ∴=-=-,设平面11AC D 的法向量为()1111,,x y z =n ,由111100DC DA ⎧⋅=⎪⎨⋅=⎪⎩n n即111112020x z x z ⎧-+=⎪⎨-++=⎪⎩, 解得)11113,0,0,1x z y λ==∴=,n ,设平面1A CD 的法向量为()2222,,x y z =n ,由12200CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n ,得222200x z =⎧⎪⎨+=⎪⎩,解得()22220,,0,,1x y z λλ==-∴=-n ,由1212cos ||||4θ⋅===⋅n n n n得1λ=,所以1,AA AC =此时12,,CD AA AC === 所以1111112432C A CD D A CC V V --⎛==⨯⨯⨯= ⎝. 【名师点睛】本题主要考查线面垂直的判断以及三棱锥体积的计算,根据二面角的关系建立坐标系求出λ的值是解决本题的关键.11.【贵州省遵义市2019届高三年级第一次联考试卷数学】如图所示,在三棱柱中111ABC A B C -,侧面11ABB A 是矩形,12AB AA D ==,是1AA 的中点,BD 与1AB 交于O ,且CO ⊥面11ABB A(1)求证:1BC AB ⊥;(2)若OC OA =,求二面角D BCA --的余弦值. 【答案】(1)详见解析(2【解析】(1)由于侧面11ABB A 是矩形,D 是中点,故1tan tan 22AB B ABD ∠=∠=, 所以1AB B ABD ∠=∠,又1190BAB AB B ∠+∠=︒, 于是190BAB ABD ∠+∠=︒,1BD AB ⊥,而CO ⊥面1ABB A ,所以1CO AB ⊥, 1AB ⊥面BCD ,得到1BC AB ⊥.(2)如图,建立空间直角坐标系,则000000A B C D ⎫⎛⎫⎛⎫⎛-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭,,,,,,, 可以计算出面ABC的一个法向量的坐标为(11=n , 而平面BCD 的一个法向量为()2010=,,n , 设二面角D BC A --的大小为θ,则1212cos θ⋅==n n n n【名师点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.【四川省绵阳市2019届高三下学期第三次诊断性考试数学】如图,在四棱锥P ABCD -中,底面ABCD是菱形,且2PA AD ==,120PAD BAD ∠=∠=︒,E ,F 分别为PD ,BD 的中点,且EF =.(1)求证:平面PAD ⊥平面ABCD ; (2)求锐二面角E AC D --的余弦值. 【答案】(1)见解析;(2)5【解析】(1)过P 作PO ⊥AD ,垂足为O ,连接AO ,BO , 由∠PAD =120°,得∠PAO =60°,∴在Rt △PAO 中,PO =PA sin ∠PAO=2sin60°=2×2∵∠BAO =120°,∴∠BAO =60°,AO =AO ,∴△PAO ≌△BAO ,∴BO =PO∵E ,F 分别是PA ,BD 的中点,EFEF 是△PBD 的中位线, ∴PB =2EF=2×2, ∴PB 2=PO 2+BO 2,∴PO ⊥BO ,∵AD ∩BO =O ,∴PO ⊥平面ABCD , 又PO ⊂平面PAD ,∴平面PAD ⊥平面ABC D .(2)以O 为原点,OB 为x 轴,OD 为y 轴,OP 为z 轴,建立空间直角坐标系,A (0,1,0),P (0,0B0,0),D (0,3,0),∴E (0,32F302,),AE =(0,12AF ==,12,0),易得平面ABCD 的一个法向量m =(0,0,1),设平面ACE 的法向量n =(x ,y ,z),则10223102AE y z AF x y ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩n n ,取x =1,得n =(11),设锐二面角的平面角的大小为θ,则cos θ=|||cos ,|||||⋅〈〉=m n m n m n ,∴锐二面角E –AC –D .【名师点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查空间想象能力以及基本论证与求解能力,属中档题.。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)
立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
押新高考第19题 立体几何(新高考)(解析版)
立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上.1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 4.平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,C D 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).1.(2021·湖南·高考真题)如图,四棱锥中,底面ABCD 是矩形,平面ABCD ,E 为PD 的中点.(1)证明:平面ACE ;(2)设,,直线PB 与平面ABCD 所成的角为,求四棱锥的体积.【详解】 (1)连接交于点,连接. 在中,因为,所以,因为平面,平面,则平面.(2)因为平面ABCD ,所以就是直线PB 与平面ABCD 所成的角,所以,又,,所以,所以四棱锥的体积,所以四棱锥的体积为.2.(2021·天津·高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD 的中点.(I)求证:平面;(II)求直线与平面所成角的正弦值.(III)求二面角的正弦值.【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,,,,,,因为E为棱BC的中点,F为棱CD的中点,所以,,所以,,,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.3.(2021·浙江·高考真题)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,. (1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以.(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为.4.(2021·北京·高考真题)如图:在正方体中,为中点,与平面交于点.(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5.(2021·全国·高考真题)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量, 则即,取,则,故. 而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1.(2022·河北秦皇岛·二模)如图,在四棱锥P ABCD -中,PA AB ⊥,PC CD ⊥,BC AD ∥,23πBAD ∠=, 2PA AB BC ===,4=AD .(1)证明:PA ⊥平面ABCD .(2)若M 为PD 的中点,求二面角M AC D --的大小. 【解析】 (1)证明:由题可知ABC 为等边三角形,所以2AC =,3π∠=CAD .在ACD △中,由余弦定理得2224224cos 233CD π=+-⨯⨯=,所以222AC CD AD +=,所以CD AC ⊥. 因为CD PC ⊥,且ACPC C =,所以CD ⊥平面PAC .因为PA ⊂平面PAC ,所以CD PA ⊥. 因为PA AB ⊥,且,AB CD 相交, 所以PA ⊥平面ABCD . (2)以A 为坐标原点,以AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -则()3,1,0C,()0,2,1M .设平面MAC 的法向量为(),,n x y z =,则30,20,n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令1x =,得()1,3,23n =-. 取平面ACD 的一个法向量为()0,0,1m =, 则233cos ,142⋅<>===⨯m n m n m n. 由图可知二面角M AC D --为锐角,所以二面角M AC D --的大小为6π.2.(2022·湖南永州·三模)如图,在三棱柱111ABC A B C -中,112AB AA AC BC ====.(1)求证:11A B B C ⊥;(2)若2AC =,160ABB ∠=,点M 满足132AM MC =,求二面角11A A B M --的余弦值. 【解析】 (1)连接11,A B AB 交于点O ,连接OC ,四边形11ABB A 为菱形,11A B AB ∴⊥,O 为1A B 中点, 又1CA CB =,1A B OC ∴⊥, 1AB OC O =,1,AB CO ⊂平面1ACB ,1A B ∴⊥平面1ACB ,又1B C ⊂平面1ACB ,11A B B C ∴⊥. (2)160ABB ∠=,12AB AA ==,3OB ∴=,1OA =,在Rt OBC 中,222OC BC OB =-,1OC ∴=, 在OAC 中,有222OA OC AC +=,OC OA ∴⊥,又OA OB O =,,OA OB ⊂平面11ABB A ,OC ∴⊥平面11ABB A ,则以O 为坐标原点,,,OA OB OC 为,,x y z 轴可建立如图所示空间直角坐标系,则()1,0,0A ,()10,3,0A -,()11,0,0B -,()0,0,1C ,()11,3,1C --,()12,3,1AC ∴=--,设(),,M x y z ,则()1,,AM x y z =-,()11,3,1MC x y z =---,132AM MC =,()()()()3121323321x x y y z z ⎧-=--⎪⎪∴=-⎨⎪=-⎪⎩,解得:152325x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,1232,55M ⎛⎫∴ ⎪ ⎪⎝⎭,1133255A M ⎛⎫∴= ⎪ ⎪⎝⎭,()113,0A B =-,设平面11MA B 的法向量(),,n a b c =,1111332055530A M n a c A B n a b ⎧⋅=++=⎪∴⎨⎪⋅=-+=⎩,令1b =,解得:3a =3c =-(3,1,23n ∴=-;又OC ⊥平面11ABB A ,则平面11AA B 的一个法向量为()0,0,1m =,3cos ,2m n m n m n⋅∴<>==⋅,又二面角11A A B M --为锐二面角,∴二面角11A A B M --的余弦值为32. 3.(2022·江苏·南京市第一中学三模)在正三棱柱111ABC A B C -中,122AA AB ==.D 为1CC 中点,E 为1B D 上一点.(1)求四棱锥11A BB C C -的体积;(2)若1B E CE CD +=,求三棱锥1D AEC -的体积. 【解析】 (1)解:取BC 的中点为O ,因为三棱柱111ABC A B C -为正三棱柱,所以ABC 为正三角形,四边形11BB C C 为矩形,且1C C ⊥平面ABC , 所以1C C AO ⊥,AO BC ⊥,又1BC CC C =, 所以AO ⊥平面11BB C C ,即为四棱锥11A BB C C -的高, 又122AA AB ==,所以32AO =, 所以四棱锥11A BB C C -的体积11111133123323A BBC C BB C C V S AO -=⋅=⨯⨯⨯=;(2)解:因为1B E CE CD +=,即1B E CD CE ED =-=,所以E 为1B D 的中点,所以11111111111111133112223232224E ADC B ADC A B C D D AEC B C DV V V V SAO ----====⨯⨯=⨯⨯⨯⨯⨯=. 4.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-,易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC , 又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.5.(2022·福建·模拟预测)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,60BAD BPD ∠=∠=︒,2PB PD ==.(1)证明:平面PAC ⊥平面ABCD ;(2)若二面角P BD A --的余弦值为13,求二面角B PA D --的正弦值.【解析】 (1) 设ACBD O =,连接PO ,在菱形ABCD 中,O 为BD 中点,且BD AC ⊥, 因为PB PD =,所以BD PO ⊥, 又因为POAC O =,且PO ,AC ⊂平面PAC ,所以BD ⊥平面PAC ,因为BD ⊂平面ABCD ,所以平面PAC ⊥平面ABCD ; (2)作OM ⊥平面ABCD ,以{},,OA OB OM 为x ,y ,z 轴,建立空间直角坐标系,易知2PB PD BD AB AD =====,则3OA OP ==,1OB =, 因为OA BD ⊥,OP BD ⊥,所以POA ∠为二面角P BD A --的平面角,所以1cos 3POA ∠=,则326,0,33P ⎛⎫ ⎪ ⎪⎝⎭,()3,0,0A ,()0,1,0B ,()0,1,0D -,所以()3,1,0AD =--,()3,1,0AB =-,2326,0,33AP ⎛⎫=- ⎪ ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,由00m AB m AP ⎧⋅=⎨⋅=⎩,得1111302326033x y x z ⎧-+=⎪⎨-+=⎪⎩ 取11z =,则12x =,16y =,所以()2,6,1m =,设平面PAD 的法向量为()222,,n x y z =,由00n AD n AP ⎧⋅=⎨⋅=⎩,得2222302326033x y x z ⎧--=⎪⎨-+=⎪⎩ 取21z =,则22x =,26y =-,所以()2,6,1n =-,设二面角B PA D --为θ,则2611cos 3261261m n m nθ⋅-+===++⋅++⋅,又[]0,πθ∈,则222sin 1cos 3θθ=-=.(限时:30分钟)1.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【详解】(1)若选①:7AD =在Rt BCD 中,2BC =,1CD =,3BD =,2AB =, 可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 又因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且ADBD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD ,因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,因为AB BC ⊥,且AB平面ABC ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()3,2A ,()3,0B ,()1,0,0C -,13,,122M ⎛⎫- ⎪ ⎪⎝⎭,30,2N ⎛⎫⎪ ⎪⎝⎭可得1,0,02MN ⎛⎫= ⎪⎝⎭,30,1AN ⎛⎫=- ⎪ ⎪⎝⎭,30,BN ⎛⎫= ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则111102302m MN x m AN y z ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩,取13y =1130,2x z ==-,所以30,3,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则222102302n MN x n BN y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取23y =,可得30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n m n m n -⋅===⋅+,故二面角A MN B --的正弦值437.2.如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值. 【详解】(1)证明:因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.又∵正ABC 中,AM MC BM AC =⇒⊥,∴BM CDBM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD , ∴BM AN ⊥.(2)解:连接MD 交AN 于G 点,连接PG ,因为//BM平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.∴()0,0,0C ,3330,,22A ⎛⎫ ⎪ ⎪⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,∴13302233330222x y z x y z ⎧+-=⎪⎪⎨⎪--=⎪⎩,令4x =,则1,3y z == ∴()4,1,3n =,平面ABC 的法向量为()1,0,0u =,425cos ,51613u v ==++, ∴平面APN 与平面ABC 所成角的正弦值为55.3.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求三棱锥A MNB -的体积.【详解】(1)若选①:7AD =Rt BCD 中,2BC =,1CD =,可得3BD =,又由2AB =,所以222AB BD AD +=,所以AB BD ⊥,因为AB BC ⊥,且BC BD B =,,BC BC ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,所以//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,CD AD ⊥,因为CD BD ⊥,可证得CD ⊥平面ABD ,又M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,又由CD ⊂平面CBD ,所以AB CD ⊥,因为CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .(2)由(1)知MN ⊥平面ABD ,其中ABD △为直角三角形, 可得3122ANB ADB S S ==△△,1122MN CD ==, 故三棱锥A MNB -的体积为131332A MNB M ABN V V --===.4.如图,在四棱锥P ABCD -中,//AB CD ,AB ⊥平面PAD ,24PA AD DC AB ====,27PD =,M 是PC 的中点.(1)证明:平面ABM ⊥平面PCD ;(2)求三棱锥M PAB -的体积.【详解】(1)取PD 中点N ,连接MN ,AN ,因为PA AD =,所以AN PD ⊥,由AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥,又由AN AB A =,且,AN AB ⊂平面ABN ,所以PD ⊥平面ABN ,因为MN 是PCD ∆中位线,所以////AB CD MN ,四边形ABMN 是平行四边形,于是PD ⊥平而ABM ,PD ⊂平面PCD ,所以平面ABM ⊥平面PCD .(2)由(1)可得//MN AB ,且AB平面PAB ,所以//MN 平面PAB , 所以AB M P N PAB B NAP V V V ---==,因为AB ⊥平面PAD ,可得13B NAP NAP V S AB -∆=⨯, 又由4AP =,7=PN ,AN PD ⊥, 所以2473AN -=,137732NAP S ∆== 所以137273B NAP V -==5.如图,三棱柱111ABC A B C -中,13AA AB ==,2BC =,E ,P 分别是11B C 和1CC 的中点,点F 在棱11A B 上,且12B F =.(1)证明:1//A P 平面EFC ;(2)若1AA ⊥底面ABC ,AB BC ⊥,求二面角P CF E --的余弦值.【详解】(1)证明:如图,连接1PB 交CE 于点D ,连接DF ,EP ,1CB .因为E ,P 分别是11B C 和1CC 的中点, 故11//2EP CB ,故112PD DB =. 又12B F =,113A B =,故1112A F FB =,故1//FD A P . 又FD ⊂平面EFC ,所以1//A P 平面EFC . (2)由题意知AB ,BC ,1BB 两两垂直,以B 为坐标原点,以1BB 的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz -.则()0,2,0C ,()10,0,3B ,()2,0,3F ,()0,1,3E ,30,2,2P ⎛⎫ ⎪⎝⎭. 设()111,,n x y z =为平面EFC 的法向量, 则00n EF n EC ⎧⋅=⎨⋅=⎩,即11112030x y y z -=⎧⎨-=⎩,可取3,3,12n ⎛⎫= ⎪⎝⎭. 设()222,,m x y z =为平面PFC 的法向量,则00m PF m PC ⎧⋅=⎨⋅=⎩,即222232202302x y z z ⎧-+=⎪⎪⎨⎪=⎪⎩,可取()1,1,0m =.所以233922cos ,14391112n m n m n m +⋅===⎛⎫++⨯+ ⎪⎝⎭. 由题意知二面角P CF E --为锐角, 所以二面角P CF E --的余弦值为214.。
2019年高考数学立体几何专题复习(完整版)
球面距离:
例题 1: 把地球看作半径为 R 的球, A、 B 是北纬 30°圈上的两点,它们的经度差为 面距离为 _____________
60°, A、 B 两点间的球
例题 2:三棱锥 O-ABC 的三条棱 OA, OB, OC 两两垂直, OA=1 ,OB=OC=2 ,则内切球表面积为 ______ , 外
投影到这个平面内的图形叫做左视图 (侧视图 )。
三视图的主视图、俯视图、左视图分别是从物体的
正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形。
( 1)、 三视图画法规则:
高平齐:主视图与左视图的高要保持平齐
长对正:主视图与俯视图的长应对正
宽相等:俯视图与左视图的宽度应相等
( 2)、空间几何体三视图: 正视图(从前向后的正投影) ;
正方形 .若 PA=2 6 ,则△OAB 的面积为 ______________.
8。简单空间图形的三视图: 一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫做俯视图。
一个投影面放置在正前方,这个投影面叫做直立投影面,投影到这个平面内的图形叫做主视图
(正视图 )。
和直立、水平两个投影面都垂直的投影面叫做侧立投影面,通常把这个平面放在直立投影面的右面,
6
2
外接球的半径为
6 a (是正方体的外接球,则半径
4
1 l 正方体体对角线 )
2
内切球的半径为 6 a (是正四面体中心到四个面的距离,则半径 12
1 l 正方体体对角线 )
6
正四面体:
4。棱台: 用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。由正棱锥截得的棱台叫做
正棱台。 正棱台的性质: 各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的
专题04-立体几何-2019高考数学热点题型
专题04-立体几何-2019高考数学热点题型立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】 (满分12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.教材探源本题源于教材选修2-1P109例4,在例4的基础上进行了改造,删去了例4的第(2)问,引入线面角的求解.|z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎪⎨⎪⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎪⎨⎪⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM →=⎝⎛⎭⎪⎫1-22,1,62.8分(得分点5)设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).10分(得分点6)于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105.12分(得分点7)得分要点❶得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,作辅助线→证明线线平行→证明线面平行;第(2)问中,建立空间直角坐标系→根据直线BM 和底面ABCD 所成的角为45°和点M 在直线PC 上确定M 的坐标→求平面ABM 的法向量→求二面角M -AB -D 的余弦值. ❷得关键分:(1)作辅助线;(2)证明CE ∥BF ;(3)求相关向量与点的坐标;(4)求平面的法向量;(5)求二面角的余弦值,都是不可少的过程,有则给分,无则没分. ❸得计算分:解题过程中计算准确是得满分的根本保证,如(得分点4),(得分点5),(得分点6),(得分点7). 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】如图在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1,CC1=B1C1=2BB1=2,D是CC1的中点,四边形AA1C1C可以通过直角梯形BB1C1C以CC1为轴旋转得到,且二面角B1-CC1-A为120°.(1)若点E是线段A1B1上的动点,求证:DE∥平面ABC;(2)求二面角B-AC-A1的余弦值.又A1D∩DB1=D,A1D,DB1⊂平面DA1B1,∴平面DA1B1∥平面CAB,又DE⊂平面DA1B1,∴DE∥平面ABC.(2)解 在平面A 1B 1C 1内,过C 1作C 1F ⊥B 1C 1, 由题知CC 1⊥C 1B 1,CC 1⊥A 1C 1,∴CC 1⊥平面A 1B 1C 1.分别以C 1F ,C 1B 1,C 1C 为x 轴、y 轴、z 轴正方向建立空间直角坐标系C 1-xyz ,则C 1(0,0,0),A (3,-1,1),C (0,0,2),B (0,2,1),所以C 1A →=(3,-1,1),C 1C →=(0,0,2),AC →=(-3,1,1),BC →=(0,-2,1),热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形,∠DAB=π3,AB=2,AM=1,E是AB的中点.(1)求证:平面DEM⊥平面ABM;(2)在线段AM上是否存在点P,使二面角P-EC-D的大小为π4?若存在,求出AP的长;若不存在,请说明理由.(2)解在线段AM存在点P,理由如下:由DE⊥AB,AB∥CD,得DE⊥CD,因为四边形ADNM是矩形,平面ADNM⊥平面ABCD且交线为AD,所以ND⊥平面ABCD.以D为原点,DE,DC,DN所在直线分别为x轴、y轴、z轴建立如图所示的坐标系.则D(0,0,0),E(3,0,0),C(0,2,0),N(0,0,1),EC→=(-3,2,0),设P(3,-1,m)(0≤m≤1),则EP→=(0,-1,m),易知平面ECD的一个法向量为DN→=(0,0,1).设平面PEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EC →=0,n ·EP →=0,即⎩⎨⎧-3x +2y =0,-y +mz =0,取z =1,则n =⎝ ⎛⎭⎪⎫2m 3,m ,1,假设在线段AM 上存在点P ,使二面角P -EC -D 的大小为π4, 则cos π4=⎪⎪⎪⎪⎪⎪⎪⎪n ·DN →|n ||DN →|=14m 23+m 2+1⇒m =217,所以符合题意的点P 存在,此时AP =217.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB=AC=2,点E在AD上,且AE=2ED.(1)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;(2)当二面角A-PB-E的余弦值为多少时,直线PC与平面PAB所成的角为45°?∵AE=2ED,CF=2FB,∴AE=BF=23 AD,∴四边形ABFE是平行四边形,∴AB∥EF,∴AC⊥EF,∵PA⊥底面ABCD,∴PA⊥EF,∵PA∩AC=A,PA,AC⊂平面PAC,∴EF⊥平面PAC,∵EF⊂平面PEF,∴平面PEF⊥平面PAC.(2)解 ∵PA ⊥AC ,AC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴AC ⊥平面PAB ,则∠APC 为PC 与平面PAB 所成的角, 若PC 与平面PAB 所成的角为45°,则tan ∠APC =ACPA=1,即PA =AC =2,取BC 的中点为G ,连接AG ,则AG ⊥BC ,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .则A (0,0,0),B (1,-1,0),C (1,1,0),E ⎝ ⎛⎭⎪⎫0,23,0,P (0,0,2),∴EB →=⎝ ⎛⎭⎪⎫1,-53,0,EP →=⎝ ⎛⎭⎪⎫0,-23,2,热点三立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】在矩形ABCD中,AB=1,AD=2,点E为AD中点,沿BE将△ABE折起至△PBE,如图所示,点P在平面BCDE的射影O落在BE上.(1)求证:BP⊥CE;(2)求二面角B-PC-D的余弦值.(2)解 以O 为坐标原点,以过点O 且平行于CD 的直线为x 轴,过点O 且平行于BC 的直线为y 轴,直线PO 为z 轴,建立如图所示空间直角坐标系.则B (12,-12,0),C (12,32,0),D (-12,32,0),P (0,0,22), 设平面PCD 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·CD →=0,n 1·CP →=0,即⎩⎨⎧x 1=0,x 1+3y 1-2z 1=0, 令z 1=2,可得n 1=⎝ ⎛⎭⎪⎫0,23,2,设平面PBC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·PB →=0,n 2·BC →=0,即⎩⎨⎧x 2-y 2-2z 2=0,2y 2=0, 令z 2=2,可得n 2=(2,0,2),∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=3311,结合图形判断二面角B -PC -D 为钝二面角, 则二面角B -PC -D 的余弦值为-3311.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】 如图(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是线段AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图(2)所示.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求直线BD与平面A1BC所成角的正弦值.(2)解由(1)知BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,又平面A1BE ⊥平面BCDE,所以∠A1OC=π2,所以OB,OC,OA1两两垂直.如图,以O为原点,OB,OC,OA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则B(22,0,0),E(-22,0,0),A1(0,0,22),C(0,22,0),得BC→=(-22,22,0),A1C→=(0,22,-22),由CD→=BE→=(-2,0,0),得D(-2,22,0).所以BD→=(-322,22,0).。
高考数学(理)三年真题专题演练—立体几何(解答题)
高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
【新课标版】2019年高考数学三轮讲练测核心热点总动员 专题01 复数 含解析
2016年高考三轮复习系列:讲练测之核心热点 【全国通用版】【名师精讲指南篇】 【高考真题再现】1. 【2013新课标全国】若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45(C )4(D )45【答案】D ;2.【2013新课标全国】212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i - 【答案】B 【解析】2121221(1)222i i i ii i ++-===---. 3. 【2014全国1高考理】=-+23)1()1(i i ( ) A. i +1 B. i -1 C. i +-1 D. i --1 【答案】D【解析】由已知得=-+23)1()1(i i 22(1)(1)2(1)1(1)2i i i i i i i+++==----.4. 【2014高考全国1卷文】设i iz ++=11,则=||z ( ) A.21 B. 22 C. 23 D. 2 【答案】B【解析】根据复数运算法则可得:111111(1)(1)222i i z i i i i i i i --=+=+=+=-++-,由模的运算可得:||2z ==. 5.【2015全国卷1】设复数z 满足1i 1zz+=-,则z =()A .1B .2 【答案】A 【解析】由1i 1z z +=-得()()()()1i 1i 1i i 1i 1i 1i z -+--+===++-,所以1z =.故选A . 6.【2015全国卷2】若a 为实数,且()()2i 2i 4i a a +-=-,则a =(). A.1- B. 0 C.1 D. 2 【答案】B【热点深度剖析】从近三年的高考试题来看,复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,每套高考试卷都有一个小题,并且一般在前三题的位置上,主要考查对复数概念的理解以及复数的加减乘除四则运算. 2013年考查了复数的除法运算、复数的模、复数的概念,2014年考查了复数的除法运算.205年考查了复数的模及复数相等,近三年全国卷中共轭复数及复数的几何含义还没有考查,故预测2016年高考仍将以复数的基本概念以及复数的代数运算为主要考点,其中复数的除法运算及共轭复数是最可能出现的命题角度! 【重点知识整合】 1.基本概念:⑴a bi c di a c +=+⇔=且(,,,)c d a b c d R =∈;⑵复数是实数的条件:①0(,)z a bi R b a b R =+∈⇔=∈;②z R z z ∈⇔=;③20z R z ∈⇔≥.(3)复数是纯虚数的条件: ①z a bi =+是纯虚数0a ⇔=且0(,)b a b R ≠∈; ②z 是纯虚数0(0)z z z ⇔+=≠;③z 是纯虚数20z ⇔<.2.复数运算公式:设1z a bi =+,2(,,,)z c di a b c d R =+∈,12()()z z a c b d i ±=±+±,12()()()()z z a bi c di ac bd ad bc i =++=-++,1222222(0)z ac bd bc ad i z z c d c d +-=+≠++. 3.几个重要的结论:⑴2222121212||||2(||||)z z z z z z ++-=+;⑵22||||z z z z ⋅==;⑶若z 为虚数,则22||z z ≠. 4.常用计算结论: ⑴2(1)2i i ±=±;⑵11i ii +-=,11i ii -+=-;⑶1230()n n n n i i i i n N ++++++=∈;⑷1||11zz zz z =⇔=⇔=;12ω=-+,212ωω=-=,31ω=,210ωω++=. 【应试技巧点拨】1.解决复数概念问题的方法及注意事项:(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a bi +(,a b R ∈)的形式,以确定实部和虚部.2.复数是实数的条件:①0(,)z a bi R b a b R =+∈⇔=∈;②z R z z ∈⇔=;③20z R z ∈⇔≥.3.复数是纯虚数的条件: ①z a bi =+是纯虚数0a ⇔=且0(,)b a b R ≠∈; ②z 是纯虚数0(0)z z z ⇔+=≠;③z 是纯虚数20z ⇔<.4. 对复数几何意义的理解及应用(1)复数z 、复平面上的点z 及向量OZ 相互联系,即z a bi =+ (,a b R ∈)(),Z a b ⇔⇔OZ ;(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.5. 复数的四则运算类似于多项式的四则运算,此时含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可,但要注意把i 的幂写成最简单的形式,在运算过程中,要熟悉i 的特点及熟练应用运算技巧.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. 【考场经验分享】1.目标要求:新课标对复数的要求较低,根据课标的要求,本部分内容的考查不会太难,一般出一道选择题(或填空题)考查基本概念与运算,与概率等结合的题目可能会出,但都比较容易解决.所以本热点必须得满分.2.注意问题:复数这个热点一般出现在试卷的前三道题目中,难度较低,但是解题时需加小心,千万不能因为不重视而导致失分.例如复数的实部和虚部要分清楚,例如1i -的实部是-1,虚部为1,运算时要注意21i =-.3.经验分享:学会必要的检验,例如将求解的复数代入验证,若复数为纯虚数时,实部等于0,要验证虚部不为0,利用复数相等进行复核等方法,确保万无一失.【名题精选练兵篇】1. 【2016安徽合肥市第二次质检】若i 是虚数单位,复数2iz i=+的虚部为( ) A .15- B .25- C .15 D .25【答案】D 【解析】2iz i =+()212=555i i i -=+,故选D.2.【2016云南第一次统一检测】已知i 为虚数单位,则复数1ii+=( ) A .1i + B .1i - C .12i + D .12i-【答案】B【解析】i i ii-=+-=+111;故选B . 3.【2016新疆乌鲁木齐二诊】复数534ii+-对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A 【解析】因为i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435,所以对应的点为()1,1;故选A . 4.【2016重庆3月模拟】若纯虚数z 满足(1)1i z ai -=+,则实数a =( ) A .0 B .-1或1 C .-1 D .1 【答案】D5.【2016湖北七校2月联考】已知i b iia +=+2,),(Rb a ∈其中i 为虚数单位,则=-b a ( ) A .3- B .2-C .1-D .1【答案】A【解析】因为i b ai i ia +=-=+22,所以⎩⎨⎧=-=12ab ,即⎩⎨⎧-==12a b ,所以3-=-b a ;故选A . 6.【2016哈尔滨师大附中 东北师大附中 辽宁省实验中学第一次联合模拟】若复数z 满足i zi +=1,则z 的共轭复数是( )A .i --1B .i +1C .i +-1D .i -1 【答案】B【解析】11,1izi i z i i+=+∴==-,所以z 的共轭复数是1i + 7.【2016河北省衡水二调】已知复数z ,“0z z +=”是“z 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B8.【2016吉林长春质量监测(二)】复数1z ,2z 在复平面内对应的点关于直线y x =对称,且132z i =+,则2z =()A. 32i -B. 23i -C. 32i --D. 23i +【答案】D【解析】复数1z 在复平面内关于直线y x =对称的点表示的复数223z i =+,故选D. 9.【2016辽宁省沈阳质量监测(一)】复数21z i=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A 【解析】211z i i==+-,在复平面内复数z 对应点的坐标为(1,1),在第一象限.10.【2015安徽省安庆五校联盟高三下学期3月联考】若复数ib ia 3-+(Rb a ∈,)对应的点在虚轴上,则ab 的值是A .15-B .3C .3-D .15 【答案】B 【解析】因为2()(3)3(3)3(3)(3)9a i a ib i ab a b ib i b i b i b +++-++==--++对应点在虚轴上,所以3ab =,故选B .11. 【2015届吉林省长春市十一高中高三上学期阶段性考试】若复数i a a z )1(12-+-=(i 为虚数单位)是纯虚数,则实数=a ( )A .1±B .1-C .0D .1 【答案】B【解析】复数i a a z )1(12-+-=是纯虚数,则要求⎩⎨⎧≠-=-01012a a ,则1-=a .12. 【2015届云南省弥勒市高三年级模拟测试一】复数1z i =-,则1z z+对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D13. 【2015届高三下学期第二次统考(新课标2卷)】已知,,x y R i ∈为虚数单位,且(2)1x i y i --=-+,则(1)x y i ++的值为( )A .4B .4-C .44i +D .2i 【答案】B【解析】由(2)1x i y i --=-+,可得21311x x y y -==⎧⎧⇒⎨⎨-=-=⎩⎩ ,∴4x y +=,∴()414i +=- ,故选B14. 【2015届山东省德州市高三上学期2月期末统考】设1z i =-,则22z z+=( ) A .-1-i B .-l+I C .1-i D .l+i 【答案】C【解析】将z 代入,按照复数代数形式的运算法则,计算化简即可.2222(1i 2)121211(1i)(1i)z i i i i i i z ++=+-=+-=+-=---+()()()故选C . 15. 【2015届江西省景德镇高三第二质检】设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =( )A.2 B .4 C.6 D.8 【答案】B【解析】根据复数的定义及运算法则,21i =-,3i i =-,41i =,所以()4a i =.16. 在复平面内,复数201532i iZ +-=对应的点位于 ( ) (A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限 【答案】A17. 如图,在复平面内,复数1z 和2z 对应的点分别是A 和B ,则21z z 等于(A )12i + (B )2i + (C )12i -- (D )2i -+【解析】由题意i z =1,i z -=22,故21z z i i i i i i 21)2(22--=-=-= 18. 【2015安徽省安庆五校联盟高三下学期3月联考】已知i 是虚数单位,若()32i z i -⋅=,则z =( ) (A )1255i - (B )2155i -+ (C )2155i -- (D )1255i + 【答案】A【解析】由()32i z i i -⋅==-得()()()22112222555i i i i z i i i i -⋅+--+====---⋅+.故选A. 【名师原创测试篇】 1. 复数2534z i=-在复平面内对应的点的坐标是 ( )A .()3,4--B .()3,4-C .()3,4-D .()3,4 【答案】D . 【解析】()253425343425i z i i +===+-,所以复数z 在复平面内对应的点的坐标是()3,4,故选D .2. 复若()1,2,3i z i =是复数,且集合{}11|(1)22A z z i i =+=-,{}2224|0z B z =+=,3z A B ∈,则3z = ( )A .2i ±B .2±C .2i -D .2-【答案】C.【解析】因为{}(){}211111122|(1)22|12|21i A z z i i z z i i z z i i -⎧⎫=+=-===-=-==-⎨⎬+⎩⎭,又()2240i ±+=,所以{}2|2B z i =±,所以{}2AB i =-,故3z =2i -,故选C.3. 若复数()()1a a iz a R i+-=∈在平面直角坐标系中所对应的点在第三象限,则( )A.01a <<B.10a -<<C.0a < D 1a >4. 若复数11a iz i i-=--+是实数(其中,a R i ∈是虚数单位),则a = ( )A .1-B .0C .1D .2【答案】C . 【解析】解法一:()()()()()111111*********a i i a a i a ia a z i i i i i i i ----+---⎛⎫=--=--=--=-+⋅ ⎪++-⎝⎭是实数,10,12a a -∴=∴=,故选C . 解法二:()()()()1121111i i a i a ia i z i i i i-+---+-=--==+++是实数,21,1a a ∴-=∴=,故选C .5. 已知复数121234,,z i z t i z z =+=+⋅且是实数,则实数t 等于( ) A.34 B.43 C.43- D.34- 【答案】A。
版高考数学一轮复习 高频考点集中练 立体几何(含解析)新人教B版-新人教B版高三全册数学试题
高频考点集中练立体几何1.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【命题思维分析】利用垂直关系,再结合余弦定理进而解决问题.【解析】选B.因为直线BM,EN都是平面BED内的直线,且不平行,即直线BM,EN是相交直线.设正方形ABCD的边长为2a,则由题意可得:DE=2a,DM=a,DN=a,DB=2a,根据余弦定理可得:BM2=DB2+DM2-2DB·DMcos∠BDE=9a2-4a2cos∠BDE,EN2=DE2+DN2-2DE·DNcos∠BDE=6a2-4a2cos∠BDE,所以BM≠EN.【真题拾贝】判断异面直线的依据是异面直线的定义和性质定理,及一条直线与平面相交,该直线与平面内不过交点的直线异面,而解答本题的关键是构造直角三角形.2.(2018·全国卷Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为( )A. B. C. D.【命题思维分析】求异面直线所成的角是高考常考的题目,本题主要是考查空间直角坐标系的建立,各点坐标的表示及利用向量数量积求向量夹角,然后根据向量夹角与线线角相等或互补关系求结果.【解析】选C.方法一:以D为坐标原点,DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(1,0,0),D1(0,0,),B1(1,1,),所以=(-1,0,),=(1,1,),设异面直线AD1与DB1所成角为α,则cos α=|cos , |==.方法二:如图.连接A1D交AD1于点E.取A1B1中点F,连接EF,则EF B1D,连接D1F,在△D1FE中,∠D1EF为异面直线AD1与DB1的夹角.由已知EF=DB1==,D1E=AD1=1,D1F==,所以cos∠D1EF==.【真题拾贝】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.3.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A. B. C. D.【命题思维分析】本题考查正方体的截面问题,命题思维是由正方体的棱分为三组,每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【解析】选A.由于平面α与每条棱所成的角都相等,所以平面α与平面AB1D1平行或重合(如图),而在与平面AB1D1平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN,而平面EFGHMN的面积S=××××6=.【真题拾贝】该题考查的是有关正方体被平面所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.4.(2018·全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.54【解析】选B.设△ABC的边长为a,则S△ABC=a2sin C=a2=9,解得a=6,如图所示,当点D在底面上的射影为三角形ABC的中心H时,三棱锥D-ABC的体积最大,设球心为O,则在直角三角形AHO中,AH=××6=2,OA=R=4,则OH===2,所以DH=2+4=6,所以三棱锥D-ABC的体积最大值为V=S△ABC×DH=×9×6=18.【真题拾贝】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DH⊥平面ABC时,三棱锥D-ABC体积最大很关键,由H为等边三角形ABC的中心,计算得到AH=AE=2,再由勾股定理得到OH,进而得到结果.5.(2018·全国卷Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为________. 世纪金榜导学号【解析】如图:设SA=SB=l,底面圆半径为r,因为SA与圆锥底面所成角为45°,所以l=r,在△SAB中,AB2=SA2+SB2-2SA·SB·cos∠ASB=r2,AB=r,AB边上的高为=r,△SAB的面积为5,所以·r·r=5,解得r=2,所以该圆锥的侧面积为πr l=πr2=40π.答案:40π6.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________. 世纪金榜导学号【命题思维分析】本题主要考查折叠问题,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想.【解析】连接OB,连接OD,交BC于点G,由题意得,OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,S△ABC=2x·3x·=3x2,则V=S△ABC·h=x2·=·,令f=25x4-10x5,x∈,f′=100x3-50x4,令f′>0,即x4-2x3<0,x<2,则f≤f=80,则V≤×=4,所以体积最大值为4cm3.答案:4cm3【真题拾贝】1.折叠问题要注意折叠前后哪些元素不变,哪些元素的相对位置或长度等发生了变化.2.立体几何、函数、导数交汇问题的解决原理一般是,先设出线段长度,把所求问题表示成关于x的函数,将立体几何问题转化为研究函数最值问题,再用导数求解.3.数学建模要有较强的空间想象能力和转化化归能力.7.(2017·高考)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点.(2)求二面角B-PD-A的大小.(3)求直线MC与平面BDP所成角的正弦值.【解析】(1)设AC∩BD=O,连接OM,因为PD∥平面MAC且平面PBD∩平面MAC=MO,所以PD∥MO,因为O为BD中点,所以M为PB中点.(2)取AD中点E,连接PE,因为PA=PD,所以PE⊥AD,又因为平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD,所以PE⊥平面ABCD,建立如图所示坐标系,则B(-2,4,0),P(0,0,),D(2,0,0),A(-2,0,0),易知平面PDA的法向量m=(0,1,0),设平面BPD的法向量n=(x0,y0,z0),则所以可取n=(1,1,),设二面角B-PD-A的平面角为θ,cos θ=|cos<m,n>|===,所以θ=.(3)由(2)可知M,C(2,4,0),=,设直线MC与平面BDP的角为α,则有sin α=|cos<,n>|===,所以直线MC与平面BDP所成角的正弦值为.。
高考专题专题19立体几何大题理(新课标版)-高考数学三轮复习精品资料(解析版)
【新课标版】【三年真题重温】【2011⋅新课标全国】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD AD =,求二面角A PB C --的余弦值.【解析】(Ⅰ)∵DAB ∠=060,AB =2AD ,由余弦定理得BD 3,∴22BD AD +=2AB ,∴BD ⊥AD .又∵PD ⊥面ABCD ,∴BD ⊥PD .∴BD ⊥平面PAD ,∴PA BD ⊥.27cos ,27〈〉==-m n .故二面角A PB C --的余弦值为27-.【2012新课标全国】如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。
解析:(1)在Rt DAC ∆中,AD AC =得:45ADC ︒∠=设AC a =,则122a C O =,1112230C D a C O C DO ︒=⇒∠= 既二面角11C BD A --的大小为30︒【2013⋅新课标全国】如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=AA 1,∠BAA 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。
【答案】(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB ,所以OC AB ,由于AB=AA 1,∠BA【命题意图猜想】纵观2011年和2012年2013年的高考题对本热点的考查,可以发现均以规则几何体为背景,这样建立空间直角坐标系较为容易,2011年以四棱锥为几何背景考查线线垂直的判定和二面角的求法,可以运用传统几何法,也可以用空间向量方法求解.突出考查空间想象能力和计算能力..在2012年主要以直三棱柱为几何背景考查线线垂直的判定和二面角的求法,可以运用传统几何法,也可以用空间向量方法求解.突出考查空间想象能力和计算能力.2013年以三棱柱为几何背景考查线线垂直的判定、线面垂直、面面垂直的性质以及向量法求线面角,考查学生的化归与转化能力、空间想象能力以及基本运算能力.从近几年的高考试题来看,线线垂直的判定、线面垂直的判定、面面垂直的判定与性质、线面角等是高考的热点,题型既有选择题、填空题又有解答题,难度中等偏高,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.而直线与平面平行的判定,以及平面与平面平行的判定高考大题没涉及,而在小题中考查,从高考试题来看,利用空间向量证明平行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等,主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解决空间角问题等,同时注重考查学生的空间想象能力、运算能力.预测2014年高考,可能以锥体为几何背景,第一问以线面平行,面面平行为主要考查点,第二问可能给出一个角,求点的位置或设置一个探索性命题,突出考查空间想象能力和逻辑推理能力,以及分析问题、解决问题的能力.【高考信息速递】【最新考纲解读】1.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义.了解可以作为推理依据的公理和定理.(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(4)理解直线的方向向量与平面的法向量定义.(5)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.【方法技巧提炼】1.线线平行与垂直的证明证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件.证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性.2.线面平行与垂直的证明方法线面平行与垂直位置关系的确定,也是高考考查的热点,在小题中考查关系的确定,在解答题考查证明细节.线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.线面平行的证明思考途径:线线平行⇔线面平行⇔面面平行.线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行.线面垂直的证明思考途径:线线垂直⇔线面垂直⇔面面垂直.3.面面平行与垂直的证明(1)面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.(2)面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直. 解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂直之间的转化.4.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.5.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径。
2019年高考数学(含解析)之 立体几何热点问题
立体几何热点问题(解题指导)三年考情分析审题答题指引1.教材与高考对接——线面位置关系与空间角【题根与题源】(选修2-1 P109例4)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小.【试题评析】1.本例包括了空间向量在立体几何中最主要的两个应用:(1)证明或判定空间中的线面位置关系,(2)求空间角.2.教材给出的解法虽然都用到了向量,但第(1)(2)题仍然没有脱离线面平行、线面垂直的判定定理,第(3)题是先找到二面角的平面角,然后利用向量求解.3.除了教材给出的解法外,我们还可以利用相关平面的法向量解答本题,其优点是可以使几何问题代数化.【教材拓展】已知四棱锥P-ABCD,底面ABCD为正方形,且PA⊥平面ABCD,tan ∠PBA=63,F为PC的中点,求二面角C-AF-D的余弦值.【探究提高】1.本题与教材选修2-1P109例4相比其难点在于不易找到二面角C -AF -D 的平面角,或者说找到二面角的平面角对学生来说是一个难点,而利用空间向量,即找到相关平面的法向量来求二面角,就可化解这个难点,这也是向量法的优势所在. 2.利用向量法解决问题时,要注意运算的正确性.【链接高考】 (2018·全国Ⅲ卷)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.2.教你如何审题——立体几何中的折叠问题【例题】 (2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【审题路线】【自主解答】【探究提高】立体几何中折叠问题的解决方法:解决立体几何中的折叠问题,关键是搞清楚翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.【尝试训练】(2019·青岛模拟)如图(1),在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如图(2)的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求二面角F-BD-C的余弦值.3.满分答题示范——立体几何中的开放问题【例题】 (12分)如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置;(2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.【规范解答】4.高考状元满分心得❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中利用线面平行的性质证明线线平行,第(2)问中建系时证明PO ,AC ,BD 两两垂直,以及建系后得到各点的坐标.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分.如第(1)问中指出点E 的位置,第(2)问中求两个平面的法向量和.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)中计算λ的值以及计算线段PF的长度等.【构建模板】【规范训练】(2019·杭州质检)如图,在几何体ABCDEF中,四边形ABCD是边长为2的菱形,DE⊥平面ABCD,BF⊥平面ABCD,DE=22,DE>BF,∠ABC=120°.(1)当BF长为多少时,平面AEF⊥平面CEF?(2)在(1)的条件下,求二面角E-AC-F的余弦值.2019年高考数学六大题解满分解题技巧秘籍指导系列专题07 立体几何热点问题(解题指导)三年考情分析审题答题指引1.教材与高考对接——线面位置关系与空间角【题根与题源】(选修2-1 P109例4)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小.【试题评析】1.本例包括了空间向量在立体几何中最主要的两个应用:(1)证明或判定空间中的线面位置关系,(2)求空间角.2.教材给出的解法虽然都用到了向量,但第(1)(2)题仍然没有脱离线面平行、线面垂直的判定定理,第(3)题是先找到二面角的平面角,然后利用向量求解.3.除了教材给出的解法外,我们还可以利用相关平面的法向量解答本题,其优点是可以使几何问题代数化.【教材拓展】已知四棱锥P -ABCD ,底面ABCD 为正方形,且PA ⊥平面ABCD ,tan ∠PBA =63,F 为PC 的中点,求二面角C -AF -D 的余弦值.解 如图所示,因为底面ABCD 为正方形,且PA ⊥底面ABCD ,所以PA ,AB ,AD 两两垂直,建立空间直角坐标系A -xyz ,设AB =1, 则PA =AB ·tan ∠PBA =63,则B (1,0,0),P ⎝⎛⎭⎫0,0,63,C (1,1,0), 故F ⎝⎛⎭⎫12,12,66,D (0,1,0),所以AD →=(0,1,0),AF →=⎝⎛⎭⎫12,12,66,设平面AFD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,得⎩⎪⎨⎪⎧y =0,12x +12y +66z =0,令z =6,得x =-2.所以n =(-2,0,6). 连接BD ,则BD ⊥AC ,又BD ⊥PA ,所以BD ⊥平面AFC ,则BD →=(-1,1,0)就是平面AFC 的法向量. 设二面角C -AF -D 的大小为θ,则cos θ=|BD →·n ||BD →|·|n |=22×10=55.所以二面角C -AF -D 的余弦值为55.【探究提高】1.本题与教材选修2-1P109例4相比其难点在于不易找到二面角C -AF -D 的平面角,或者说找到二面角的平面角对学生来说是一个难点,而利用空间向量,即找到相关平面的法向量来求二面角,就可化解这个难点,这也是向量法的优势所在. 2.利用向量法解决问题时,要注意运算的正确性.【链接高考】 (2018·全国Ⅲ卷)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. (1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD. 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD , 故BC ⊥DM.因为M 为CD ︵上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM.又BC∩CM =C ,所以DM ⊥平面BMC. 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC.(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz .当三棱锥M -ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0), M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0). 设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值为255.2.教你如何审题——立体几何中的折叠问题【例题】 (2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【审题路线】【自主解答】(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF , 又PF∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF.又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD. (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB →,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF .可得PH =32,EH =32.则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 【探究提高】立体几何中折叠问题的解决方法:解决立体几何中的折叠问题,关键是搞清楚翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.【尝试训练】 (2019·青岛模拟)如图(1),在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,且BC =2AD =4,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE ⊥CF ,得到如图(2)的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD ⊥EC ,求二面角F -BD -C 的余弦值. (1)证明 由折叠可知,AE ⊥EF.因为AE ⊥CF ,且EF∩CF =F ,所以AE ⊥平面EBCF.因为AE ⊂平面AEFD ,所以平面AEFD ⊥平面EBCF.(2)解 如图所示,过点D 作DG ∥AE 交EF 于点G ,连接BG ,则DG ⊥平面EBCF ,所以DG ⊥EC .因为BD ⊥EC ,BD ∩DG =D , 所以EC ⊥平面BDG , 所以EC ⊥BG .所以∠BGE +∠GEC =∠CEB +∠GEC ,所以∠BGE =∠CEB ,且∠EBC =∠GEB =90°,所以△EGB ∽△BEC ,则EG EB =EB BC, 因为EG =AD =2,BC =4,所以EB =2 2.以E 为坐标原点,EB →的方向为x 轴的正方向,EF →的方向为y 轴的正方向,EA →的方向为z 轴的正方向,建立如图所示的空间直角坐标系E -xyz ,则F (0,3,0),D (0,2,22),C (22,4,0),A (0,0,22),B (22,0,0).故BD →=(-22,2,22),FD →=(0,-1,22),BC →=(0,4,0),CD →=(-22,-2,22). 设平面FBD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=-22x +2y +22z =0,n ·FD →=-y +22z =0. 令z =1,得y =22,x =3,所以平面FBD 的一个法向量是n =(3,22,1).设平面BCD 的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·BC →=4b =0,m ·CD →=-22a -2b +22c =0. 令a =1,得b =0,c =1,所以平面BCD 的一个法向量是m =(1,0,1).则cos 〈n ,m 〉=n ·m |n ||m |=418×2=23. 易知,所求二面角为锐角, 所以二面角F -BD -C 的余弦值为23.3.满分答题示范——立体几何中的开放问题【例题】 (12分)如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E为PD上的点,且PB∥平面EAC,试确定E点的位置;(2)在(1)的条件下,在线段PA上是否存在点F,使平面AEC和平面BDF所成的锐二面角的余弦值为114,若存在,求线段PF的长度,若不存在,请说明理由.【规范解答】4.高考状元满分心得❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中利用线面平行的性质证明线线平行,第(2)问中建系时证明PO ,AC ,BD 两两垂直,以及建系后得到各点的坐标.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分.如第(1)问中指出点E 的位置,第(2)问中求两个平面的法向量和.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)中计算λ的值以及计算线段PF 的长度等. 【构建模板】2的菱形,DE⊥平面ABCD,BF⊥平面ABCD,DE=22,DE>BF,∠ABC=120°.(1)当BF长为多少时,平面AEF⊥平面CEF?(2)在(1)的条件下,求二面角E-AC-F的余弦值.解(1)连接BD交AC于点O,则AC⊥BD.取EF的中点G,连接OG,则OG∥DE.∵DE⊥平面ABCD,∴OG⊥平面ABCD.∴OG,AC,BD两两垂直.以AC,BD,OG所在直线分别作为x轴,y轴,z轴建立空间直角坐标系(如图),设BF=m(0<m<22),由题意,易求A(3,0,0),C (-3,0,0),E (0,-1,22),F (0,1,m ).则AE →=(-3,-1,22),AF →=(-3,1,m ),CE →=(3,-1,22),CF →=(3,1,m ),设平面AEF ,平面CEF 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,∴⎩⎨⎧-3x 1-y 1+22z 1=0,-3x 1+y 1+mz 1=0, 解得⎩⎪⎨⎪⎧z 1=23m +22x 1,y 1=26-3m m +22x 1. 取x 1=m +22,得n 1=(m +22,26-3m ,23).同理可求n 2=(m +22,3m -26,-23).若平面AEF ⊥平面CEF ,则n 1·n 2=0,∴(m +22)2+(3m -26)(26-3m )-12=0,解得m =2或m =72(舍), 故当BF 长为2时,平面AEF ⊥平面CEF .(2)当m =2时,AE →=(-3,-1,22),AC →=(-23,0,0),EF →=(0,2,-2),AF →=(-3,1,2),CF →=(3,1,2),则EF →·AF →=0,EF →·CF →=0,所以EF ⊥AF ,EF ⊥CF ,且AF ∩CF =F ,所以EF ⊥平面AFC ,所以平面AFC 的一个法向量为EF →=(0,2,-2).设平面AEC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,∴⎩⎨⎧-3x -y +22z =0,-23x =0,得⎩⎨⎧y =22z ,x =0. 令z =2,n =(0,4,2).从而cos 〈n ,EF →〉=n ·EF →|n |·|EF →|=663=33. 故所求的二面角E -AC -F 的余弦值为33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【名师精讲指南篇】【高考真题再现】1.【2013⋅新课标全国】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(Ⅰ)证明:1AB AC ⊥;(Ⅱ)若2AB CB ==,1AC 111ABC A B C -的体积.12.【2014高考全国1文】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.3.【2015新课标2文19】如图所示,长方体1111ABCD A B C D ﹣中,16AB =,10BC =,18AA =,点E ,F 分别在11A B , 11D C 上,114AE D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.A 1C 1A(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.4.【2015全国1文18】如图所示,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)求证:平面AEC ⊥平面BED ;(2)若120ABC ∠=,AE EC ⊥,三棱锥E ACD -的体积为3.解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥.又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .G E D B A【热点深度剖析】2013年以三棱柱为几何背景考本题考查线面垂直的判定、线面垂直的性质以及三棱柱的体积公式,考查学生的化归与转化能力以及空间想象能力. 2014年以平放的三棱柱为几何背景考查线线垂直的判定和求三棱柱的高,突出考查线线,线面垂直的转化,点到面的距离,等面积法的应用以及空间想象能力和计算能力. 2015年全国卷1考查了截面的作法及体积问题,全国卷2考查了面面垂直的证明及三棱锥的侧面积.从近几年的高考试题来看,线线垂直的判定、线面垂直的判定、面面垂直的判定与性质、几何体的体积,表面积,几何体的高等是高考的热点,题型既有选择题、填空题又有解答题,难度中等偏高,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.而直线与平面平行的判定,以及平面与平面平行的判定连续三年在高考大题都没涉及,而在小题中考查,直线与平面平行的判定,以及平面与平面平行的判定是高考的热点,故预测2016年高考,可能以四锥体或斜棱柱为几何背景,第一问以线面垂直或平行为主要考查点,第二问以求体积或表面积为主,也可能利用等积法求距离,突出考查空间想象能力和逻辑推理能力,以及分析问题、解决问题的能力.【重点知识整合】1.直线与平面平行的判定和性质(1)判定:①判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交,那么这条直线和交线平行.注意:在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质.2.直线和平面垂直的判定和性质(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直.②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直. (2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直.②如果两条直线都垂直于同一个平面,那么这两条直线平行.3.平面与平面平行(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行.注意:这里必须清晰“相交”这个条件.如果两个平面平行,那么在其中一个平面内的所有直线与另一个平面无公共点,即这些直线都平行于另一个平面.(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.注意:这个定理给出了判断两条直线平行的方法,注意一定是第三个平面与两个平行平面相交,其交线平行.4.两个平面垂直的判定和性质(1)判定:①判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②定义法:即证两个相交平面所成的二面角为直二面角;注意:在证明两个平面垂直时,一般先从已知有的直线中寻找平面的垂线,若不存在这样的直线,则可以通过添加辅助线解决,而作辅助线应有理论依据;如果已知面面垂直,一般先用面面垂直的性质定理,即在一个平面内作交线的垂直,使之转化为线面垂直,然后进一步转化为线线垂直.(2)性质:①如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.②两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.注意:性质定理中成立有两个条件:一是线在平面内,二是线垂直于交线,才能有线面垂直.(3)立体几何中平行、垂直关系的证明的基本思路是利用线面关系的转化,即:线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−【应试技巧点拨】1. 线线平行与垂直的证明证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件. 证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性.2.线面平行与垂直的证明方法线面平行与垂直位置关系的确定,也是高考考查的热点,在小题中考查关系的确定,在解答题考查证明细节.线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.线面平行的证明思考途径:线线平行⇔线面平行⇔面面平行.线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行.线面垂直的证明思考途径:线线垂直⇔线面垂直⇔面面垂直.3.面面平行与垂直的证明(1)面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.(2)面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直.解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂直之间的转化.4.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.【考场经验分享】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.3.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.【名题精选练兵篇】1.【2016届江苏省南京市高三第三次模拟】如图,在直三棱柱ABC-A1B1C1中,D为棱BC上一点.(1)若AB=AC,D为棱BC的中点,求证:平面ADC1⊥平面BCC1B1;(2)若A1B∥平面ADC1,求BDDC的值.【答案】(1)详见解析(2)1(2)连结A1C,交AC1于O,连结OD,所以O为AC1中点.因为A1B∥平面ADC1,A1平面A1BC,平面ADC1∩平面A1BC=OD,所以A1B∥OD.因为O为AC1中点,所以D为BC中点,所以BDDC=1.2.【2016届江苏省泰州市姜堰区高三下期初考试】如图,在四棱锥P-ABCD 中,底面 ABCD 是正方形,侧棱PD 底面ABCD,PD=DC=1,点E是PC的中点,作EF PB交PB于点F.(Ⅰ)求证:PA∥平面EBD;(Ⅱ)求证:PB平面EFD.3.【2016届河南省洛阳市一中高三下学期第二次模拟】如图(1),等腰直角三角形ABC 的底边4AB =,点D 在线段AC 上,DE AB ⊥于E ,现将ADE ∆沿DE 折起到PDE ∆的位置(如图(2)).(1)求证:PB DE ⊥;(2)若PE BE ⊥,1PE =,求点B 到平面PEC 的距离.4.【2016届湖北省沙市中学高三下第三次半月考】如图,多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,四边形EFBD 为等腰梯形,//EF BD ,12EF BD =,平面⊥EFBD 平面ABCD .(1)证明:AC ⊥平面EFBD ; (2)若210=BF ,求多面体ABCDEF 的体积.5.【2016届河北省衡水中学高三下学期一模考试】如图,在斜三棱柱111ABC A B C -,侧面11ACC A 与侧面11CBBC 都是菱形,11160,2ACC CC B AC ∠=∠=︒=.(1)求证:11AB CC ⊥;(2)若1AB =11A BB C C -的体积.6.【2016届宁夏六盘山高中高三第二次模拟】如图,在直三棱柱111ABC A B C -中,底面ABC 是正三角形,点D 是BC 的中点,1BC BB =.BA 1(1)求证:1//AC 平面1AB D ; (2)试在棱1CC 上找一点M ,使得1MB AB ⊥,并说明理由.(2)当M 为棱1CC 中点时,1MB AB ⊥ ,理由如下: 因为在直三棱柱111ABC-A B C 中,1BC BB = 所以四边形11BCC B 为正方形所以M 为棱1CC 中点,D 为BC 的中点,易证1B BD BCM ≅1,BB D CBM ∠=∠所以112BB D BDB π∠+∠=又因为112CBM BDB BM B D π∠+∠=⊥所以,故.因为D BC ,ABC 是正三角形,是的中点.AD BC ⊥所以因为平面1111,ABC =,ABC BB C C BB C C BC AD ABC ⊥⋂⊂平面平面平面平面 所以11AD BB C C ⊥平面因为11BM BB C C AD BM ⊂⊥平面,所以, 因为111,,D AD B D D AD B AB D ⋂=⊂平面 所以1BM AB D ⊥平面因为111,AB AB D MB AB ⊂⊥平面所以7.【2016届福建省漳州市高三下学期第二次模拟】如图,四边形PCBM 是直角梯形,90PCB ∠=︒,//PM BC ,1,2PM BC ==,又1,AC =120ACB ∠=︒,AB PC ⊥,AM=2.(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求三棱锥P MAC -的体积.ABCMP因为1,AC CN ==120ACB ∠=︒,所以30ANC ∠=︒.∴在Rt AHN ∆中,有8.【2016届甘肃省天水市一中高三下第四次模拟】如图,四棱锥P ABCD -,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是060ABC ∠=的菱形,M 为PC 的中点.ACMPNH(1)求证:PC AD ⊥;(2)求点D 到平面PAM 的距离.在PAC ∆中2,PA AC PC ==PC 上的高AM ==,所以PAC ∆的面积1122∆=⋅==PAC S PC AM , 设点D 到平面PAC 的距离为h ,由D PAC P ACD V V --=得,1133∆∆⋅=⋅PAC ACD S h S PO ,又22ACD S ∆==,解得h =,所以点D 到平面PAM 9.【2016届重庆市巴蜀中学高三3月月考】如图,在边长为4的菱形ABCD 中,60=∠DAB ,点F E ,分别是边CD ,CB 的中点,O EF AC = ,沿EF 将CEF ∆翻折到PEF ∆,连接PD PB PA ,,,得到如图的五棱锥ABFED P -,且10=PB .(1)求证:PA BD ⊥; (2)求四棱锥BFED P -的体积.(2)解:设H BD AO = .连接BO ,∵60=∠DAB ,∴ABD ∆为等边三角形,∴3,32,2,4=====PO HO HA BH BD ,10. 【湖南省怀化市2015届高三上学期期中考试】如图所示的长方体1111ABCD A BC D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD的交点,1BB = M 是线段11B D 的中点.(Ⅰ)求证://BM 平面1D AC ; (Ⅱ)求三棱锥11D AB C -的体积.【解析】(Ⅰ)连接1D O ,如图,∵O 、M 分别是BD 、11B D 的中点,11BD D B 是矩形,∴四边形1D OBM 是平行四边形,∴1//D O BM ,∵1D O ⊂平面1D AC ,BM ⊄平面1D AC ,∴//BM 平面1D AC ;(Ⅱ)连接1OB ,∵正方形ABCD 的边长为2,1BB =11B D =12OB =,12D O =,则2221111OB DO B D +=,∴11OBDO ⊥,又∵在长方体1111ABCD A BC D -中,AC BD ⊥,1AC D D ⊥,且1BD D D D =,∴AC ⊥平面11BDD B ,又1D O ⊂平面11BDD B ,∴1AC D O ⊥,又1AC OB O = ,∴1D O ⊥平面1ABC ,即1D O 为三棱锥11D AB C -的高,∵1111222AB C S AC OB ∆=⋅⋅=⨯=12D O =,∴111111233D AB C AB C V S D O -∆=⋅⋅=⨯=. 11. 【山东省济南市2015届高三上学期期末】如图,在三棱柱111A B C 中,四边形1111ABB A ACC A 和都为矩形.(I )设D 是AB 的中点,证明:直线1//BC 平面1A DC ;(II )在ABC ∆中,若AC BC ⊥,证明:直线BC ⊥平面11ACC A .12. 【山东省日照市2015届高三3月模拟】如图,已知四边形ABCD 是正方形,PD ⊥平面ABCD ,CD=PD=2EA,PD//EA ,F ,G ,H 分别为PB ,BE ,PC 的中点. (I )求证:GH//平面PDAE ; (II )求证:平面FGH ⊥平面PCD.13. 【广东省广州市2015届高中毕业班综合测试】如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O =.沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且PB = (1)求证:BD ⊥平面POA ; (2)求四棱锥P BFED -的体积.图4OFEDCB A图5FE PODB A【解析】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. ∴EF AC ⊥. ∴EF AO ⊥,EF PO ⊥. ∵AO ⊂平面POA ,PO ⊂平面POA ,AOPO O =,∴EF ⊥平面POA . ∴BD ⊥平面POA .H FEPODBA14. 【广东省广州市2015届高三1月模拟】如图,在多面体ABCDEF 中,DE ⊥平面ABCD ,AD ∥BC ,平面BCEF平面ADEF EF =,60BAD ︒∠=,2AB =,1DE EF ==.(1)求证:BC ∥EF ; (2)求三棱锥B DEF -的体积.FEDCBAHFEDCBA【解析】(1)∵AD ∥BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF ,∴ BC ∥平面ADEF . 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,∴BC ∥EF .(2)在平面ABCD 内作BH AD ⊥于点H , ∵DE ⊥平面ABCD ,BH ⊂平面ABCD ,∴D E BH ⊥. ∵AD ⊂平面ADEF ,D E ⊂平面ADEF ,ADDE D =,∴BH ⊥平面ADEF . ∴BH 是三棱锥B DEF -的高.在Rt△ABH 中,o 60BAD ∠=,2AB =,故BH =DE ⊥平面ABCD ,AD ⊂平面ABCD ,∴ DE AD ⊥. 由(1)知,BC ∥EF ,且AD ∥BC ,∴ AD ∥EF . ∴ DE EF ⊥. ∴三棱锥B DEF -的体积11111332DEF V S BH ∆=⨯⨯=⨯⨯⨯=.15. 【辽宁省朝阳市三校协作体2015届高三下学期开学联考】如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是菱形,60BAD ∠=,2,AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(Ⅰ)证明:平面EAC ⊥平面PBD ;(Ⅱ)若PD ∥平面EAC ,求三棱锥P EAD -的体积.16. 【唐山市2014-2015学年度高三年级第一次模拟】如图,在斜三棱柱111ABC A B C -中,PABCD EOHPABCD E O侧面11ACC A 与侧面11CBBC 都是菱形,011160ACC CC B ∠=∠=,2AC =. (Ⅰ)求证:11AB CC ⊥;(Ⅱ)若1AB =11A BB C C -的体积.【名师原创测试篇】1.已知三棱锥P ABC -中,PA ⊥面ABC ,D 是PC 的中点,PD DB ⊥,2, 4.PA AC AB ===(Ⅰ)求证:AB AC ⊥;(Ⅱ)若G 是PB 的中点,则平面ADG 将三棱锥P ABC -分成的两部分的体积之比.【解析】(Ⅰ) 证明:∵PA =AC ,D 是PC 的中点,∴AD ⊥PC ,∵PD ⊥BD ,BD AD D ⋂=,∴PC ⊥面ADB , ∴PC ⊥AB , ∵PA ⊥面ABC , ∴PA ⊥AB ,∵PA PC P ⋂=, ∴AB ⊥面PAC ,∴PA ⊥AC ;(Ⅱ)由(Ⅰ)知,AB ⊥AC ,∵PA ⊥面ABC ,AC =PA =2,AB =4,∴P ABC V -=1124232⨯⨯⨯⨯=83,BC =PC =PBPBC S ∆=12⨯=6,∵D ,G 分别为PC 、PB 的中点,∴PDG S ∆=14PBC S ∆=32,设A 到面PCB 的距离为h ,∵P ABC V -=A PBC V -=13PBC S h ∆⨯⨯,∴=h 8336⨯=43,∴A PDG V -=13PDG S h ∆⨯⨯=134323⨯⨯=23,∴A BCDG V -=A PBC A PDG V V ---=2,∴A PDG A BCDG V V --=13.2. 如图,已知矩形CDEF 所在的平面与直角梯形ABCD 所在的平面垂直,且////1,,1,2,, 3.,2AB CD BC CD AB BC CD MB FC MB FC P Q =⊥====分别为,BC AE 的中点.(I )求证://PQ 平面MAB ; (II )求证:平面EAC ⊥平面MBD .(II )平面ABCD ⊥平面CDEF ,平面ABCD平面CDEF CD =,在矩形CDEF 中,FC CD FC ⊥∴⊥平面,ABCD FC AC ∴⊥,又//,MB FC MB AC ∴⊥.在Rt A B C ∆和Rt BCD ∆中,11,2,4,90.,2AB BC AB BC CD ABC BCD BC CD ===∠=∠=︒==Rt ABC ∴∆∽,Rt BCD ∆,90,ACB BDC DBC ACB DBC BDC AC BD ∴∠=∠∴∠+∠=∠+∠=︒∴⊥,又,BD BM B AC =∴⊥平面MBD ,AC ⊂平面,EAC ∴平面EAC ⊥平面MBD .3. 如图,在三棱锥C P -AB 中,PA ⊥PB ,C C A ⊥B ,PA =PB ,C C A =B ,D 、E 、F 分别是C P 、C A 、C B 的中点.(I )证明:平面D F//E 平面PAB ;(II )若2C AB =P =C P -AB 的体积.【解析】(I )证明:∵E 、F 分别是AC 、BC 的中点,∴F//E AB ,∵,AB PAB EF PAB ⊂⊄平面平面∴//EF PAB 平面,同理,//DF PAB 平面,∵,EFDF F EF DEF DF DEF =⊂⊂且平面平面,∴//DEF PAB 平面平面.∴1133P ABC PCGV AB S-=⋅⋅==4. 如图,在矩形11CCDD中,111////CCBBAA,2,1,21====AABCADAB,将在矩形11CCDD沿11,BBAA分别将四边形CCBBDDAA1111,折起,使1CC与1DD重合(如图所示)(Ⅰ)在三棱柱111CBAABC-中,取AB的中点F,求证:⊥CF平面11AABB;(Ⅱ)当E为棱1CC中点时,求证://CF平面1AEB.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -. (1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.。