2008年全国硕士研究生入学统一考试联考数学试题解析

合集下载

2008年考研数学一真题及分析

2008年考研数学一真题及分析
【评注】注意隐函数求导时记住 y 是 x 的函数.
类似例题见 08 版《数学复习指南》P48(理工类)【例 2.20】,精选习题二 1(9).


∑ ∑ (11)已知幂级数 an ( x + 2)n 在 x = 0 处收敛,在 x = −4 处发散,则幂级数 an ( x − 3)n
n=0
n=0
的收敛域为________. 【分析】本题考查关于幂级数收敛域特征的阿贝尔定理. 由题中条件可知,该幂级数收敛区
调有界,故收敛,故选(B) 【评注】本题为基础题型.
定理可见各教材和辅导讲义.
(5)设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵,若 A3 = O ,则
(A) E − A 不可逆, E + A 不可逆 (B) E − A 不可逆, E + A 可逆
(C) E − A 可逆, E + A 可逆
(A) y′′′ + y′′ − 4 y′ − 4 y = 0 (B) y′′′ + y′′ + 4 y′ + 4 y = 0
(C) y′′′ − y′′ − 4 y′ + 4 y = 0 (D) y′′′ − y′′ + 4 y′ − 4 y = 0 [ ]
【分析】本题已知微分方程的通解,反求微分方程的形式,一般根据通解的形式分析出特征 值,然后从特征方程入手.
二、填空题:9~14 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
(9)微分方程 xy′ + y = 0 满足条件 y (1) = 1 的解 y = __________.
【分析】本题为变量可分离方程.
【详解】 xy′ + y = 0 ⇒ y′ = − 1 ,两边积分得 y = C ,将 y (1) = 1 代入得 C = 1,

2008考研数农真题及解析

2008考研数农真题及解析

2008年全国硕士研究生入学统一考试农学门类联考数学试题一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,请选出一项最符合题目要求的. (1) 设函数2sin(1)()1x f x x -=-,则 ( )(A) 1x =-为可去间断点,1x =为无穷间断点. (B) 1x =-为无穷间断点,1x =为可去间断点. (C) 1x =-和1x =均为可去间断点. (D) 1x =-和1x =均为无穷间断点.(2) 设函数()f x 可微,则(1)x y f e -=-的微分dy = ( )(A) (1)(1)x x e f e dx --'+-. (B) (1)(1)x x e f e dx --'--. (C) (1)x x e f e dx --'--.(D) (1)x x e f e dx --'-.(3) 设函数()f x 连续,2()()x F x f t dt =⎰,则()F x '= ( )(A) 2()f x -. (B) 2()f x . (C) 22()xf x -. (D) 22()xf x .(4) 设函数(,)f x y 连续,交换二次积分次序得1022(,)y dy f x y dx -=⎰⎰( )(A)122(,)x dx f x y dy +-⎰⎰.(B)0212(,)x dx f x y dy -+⎰⎰.(C)212(,)x dx f x y dy -⎰⎰.(D)20012(,)xdx f x y dy -⎰⎰.(5) 设123,,ααα为3维列向量,矩阵1232123(,,),(,2,)A B ααααααα==+ ,若行列式3A =,则行列式B = ( )(A) 6.(B) 3.(C) 3-. (D) 6-.(6) 已知向量组123,,ααα线性无关,则下列向量组中线性无关的是 ( )(A) 1223312,2,αααααα++-. (B) 1223312,,2αααααα---. (C) 1223312,2,αααααα-+-. (D) 122331,2,2αααααα-++.(7) 设123,,A A A 为3个随机事件,下列结论中正确的是 ( )(A) 若123,,A A A 相互独立,则123,,A A A 两两独立. (B) 若123,,A A A 两两独立,则123,,A A A 相互独立.(C) 若123123()()()()P A A A P A P A P A =,则123,,A A A 相互独立. (D) 若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立.(8) 设随机变量X 服从参数为,n p 的二项分布,则 ( )(A) (21)2E X np -=.(B) (21)4E X np +=.(C) (21)2(1)D X np p -=-. (D) (21)4(1)D X np p +=-.二、填空题:9~14小题,每小题4分,共24分. (9) 函数()2xf x e ex =--的极小值为______________. (10)2||2(1)x e x dx -+=⎰______________.(11) 曲线sin()ln()xy y x x +-=在点(0,1)处的切线方程是______________. (12) 设22{(,)|1,0}D x y x y y x =+≤≤≤,则22x y De dxdy +=⎰⎰______________.(13) 设3阶矩阵A 的特征值为1,2,3,则行列式12A -=______________.(14) 设1234,,,X X X X 为来自正态总体(2,4)N 的简单随机样本,X 为其样本均值,则2()E X =______________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限21cos(sin )lim1x x x e →--.(16)(本题满分10分)计算不定积分.(17)(本题满分10分)求微分方程2()0x y x e dx xdy -+-=满足初始条件1|0x y ==的特解.(18)(本题满分11分)证明:当0x >时,2(1)1x x e x -+>-.(19)(本题满分11分)设sin(2)xyz e y =+,求z x ∂∂,z y ∂∂及2zx y∂∂∂.(20)(本题满分9分)设3阶矩阵X 满足等式2AX B X =+,其中311012004A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,110102202B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X .(21)(本题满分12分)对于线性方程组123123122,21,23.x x x x x ax x x b ++=⎧⎪++=-⎨⎪+=⎩讨论,a b 取何值时,方程组无解、有唯一解和无穷多解,并在方程组有无穷多解时,求出通解.(22)(本题满分11分)设随机变量X 的概率密度为,01,(),12,0,ax x f x b x <≤⎧⎪=<<⎨⎪⎩其他,且X 的数学期望1312EX =,(I) 求常数,a b ;XY 00.10.20 101- 20.30.10.3(II) 求X 的分布函数()F x .(23)(本题满分10分)设二维随机变量(,)X Y 的概率分布为(I) 分别求(,)X Y 关于,X Y 的边缘分布; (II) 求{2}P X Y +≤; (III) 求{0|0}P Y X ==.2008年全国硕士研究生入学统一考试农学门类联考数学试题解析一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,请选出一项最符合题目要求的. (1)【答案】(B) 【解析】函数2sin(1)()1x f x x -=-在点1x =±没有定义,而 21sin(1)lim1x x x →--=∞-,所以1x =-为无穷间断点;211sin(1)sin(1)1limlim 1(1)(1)2x x x x x x x →→--==--+,所以1x =为可去间断点.故选(B).(2)【答案】(D)【解析】(1)(1)(1)(1)x x x x x dy df e f e e dx f e e dx -----'''=-=--=-, 故选(D).(3)【答案】(C) 【解析】由于2()()x F x f t dt =⎰,则()222220()()()()()2()x x F x f t dt f t dt f x x xf x ''⎛⎫''==-=-⋅=- ⎪⎝⎭⎰⎰, 故选(C).(4)【答案】(A)【解析】积分区域D 如右图所示.由于{}(,)|01,220(,)|20,01,2D x y y y x x x y x y =≤≤-≤≤⎧⎫=-≤≤≤≤+⎨⎬⎩⎭ 所以,10012222(,)(,)x y dy f x y dx dx f x y dy +--=⎰⎰⎰⎰,故选(A).(5)【答案】(D)【解析】根据行列式的性质,有2123213223123223,2,,2,,,2,,02,,2 6.B A αααααααααααααααα=+=+=-+=-=-=-故选(D).(6)【答案】(C)【解析】对于A 、B 、D 选项,由于122331(2)(2)()0αααααα+-++-=; 122331(2)2()(2)0αααααα-+-+-=; 122331()(2)(2)0αααααα-++-+=,根据线性相关的定义可知,A 、B 、D 选项中的向量组都是线性相关的.由排除法可得C 正确.事实上,可以根据定义证明选项C 正确.设 112223331(2)(2)()0k k k αααααα-+++-=, 整理得 131122233(2)()(2)0k k k k k k ααα-+-+++=.由于向量组123,,ααα线性无关,所以13122320,0,20,k k k k k k -=⎧⎪-+=⎨⎪+=⎩此线性方程组的系数矩阵201110021A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭.由于 20122022110110401121021A -=-=-==≠-,所以方程组13122320,0,20,k k k k k k -=⎧⎪-+=⎨⎪+=⎩只有零解,即1230k k k ===.由线性无关的定义可知,向量组1223312,2,αααααα-+-线性无关. (7)【答案】(A)【解析】若123,,A A A 相互独立,由相互独立的定义可知,121223231313123123()()(),()()(),()()(),()()()(),P A A P A P A P A A P A P A P A A P A P A P A A A P A P A P A ====由此可得123,,A A A 两两独立,故(A)正确;对于选项(B),若123,,A A A 两两独立,则121223231313()()(),()()(),()()(),P A A P A P A P A A P A P A P A A P A P A === 但123123()()()()P A A A P A P A P A =不一定成立,即123,,A A A 不一定相互独立,(B)不正确;根据相互独立的定义可知,选项(C)显然不正确;对于选项(D),令事件2A =∅,则1A 与2A 独立,2A 与3A 独立,但1A 与3A 不一定独立.故选项(D)不正确. (8)【答案】(D)【解析】X 服从参数为,n p 的二项分布,则(),()(1)E X np D X np p ==-.由期望和方差的性质,可得(21)(2)(1)2()121;(21)(2)(1)2()121;(21)(2)4()4(1);(21)(2)4()4(1).E X E X E E X np E X E X E E X np D X D X D X np p D X D X D X np p -=-=-=-+=+=+=+-===-+===-故选项(D)正确,应选(D).二、填空题:9~14小题,每小题4分,共24分. (9)【答案】2-【解析】令()0x f x e e '=-=,可得1x =.()xf x e ''=,(1)0f e ''=>,根据极值的第二充分条件,可得1x =为函数()2xf x e ex =--的极小值点,极小值为(1)2f =-.(10)【答案】222e -【解析】22222||||||20222(1)2222x x x x x e x dx e dx xe dx e dx e e ---+=+===-⎰⎰⎰⎰.(11)【答案】1y x =+【解析】首先求(0,1)y '.方程sin()ln()xy y x x +-=两边对x 求导,得1cos()()(1)1xy y xy y y x''⋅++⋅-=-, 将0,1x y ==代入上式,得(0,1)1y '=,即切线的斜率为1,所以,切线方程为1y x =+. (12)【答案】(1)8e π-【解析】作极坐标变换cos ,sin x r y r θθ==,则{}22(,)|1,0(,)|01,04D x y x y y x r r πθθ⎧⎫=+≤≤≤=≤≤≤≤⎨⎬⎩⎭,2222214011201(1).4288x y r Dr redxdy d e rdre dr e e πθπππ+=⋅=⋅==-⎰⎰⎰⎰⎰(13)【答案】43【解析】由于A 的特征值为1,2,3,所以1236A =⨯⨯=,1131422863A A--==⨯=. (14)【答案】5【解析】由于1234,,,X X X X 为来自正态总体(2,4)N 的简单随机样本,所以()2,()4,1,2,3,4.i i E X D X i ===又由于22()()()E X D X E X =+,而442114411111()()()()1,44411()()()()2,44i i i i i i i i i i D X D X D X D X E X E X E X E X ============∑∑∑∑所以 222()()()125E X D X E X =+=+=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 【解析】 2200001cos(sin )1cos(sin )sin(sin )cos sin 1limlimlim lim 2221x x x x x x x x x x x x x e →→→→--====-.(16)(本题满分10分)【解析】令2,2t x t dx tdt ===2ln(1)2ln(1)2112ln(1)2(1)12ln(1)22ln(1)1).t dt tt t dt t t t dtt t t t t C C =+=+-+=+--+=+-+++=-⎰⎰⎰(17)(本题满分10分) 【解析】原方程可化为1x y y xe x-'-=,则 11.dx dx x xx x x y e e xe dx C x e dx C xe Cx ----⎡⎤⎰⎰⎡⎤=⋅+=+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 将10x y ==代入得1C e =,故所求特解为x x y xe e-=-.(18)(本题满分11分)【解析】设 2()(1)1x f x x e x -=++-,则 22()(12)1,()4x x f x x e f x xe --'''=-++=.当0x >时,()0f x ''>,则()f x '单调增加,故()(0)0,()f x f f x ''>=单调增加.于是()(0)0f x f >=,即2(1)1x x e x -+>-.(19)(本题满分11分) 【解析】cos(2)xy xy zye e y x∂=+∂, (2)cos(2)xy xy zxe e y y∂=++∂, 2cos(2)cos(2)sin(2)(2)[(1)cos(2)(2)sin(2)].xy xy xy xy xy xy xy xy xy xy xy ze e y xye e y ye e y xe x ye xy e y y xe e y ∂=+++-+⋅+∂∂=++-++(20)(本题满分9分)【解析】由2AX B X =+,得(2)A E X B -=,其中E 为单位矩阵.1112012002A E ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭.因为220A E -=-≠,所以2A E -可逆,1(2)X A E B -=-.而13112(2)0111002A E -⎛⎫- ⎪ ⎪-=- ⎪ ⎪ ⎪⎝⎭,则 1111(2)100101X A E B ---⎛⎫ ⎪=-= ⎪ ⎪⎝⎭.(21)(本题满分12分)【解析】解法1 方程组系数行列式111121230D a a ==--. 当0D ≠时,即1a ≠-时,由克莱姆法则知方程组有唯一解;当1a =-时,方程组的系数矩阵111121230A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,对方程组的增广矩阵施行初等行变换得11121112121101232300001B b b ⎛⎫⎛⎫⎪⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭. 当1b ≠时,()2,()3,()()r A r B r A r B ==≠,线性方程组无解; 当1b =时,()()23r A r B ==<,线性方程组有无穷多解,其通解为123533201x x k x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k 为任意常数.解法2 方程组的系数矩阵11112230A a ⎛⎫⎪= ⎪ ⎪⎝⎭,对方程组的增广矩阵施行初等行变换得1112111212101132300011B aa b a b ⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.当1,1a b =-≠时,()2,()3,()()r A r B r A r B = =≠,线性方程组无解;当1,a b ≠-任意时,()()3r A r B ==,线性方程组有唯一解; 当1,1a b =-=时,()()23r A r B ==<,线性方程组有无穷多解,其通解为123533201x x k x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k 为任意常数.(22)(本题满分11分)【解析】(I) 由()1f x dx +∞-∞=⎰知120112a axdx bdx b +=+=⎰⎰, 而由1312EX =知122013133212a b ax dx bxdx +=+=⎰⎰, 解得11,2a b ==. (II) 当0x ≤时,()()0xF x f t dt -∞==⎰;当01x <≤时,20()2x x F x tdt ==⎰; 当12x <≤时,1011()22x x F x tdt dt =+=⎰⎰; 当2x >时,()1F x =;即 20,0,,01,2(),12,21, 2.x x x F x x x x ≤⎧⎪⎪<≤⎪=⎨⎪<≤⎪⎪>⎩(23)(本题满分10分)【解析】(I)关于X 的边缘分布为 020.30.7XP ,关于Y 的边缘分布 1010.40.30.3Y P - .(II) {2}{0,1}{0,0}P X Y P X Y P X Y +≤===-+=={2,1}{2,0}P X Y P X Y +==-+== 0.10.20.30.10.7=+++=. 或 {2}1{2,1}10.30.7P X Y P X Y +≤=-===-=. (III) {0,0}0.22{0|0}{0}0.33P X Y P Y X P X ========.。

2008考研数一真题及解析

2008考研数一真题及解析

(x2 y2 )dxdy
x2 y2 4
2 x2 y2 4
1
2
d
2 r3dr 4 。
20
0
(高斯公式)
P d
yd z Qd zd x Rd xd
y
P x
Q y
R z
d xd
ydz;
P cos Q cos R cos
d S=
P Q R x y z
dx d ydz 。
(13) 设 A 为 2 阶矩阵,1,2 为线性无关的 2 维列向量,A1 0, A2 21 2 ,则 A 的非零特征值为
第 4 页 共 13 页
.
【答案】1
【详解】
A(1,
2
)
(
A1
,
A
2
)
(0,
21
2
)
(1
,2
)
0 0
2 1
,记
P
(1
,2
)

B
0 0
2 1

则 AP PB ,因为1,2 线性无关,所以 P 可逆. 从而 B P1AP ,即 A 与 B 相似。
2
由| E B |
( 1) 0 ,得 0 及 1为 B 的特征值,
二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
(9) 微分方程 xy y 0 满足条件 y 1 1的解是 y .
【答案】1 x
【详解】由 dy y ,两端积分得 ln y ln x ln | C | ,所以 1 C x ,又 y(1) 1 ,所以 y 1 。
【答案】 B
D 若 f (xn ) 单调,则xn 收敛.

2008年管理类专业学位联考(MBA)综合能力数学真题及答案含考点解析

2008年管理类专业学位联考(MBA)综合能力数学真题及答案含考点解析

2008年全国硕士研究生入学统一考试管理类专业学位联考 综合能力试题(数学真题)2008-1-19一、问题求解:第1~15小题,每小题3分,共45分。

下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的。

请在答题卡...上将所选项的字母涂黑。

1、=⨯⋅⋅⋅⨯⨯⨯++⨯⋅⋅⋅⨯+⨯+⨯+⨯+103232842333321)31()31()31()31()31(( )A.19103321+⨯ B.19321+ C.19321⨯ D.9321⨯ E.以上结果均不正确2、若△ABC 的三边c b a ,,满足bc ac ab c b a ++=++222,则△ABC 为( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形E.以上结果均不正确3、P 是以a 为边长的正方形,1P 是以P 的四边中点为顶点的正方形,2P 是以1P 的四边中点为顶点的正方形,…,i P 是以1-i P 的四边中点为顶点的正方形,则6P 的面积为( )A.162aB.322aC.402aD.482aE.642a4、某单位有90人,其中有65人参加外语培训,72人参加计算机培训,已知参加外语培训而没参加计算机培训的有8人,则参加计算机培训而没参加外语培训的人数为( ) A.5 B.8 C.10 D.12 E.155、方程03)31(2=++-x x 的两根分别为等腰三角形的腰a 和底b (a<b ),则该等腰三角形的面积是( ) A.411 B.811 C.43 D.53 E.836、一辆出租车有段时间的营运全在东西走向的一条大道上,若规定向东为正,向西为负,且知该车的行驶公里数依次为-10,+6,+5,-8,+9,-15,+12,则将最后一名乘客送到目的地时,该车的位置( ) A.在首次出发地的东面1公里处 B.在首次出发地的西面1公里处 C.在首次出发地的东面2公里处 D.在首次出发地的西面2公里处 E.仍在首次出发地7、如图所示,长方形ABCD 中AB=10厘米,BC=5厘米,以AB 和AD 分别为半径作41圆,则图中阴影部分的面积为( )平方厘米.A.π22525-B.π212525+C.π42550+D.504125-π E.以上结果均不正确8、若用浓度30%和20%的甲、乙两种食盐溶液配成浓度为24%的食盐溶液500克,则甲、乙两种溶液应各取( )A.180克和320克B.185克和315克C.190克和310克D.195克和305克E.200克和300克9、将价值200元的甲原料与价值480元的乙原料配成一种新原料.若新原料每千克的售价分别比甲、乙原料每千克的售价少3元和多1元,则新原料的售价是( ) A.15元 B.16元 C.17元 D.18元 E.19元10、直角边之和为12的直角三角形面积的最大值等于( ) A.16 B.18 C.20 D.22 E.不能确定11、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是( ) A.)1(22++=n n a n B.n n a 23⨯= C.13+=n a n D.n n a 32⨯= E.以上结果均不正确12、以直线0=+x y 为对称轴且与直线23=-x y 对称的直线方程为( ) A.323+=x y B.323+-=x y C.23--=x y D.23+-=x y E.以上结果均不正确13、有两排座位,前排6个座位,后排7个座位.若安排2人就座,规定前排中间2个座位不能坐,且此2人始终不能相邻而坐,则不同的坐法种数为( ) A.92 B.93 C.94 D.95 E.9614、若从原点出发的质点M 向x 轴的正向移动一个和两个坐标单位的概率分别是32和31,则该质点移动3个坐标单位到达点(3,0)的概率是( ) A.2719 B.2720 C.97 D.2722 E.272315、某乒乓球男子单打决赛在甲、乙两选手间进行,比赛采用7局4胜制.已知每局比赛甲选手战胜乙选手的概率均为0.7,则甲选手以4:1战胜乙选手的概率为( )A.37.084.0⨯ B.37.07.0⨯ C.37.03.0⨯ D.37.09.0⨯ E.以上结果均不正确二、条件充分性判断:第16~30小题,每小题2分,共30分。

2008考研数学(一)试题及详细答案解析

2008考研数学(一)试题及详细答案解析


1
ydV x2dxdy .

x2 y2 4
中国教育在线考研频道
中国教育在线() 中国最权威考研门户
0 1
(x2 y2 )dxdy 1
2
d
2 r2 rdr
16 4 .
xydydz xdzdx x2dxdy
.

【答案】 4 .
【详解】作辅助面 1 : z 0 取下侧.则由高斯公式,有
xydydz xdzdx x2dxdy

xydydz xdzdx x2dxdy xydydz xdzdx x2dxdy
x o(sin2 3x2
x)
)
中国教育在线考研频道
中国教育在线() 中国最权威考研门户
1. 6
【详解
2】
lim
x0
sin
x

sin(sin x4
x)
sin
x
sin x sin(sin x)sin x
lim x0
sin4 x
(8)设随机变量 X N(0,1) , Y N(1, 4) , 且相关系数 XY 1,则【 】
(A) P{Y 2X 1} 1
(B) P{Y 2X 1} 1
(C) P{Y 2X 1} 1
(D) P{Y 2X 1} 1
【答案】应选 (D).
【详解】用排除法.设Y aX b .由 XY 1 ,知 X ,Y 正相关,得 a 0 .排除(A)
定理,知 f (x) 至少有一个零点.

f (x) 2ln(2 x2 )
4x2 2 x2

08年全国硕士研究生入学统一考试数学二试题

08年全国硕士研究生入学统一考试数学二试题

2008年全国硕士研究生入学统一考试数学二试题乐考无忧,为您的考研之路保驾护航!2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设f(x)?x2(x?1)(x?2),求f?(x)的零点个数( ) ?A?0 ?B?1?C?2?D?3 (2) 如图,曲线段方程为y?f(x),y 函数在区间[0,a]上有连续导数,则C(0, f(a))A(a, f(a)) a定积分xf?(x)dx等于( ) y=f(x) 0??A?曲边梯形ABOD面积. ?B?梯形ABOD面积. ?C?曲边三角形ACD面积. ?D?三角形ACD面积.D O B(a,0)x (3) 在下列微分方程中,以y?C1ex?C2cos2x?C3sin2x(C1,C2,C3为任意常数)为通解的是( ) ?A?y????y???4y??4y?0. ?C?y? ???y???4y??4y?0. (4) 判断函数f(x)? ?B?y????y???4y??4y?0. ?D?y ????y???4y??4y?0. lnxsinx(x?0)间断点的情况( ) x?1?A?有1个可去间断点,1个跳跃间断点?B?有1个跳跃间断点,1个无穷间断点?C?有两个无穷间断点?D?有两个跳跃间断点;考研辅导视频乐考无忧,为您的考研之路保驾护航!(5) 设函数f(x)在(??,??)内单调有界,?xn?为数列,下列命题正确的是( ) ?A?若?xn?收敛,则?f(xn)?收敛.?B?若?xn?单调,则?f(xn)?收敛. ?C?若?f(xn)?收敛,则?xn?收敛. (6) 设函数f连续. 若F?u,v????Duv?D?若?f(xn)?单调,则?xn?收敛. ?F?( ) ?uf?x2?y2?x2?y2其中区域Duv为图中阴影部分,则dxdy,?A?vf?u? 2 y x2+y2=u2 x2+y2=1 v Duv ?B?uf?u2? v?C?vf?u?vD??uf?u?(7) 设A为n阶非零矩阵,E为n阶单位矩阵. 若A3?O,则( ) O x ?A?E?A不可逆,E?A不可逆. ?C?E?A可逆,E?A可逆. ?B?E?A不可逆,E?A 可逆. ?D?E?A可逆,E?A不可逆. ?12?(8) 设A???,则在实数域上与A合同的矩阵为( ) ?21??A?? ??21??. ?1?2? ?B???2?1??. ??12?? 21??C???.12?? ?1?2??D???. ?21??二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) f(x)连续,limx?01?cos(sinx)(e?1)f(x)x2?1,则f(0)?????????????????? (10) 微分方程(y?x2e?x)dx?xdy?0的通解是y?????????????????? (11) 曲线sin?xy??ln?y?x??x在点?0,1?处的切线方程为?????????????????. ;考研辅导视频乐考无忧,为您的考研之路保驾护航!(12) 求函数f(x)?(x?5)x的拐点______________. 23?z?y?(13) 已知z???,则?_______. ?x(1,2)?x?(14) 矩阵A 的特征值是?,2,3,其中?未知,且2A??48,则?=_______. 三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分) xysinx?sin?sinx??sinx???求极限lim. x?0x4 (16) (本题满分10分) ?x?x(t)?设函数y?y(x)参数方程?确定,其中x(t)是初值问题t2y??ln(1?u)du?0??dx?xd2y??2te?0的解. 求2. ?dtdx?x|?0?t?0 (17)(本题满分9分) 计算?1x2arcsinx1?x20dx (18)(本题满分11分) 计算??max?xy,1?dxdy,其中D?{(x,y)0?x?2,0?y?2} D(19)(本题满分11分) 设f(x)是区间[0,??)上具有连续导数的单调增加函数,且f(0)?1. 对于任意的t?[0,??),直线x?0,x?t,曲线y?f(x)以及x轴所围成曲边梯形绕x轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式.(20)(本题满分11分) ;考研辅导视频乐考无忧,为您的考研之路保驾护航!(I) 证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点??[a,b],使得?f(x)dx?f(?)(b?a);ab(II) 若函数?(x)具有二阶导数,且满足,?(2)??(1),?(2)???(x)dx,则至少存在一点23??(1,3),使得???(?)?0.(21)(本题满分11分) 求函数u?x2?y2?z2在约束条件z?x2?y2和x?y?z?4下的最大和最小值.(22)(本题满分12分) 设n元线性方程组Ax?b,其中?2a1?2a2aA????a2??x1???1????? ?x2?,x???,b??0? ????1??????2a?n?n?xn??0?(I) 证明行列式A??n?1?an (II) 当a为何值时,该方程组有唯一解,并求x1 (III) 当a为何值时,该方程组有无穷多解,并求通解(23)(本题满分10分) 设A为3阶矩阵,向量?3满足A?3??2??3,?1,?2为A的分别属于特征值?1,1的特征向量,(I) 证明?1,?2,?3线性无关;(II) 令P???1,?2,?3?,求P?1AP ;考研辅导视频。

2008年考研数学数学一真题答案解析

2008年考研数学数学一真题答案解析

2008年考研数学一试题分析、详解和评注一、选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数2()ln(2)x f x t dt =+ò,则()f x ¢的零点个数为【】(A) 0. (B) 1. (C) 2. (D) 3.【答案】应选(B). 【详解】22()ln(2)22ln(2)f x x x x x ¢=+×=+.显然()f x ¢在区间(,)-¥+¥上连续,且(1)(1)(2ln3)(2ln3)0f f ¢¢-·=-·<,由零点定理,知()f x ¢至少有一个零点.又2224()2ln(2)02x f x x x¢¢=++>+,恒大于零,所以()f x ¢在(,)-¥+¥上是单调递增的.又因为(0)0f ¢=,根据其单调性可知,()f x ¢至多有一个零点.故()f x ¢有且只有一个零点.故应选(B). (2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于【】(A) i (B) i -. (C) j . (D) j-【答案】应选(A). 【详解】因为222211f y y x x x y y ¶==¶++.222221xf x y x y x y y -¶-==¶++.所以(0,1)1fx ¶=¶,(0,1)0f y ¶=¶,于是(0,1)(,)i grad f x y =.故应选(A). (3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意的常数)为通解的是【】(A) 440y y y y ¢¢¢¢¢¢+--=. (B) 440y y y y ¢¢¢¢¢¢+++=. (C) 440y y y y ¢¢¢¢¢¢--+=. (D) 440y y y y ¢¢¢¢¢¢-+-=.【答案】应选(D). 【详解】由123cos 2sin 2xy C e C x C x =++,可知其特征根为11l =,2,32i l =±,故对应的特征值方程为,故对应的特征值方程为2(1)(2)(2)(1)(4)i i l l l l l -+-=-+3244l l l =+-- l l l 3244=-+-所以所求微分方程为440y y y y ¢¢¢¢¢¢-+-=.应选(D). (4)设函数()f x 在(,)-¥+¥内单调有界,{}n x 为数列,下列命题正确的是【 】.(A) 若{}n x 收敛,则{()}n f x 收敛收敛 (B) 若{}n x 单调,则{()}n f x 收敛收敛 (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. 【答案】 应选(B). 【详解】若{}n x 单调,则由函数()f x 在(,)-¥+¥内单调有界知,若{()}n f x 单调有界,因此若{()}nf x 收敛.故应选(B). (5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则【 】 则下列结论正确的是:则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆. (C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C). 【详解】故应选(C). 23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=.故E A -,E A +均可逆.故应选(C). (6)设A 为3阶实对称矩阵,如果二次曲面方程()1x xyz A y z æöç÷=ç÷ç÷èø在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】(A) 0. (B) 1. (C) 2. (D) 3.【答案】 应选(B). 【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y za c+-=.故A 的正特征值个数为1.故应选(B). (7) 设随机变量,X Y 独立同分布且X 的分布函数为()F x ,则max {,}Z X Y =的分布函数为【 】(A) 2()F x . (B) ()()F x F y . (C) 21[1()]F x --. (D) [1()][1()]F x F y --. 【答案】应选(A).【详解】(){}()max{,}F z P Z z P X Y z =£=£()()2()()()P X z P Y z F z F z F z =££==.故应选(A).(8)设随机变量XN (0,1), (1,4)YN , 且相关系数1XY r =,则【 】(A) {21}1P Y X =--= (B) {21}1P Y X =-= (C) {21}1P Y X =-+= (D) {21}1P Y X =+= 【答案】应选【答案】应选 (D).【详解】用排除法.设Y aX b =+.由1XY r =,知X ,Y 正相关,得0a >.排除(A )和(C ).由(0,1)XN ,(1,4)Y N ,得,得0,1,()EX EY E aX b aEX b ==+=+.10a b =´+,1b =.从而排除(B).故应选故应选(D).二、填空题:(9-14小题,每小题4分,共24分. 把答案填在题中横线上.) (9)微分方程0xy y ¢+=满足条件(1)1y =的解是y = . 【答案】 应填1yx =.【详解】由dy ydx x=-,得dy dx y x =-.两边积分,得ln ||ln ||y x C =-+.代入条件(1)1y =,得0C =.所以1y x=.(10)曲线sin()ln()xy y x x +-=在点(0,1)的切线方程为的切线方程为 . 【答案】 应填1y x =+.【详解】设(,)sin()ln()F x y xy y x x =+--,则,则1(,)cos()1x F x y y xy y x -=+--,1(,)cos()x F x y x xy y x=+-,(0,1)1x F =-,(0,1)1y F =.于是斜率(0,1)1(0,1)x y F k F ¢=-=¢. 故所求得切线方程为1y x =+.(11)已知幂级数(2)nn n a x ¥=+å在0x =处收敛,在4x =-处发散,则幂级数0(2)nn n a x ¥=-å的收敛域为的收敛域为. 【答案】 (1,5].【详解】由题意,知(2)nnn a x ¥=+å的收敛域为(4,0]-,则0nnna x ¥=å的收敛域为(2,2]-.所以(2)nn n a x ¥=-å的收敛域为(1,5].(12)设曲面S是224z x y=--的上侧,则2xydydz xdzdx x dxdy S++=òò.【答案】 4p .【详解】作辅助面1:0z S =取下侧.则由高斯公式,有取下侧.则由高斯公式,有2xydydz xdzdx x dxdy S++òò122xydydz xdzdx x dxdy xydydz xdzdx x dxdy åå=++-++òòòò2224x y ydV x dxdy W+£=+òòòòò.2222410()2x y x y dxdy +£=++òòd r rdr p q p p 22200116424=·==òò. (13) 设A 为2阶矩阵,12,a a 为线性无关的2维列向量,10A a =,2122A a a a =+.则A 的非零特征值为___________. 【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A a a a a a a a a æö==+=ç÷èø.记12(,)P a a =,因12,a a 线性无关,故12(,)P a a =是可逆矩阵.因此是可逆矩阵.因此0201AP P æö=ç÷èø,从而10201P AP -æö=ç÷èø.记0201B æö=ç÷èø,则A 与B 相似,从而有相同的特征值.相同的特征值.因为2||(1)01E B l l l l l --==--,0l =,1l =.故A 的非零特征值为1.(14) 设随机变量X 服从参数为1的泊松分布,则{}2P X EX==____________.【答案】应填12e. 【详解】因为X 服从参数为1的泊松分布,所以1EX DX ==.从而由22()DX EX EX =-得22EX =.故{}{}22P X EX P X ====12e.三、解答题:(15-23小题,共94分. ) (15)(本题满分10分)求极限[]40sin sin(sin )sin lim x x x x x®- 【详解1】[]40sin sin(sin)sin lim x x x x x®-[]30sin sin(sin )lim x x x x®-= =20cos cos(sin )cos lim 3x x x x x®-201cos(sin )lim 3x x x®-= 0sin(sin )cos lim 6x x x x ®=(或2201(sin )2lim 3x x x ®=,或22201sin (sin )2lim 3x x o x x®+=)16=. 【详解2】[]40sin sin(sin)sin lim x x x x x®-[]40sin sin(sin )sin lim sin x x x xx®-= =30sin lim t t t t ®-201cos lim 3t t t ®-=2202lim 3t tt ®=(或0sin lim 6t t t ®=) 16=.(16)(本题满分9分)计算曲线积分2sin 22(1)Lxdx x ydy +-ò,其中L 是曲线sin y x =上从(0,0)到(,0)p的一段.的一段.【详解1】按曲线积分的计算公式直接计算.】按曲线积分的计算公式直接计算.2sin 22(1)Lxdx x ydy +-ò20[sin 22(1)sin cos ]xdx x x x dx p=+-ò20sin 2x xdx p=ò200cos 2cos 22x x x xdx pp=-+ò20cos 22x xdx pp =-+ò2sin 2sin 2222x x xdx p pp=-+-ò22p =-.【详解2】添加辅助线,按照Green 公式进行计算.公式进行计算.设1L 为x 轴上从点(,0)p 到(0,0)的直线段.D 是1L 与L 围成的区域围成的区域12sin 22(1)L Lxdx x ydy ++-ò2(2(1)sin 2D x y x dxdy x y éù¶-¶=--êú¶¶ëûòò4Dxydxdy =-òòsin 004xxydydx p=-òò22sin x xdxp=-ò(1cos 2)x x dx p=--ò20cos 22xx xdx pp=-+ò2sin 2sin 2222x x xdx p pp =-+-ò22p =-.因为12sin 22(1)sin 20L xdx x ydyxdx p+-==òò故2sin 22(1)Lxdx x ydy +-ò22p =-【详解3】令2sin 22(1)LI xdx x ydy=+-ò212sin 222LLxdx ydy x ydy I I=-+=+ò对于1I,记sin 2,2P x Q y==-.因为P P y x ¶¶==¶¶,故1I 与积分路径无关.与积分路径无关.1sin 20I xdxp==ò.对于2I ,222222sin cos sin 2LI x ydyx x xdxx xdx pp===òòò200cos 2cos 22x x x xdx pp=-+ò2cos 22x xdx pp =-+ò2sin 2sin 2222x x xdx p pp =-+-ò22p =-.故2sin 22(1)Lxdx x ydy +-ò22p =-17(本题满分11分)已知曲线22220,:35,x y z C x y z ì+-=í++=î求C 上距离xoy 面最远的点和最近的点.的点.【详解1】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数2H z =在条件22220,x y z +-=35x y z ++=下的最大值点和最小值点.点.构造拉格朗日函数构造拉格朗日函数2222(,,,,)(2)(35)L x y z z x y z x y z l m l m =++-+++-,由222220,20,220,43.,350xy zL x L y L z z x y z x y z l m l m l m ¢=+=ìï¢=+=ïï¢=-++-=++==íïïïî 得x y =,从而22220,23 5.x z x z -=+=ìíî解得5,5,5.x y z ==-ìï=-íïî或1.1,1,z x y =ì=ï=íïî根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解2】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数22H x y =+在条件2225203x y x y +-æö+-=ç÷èø下的最大值点和最小值点.值点.构造拉格朗日函数构造拉格朗日函数222222(,,,)(5)9L x y z x y x yx y l l æö=+++-+-ç÷èø, 由222520.422(5)0,9422(5)0,93xy L x x x y L y x x y y y y x l l ìæö¢=+-+-=ïç÷èøïïïæö¢=+-+-=+-íç÷èøæö+-=ç÷èøïïïïî得x y =,从而2222(25)09x x --=.解得解得5,5,5.x y z ==-ìï=-íïî或1.1,1,z x y =ì=ï=íïî 根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解3】由22220x y z +-=得2cos ,2sin .x z y z q q ì=ïí=ïî 代入35x y z ++=,得,得532(cos sin )z q q =++所以只要求()z z q =的最值.的最值. 令()252(sin cos )()032(cos sin )z q q q q q -+¢==++,得cos sin q q =,解得5,44p p q =.从而.从而5,5,5.x y z ==-ìï=-íïî或1.1,1,z x y =ì=ï=íïî 根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).(18)(本题满分10分)设()f x 是连续函数,是连续函数,(I )利用定义证明函数0()()xF x f t dt =ò可导,且()()F x f x ¢=;(II )当()f x 是以2为周期的周期函数时,为周期的周期函数时,证明函数证明函数2()2()()xG x f t dt xf t dt=-òò也是以2为周期的周期函数.为周期的周期函数.(I )【证明】000()()()()()lim lim x xxx x f t dt f t dtF x x F x F x xx+D D ®D ®-+D -¢==D D òò0()lim x xxx f t dtx+D D ®=D ò00()lim lim ()()x x f x f f x x x x D ®D ®D ===D【注】不能利用L ’Hospital 法则得到0()()lim lim x xxx x f t dt f x x xx+D D ®D ®+D =D D ò.(II) 【证法1】根据题设,有】根据题设,有2220(2)2()(2)()(2)()x G x f t dt x f t dt f x f t dt +¢éù¢+=-+=+-êúëûòòò, 22000()2()()2()()xG x f t dt x f t dt f x f t dt ¢éù¢=-=-êúëûòòò.当()f x 是以2为周期的周期函数时,(2)()f x f x +=. 从而从而 (2)()G x G x ¢¢+=.因而.因而(2)()G x G x C +-=.取0x =得,(02)(0)0C G G =+-=,故,故 (2)()0G x G x +-=.即2()2()()xG x f t dt xf t dt=-òò是以2为周期的周期函数.为周期的周期函数.【证法2】根据题设,有】根据题设,有2200(2)2()(2)()x G x f t dt x f t dt ++=-+òò,222222()()()2()x f t dt x f t dt x f t dt f t dt +=+--òòòò.对于22()x f t dt +ò,作换元2tu =+,并注意到(2)()f u f u +=,则有,则有22()(2)()()x xxxf t dt f u du f u du f t dt +=+==òòòò,因而因而 222()()0x xf t dt xf t dt +-=òò.于是于是200(2)2()()()xG x f t dt xf t dt G x +=-=òò.即20()2()()xG x f t dt xf t dt =-òò是以2为周期的周期函数为周期的周期函数【证法3】根据题设,有】根据题设,有2200(2)2()(2)()x G x f t dt x f t dt ++=-+òò,2222()2()()2()xx xf t dt f t dt xf t dt f t dt +=+--òòòò2222()()2()2()xx xf t dt xf t dt f t dt f t dt +=-+-òòòò()22()2()()x xG x f t dt f t dt +=+-òò.当()f x 是以2为周期的周期函数时,必有为周期的周期函数时,必有22()()x xf t dt f t dt +=òò.事实上事实上22(())(2)()0x d f t dt f x f x dx+=+-=ò,所以所以22()x f t dt C +ºò.取0x =得,02222()()C f t dt f t dt +º=òò.所以所以200(2)2()()()xG x f t dt xf t dt G x +=-=òò.即20()2()()xG x f t dt xf t dt =-òò是以2为周期的周期函数为周期的周期函数(19)(本题满分11分)将函数2()1(0)f x x x p =-££展开成余弦级数,并求级数11(1)n n n -¥=-å的和.的和.【详解】将()f x 作偶周期延拓,则有0,1,2,n b n ==.0a =22(1)d x x pp-ò2213p æö=-ç÷èø. 02()cos n a f x nxdx p p =ò2002cos cos nxdx x nxdx pp p p éù=-êúëûòò 220cos x nxdxp pp éù=-êúëûò202sin 2sin x nxx nx dxn npppéù-=-êúëûò1222(1)n n p p--=124(1)n n--=.所以2101221()1cos (1)143cos 2n n n n a f x x n a nx nx p -¥¥===-=+=--+åå,0x p ££.令x=0x=0,有,有n n f n p 2121(1)(0)143-¥=-=-+å又(0)1f =,所以n n n p 1221(1)12-¥=-=å.(20)(本题满分10分)设,a b 为3维列向量,矩阵T T A aa bb =+,其中,T Ta b 分别是,a b 得转置.证明:得转置.证明: (I ) 秩()2r A £;(II )若,a b 线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r aa bb aa bb a b =+£+£+£. 【证法2】因为T TA aa bb =+,A 为33´矩阵,所以()3r A £. 因为,a b 为3维列向量,所以存在向量0x ¹,使得,使得0,0TTa xb x ==于是于是 0TTA x aa x bb x =+= 所以0Ax =有非零解,从而()2r A £.【证法3】因为TT A aa bb =+,所以A 为33´矩阵.矩阵.又因为()00TTTT A a aa bb abb æöç÷=+=ç÷ç÷èø, 所以|||0|00T TaA abb ==故 ()2r A £.(II )【证法】由,a b线性相关,不妨设k a b=.于是()2()()(1)()12TTTr A r rk ra ab b b b b=+=+££<.(21) (本题满分12分).设n 元线性方程组Ax b =,其中,其中2222212121212a a a a a A a a a a æöç÷ç÷ç÷=ç÷ç÷ç÷ç÷èø,12n x x x xæöç÷ç÷=ç÷ç÷èø,b 100æöç÷ç÷=ç÷ç÷èø.(I )证明行列式||(1)nA n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na aa aaD A aa aa ==以下用数学归纳法证明(1)nn D n a =+. 当1n =时,12D a =,结论成立.,结论成立.当2n =时,2222132a D a a a==,结论成立.,结论成立.假设结论对小于n 的情况成立.将n D 按第一行展开得按第一行展开得nn n aa aaD aD aa aa 2212211021212212--=-2122n n aD a D --=-1222(1)n n anaa n a--=--(1)nn a =+故(1)nA n a=+.【注】本题(1)也可用递推法.由2122n n n D aDa D --==-得,2211221()()n n nnn n n D aDa D aD aD aD a ------=-==-=.于是(1)nn D n a =+(I )【证法2】消元法.记2222212121||212na aa aaA aa aa =22122213121212212na a aa r ar aa aa -3222221301240123321212na a ar ara aaa aa -=n n n a a an r ar n n a n n a n1213012401130111----+(1)nn a =+.(II )【详解】当0a ¹时,方程组系数行列式0n D ¹,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为,得行列式为22211222211121021212121212122n n nn aa a a aaaaD na a a a a aa aa ---===所以,11(1)n n D ax Dn a -==+. (III )【详解】【详解】 当0a =时,方程组为时,方程组为12101101001000n n x x x x -æöæöæöç÷ç÷ç÷ç÷ç÷ç÷ç÷=ç÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为,所以方程组有无穷多组解,其通解为()()01100TTx k =+,其中k 为任意常数.为任意常数.(22) (本题满分11分)设随机变量X 与Y 相互独立,X 的概率密度为1()(1,0,1)3P X i i ===-,Y 的概率密度为密度为1,01,()0,Yy f y 其它其它..£<ì=íî记Z X Y =+.(I ) 求102P Z X æö£=ç÷èø;(II )求Z 的概率密度)(z f Z . (I )【详解】 解法1.1100221110.222P Z X P X Y X P Y X P Y æöæö£==+£=ç÷ç÷èøèøæöæö=£==£=ç÷ç÷èøèø解法2.()()1,0120201,0112.022P X Y X P Z XP X P Y X P Y P X æö+£=ç÷æöèø£==ç÷=èøæö£=ç÷æöèø==£=ç÷=èø(II )解法1.Z z P Z z P X Y z P F (){}{} =P{X+Y z,X=-1}+P{X+Y z,X=0}+P{X+Y z,X=1} =P{Y z+1,X=-1}+P{Y z,X=0}+P{Y z-1,X=1} =P{Y z+1}P{X=-1}+P{Y z}P{X=0}+P{Y z-1}P{X=1}1=[{Y z+1}P{Y 3=£=+£££££££££££+£Y Y Y z z Y Y Y F z F z F z f z F z z f z f z f z 'z}P{Y z-1}]1=[(1)()(1)]3 ()()1,12;1(1)()(1)330,.其它+£+++-=ì-<<ï=+++-=éùíëûïî解法2.11()()()1,12;1(1)()(1)330,.Z Y i Y Y Y f z P X i f z i z f z f z f z =-==-ì-<<ï=+++-=éùíëûïîå其它(23)(本题满分11分)设n X X X 21,是来自总体2(,)N m s 的简单随机样本,记å==ni i X n X 11,2211()1ni i S X X n ==--å,221TX S n=-.(1)证明T 是m 2的无偏估计量;的无偏估计量; (2)当m s 0,1==时,求.DT . 【详解1】(1)首先T 是统计量.其次是统计量.其次221()()E T E X ES n=-222222111()()D X EX ES nn ns m s =+-=+-2m =对一切,m s 成立.因此T 是2ˆm 的无偏估计量.的无偏估计量. 【详解2】(1)首先T 是统计量.其次是统计量.其次()()22111111n ni j k i j k n T X X X X n n n n n =¹=-=---åå,()()1n j k j kn ET E X EX n ¹=-å2m =,对一切,m s 成立.因此T 是2ˆm 的无偏估计量.的无偏估计量. (2)解法2.根据题意,有(0,1)nXN ,22(1)nXc ,22(1)(1)n Sn c --.于是2()2D nX =,()2(1)2(1)D n Sn -=-.所以221()D T D XS n æö=-ç÷èø()()()22222112()(1)11D nX D n Snn n n n =+-=--。

考研数学免费资料大全

考研数学免费资料大全

考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。

2008年全国硕士研究生入学统一考试数学一试题解析

2008年全国硕士研究生入学统一考试数学一试题解析

2008年全国硕士研究生入学统一考试数学一试题解析一、选择题 (1)【答案】B【详解】2()[ln(2)]2f x x x '=+⋅,(0)0f '=,即0x =是()f x '的一个零点又2224()2ln(2)02x f x x x''=++>+,从而()f x '单调增加((,)x ∈-∞+∞) 所以()f x '只有一个零点.(2)【答案】A【详解】因为2211x yf x y '=+,2221y x y f x y-'=+,所以(0,1)1x f '=,(0,1)0y f '= 所以 (0,1)10f =⋅+⋅=grad i j i(3)【答案】D【详解】由微分方程的通解中含有x e 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是440y y y y ''''''-+-=(4)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限(5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆.(6)【答案】B【详解】图示的二次曲面为双叶双曲面,其方程为2222221x y z a b c'''--=,即二次型的标准型为222222x y z f a b c'''=--,而标准型的系数即为A 的特征值.(7)【答案】A【详解】()(){}{}()()()()()2max ,Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+=01,a b ⨯+= 所以1b =. 排除()B . 故选择()D二、填空题 (9) 【答案】1x 【详解】由dy y dx x -=,两端积分得1ln ln y x C -=+,所以1C x y=,又(1)1y =,所以1y x =.(10) 【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得01x dydx ==,所以切线方程为10y x -=-,即1y x =+(11)【答案】(1,5]【详解】幂级数(2)nn n a x ∞=+∑的收敛区间以2x =-为中心,因为该级数在0x =处收敛,在4x =-处发散,所以其收敛半径为2,收敛域为(4,0]-,即222x -<+≤时级数收敛,亦即nn n a t∞=∑的收敛半径为2,收敛域为(2,2]-. 则(3)nn n a x ∞=-∑的收敛半径为2,由232x-<-≤得15x <≤,即幂级数0(3)nn n a x ∞=-∑的收敛域为(1,5](12)【答案】4π【详解】加221:0(4)z x y ∑=+≤的下侧,记∑与1∑所围空间区域为Ω,则2xydydz xdzdx x dxdy ∑++⎰⎰ 1122xydydz xdzdx x dxdy xydydz xdzdx x dxdy ∑+∑∑=++-++⎰⎰⎰⎰2222222441()0()2x y x y ydxdydz x dxdy x y dxdy Ω+≤+≤=--=++⎰⎰⎰⎰⎰⎰⎰ 22300142d r dr πθπ==⎰⎰(13)【答案】1【详解】1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+=⎪⎝⎭记12(,)P αα=,0201B ⎛⎫=⎪⎝⎭,则AP PB = 因为12,αα线性无关,所以P 可逆. 从而1B P AP -=,即A 与B 相似. 由2||(1)001E B λλλλλ--==-=-,得0λ=及1λ=为B 的特征值.又相似矩阵有相同的特征值,故A 的非零特征值为1.(14)【答案】12e【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以 {}21111222P X e e --===!三、解答题(15) 【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦ (16) 【详解】 方法一:(直接取x 为参数将对坐标的曲线积分化成定积分计算)22202220000sin 22(1)[sin 22(1)sin cos ]sin 21cos 2cos 2sin 2sin 222222Lxdx x ydyx x x x dx x xdxx x x x xdx x xdx ππππππππ+-=+-⋅==-+=-+-=-⎰⎰⎰⎰⎰方法二:(添加x 轴上的直线段用格林公式化成二重积分计算)取1L 为x 轴上从点(,0)π到点(0,0)的一段,D 是由L 与1L 围成的区域112220sin 2000022000sin 22(1)sin 22(1)sin 22(1)14sin 24cos 22sin 21(1cos 2)sin 2sin 22222LL L L xDxdx x ydyxdx x ydy xdx x ydyxydxdy xdx dx xydy x x xdx x x x x dx x xdx πππππππππ++-=+--+-=--=--=-=--=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三:(将其拆成2sin 222LLxdx ydy x ydy -+⎰⎰,前者与路径无关,选择沿x 轴上的直线段积分,后者化成定积分计算)2212sin 22(1)sin 222LLLxdx x ydy xdx ydy x ydy I I +-=-+=+⎰⎰⎰对于1I ,因为0P Qy x∂∂==∂∂,故曲线积分与路径无关,取(0,0)到(,0)π的直线段积分10sin 20I xdx π==⎰22222002200022122sin cos sin 2cos 221111cos 22cos 2sin 222221111sin 2cos 22222LI x ydy x x xdx x xdx x d x x x x xdx xd xx x x ππππππππππ====-=-+=-+⎡⎤=-++=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰所以,原式212π=-(17) 【详解】点(,,)x y z 到xOy 面的距离为||z ,故求C 上距离xOy 面的最远点和最近点的坐标,等价于求函数2H z =在条件22220x y z +-=与35x y z ++=下的最大值点和最小值点.令 2222(,,,,)(2)(35)L x y z z x y z x y zλμλμ=++-+++- 所以 22220(1)20(2)2430(3)20(4)35(5)xy zL x L y L z z x y z x y z λμλμλμ'=+=⎧⎪'=+=⎪⎪'=-+=⎨⎪+-=⎪++=⎪⎩ 由(1)(2)得x y =,代入(4)(5)有 220235x z x z ⎧-=⎨+=⎩,解得555x y z =-⎧⎪=-⎨⎪=⎩或111x y z =⎧⎪=⎨⎪=⎩(18)【详解】(I) 对任意的x ,由于f 是连续函数,所以0000()()()()limlim x xxx x f t dt f t dtF x x F x xx+→→-+-=⎰⎰0()()limlimlim ()x x xx x x f t dt f xf xxξξ+→→→===⎰ ,其中ξ介于x 与x x +之间 由于0lim ()()x f f x ξ→=,可知函数()F x 在x 处可导,且()()F x f x '=.(II)方法一:要证明()G x 以2为周期,即要证明对任意的x ,都有(2)()G x G x +=,()(2)()H x G x G x =+-,则()()()()()()()()22222()2(2)22(2)2()0x x H x f t dt x f t dt f t dt x f t dtf x f t dt f x f t dt +'''=-+--=+--+=⎰⎰⎰⎰⎰⎰又因为 ()()()22(0)(2)(0)2200H G G f t dt f t dt =-=--=⎰⎰所以 ()0H x =,即(2)()G x G x +=方法二:由于f 是以2为周期的连续函数,所以对任意的x ,有()()()()222(2)()2(2)2x x G x G x f t dt x f t dt f t dt x f t dt ++-=-+-+⎰⎰⎰⎰()()()()22202002x x f t dt f t dt f t dt f t dt +⎡⎤=+--⎢⎥⎣⎦⎰⎰⎰⎰ ()()()()000222[2]0x x xf t dt f u du f t f t dt ⎡⎤=-++=+-=⎢⎥⎣⎦⎰⎰⎰即()G x 是以2为周期的周期函数.(19)【详解】 由于 220022(1)23a x dx πππ=-=-⎰212024(1)cos (1)1,2,n n a x nxdx n nππ+=-=- =⎰所以 210211(1)()cos 14cos 023n n n n a f x a nx nx x n ππ+∞∞==-=+=-+ ≤≤∑∑ 令0x =,有 2121(1)(0)143n n f n π+∞=-=-+ ∑ 又(0)1f =,所以 1221(1)12n n n π+∞=- =∑(20)【详解】(I) ()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤(II) 由于,αβ线性相关,不妨设k αβ=. 于是()2()()(1)()12T T T r A r r k r ααβββββ=+=+≤≤<(21)【详解】(I)证法一:2222122212132101221221122aa a a a a aa aA r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a a n a a n ar ar a n a nnn a n--+-=⋅⋅⋅=++ 证法二:记||n D A =,下面用数学归纳法证明(1)n n D n a =+. 当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a aD aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a aa aD na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.(22)【详解】(I) 1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y dy P X =≤≤==+≤===≤===⎰ (II) (){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤={1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=[]1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤- []1(1)()(1)3Y Y Y F z F z F z =+++- 所以 []1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它(23) 【详解】 (I) 因为2(,)XN μσ,所以2(,)XN nσμ,从而2,E X DX nσμ= =.因为 221()()E T E X S n =-221()E X E S n =- 221()()DX E X E S n =+-222211n nσμσμ=+-=所以,T 是2μ的无偏估计(II)方法一:22()()D T ET ET =-,()0E T =,22()1E S σ==所以2()D T ET =442222()S E X X S n n=-⋅+4224221()()()()E X E X E S E S n n=-+ 因为(0,1)X N ,所以1(0,)X N n,有10,E X D X n ==,()221E X DX E X n=+=所以2242222()()()()()E X D X E X D D X E X ⎡⎤=+=++⎣⎦2221()D D X n⎡⎤=+⎣⎦2221132n n n⎛⎫=⋅+= ⎪⎝⎭ ()2422222()1ES E S DS ES DS ⎡⎤==+=+⎢⎥⎣⎦因为2222(1)(1)(1)n S W n S n χσ-==--,所以2(1)DW n =-,又因为22(1)DW n DS =-,所以22(1)DS n =-,所以4211(1)1n ES n n +=+=-- 所以 2223211111n ET n n n n n +=-⋅⋅+⋅-2(1)n n =-. 方法二:当0,1μσ==时221()()D T D X S n=- (注意X 和2S 独立)222222221111(1)(1)DX DS D D n S n nn n ⎡⎤=+=+⋅-⎣⎦- 222111222(1)(1)(1)n n n n n n =⋅+⋅⋅-=--。

2008年管理类专业学位联考(MBA)综合能力数学真题及答案含考点解析

2008年管理类专业学位联考(MBA)综合能力数学真题及答案含考点解析

2008年全国硕士研究生入学统一考试管理类专业学位联考 综合能力试题(数学真题)2008-1-19一、问题求解:第1~15小题,每小题3分,共45分。

下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的。

请在答题卡...上将所选项的字母涂黑。

1、=⨯⋅⋅⋅⨯⨯⨯++⨯⋅⋅⋅⨯+⨯+⨯+⨯+103232842333321)31()31()31()31()31(( )A.19103321+⨯ B.19321+ C.19321⨯ D.9321⨯ E.以上结果均不正确2、若△ABC 的三边c b a ,,满足bc ac ab c b a ++=++222,则△ABC 为( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形E.以上结果均不正确3、P 是以a 为边长的正方形,1P 是以P 的四边中点为顶点的正方形,2P 是以1P 的四边中点为顶点的正方形,…,i P 是以1-i P 的四边中点为顶点的正方形,则6P 的面积为( )A.162aB.322aC.402aD.482aE.642a4、某单位有90人,其中有65人参加外语培训,72人参加计算机培训,已知参加外语培训而没参加计算机培训的有8人,则参加计算机培训而没参加外语培训的人数为( ) A.5 B.8 C.10 D.12 E.155、方程03)31(2=++-x x 的两根分别为等腰三角形的腰a 和底b (a<b ),则该等腰三角形的面积是( ) A.411 B.811 C.43 D.53 E.836、一辆出租车有段时间的营运全在东西走向的一条大道上,若规定向东为正,向西为负,且知该车的行驶公里数依次为-10,+6,+5,-8,+9,-15,+12,则将最后一名乘客送到目的地时,该车的位置( ) A.在首次出发地的东面1公里处 B.在首次出发地的西面1公里处 C.在首次出发地的东面2公里处 D.在首次出发地的西面2公里处 E.仍在首次出发地7、如图所示,长方形ABCD 中AB=10厘米,BC=5厘米,以AB 和AD 分别为半径作41圆,则图中阴影部分的面积为( )平方厘米.A.π22525-B.π212525+C.π42550+D.504125-π E.以上结果均不正确8、若用浓度30%和20%的甲、乙两种食盐溶液配成浓度为24%的食盐溶液500克,则甲、乙两种溶液应各取( )A.180克和320克B.185克和315克C.190克和310克D.195克和305克E.200克和300克9、将价值200元的甲原料与价值480元的乙原料配成一种新原料.若新原料每千克的售价分别比甲、乙原料每千克的售价少3元和多1元,则新原料的售价是( ) A.15元 B.16元 C.17元 D.18元 E.19元10、直角边之和为12的直角三角形面积的最大值等于( ) A.16 B.18 C.20 D.22 E.不能确定11、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是( ) A.)1(22++=n n a n B.n n a 23⨯= C.13+=n a n D.n n a 32⨯= E.以上结果均不正确12、以直线0=+x y 为对称轴且与直线23=-x y 对称的直线方程为( ) A.323+=x y B.323+-=x y C.23--=x y D.23+-=x y E.以上结果均不正确13、有两排座位,前排6个座位,后排7个座位.若安排2人就座,规定前排中间2个座位不能坐,且此2人始终不能相邻而坐,则不同的坐法种数为( ) A.92 B.93 C.94 D.95 E.9614、若从原点出发的质点M 向x 轴的正向移动一个和两个坐标单位的概率分别是32和31,则该质点移动3个坐标单位到达点(3,0)的概率是( ) A.2719 B.2720 C.97 D.2722 E.272315、某乒乓球男子单打决赛在甲、乙两选手间进行,比赛采用7局4胜制.已知每局比赛甲选手战胜乙选手的概率均为0.7,则甲选手以4:1战胜乙选手的概率为( )A.37.084.0⨯ B.37.07.0⨯ C.37.03.0⨯ D.37.09.0⨯ E.以上结果均不正确二、条件充分性判断:第16~30小题,每小题2分,共30分。

2008年全国硕士研究生入学统一考试数学一试题及答案详解

2008年全国硕士研究生入学统一考试数学一试题及答案详解

2008年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设函数2()ln(2)x f x t dt =+ò,则()f x ¢的零点个数( ) ()A 0()B 1 ()C 2 ()D 3解:()B .分析:22()ln(2)22ln(2)f x x x x x ¢=+?+2224()2ln(2)02xf x x xⅱ=++>+,恒大于0,所以()f x ¢在(,)-??上是单调递增的. 又因为(0)0f ¢=,根据其单调性可知()f x ¢只有一个零点. (2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于( ) ()A i()B -i ()C j ()D -j解;()A .分析:由 222222111,(0,1) 1.11x x y yyf f x x y x y y y =====+++ 22222,(0,1)0.1y y x y xf f x x y y--===++所以(0,1)10.gradf i j i =??(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ⅱⅱⅱ+--=. ()B 440y y y y ⅱⅱⅱ+++=. ()C 440y y y y ⅱⅱⅱ--+=.()D 440y y y y ⅱⅱⅱ-+-=. 解:()D .分析;由123cos 2sin 2x y C e C x C x =++可知其特征根为12,31,2i l l ==?.故对应的特征方程为 2(1)(2)(2)(1)(4)i i l l l l l -+-=-+32324444l l l lll =+--=-+-所以所求微分方程为440y y y y ⅱⅱⅱ-+-=, 选()D . (4)设函数()f x 在(,)-??内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛.()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.解:()B分析:若{}n x 单调,则由()f x 在(,)-??内单调有界知,{}()n f x 单调有界, 因此{}()n f x 收敛,应选()B .(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A ()1,4Y N :不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.解:选()C分析:23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆。

2008考研数学一真题及答案

2008考研数学一真题及答案

2008考研数学一真题及答案一、选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数2()ln(2)x f x t dt =+⎰,则()f x '的零点个数为【 】(A) 0. (B) 1. (C) 2. (D) 3. 【答案】应选(B).【详解】22()ln(2)22ln(2)f x x x x x '=+⋅=+.显然()f x '在区间(,)-∞+∞上连续,且(1)(1)(2ln 3)(2ln 3)0f f ''-•=-•<,由零点定理,知()f x '至少有一个零点.又2224()2ln(2)02x f x x x ''=++>+,恒大于零,所以()f x '在(,)-∞+∞上是单调递增的.又因为(0)0f '=,根据其单调性可知,()f x '至多有一个零点.故()f x '有且只有一个零点.故应选(B).(2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于【 】 (A) i (B) i -. (C) j . (D) j - . 【答案】 应选(A).【详解】因为222211f y y x x x y y ∂==∂++.222221xf x y x y x y y-∂-==∂++.所以(0,1)1fx ∂=∂,(0,1)0f y ∂=∂,于是(0,1)(,)i grad f x y =.故应选(A).(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意的常数)为通解的是【 】(A) 440y y y y ''''''+--=. (B) 440y y y y ''''''+++=.(C) 440y y y y ''''''--+=. (D) 440y y y y ''''''-+-=. 【答案】 应选(D).【详解】由123cos 2sin 2xy C e C x C x =++,可知其特征根为11λ=,2,32i λ=±,故对应的特征值方程为2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+ 3244λλλ=+-- λλλ3244=-+-所以所求微分方程为440y y y y ''''''-+-=.应选(D).(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是【 】.(A) 若{}n x 收敛,则{()}n f x 收敛 (B) 若{}n x 单调,则{()}n f x 收敛 (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. 【答案】 应选(B).【详解】若{}n x 单调,则由函数()f x 在(,)-∞+∞内单调有界知,若{()}n f x 单调有界,因此若{()}n f x 收敛.故应选(B).(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则【 】则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆. (C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C). 【详解】故应选(C).23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=.故E A -,E A +均可逆.故应选(C). (6)设A 为3阶实对称矩阵,如果二次曲面方程()1x xyz A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】(A) 0. (B) 1. (C) 2. (D) 3.【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z a c +-=.故A 的正特征值个数为1.故应选(B).(7) 设随机变量,X Y 独立同分布且X 的分布函数为()F x ,则max{,}Z X Y =的分布函数为【 】(A) 2()F x . (B) ()()F x F y . (C) 21[1()]F x --. (D) [1()][1()]F x F y --. 【答案】应选(A).【详解】(){}()max{,}F z P Z z P X Y z =≤=≤()()2()()()P X z P Y z F z F z F z =≤≤==.故应选(A).(8)设随机变量XN (0,1), (1,4)YN , 且相关系数1XY ρ=,则【 】(A) {21}1P Y X =--= (B) {21}1P Y X =-= (C) {21}1P Y X =-+= (D) {21}1P Y X =+= 【答案】应选 (D).【详解】用排除法.设Y aX b =+.由1XY ρ=,知X ,Y 正相关,得0a >.排除(A )和(C ).由(0,1)XN ,(1,4)Y N ,得0,1,()EX EY E aX b aEX b ==+=+.10a b =⨯+,1b =.从而排除(B).故应选 (D).二、填空题:(9-14小题,每小题4分,共24分. 把答案填在题中横线上.) (9)微分方程0xy y '+=满足条件(1)1y =的解是y = . 【答案】 应填1y x=. 【详解】由dy ydx x=-,得dy dx y x =-.两边积分,得ln ||ln ||y x C =-+. 代入条件(1)1y =,得0C =.所以1y x=. (10)曲线sin()ln()xy y x x +-=在点(0,1)的切线方程为 . 【答案】 应填1y x =+.【详解】设(,)sin()ln()F x y xy y x x =+--,则1(,)cos()1x F x y y xy y x -=+--,1(,)cos()x F x y x xy y x=+-, (0,1)1x F =-,(0,1)1y F =.于是斜率(0,1)1(0,1)x y F k F '=-='.故所求得切线方程为1y x =+.(11)已知幂级数(2)nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数(2)nn n a x ∞=-∑的收敛域为 .【答案】 (1,5].【详解】由题意,知(2)nn n a x ∞=+∑的收敛域为(4,0]-,则nn n a x∞=∑的收敛域为(2,2]-.所以(2)nn n a x ∞=-∑的收敛域为(1,5].(12)设曲面∑是z =的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ .【答案】 4π.【详解】作辅助面1:0z ∑=取下侧.则由高斯公式,有2xydydz xdzdx x dxdy ∑++⎰⎰ 122xydydz xdzdx x dxdy xydydz xdzdx x dxdy ∑∑=++-++⎰⎰⎰⎰2224x y ydV x dxdy Ω+≤=+⎰⎰⎰⎰⎰.2222410()2x y x y dxdy +≤=++⎰⎰d r rdr πθππ22200116424=•==⎰⎰. (13) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________.【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+= ⎪⎝⎭.记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此0201AP P ⎛⎫= ⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值.因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.(14) 设随机变量X 服从参数为1的泊松分布,则{}2P X EX ==____________.【答案】应填12e. 【详解】因为X 服从参数为1的泊松分布,所以1EX DX ==.从而由22()DX EX EX =-得22EX =.故{}{}22P X EX P X ====12e. 三、解答题:(15-23小题,共94分. )(15)(本题满分10分) 求极限[]4sin sin(sin )sin limx x x x x →-【详解1】[]4sin sin(sin )sin limx x x xx →-[]3sin sin(sin )limx x x x →-==20cos cos(sin )cos lim3x x x x x →-201cos(sin )lim 3x x x→-= 0sin(sin )cos lim 6x x x x →=(或2201(sin )2lim 3x x x→=,或22201sin (sin )2lim 3x x o x x →+=) 16=. 【详解2】[]4sin sin(sin )sin limx x x xx →-[]40sin sin(sin )sin limsin x x x x x→-==30sin lim t t t t →-201cos lim 3t t t →-=2202lim 3t t t →=(或0sin lim 6t t t →=) 16=.(16)(本题满分9分)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从(0,0)到(,0)π的一段.【详解1】按曲线积分的计算公式直接计算.2sin 22(1)Lxdx x ydy +-⎰2[sin 22(1)sin cos ]xdx x x x dx π=+-⎰20sin 2x xdx π=⎰200cos 2cos 22x xx xdx ππ=-+⎰20cos 22x xdx ππ=-+⎰ 200sin 2sin 2222x xx dx πππ=-+-⎰22π=-.【详解2】添加辅助线,按照Green 公式进行计算.设1L 为x 轴上从点(,0)π到(0,0)的直线段.D 是1L 与L 围成的区域12sin 22(1)L L xdx x ydy ++-⎰2(2(1)sin 2D x y x dxdy x y ⎡⎤∂-∂=--⎢⎥∂∂⎣⎦⎰⎰4D xydxdy =-⎰⎰sin 04xxydydx π=-⎰⎰22sin x xdx π=-⎰0(1cos 2)x x dx π=--⎰20cos 22xx xdx ππ=-+⎰200sin 2sin 2222x xx dx πππ=-+-⎰ 22π=-.因为12sin 22(1)sin 20L xdx x ydy xdx π+-==⎰⎰故2sin 22(1)Lxdx xydy +-⎰22π=-【详解3】令2sin 22(1)LI xdx x ydy =+-⎰212sin 222Lxdx ydy x ydy I I =-+=+⎰对于1I ,记sin 2,2P x Q y ==-.因为0P P y x∂∂==∂∂,故1I 与积分路径无关. 10sin 20I xdx π==⎰.对于2I ,2222022sin cos sin 2LI x ydy x x xdx x xdx ππ===⎰⎰⎰200cos 2cos 22x xx xdx ππ=-+⎰ 2cos 22x xdx ππ=-+⎰200sin 2sin 2222x xx dx πππ=-+-⎰22π=-.故2sin 22(1)Lxdx xydy +-⎰22π=-17(本题满分11分)已知曲线22220,:35,x y z C x y z ⎧+-=⎨++=⎩求C 上距离xoy 面最远的点和最近的点.【详解1】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数2H z =在条件22220,x y z +-=35x y z ++=下的最大值点和最小值点.构造拉格朗日函数2222(,,,,)(2)(35)L x y z z x y z x y z λμλμ=++-+++-,由222220,20,220,43.,350xy z L x L y L z z x y z x y z λμλμλμ'=+=⎧⎪'=+=⎪⎪'=-++-=++==⎨⎪⎪⎪⎩ 得x y =,从而22220,23 5.x z x z -=+=⎧⎨⎩解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解2】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数22H x y =+在条件2225203x y x y +-⎛⎫+-= ⎪⎝⎭下的最大值点和最小值点.构造拉格朗日函数222222(,,,)(5)9L x y z x y x y x y λλ⎛⎫=+++-+- ⎪⎝⎭,由222520.422(5)0,9422(5)0,93x y L x x x y L y x x y y y y x λλ⎧⎛⎫'=+-+-=⎪ ⎪⎝⎭⎪⎪⎪⎛⎫'=+-+-=+-⎨⎪⎝⎭⎛⎫+-= ⎪⎝⎭⎪⎪⎪⎪⎩得x y =,从而2222(25)09x x --=. 解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解3】由22220x y z +-=得cos ,sin .x y θθ⎧=⎪⎨=⎪⎩ 代入35x y z ++=,得z =所以只要求()z z θ=的最值.令()2sin cos )()03sin )z θθθθθ-+'==++,得cos sin θθ=,解得5,44ππθ=.从而5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).(18)(本题满分10分)设()f x 是连续函数, (I )利用定义证明函数0()()xF x f t dt =⎰可导,且()()F x f x '=;(II )当()f x 是以2为周期的周期函数时,证明函数2()2()()xG x f t dt x f t dt=-⎰⎰也是以2为周期的周期函数. (I )【证明】000()()()()()limlim x xxx x f t dt f t dtF x x F x F x xx+∆∆→∆→-+∆-'==∆∆⎰⎰()limx x xx f t dtx+∆∆→=∆⎰00()limlim ()()x x f xf f x xξξ∆→∆→∆===∆ 【注】不能利用L ’Hospital 法则得到0()()limlimx x xx x f t dtf x x xx+∆∆→∆→+∆=∆∆⎰.(II) 【证法1】根据题设,有22200(2)2()(2)()(2)()x G x f t dt x f t dt f x f t dt +'⎡⎤'+=-+=+-⎢⎥⎣⎦⎰⎰⎰,22000()2()()2()()x G x f t dt x f t dt f x f t dt '⎡⎤'=-=-⎢⎥⎣⎦⎰⎰⎰.当()f x 是以2为周期的周期函数时,(2)()f x f x +=. 从而 (2)()G x G x ''+=.因而(2)()G x G x C +-=.取0x =得,(02)(0)0C G G =+-=,故 (2)()0G x G x +-=. 即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数.【证法2】根据题设,有2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰,2222022()()()2()x f t dt x f t dt x f t dt f t dt +=+--⎰⎰⎰⎰.对于22()x f t dt +⎰,作换元2t u =+,并注意到(2)()f u f u +=,则有22()(2)()()x x x xf t dt f u du f u du f t dt +=+==⎰⎰⎰⎰,因而 2220()()0x xf t dt x f t dt +-=⎰⎰.于是2(2)2()()()xG x f t dt x f t dt G x +=-=⎰⎰.即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数【证法3】根据题设,有2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰,222002()2()()2()xx x f t dt f t dt x f t dt f t dt +=+--⎰⎰⎰⎰222002()()2()2()x x xf t dt x f t dt f t dt f t dt +=-+-⎰⎰⎰⎰()22()2()()x xG x f t dt f t dt +=+-⎰⎰.当()f x 是以2为周期的周期函数时,必有22()()x xf t dt f t dt +=⎰⎰.事实上22(())(2)()0x d f t dt f x f x dx+=+-=⎰,所以22()x f t dt C +≡⎰.取0x =得,02222()()C f t dt f t dt +≡=⎰⎰.所以2(2)2()()()xG x f t dt x f t dt G x +=-=⎰⎰.即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数(19)(本题满分11分)将函数2()1(0)f x x x π=-≤≤展开成余弦级数,并求级数11(1)n n n -∞=-∑的和.【详解】将()f x 作偶周期延拓,则有0,1,2,n b n ==.0a =22(1)d x x ππ-⎰2213π⎛⎫=- ⎪⎝⎭.2()cos n a f x nxdx ππ=⎰202cos cos nxdx x nxdx ππππ⎡⎤=-⎢⎥⎣⎦⎰⎰20020cos x nxdx πππ⎡⎤=-⎢⎥⎣⎦⎰2002sin 2sin x nxx nx dxn n πππ⎡⎤-=-⎢⎥⎣⎦⎰ 1222(1)n n ππ--=124(1)n n--=. 所以2101221()1cos (1)143cos 2n n n n a f x x n a nx nx π-∞∞===-=+=--+∑∑,0x π≤≤. 令x=0,有n n f n π2121(1)(0)143-∞=-=-+∑ 又(0)1f =,所以n n n π1221(1)12-∞=-=∑.(20)(本题满分10分)设,αβ为3维列向量,矩阵TTA ααββ=+,其中,TTαβ分别是,αβ得转置.证明: (I ) 秩()2r A ≤;(II )若,αβ线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤. 【证法2】因为TTA ααββ=+,A 为33⨯矩阵,所以()3r A ≤. 因为,αβ为3维列向量,所以存在向量0ξ≠,使得0,0T T αξβξ==于是 0T T A ξααξββξ=+= 所以0Ax =有非零解,从而()2r A ≤.【证法3】因为TTA ααββ=+,所以A 为33⨯矩阵.又因为()00T TTT A αααββαββ⎛⎫⎪=+= ⎪ ⎪⎝⎭, 所以|||0|00TT a A αββ==故 ()2r A ≤.(II )【证法】由,αβ线性相关,不妨设k αβ=.于是()2()()(1)()12T T T r A r r k r ααβββββ=+=+≤≤<.(21) (本题满分12分).设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,b 100⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x .(III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na a a a aD A a a a a ==以下用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立.假设结论对小于n 的情况成立.将n D 按第一行展开得n n n a a a aD aD a a a a 2212211021212212--=-2122n n aD a D --=-1222(1)n n ana a n a --=-- (1)n n a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==-得,2211221()()n n n n n n n D aD a D aD a D a D a ------=-==-=.于是(1)n n D n a =+(I )【证法2】消元法.记2222212121||212na a a a aA a a a a =22122213121212212na a a ar ar a a a a -322222130124123321212naa a r ar a aa a a a -=n n na a a n r ar nn a n n a n 121301240113111----+(1)n n a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a aa aD na a a a a a a a a ---===所以,11(1)n n D ax D n a-==+. (III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为()()010100TTx k =+,其中k 为任意常数.(22) (本题满分11分)设随机变量X 与Y 相互独立,X 的概率密度为1()(1,0,1)3P X i i ===-,Y 的概率密度为1,01,()0,Y y f y 其它.≤<⎧=⎨⎩记Z X Y =+. (I ) 求102P Z X ⎛⎫≤= ⎪⎝⎭; (II )求Z 的概率密度)(z f Z . (I )【详解】解法1.1100221110.222P Z X P X Y X P Y X P Y ⎛⎫⎛⎫≤==+≤= ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=≤==≤= ⎪ ⎪⎝⎭⎝⎭解法2.()()1,0120201,0112.022P X Y X P Z X P X P Y X P Y P X ⎛⎫+≤= ⎪⎛⎫⎝⎭≤== ⎪=⎝⎭⎛⎫≤= ⎪⎛⎫⎝⎭==≤= ⎪=⎝⎭(II )解法1.Z z P Z z P X Y z P F (){}{}=P{X+Y z,X=-1}+P{X+Y z,X=0}+P{X+Y z,X=1} =P{Y z+1,X=-1}+P{Y z,X=0}+P{Y z-1,X=1}=P{Y z+1}P{X=-1}+P{Y z}P{X=0}+P{Y z-1}P{X=1}1=[{Y z+1}P{Y 3=≤=+≤≤≤≤≤≤≤≤≤≤≤+≤Y Y Y z z Y Y Y F z F z F z f z F z z f z f z f z 'z}P{Y z-1}]1=[(1)()(1)]3()()1,12;1(1)()(1)330,.其它+≤+++-=⎧-<<⎪=+++-=⎡⎤⎨⎣⎦⎪⎩解法2.11()()()1,12;1(1)()(1)330,.Z Y i YY Y f z P X i f z i z f z f z f z =-==-⎧-<<⎪=+++-=⎡⎤⎨⎣⎦⎪⎩∑其它(23)(本题满分11分)设n X X X 21,是来自总体2(,)N μσ的简单随机样本,记∑==ni i X n X 11,2211()1n ii S X X n ==--∑,221T X S n=-.(1)证明T 是μ2的无偏估计量; (2)当μσ0,1==时,求.DT . 【详解1】(1)首先T 是统计量.其次221()()E T E X ES n=-222222111()()D X EX ES n n nσμσ=+-=+-2μ= 对一切,μσ成立.因此T 是2ˆμ的无偏估计量. 【详解2】(1)首先T 是统计量.其次()()22111111n ni j ki j k n T X X X X n n n n n =≠=-=---∑∑,()()1n j k j kn ET E X EX n ≠=-∑2μ=, 对一切,μσ成立.因此T 是2ˆμ的无偏估计量. (2)解法2(0,1)N ,22(1)nX χ,22(1)(1)n S n χ--.于是2()2D nX =,()2(1)2(1)D n S n -=-. 所以221()D T D X S n ⎛⎫=-⎪⎝⎭()()()22222112()(1)11D nX D n S n n n n n =+-=--。

2008年全国考研数学一真题及答案.doc

2008年全国考研数学一真题及答案.doc

2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。

【解析】且,则是唯一的零点综上所述,本题正确答案是B。

【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。

【解析】所以综上所述,本题正确答案是A。

【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为任意常数为通解的是(A)(B)(C)(D)【答案】D。

【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。

【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。

【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。

【方法二】排除法:若取,,则显然单调,收敛,但,为偶数为奇数,显然不收敛,排除A。

若取,显然收敛且单调,但不收敛,排除C和D。

综上所述,本题正确答案是B。

【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。

【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。

【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A)(B)1(C)2 (D)3【答案】B。

【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。

2008年研究生入学考试数学二试题及答案解析

2008年研究生入学考试数学二试题及答案解析

2008年考研数学二试题分析、详解和评注一,选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设2()(1)(2)f x x x x =-+,则()f x '的零点个数为【 】. For personal use only in study and research; not for commercial use(A) 0. (B) 1. (C) 2. (D) 3. 【答案】应选(D).【详解】322()434(434)f x x x x x x x '=+-=+-.令()0f x '=,可得()f x '有三个零点.故应选(D).(2)曲线方程为()y f x =,函数在区间[0,]a 上有连续导数,则定积分0()axf x dx '⎰在几何上表示【 】.(A) 曲边梯形ABCD 的面积. (B) 梯形ABCD 的面积. (C) 曲边三角形ACD 面积. (D) 三角形ACD 面积. 【答案】 应选(C). 【详解】'()()()()aa axf x dx xdf x af a f x dx ==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx ⎰为曲边梯形的面积,所以'()axf x dx ⎰为曲边三角形ACD的面积.故应选(C).(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意的常数)为通解的是【 】.(A) 440y y y y ''''''+--=. (B) 440y y y y ''''''+++=.(C) 440y y y y ''''''--+=. (D) 440y y y y ''''''-+-=. 【答案】 应选(D).【详解】由123cos 2sin 2xy C e C x C x =++,可知其特征根为11λ=,2,32i λ=±,故对应的特征值方程为2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+3244λλλ=+-- 32444λλλ=-+-所以所求微分方程为440y y y y ''''''-+-=.应选(D).(4) 判定函数ln ()|1|xf x x =-,(0)x >间断点的情况【 】.(A) 有一个可去间断点,一个跳跃间断点. (B) 有一跳跃间断点,一个无穷间断点. (C) 有两个无穷间断点. (D)有两个跳跃间断点. 【答案】 应选(A).(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是【 】.(A) 若{}n x 收敛,则{()}n f x 收敛 (B) 若{}n x 单调,则{()}n f x 收敛 (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. 【答案】 应选(B).【详解】若若{}n x 单调,则由函数()f x 在(,)-∞+∞内单调有界知,若{()}n f x 单调有界,因此若{()}n f x 收敛.故应选(B).(6)设函数()f x 连续,221x y +=,222,1x y u u +=>,若22(,)DF u v =,则Fu∂=∂【 】. (A) 2()vf u (B) ()vf u (C)2()v f u u (D) ()vf u u【答案】 应选(A).【详解】利用极坐标,得2222011()(,)()v uu Df r F u v dv rdr v f r drr===⎰⎰⎰,所以Fu∂=∂2()vf u .故应选(A). (7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则下列结论正确的是【 】. (A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C).【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=.故E A -,E A +均可逆.故应选(C). (8) 设1221A ⎛⎫=⎪⎝⎭,则在实数域上,与A 合同矩阵为【 】.(A) 2112-⎛⎫⎪-⎝⎭ . (B)2112-⎛⎫ ⎪-⎝⎭. (C) 2112⎛⎫ ⎪⎝⎭. (D) 1221-⎛⎫ ⎪-⎝⎭. 【答案】 应选(D). 【详解】2212(1)423(1)(3)021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=,记1221D -⎛⎫=⎪-⎝⎭,则2212(1)423(1)(3)021E D λλλλλλλλ--==--=--=+-=-则121,3λλ=-=,正负惯性指数相同.故选D.二、填空题:(9-14小题,每小题4分,共24分. 把答案填在题中横线上.) (9)已知函数()f x 连续,且01cos[()]lim 1(1)()x x xf x e f x →-=-,则(0)f =【答案】 应填2.(10)微分方程2()0xy x e dx xdy -+-=的通解是 . 【答案】 应填()xy x C e -=-.(11)曲线sin()ln()xy y x x +-=在点(0,1)的切线方程为 . 【答案】 应填1y x =+. 【详解】(12)曲线23(5)y x x =-的拐点坐标为 . 【答案】 (1,6)--. 【详解】 (13)设x yy z x ⎛⎫=⎪⎝⎭,则(1,2)z x ∂=∂ . 【答案】21)2-. (14)设3阶矩阵A 的特征值为2,3,λ.若行列式|2|48A =-,则λ=___________. 【答案】应填1-.三、解答题(15-23小题,共94分).(15)(本题满分9分) 求极限[]4sin sin(sin )sin limx x x x x →-.【详解1】[]4sin sin(sin )sin limx x x xx →-[]3sin sin(sin )limx x x x →-==20cos cos(sin )cos lim3x x x x x →-201cos(sin )lim 3x x x→-= 0sin(sin )cos lim 6x x xx →=(或2201(sin )2lim 3x x x →=,或22201sin (sin )2lim 3x x o x x→+=) 16=. 【详解2】[]4sin sin(sin )sin limx x x xx →-[]40sin sin(sin )sin limsin x x x x x→-==30sin lim t t t t →-201cos lim 3t t t →-=2202lim 3t t t →=(或0sin lim 6t t t →=) 16=. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x x t =是初值问题020xt dx te dtx -=⎧-=⎪⎨⎪=⎩的解,求22d y dx . 【详解1】由20x dxte dt--=得 2x e dx tdt =,积分得2x e t C =+.由条件00t x ==,得1C =,即21xe t =+,故 2ln(1)x t =+.方程组220ln(1)ln(1)t x t y u du ⎧=+⎪⎨=+⎪⎩⎰两端同时对t 求导得 22212ln(1)dx t dt t dy t t dt⎧=⎪⎪+⎨⎪=+⎪⎩. 所以22(1)ln(1)dy dy dt t t dxdx dt==++,从而222222(1)ln(1)(1)ln(1)d t t d t t d y dtdx dx dxdt⎡⎤++⎣⎦⎡⎤++⎣⎦==22222ln(1)2(1)[ln(1)1]21t t t t t t t ++==++++.17(本题满分9分)计算21⎰.【详解1】由于21lim x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,)2t π∈.21222000cos 2sin ()22t tt tdt dt ππ==-⎰⎰⎰222001sin 244ttd t ππ=-⎰2220sin 21sin 21644t t tdt πππ=-+⎰ 2201cos 2168t ππ=-21164π=+.【详解2】2112201(arcsin )2x d x =⎰⎰ 21222001(arcsin )(arcsin )2x x x x dx π=-⎰2120(arcsin )8x x dx π=-⎰令arcsin x t =,有sin x t =,[0,)2t π∈.1222001(arcsin )sin 22x x dx t tdt π=⎰⎰ 222001(cos 22cos 2)4t t t tdt ππ=--⎰21164π=-,所以2211164π=+⎰. (18)(本题满分11分) 计算max{,1}Dxy dxdy ⎰⎰,其中{}(,),02,02D x y x y =≤≤≤≤.【详解】将区域D 分成如图所示得两个子区域12,D D 和3D .于是123max{,1}max{,1}max{,1}max{,1}DD D D xy dxdy xy dxdy xy dxdy xy dxdy =++⎰⎰⎰⎰⎰⎰⎰⎰12311D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰1122222111022x xdx xydy dx dy dx dy =++⎰⎰⎰⎰⎰⎰1519ln 212ln 2ln 244=-++=+. (19)(本题满分11分)设()f x 是区间[0,)+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[0,)t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数()f x 的表达式.【详解】根据题意,因为旋转体体积2()tV f x dx π=⎰,侧面积02(tS f x π=⎰.所以 202()2(tt f x dx f x ππ=⎰⎰.上式两边同时对t 求导得2()(f t f t =解得 1ln(y t C =+,t y Ce +=.由(0)1y =,得1C =.所以 t y e = 或 1()()2t t y f x e e -==+.(20)(本题满分11分) (I)证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰;(II)若函数()x ϕ具有二阶导数,且满足(2)(1)ϕϕ>,32(2)()x dx ϕϕ>⎰,则至少存在一点(1,3)ξ∈,使得()0ϕξ''<.【证法1】若函数()f x 在闭区间[,]a b 上连续,则必存在最大值M 和最小值m .即()m f x M ≤≤,[,]x a b ∈于是有()()()bam b a f x dx M b a -≤≤-⎰.即1()b am f x dx M b a ≤≤-⎰根据闭区间上连续函数的介值定理,在[,]a b 上至少存在一点[,]a b η∈,使得1()()b a f f x dx b aη=-⎰ 因此而的证.(II )存在[2,3]η∈,使得32()()x dx ϕϕη=⎰.由32(2)()()x dx ϕϕϕη>=⎰,知(2,3]η∈.由(2)(1)ϕϕ>,利用微分中值定理,存在1(1,2)ξ∈,使得1(2)(1)()021ϕϕϕξ-'=>-.由(2)()ϕϕη>,利用微分中值定理,存在2(2,)ξη∈,使得2()(2)()02ϕηϕϕξη-'=<-.存在存在12(,)(1,3)ξξξ∈⊂,使得2121()()()0ϕξϕξϕξξξ''-''=<-.(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值和最小值. 【详解1】作拉格朗日函数22222(,,)()(4)F x y z x y z x y z x y z λμ=++++-+++-.令2222022020040xy z F x x F y y F z x y z x y z λμλμλμ⎧'=++=⎪⎪'=++=⎪⎪'=-+=⎨⎪+-=⎪⎪++-=⎪⎩解之得111222(,,)(1,1,2),(,,)(2,2,8),x y z x y z ==--故所求得最大值为72,最小值为6.【详解2】由题意知,4422222u x y x y x y =++++在条件224x y x y +++=下的最值.令323222442(12)0442(12)040x y F x xy x x F y x y y y x y x y λλ⎧'=++++=⎪⎪'=++++=⎨⎪+-++=⎪⎩2222022020040xy z F x x F y y F z x y z x y z λμλμλμ⎧'=++=⎪⎪'=++=⎪⎪'=-+=⎨⎪+-=⎪⎪++-=⎪⎩解之得111222(,,)(1,1,2),(,,)(2,2,8),x y z x y z ==--故所求得最大值为72,最小值为6.(22) (本题满分12分).设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12n b bb b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na a a a aD A a a a a ==以下用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第一行展开得2212212121212212n n n a a a a aD aD a a a a --=-2122n n aD a D --=-1222(1)n n ana a n a --=-- (1)n n a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==-得,2211221()()n n n n n n n D aD a D aD a D a D a ------=-==-=.于是(1)n n D n a =+(I )【证法2】消元法.记2222212121||212na a a a aA a a a a =22122213121212212na a a ar ar a a a a -322222130124123321212naa a r ar a aa a a a -=21213122110111n n na a a an r ar nn a n n a n ----+(1)n n a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a aa aD na a a a a a a a a ---===所以,11(1)n n D ax D n a-==+. (III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为()()010100TTx k =+,其中k 为任意常数.(23) (本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足321A ααα=+,(I)证明123,,ααα线性无关; (II)令123(,,)P ααα=,求1P AP -.【详解】(I)【证明】设有一组数123,,k k k ,使得 122330k k k ααα++=. 用A 左乘上式,得112233()()()0k A k A k A ααα++=. 因为 11A αα=-, 22A αα=,321A ααα=+, 所以 1123233()0k k k k ααα-+++=, 即113220k k αα-=.由于12,αα是属于不同特征值得特征向量,所以线性无关,因此130k k ==,从而有20k =.故 123,,ααα线性无关.(II )由题意,100011001AP P -⎛⎫ ⎪= ⎪ ⎪⎝⎭.而由(I )知,123,,ααα线性无关,从而123(,,)P ααα=可逆.故1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.仅供个人用于学习、研究;不得用于商业用途。

2008年考研数学试题答案与解析(数学一)

2008年考研数学试题答案与解析(数学一)

2008年考研数学试题答案与解析(数学一)一、选择题 (1)【答案】B【详解】2()[ln (2)]2f x x x '=+⋅,(0)0f '=,即0x =是()f x '的一个零点又2224()2ln (2)02xf x x x''=++>+,从而()f x '单调增加((,)x ∈-∞+∞)所以()f x '只有一个零点. (2)【答案】A 【详解】因为2211x y f xy'=+,2221y x y f xy-'=+,所以(0,1)1x f '=,(0,1)0y f '=所以 (0,1)10f =⋅+⋅=g ra d i j i (3)【答案】D【详解】由微分方程的通解中含有xe 、co s 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= (4)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限(5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. (6)【答案】B【详解】图示的二次曲面为双叶双曲面,其方程为2222221x y z abc'''--=,即二次型的标准型为222222x y z f abc'''=--,而标准型的系数即为A 的特征值.(7)【答案】A【详解】()(){}{}()()()()()2m ax ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1X Y ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得0,1,E X E Y ==所以 ()()E Y E a X b a E X b =+=+01,a b ⨯+= 所以1b =. 排除()B . 故选择()D 二、填空题 (9) 【答案】1x 【详解】由dy y dxx-=,两端积分得1ln ln y x C -=+,所以1x C y=+,又(1)1y =,所以1y x=.(10) 【答案】1y x =+【详解】设(,)sin ()ln ()F x y xy y x x =+--,则1c o s ()11c o s ()x y y x y F d y y xd xF x x y y x--'-=-=-'+-,将(0)1y =代入得1x d y d x==,所以切线方程为10y x -=-,即1y x =+(11)【答案】(1,5]【详解】幂级数0(2)nn n a x ∞=+∑的收敛区间以2x =-为中心,因为该级数在0x =处收敛,在4x =-处发散,所以其收敛半径为2,收敛域为(4,0]-,即222x -<+≤时级数收敛,亦即0nn n a t ∞=∑的收敛半径为2,收敛域为(2,2]-. 则0(3)nn n a x ∞=-∑的收敛半径为2,由232x -<-≤得15x <≤,即幂级数0(3)nn n a x ∞=-∑的收敛域为(1,5](12)【答案】4π【详解】加221:0(4)z x y ∑=+≤的下侧,记∑与1∑所围空间区域为Ω,则2xyd yd z xd zd x x d xd y ∑++⎰⎰1122x y d y d z x d z d x x d x d y x y d y d z x d z d x x d x d y ∑+∑∑=++-++⎰⎰⎰⎰2222222441()0()2x y x y y d x d y d z x d x d y x y d x d y Ω+≤+≤=--=++⎰⎰⎰⎰⎰⎰⎰223142d r d r πθπ==⎰⎰(13)【答案】1【详解】1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+=⎪⎝⎭记12(,)P αα=,0201B ⎛⎫=⎪⎝⎭,则A P P B = 因为12,αα线性无关,所以P 可逆. 从而1B P A P -=,即A 与B 相似. 由2||(1)001E B λλλλλ--==-=-,得0λ=及1λ=为B 的特征值.又相似矩阵有相同的特征值,故A 的非零特征值为1. (14)【答案】12e【详解】由22()D X E X E X =-,得22()E XD XE X =+,又因为X 服从参数为1的泊松分布,所以1D X E X ==,所以2112E X =+=,所以 {}21111222P X e e--===!三、解答题 (15) 【详解】 方法一:43[sin sin (sin )]sin sin sin (sin )limlimx x x x xx x xx→→--=22221s in c o s c o s (s in )c o s 1c o s (s in )12limlimlim 3336x x x x x x xx x xx→→→--====方法二:331sin ()6x x x o x =-+ 331sin (sin )sin sin (sin )6x x x o x =-+444440[s in s in (s in )]s in s in (s in )1limlim 66x x x x xx o x xx x →→⎡⎤-∴ =+=⎢⎥⎣⎦(16) 【详解】 方法一:(直接取x 为参数将对坐标的曲线积分化成定积分计算)222222s in 22(1)[s in 22(1)s in c o s ]s in 21c o s 2c o s 2s in 2s in 222222Lx d x x y d yx x x x d x x x d xxx xx x d x xx d x ππππππππ+-=+-⋅==-+=-+-=-⎰⎰⎰⎰⎰方法二:(添加x 轴上的直线段用格林公式化成二重积分计算)取1L 为x 轴上从点(,0)π到点(0,0)的一段,D 是由L 与1L 围成的区域11222sin 222s in 22(1)s in 22(1)s in 22(1)14s in 24c o s 22s in21(1c o s 2)s in 2s in 22222LL L L xDx d x x y d yx d x x y d y x d x x y d yx y d x d y x d xd x x y d y xx x d xxx x x d x xx d x πππππππππ++-=+--+-=--=--=-=--=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三:(将其拆成2sin 222LLx d x y d y x y d y -+⎰⎰,前者与路径无关,选择沿x 轴上的直线段积分,后者化成定积分计算)2212sin 22(1)sin 222LL Lxd x x yd y xd x yd y x yd y I I +-=-+=+⎰⎰⎰对于1I ,因为0P Q yx∂∂==∂∂,故曲线积分与路径无关,取(0,0)到(,0)π的直线段积分10s in 20I x d x π==⎰2222202222122s in c o s s in 2c o s 221111c o s 22c o s 2s in 222221111s in 2c o s 22222LI x y d y x x x d x x x d x x d xx xx x d x x d xx x x ππππππππππ====-=-+=-+⎡⎤=-++=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰所以,原式212π=-(17) 【详解】点(,,)x y z 到x O y 面的距离为||z ,故求C 上距离x O y 面的最远点和最近点的坐标,等价于求函数2H z =在条件22220x y z +-=与35x y z ++=下的最大值点和最小值点.令 2222(,,,,)(2)(35)L x y zz x y z x yzλμλμ=++-+++-所以 22220(1)20(2)2430(3)20(4)35(5)x y z L x L y L z z x y z x y z λμλμλμ'=+=⎧⎪'=+=⎪⎪'=-+=⎨⎪+-=⎪++=⎪⎩ 由(1)(2)得x y =,代入(4)(5)有 22235x z x z ⎧-=⎨+=⎩,解得555x y z =-⎧⎪=-⎨⎪=⎩ 或 111x y z =⎧⎪=⎨⎪=⎩(18)【详解】(I) 对任意的x ,由于f 是连续函数,所以00()()()()limlimx xxx x f t d t f t d tF x x F x xx+→→-+-=⎰⎰()()limlimlim ()x xxx x x f t d tf x f xxξξ+→→→===⎰,其中ξ介于x 与x x + 之间由于0lim ()()x f f x ξ→= ,可知函数()F x 在x 处可导,且()()F x f x '=.(II)方法一:要证明()G x 以2为周期,即要证明对任意的x ,都有(2)()G x G x +=,()(2)()H x G x G x =+-,则()()()()()()()()22222()2(2)22(2)2()0x xH x ft d t x ft d tft d t x ft d tf x ft d t f x ft d t+'''=-+--=+--+=⎰⎰⎰⎰⎰⎰又因为 ()()()22(0)(2)(0)2200H G G f t d t f t d t =-=--=⎰⎰所以 ()0H x =,即(2)()G x G x +=方法二:由于f 是以2为周期的连续函数,所以对任意的x ,有()()()()222(2)()2(2)2x xG x G x ft d tx ft d t ft d tx ft d t ++-=-+-+⎰⎰⎰⎰()()()()222202x xft d t ft d t ft d t ft d t +⎡⎤=+--⎢⎥⎣⎦⎰⎰⎰⎰ ()()()()000222[2]0xxxft d t fu d u f t ft d t ⎡⎤=-++=+-=⎢⎥⎣⎦⎰⎰⎰即()G x 是以2为周期的周期函数.(19)【详解】 由于 220022(1)23a x d x πππ=-=-⎰21224(1)c o s (1)1,2,n n a x n x d x n nππ+=-=- =⎰所以 210211(1)()c o s 14c o s 023n n n n a f x a n x n x x nππ+∞∞==-=+=-+ ≤≤∑∑令0x =,有 2121(1)(0)143n n f nπ+∞=-=-+ ∑又(0)1f =,所以1221(1)12n n nπ+∞=- =∑(20)【详解】(I) ()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤(II) 由于,αβ线性相关,不妨设k αβ=. 于是()2()()(1)()12TTTr A r r k r ααβββββ=+=+≤≤<(21)【详解】(I)证法一:2222122212132101221221122aa a a a aa aa A r a r aaaa=-=121301240134(1)2(1)3231(1)0nn n a a a n a a n ar a r a n a nnn an--+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a aa==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n aa aa D a D aa-=-21221222(1)(1)n n nn n a D a D a n aa n an a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D a D a D --=-,所以 211212()n n n n n n D a D a D a D a D a D ------=-=-222321()()n nn n a D a D aD a D a ---=-==-=即 12122()2n n n n n n n n D a a D a a a a D a a D ----=+=++=++2121(2)(1)nn nn n aaD n aaD --==-+=-+1(1)2(1)nn nn a aa n a -=-+⋅=+(II)因为方程组有唯一解,所以由A x B =知0A ≠,又(1)nA n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n aa a a aa aa D n aaaaa--⨯-⨯-===所以 11(1)n nD n x D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n nx x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()100100,TTk k +为任意常数.(22)【详解】(I) 1201(0,)11112(0)(0)()122(0)22P X Y P Z X P X Y X P Y d y P X =≤≤==+≤===≤===⎰(II) (){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=[]1{1}{}{1}3P Y z P Y z P Y z =≤++≤+≤-[]1(1)()(1)3Y Y Y F z F z F z =+++-所以 []1()(1)()(1)3Z Y Y Y f z f z f z f z =+++-1,1230,z ⎧-≤<⎪=⎨⎪⎩其它 (23) 【详解】(I) 因为2(,)X N μσ ,所以2(,)X N nσμ ,从而2,E X D X nσμ= =.因为 221()()E T E XS n=-221()E X E S n=-221()()D X E X E S n=+-222211nnσμσμ=+-=所以,T 是2μ的无偏估计(II)方法一:22()()D T E T E T =-,()0E T =,22()1E S σ==所以2()D T E T=442222()S E X XSnn=-⋅+4224221()()()()E X E X E S E S nn=-+因为(0,1)X N ,所以1(0,)X N n,有10,E X D X n==,()221E XD XE Xn=+=所以22422221()()()()()E X D X E X D D X E X⎛⎡⎤=+=++ ⎣⎦⎝(2221()DD X n⎡⎤=+⎣⎦2221132n n n ⎛⎫=⋅+= ⎪⎝⎭()2422222()1E SE S D S E S D S ⎡⎤==+=+⎢⎥⎣⎦因为2222(1)(1)(1)n SW n Sn χσ-==-- ,所以2(1)D W n =-,又因为22(1)D W n D S =-,所以22(1)D S n =-,所以4211(1)1n E S n n +=+=--所以 2223211111n E Tnnnnn +=-⋅⋅+⋅-2(1)n n =-.方法二:当0,1μσ==时221()()D T D XS n=-(注意X 和2S 独立)(222222221111(1)(1)D XD S DD n S nnnn ⎡⎤=+=+⋅-⎣⎦- 222111222(1)(1)(1)n nnn n n =⋅+⋅⋅-=--。

北京交通大学2008年硕士研究生入学考试数学分析答案

北京交通大学2008年硕士研究生入学考试数学分析答案

北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 1 页注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 2 页
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 3 页注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 4 页注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 5 页注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第 6 页
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第7 页
北京交通大学2008年硕士研究生入学考试答案
考试科目:数学分析共8 页第8 页。

(完整)2008年1月考研管理类联考真题及答案解析,推荐文档

(完整)2008年1月考研管理类联考真题及答案解析,推荐文档

2008年1月考研管理类联考真题及答案解析一、问题求解1、=⨯⨯⨯⨯+++++10323242333321)31()31)(31)(31(ΛΛ( )A 、19103321+⨯B 、19321+C 、19321⨯D 、9321⨯ E 、以上都不对 2、若ABC ∆的三边为c b a ,,满足ac bc ab c b a ++=++222,则ABC ∆为( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、等腰直角三角形E 、以上都不对3、P 是以a 为边长的正方形,1P 是以P 的四边中点为顶点的正方形,2P 是以1P 的四边中点为顶点的正方形,i P 是以1-i P 的四边中点为顶点的正方形,则6P 的面积为( )A 、162aB 、322aC 、402aD 、482aE 、642a 4、某单位有90人,其中65人参加外语培训,72人参加计算机培训。

已知参加外语培训而未参加计算机培训的有8人,则参加计算机培训而未参加英语培训的人数是( )A 、5B 、8C 、10D 、12E 、155、方程03)31(2=++-x x 的两根分别为等腰三角形的腰a 和底b )(b a <,则该三角形的面积是( )A 、411B 、811C 、43D 、53E 、83 6、一辆出租车有段时间的营运全在东西走向的一条大道上,若规定向东为正向,向西为负向。

且知该车的行使的公里数依次为1215985610、、、、、、---,则将最后一名乘客送到目的地时该车的位置是( )A 、在首次出发地的东面1公里处B 、在首次出发地的西面1公里处C 、在首次出发地的东面2公里处D 、在首次出发地的东面2动力处E 、仍在首次出发地7、如图所示,长方形ABCD 中的cm BC cm AB 5,10==,设AB 和AD 分别为半径作半圆,则图中阴影部分的面积为( )A 、222525cm π-B 、2212525cm π+ C 、242550cm π+D 、2504125cm -πE 、以上都不是8、若用浓度为%30和%20的甲乙两种食盐溶液配成浓度为%24的食盐溶液500克,则甲乙两种溶液各取( )A 、180克,320克B 、185克,315克C 、190克,310克D 、195克,305克E 、200克,300克9、将价值200元的甲原料与价值480元的乙原料配成一种新原料,若新原料每一千克的售价分别比甲、乙原料每千克的售价少3元和多1元,则新原料的售价是( )A 、15元B 、16元C 、17元D 、18元E 、19元10、直角边之和为12的直角三角形面积最大值等于( )A 、16B 、18C 、20D 、22E 、以上都不是11、如果数列}{n a 的前n 项的和323-=n n a S ,那么这个数列的通项公式是( ) A 、)1(22++=n n a n B 、n n a 23⨯= C 、13+=n a nD 、n n a 32⨯=E 、以上都不是12、以直线0=+x y 为对称轴且与直线23=-x y 对称的直线方程为( )A 、323+=x yB 、323+-=x y C 、23--=x y D 、23+-=x y E 、以上都不是13、有两排座位,前排6个,后排7个。

全国硕士研究生入学统一考试数学考试分析:2008年版

全国硕士研究生入学统一考试数学考试分析:2008年版

全国硕士研究生入学统一考试数学考试分析:2008年版(一)考试性质一方面,从数学考试成绩的使用功能上看,它是常模参照性的考试。

所谓常模参照考试是指依据考生的成绩在全体考生成绩量表中的位置来评价考生成绩的优劣,离开考生群体解释考生的成绩意义不大。

我国硕士研究生招生初试是从高分到低分择优确定参加复试人选,这种优胜劣汰的方式是常模参照考试的主要特征。

数学考试成绩对于工学、经济学和管理学各专业的考生是否被录取起着至关重要的作用。

从这个意义上讲,数学考试具有明显的选拔功能,是常模参照考试。

另一方面,从数学考试测量功能上看,数学考试又是水平考试。

水平考试是用来测量考生是否达到一定的水平,从而决定是否适应将来的某项任务的考试,其主要特征是命题不以《教学基本要求》和某一指定的教材为依据,而是以《考试大纲》为依据。

《考试大纲》规定考试内容和考试要求,与《教学基本要求》没有直接的关系。

数学考试是测量工学、经济学、管理学各专业的考生是否具备为完成相应专业研究生阶段的学习任务以及胜任工作后的研究任务所必需的数学知识和能力。

数学《考试大纲》规定的考试内容和考试要求与《教学基本要求》不完全相同,《教学基本要求》中规定的有些教学内容《考试大纲》不要求考查,而《考试大纲》中的有些考试要求要略高于教学要求。

可见,数学考试也符合上述水平考试的特征,因而是水平考试。

为了体现工学、经济学、管理学不同学科专业对硕士研究生入学应具备的数学知识和能力的不同要求,数学考试分为四个卷种,即数学一、数学二、数学三和数学四,对不同卷种的考试内容有不同的要求。

这种对不同学科、专业考生提出不同的考试要求的特征也是水平考试的重要标志。

(二)指导思想根据数学考试的性质和目的,数学科考试的命题工作一直坚持两个“有利于”的指导思想,即既有利于国家对高层次人才的选拔,又有利于高等学校各类数学课程教学质量的提高,在这两个“有利于”中,重点是有利于为国家选拔高层次的人才。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 1 1 2 ( A 2 E ) 1 0 1 1 , 1 0 0 2

1 1 1 X ( A 2 E ) 1 B 1 0 0 . 1 0 1
2k1 k3 0, 所以方程组 k1 k2 0, 只有零解,即 k1 k2 k3 0 . 2k k 0, 2 3
由线性无关的定义可知,向量组 21 2 , 2 23 , 3 1 线性无关. (7)【答案】(A) 【解析】若 A1 , A2 , A3 相互独立,由相互独立的定义可知,
-3-
(12)【答案】

8
(e 1)
【解析】作极坐标变换 x r cos , y r sin ,则
D ( x, y ) | x 2 y 2 1, 0 y x (r , ) | 0 r 1, 0 , 4
x e D
(18)(本题满分 11 分) 【解析】设 则
f ( x) (1 x)e2 x x 1, f ( x) (1 2 x)e2 x 1, f ( x) 4 xe2 x .
当 x 0 时, f ( x) 0 ,则 f ( x ) 单调增加,故 f ( x) f (0) 0, f ( x ) 单调增加.于是
所以,
2
x 2
D O
x
dy
0
1
0
2 y 2
f ( x, y )dx dx
2
0
1
x 2
0
f ( x, y )dy ,
故选(A). (5)【答案】(D) 【解析】根据行列式的性质,有
B 2 , 21 2 , 3 2 , 21 , 3 2 , 2 , 3 21 , 2 , 3 0 2 2 , 2 , 3 2 A 6.
乐考无忧丆为您的考研之路保驾护航両 ;免费考研辅导视频
2008 年全国硕士研究生入学统一考试联考数学试题解析 一、 选择题: 1~8 小题,每小题 4 分,共 32 分.在每小题给出的四个选项中,只有一项符合题目 要求,请选出一项最符合题目要求的. (1)【答案】(B) sin( x 1) 【解析】函数 f ( x) 在点 x 1 没有定义,而 x2 1 sin( x 1) lim ,所以 x 1 为无穷间断点; x 1 x2 1
x 0
F ( x)

0
x2
x2 2 2 2 f (t )dt 0 f (t )dt f ( x ) ( x ) 2 xf ( x ) ,

故选(C). (4)【答案】(A) 【解析】积分区域 D 如右图所示.由于
y 1
y 1
D ( x, y ) | 0 y 1, 2 y 2 x 0 x ( x, y ) | 2 x 0, 0 y 1 , 2
lim sin( x 1) sin( x 1) 1 lim ,所以 x 1 为可去间断点. 2 x 1 x 1 ( x 1)( x 1) x 1 2
故选(B). (2)【答案】(D) 【解析】 dy df (1 e x ) f (1 e x )(1 e x )dx f (1 e x )e x dx , 故选(D). (3)【答案】(C) 【解析】由于 F ( x) 2 f (t )dt ,则
f ( x) f (0) 0 ,即 (1 x)e2 x 1 x .
(19)(本题满分 11 分) z 【解析】 ye xy cos(e xy 2 y ) , x
z ( xe xy 2) cos(e xy 2 y ) , y
2 z e xy cos(e xy 2 y ) xye xy cos(e xy 2 y) ye xy sin(e xy 2 y) ( xe xy 2) xy e xy [(1 xy ) cos(e xy 2 y ) y ( xe xy 2)sin(e xy 2 y)].
lim
x 0
1 cos(sin x) sin(sin x) cos x sin x 1 lim lim . 2 x 0 x 0 x 2x 2x 2
(16)(本题满分 10 分) 【解析】令 t x , x t 2 , dx 2tdt
-4-

ln( x 1) dx 2 ln(t 1)dt x t dt t 1 1 2t ln(t 1) 2 (1 )dt t 1 2t ln(t 1) 2t 2 ln(t 1) C 2t ln(t 1) 2 2( x 1) ln( x 1) 2 x C.
(20)(本题满分 9 分) 【解析】由 AX B 2 X ,得 ( A 2 E ) X B ,其中 E 为单位矩阵.
-5-
1 1 1 A 2 E 0 1 2 . 0 0 2
因为 A 2 E 2 0 ,所以 A 2E 可逆, X ( A 2E)1 B .而
P ( A1 A2 ) P( A1 ) P ( A2 ), P ( A2 A3 ) P( A2 ) P( A3 ), P ( A1 A3 ) P( A1 ) P ( A3 ), P ( A1 A2 A3 ) P( A1 ) P( A2 ) P( A3 ),
由此可得 A1 , A2 , A3 两两独立,故(A)正确; 对于选项(B),若 A1 , A2 , A3 两两独立,则
2
y2
dxdy 4 d er rdr
2

1
0
0

(13)【答案】
1
4
e 2
er
2
1 0


8
(e 1).
4 3 【解析】由于 A 的特征值为 1,2,3,所以
A 1 2 3 6 ,
2 A1 23 A
1
8
1 4 . 6 3
-2-
P( A1 A2 ) P( A1 ) P( A2 ), P( A2 A3 ) P( A2 ) P( A3 ), P( A1 A3 ) P( A1 ) P( A3 ),
但 P( A1 A2 A3 ) P( A1 ) P( A2 ) P( A3 ) 不一定成立,即 A1 , A2 , A3 不一定相互独立,(B)不正确; 根据相互独立的定义可知,选项(C)显然不正确; 对于选项(D),令事件 A2 ,则 A1 与 A2 独立, A2 与 A3 独立,但 A1 与 A3 不一定独立.故选项 (D)不正确. (8)【答案】(D) 【解析】 X 服从参数为 n, p 的二项分布,则
E ( X ) np, D( X ) np(1 p) .
由期望和方差的性质,可得
E (2 X 1) E (2 X ) E (1) 2 E ( X ) 1 2np 1; E (2 X 1) E (2 X ) E (1) 2 E ( X ) 1 2np 1; D(2 X 1) D(2 X ) 4 D( X ) 4np(1 p); D(2 X 1) D(2 X ) 4 D( X ) 4np(1 p).
(17)(本题满分 10 分) 【解析】原方程可化为 y
1 y xe x ,则 x
ye
1 1 x dx x dx e xe x dx C x e x dx C xe x Cx.
1 x 将 y x 1 0 代入得 C ,故所求特解为 y xe x . e e
故选(D). (6)【答案】(C) 【解析】对于 A、B、D 选项,由于
-1-
(1 22 ) (22 3 ) (3 1 ) 0 ; (1 22 ) 2(2 3 ) (23 1 ) 0 ; (1 2 ) (2 23 ) (23 1 ) 0 ,
根据线性相关的定义可知,A、B、D 选项中的向量组都是线性相关的.由排除法可得 C 正确. 事实上,可以根据定义证明选项 C 正确. 设 整理得
k1 (21 2 ) k2 (2 23 ) k3 (3 1 ) 0 , (2k1 k3 )1 (k1 k2 )2 (2k2 k3 )3 0 .
D( X ) D(
所以
E ( X ) 2 D( X ) E 2 ( X ) 1 2 2 5 .
三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分) 【解析】
lim
x 0
1 cos(sin x) e 1
x2
2k1 k3 0, 由于向量组 1 , 2 , 3 线性无关,所以 k1 k2 0, 此线性方程组的系数矩阵 2k k 0, 2 3 2 0 1 A 1 1 0 . 0 2 1
由于
2 0 1 2 2 0 2 2 A 1 1 0 1 1 0 4 0, 1 1 0 2 1 0 2 1
故选项(D)正确,应选(D). 二、填空题:9~14 小题,每小题 4 分,共 24 分. (9)【答案】 2 【解析】 令 f ( x) e x e 0 ,可得 x 1 . f ( x) e x , f (1) e 0 ,根据极值的第二充分条件, 可得 x 1 为函数 f ( x) e x ex 2 的极小值点,极小值为 f (1) 2 . (10)【答案】 2e 2 2 【解析】 e| x| (1 x)dx e| x|dx xe| x|dx 2 e x dx 2 e x 0 2e 2 2 .
相关文档
最新文档